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Abs t r ac t .  In this paper we prove that the variety of complete cuspidal 
cubics is smooth in codimension one and that there are no first order degen- 
erations other than Schubert's 13. We also establish a number of properties 
of cuspidal cubics that give a geometric understanding of the "Stammzahlen" 
tables of Schubert. 

I n t r o d u c t i o n  

Hilbert's 15th problem asks for a justification, and for a delimitation of their valid- 
ity, of the geometric numbers computed by 19th century geometers, especially those 
obtained by Schubert and included in his book Schubert [1879]. 

A key step in this direction, given some sort of figures, is a detailed study of the de- 
generations that those figures can undergo, for then a modified version of the classical 
method of degenerations (see Xarnbd [1987]) allows in principle to compute several 
sorts of numbers concerning the given figures, the significance of the numbers being 
built-in in the method (see Miret - Xambd [1987]). The main feature of this approach 
is that it does not rely on coincidence formulas, which often lead to computation of 
multiplicities that are very difficult to control. Instead it relies on the idea, already 
used by Schubert to cross-check his computations, that most geometric numbers can 
be computed in several different ways. This circumstance, used sistematically, allows 
to establish the required degeneration relations by simple algebra. 

One of the non-trivial cases studied by Schubert is that of cuspidal cubits. These 
objects were recently considered by Sacchiero [1984] and Kleiman - Speiser [1986]. 
Essentially these works are concerned with the verification of the 8 characteristic 
numbers of the family of cuspidal cubits and, as it turns out, a single degeneration 
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suffices for this purpose, namely, the so called degeneration ~r, consisting of a conic 
and one of its tangent lines. 

In Schubert 's  book, however, we find a list of 13 degenerations for the (complete) 
cuspidal cubics, with no formal verifications. In fact the process whereby they are 
obtained (sometimes called a homolography) turns out to be not hard to justify in 
itself, but  nevertheless it does not guarantee that the degenerations produced are all 
possible degenerations, nor that the degenerations so obtained are simple on the variety 

of complete cuspidal cubics. 

On the other  hand, the constitutive elements of some of the degenerations cannot 
be independent,  since their number  exceeds what  is allowed for by its dimension. 
Therefore there must exist relations among those elements. The  knowledge of these 
relations is important  because it plays a key role in the determination of the funda- 
mental numbers of cuspidal cubics. Schubert gives lists of such relations, expressed 
in enumerat ive terms (tables of "Stammzahlen",  loc. cit., pp. 120-127), and asserts 
tha t  they were obtained by an indirect process ('% posteriori erschlossen", ibid., p. 
119). 

In this paper  we carry out an analytical investigation of the possible degenerations 
of cuspidal cubics that  allows, aside from verifying Schubert 's  results, to settle the 

questions raised above. In part icular  it turns out that  a careful s tudy of the ho- 
molography process uncovers not only what the relations mentioned above are, but  
also leads in a natural way to discover a number geometric properties of cuspidal cu- 
bics tha t  as far as we know have hi therto not been noticed. These properties then 
allow to determine the relevant Stammzahlen following straigtforward enumerative 
procedures. 

The differences we find with Schubert are a few misprints and the fact tha t  al though 
he uses a correct version of the degeneration U1 (as it may be inferred from the results 
of his computat ions,  or from duality), nevertheless his description of tha t  degeneration 
(loc. cir., p. 112) is incorrect, for, as we shall see, the double focus is v, not c. 

The organization of the paper  is as follows. Section 1 is for notations and prelim- 
inaries. Sections 2 and 3 are devoted to introduce the space of complete cuspidal 
cubits,  and the analytic means to s tudy them. Section 4 gives a simple analytic ac- 
count of the homolography process for plane curves, which then is applied in Section 5 
to obtain Schubert 's  degenerations for cuspidal cubits (other  than  a).  Section 5 also 
considers the question, given some degeneration, of "normalizing" the cubits from 
which it can be obtained. In Section 6 we prove that  there are no other  first order 
degenerations in the space of complete cuspidal cubics and that  this space is regular 
in codimension one. Finally in Section 7 we prove a number  of geometric properties of 
cuspidal cubics which then are applied in Section 8 to describe in enumerat ive terms 
the relations that  exist between the building elements of the degenerations. 
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1.  N o t a t i o n s  a n d  preliminaries 

Given a smooth  variety X ,  an invertible sheaf £: on X and sections 

= ( s o , . . .  , s k )  

of £ ,  we shall denote by X~ the blow up of X with respect to the sheaf of ideals 

defined by the sections s i af ter  removing their  common codimension one components .  

This  means tha t  if D is the maximal  effective divisor on which the sections a vanish, 

then  we take the blow up of X with respect to the sheaf of ideals defined by the 
sections of 

O x ( - D )  ® £. 

corresponding to the sections a. We will say tha t  X~ is the blow up of X with respect  

to so, . . .  ,Sk. More generally, if 

f :  X '  --~ X 

is a dominant  map  between smooth  complete varieties the blow up of X ~ with respect 

to the sections f * (a )  of f * ( £ )  will be referred to as the blowing up of X '  with respect 
to the sections a. 

Let F¢ be the closure of the graph of the map  

X ---~ p k 

defined by the sections a. 

PROPOSITION 1. There exists a natural isomorphism X ,  __T+ Fa. 

PROOF: There  exists a regular map  X ,  --* p k  tha t  coincides, as a rat ional  map,  with 
the composi t ion 

X, - - - ,  X---~ p k 

(Harshorne [1977], Ex. 7.17.3). This map,  together  with the natura l  m a p  X~ ~ X ,  
defines a m a p  

X~, ~ X x P k 

whose image is clearly contMned in F~. On the other  hand,  F~ satisfies the relations 

X i s j  -- X j s i  = O, 

f rom which it follows tha t  the inverse image of the ideal defined by the sections a on 

Fo is locally principal. Hence, by the universality of the blow up, there exists a map  

tha t  composed with the m a p  of X ,  to X coincides with the na tura l  project ion 

F ~ X .  
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Now it is clear tha t  the maps  

X~ ~ F~ and 17~ ~ X~ 

are inverse isomorphisms.  (> 

In the rest of this paper  we shall deal with the ve.riety S of non-degenerate  plane 
cuspidal cubics. It is an open subvariety of the variety T of plane cuspidal cubics, 

which itself is an irreducible closed subvariety of codimension 2 of the projective space 
of all plane cubics. If P is a point and L a line through P ,  the closed subvariety of 
T of cuspidal cubics with cusp at P and cuspidal tangent  L will be denoted by Tp, L. 
It  is a 4 dimension linear space. The  open subset of Tp, L whose points are the non- 

degenerate  cuspidal cubics will be  denoted by Sp, L. We shall write G := PGL(3)  and 
will denote G r the subgroup of G that  leaves the point P and the line L fixed, or 
equivalently, tha t  leaves Sp, L invariant (in order tha t  an element of G belongs to G I 

it is enough tha t  it t ransforms some cubic in Sp, L into another  cubic of Sp, L). 

2. Point  cuspidal  cubics 

Let p2  be the complex projective plane. The  homogeneous coordinates of p2 will 

be denoted (xo, x l ,  x2). 

Cuspidal  cubics in p2  with cusp at the point c = (1, 0, 0) and cuspidal tangent  the 

line q = {x2 = 0} form a 4 dimensional linear space T~,g in the p9  of plane cubics. We 
shall parametr ize  this linear space by homogeneous coordinates in such a way that  a 
point (ao, . . .  , a4) E p4  corresponds to the cuspidal cubic whose equat ion is 

(,) aoxo x2 = a l x  3 + a2x~x2 + a3xlx~ + a4x 3. 

For subsequent references, the right hand side of (*) will be denoted p ( x l ,  x2).  The  
discriminant d of p ( x l ,  x2) is given by the relation 

d 2Tara24 18ala2a3a4 + 4ala  3 + 4a3a4 2 2 _~ _ _ a2a 3 . 

We will also use the expression 

d ' =  27a~a4 - 9ala2a3 + 2a~. 

Notice tha t  2d' = Od/Oa4. The relation d = 0 is equivalent to say tha t  p has a double 
factor  and it is not hard  to see tha t  this factor  is not triple iff ei ther d'  # 0 or else 

a l  = a2 = 0 and as # 0. 

Now we shall describe a par t i t ion of T¢,q into locally closed subsets Ti, i = 0 , . . . ,  9. 

To. The  subset  Sc,q of Tc,q is the open orbit  under  the action of the group G '  and it 
is not hard  to see tha t  (*) is in S,,¢ iff aoal ~ O. We shall set To = S¢,q. 
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T1. This is the set defined by the conditions al  = 0 and aoa2 ~ O. Thus cuspidal 

cubics in T1 have the form 

x2(a2x~ +a3x,x2+a4x~ --aoxox2) = 0 .  

So the point cubic is the union of the line x2 = 0 (line q) and the conic K whose 

equation is 

a2x21 -[- a3xlx2 + a4x i -- aoxox2 = O. 

It is easy to see that  q is tangent to K at the point (1,0,0), and that  the determinant 

of the matrix of K is 2a]a2 ~ O. Therefore cuspidal cubics in T1 consist of line q 

together with a non-degenerate conic that  is tangent to it at the point c. 

T2. This set is defined by the relations ao = 0 and aid ~ O. Cubics in T2 are given 
by the equation p(xl,  x2) = 0, which consist of three distinct lines concurring at the 

point c = (1, 0, 0). Moreover, none of the lines coincides with q. 

Ta. The relations that  define Ta are ao ---- a l  = 0 and d ~ 0. This set consists of three 

distinct lines concurrent at c = (1, 0, 0), one of which coincides with q. 

T4. The conditions defining this set are a] -- a2 = 0 and a0 ~ 0. Under this 

assumption the point equation of the cubic is 

x (aoxo - - = o ,  

which consists of the double line q (x2 = 0) and a simple line different from q and 

meeting it at the point P = (aa, a0, 0). Notice that  P does not coincide with c. 

Ts. This is the set satisfying the relations a0 = d = 0 and aid ~ ~ O. The cubics in 

this set consist of a double line and a simple line, both  different from q, meeting at 

c = (1,0,0).  

T6. Take a0 = al  = d = 0 and a2 ~= 0. Such cubics consist of the line q and a double 

line through c = (1, 0, 0) different from q. 

TT. a0 = al = a2 = 0 and aa ~ 0. They consist of the line q counted twice and 

another line through c, different from q. 

Ts. a0 = d = d ~ = 0 and al # 0. A triple line through c which does not coincide with 

q. 

Tg. a0 = al = a2 = aa = 0. It consists of line q counted three times. 

PROPOSITION 2 

(1) The sets T~ are irreducible. To has dimension 4, T1, T2 have dimension 3, 
T3, T4 and T5 have dimension 2, T6, T7 and Ts have dimension 1 and T9 has 
dimension O. 

(2) The locally dosed sets Ti are the orbits of G I acting on T. 
(3) The sets GTI are orbits of G. More precisely we have: 
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- GT0 = S, which is the dense orbit of  non-degenerate cuspidal cubics. 

- GT1 is the 6-  dimensional orbit whose points correspond to cubics consisting 

of a conic and one of its tangent lines. 

- GT2 -- GT3 is the 5-dimensional orbit whose points correspond to triples of 
distinct concurrent lines. 

- GT4 = GT~ -= GT6 -- GT7 is the 3-dimensional orbit whose points corre- 
spond to a double line and a simple line different from the former. 

- GTs -- GT9 is the 2-dimensional orbit whose points correspond to triple 
lines, o 

3. Complete cuspidal cubics 

Let pg* be the dual space of the p9  of plane cubics. We shall make  the convention 
that  a point 

(bo, . . . ,  bg) E p9* 

corresponds to the dual cubic 

fou~ q- f lu~ + f2uo -b f3 = 0 

where 

fo = bo,f l  = blul + b2u2, 

f2 = b3u~ + b4ulu2 + bsu~, and 

We will put ,  following Schubert,  

b: S ~ p9*  

c: S --* p 2  

v: S --* p 2  

q: S ---* p 2 *  

w: S --* p 2 *  

y: S -*  p 2  

z: S ---+ p 2 *  

to denote the maps  that  t ransform a given cubic C in S into, respectively, the dual 

cubic C*, the cusp, the inflexion point, the cuspidal tangent,  the irdlexional tangent,  

the intersection point of w with q and the line joining v and c. 
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The  expression of these maps for cubics in Sc,q using the homogeneous coordinates 

of C given by (*), Section 2, is as follows. 

bo 27a21 a2 18ala2a3a4  + 4a la~  + 4a3a4 2 2 : -- _ a2a 3 

h = 2ao(--9 la a, + -- 

b3 = a2(12a la3  - a~) 

b4 = - 1 8 a 2 a l a 2  

b5 = 27a2o a2 

be = 4a~al  

b~ = b8 = b9 = 0 

v0 -- 27a2a4 - 9a la2a3  + 2aa2 

Vl = - 9 a o a l a 2  

v2 = 27a0a12 

w0 = -27a0a12 
Wl = 9 a l ( 3 a l a 3  - a 2) 

w2 = 27a12a4 - a~ 
y0 = 3 a l a 3 - a  2 

Yl = 3a0al 
y 2 = 0  
Z 0 ~ 0  

Zl = 3al 
Z 2 ~-- (Z 2 

Notice that  b0 is the discriminant d of the polynomial p(Xl, x2). 

Some algebraic computations in this paper  have been checked using MACAULAY 
(Bayer - Stillman [1986]), sometimes also using REDUCE. An example to illustrate 
this is the calculation of the formulas for the b's, which give the dual curve C*. In 

fact these formulas can be obtained eliminating x0, Xl, x2 from the relations 

ui = O i f  

and this operat ion is easily handled with MACAULAY. 

The formulas for the v's and w's can be obtained easily imposing that  a line meets 
the cuspidal cubic C at a point with multiplicity 3. The  formulas for the y's and z's 
are obtained, taking into account their definition, by simple algebraic manipulations. 

Set 
p = vg* × (p2)3 × (p2. )3  

and consider the map 

h: S ~ P ,  h = (b, c, v, y, z, q, w). 

Let S* be the closure of the graph of h in Z = S × P.  The space S* will be 
referred to as the space of comple te  cuspidal  cubics.  The  points in S* - S will be 
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called degenerate cuspidal cubics, where the inclusion of S in S* is given by idxh.  
Since the composition of h with the projection of P onto its first factor  is b: S --+ pg*, 
it is natural  to define b: S* --+ pg* as the restriction to S* of the projection onto pg*. 
Given a point C'  of S*, we shall say that  b(C') is the tangential cubic associated to 
the complete cubic C'. In the same way we can define morphisms c, v, y, z, q and w 
from S* to the corresponding factors of Z. Given C' E S*, c(C t) will be called the 
cusp of C t and similarly with the other  maps. 

Given a point P and a line L through P ,  we will write by S* P,L to denote the space 
of complete cuspidal cubics that  have cusp at P and cuspidal tangent L. We shall 
say that  the points in S*p,L are (P, L)-complete cuspidal cubics. 

For a non-degenerate cuspidal cubic, the triangle whose vertexes are c, v, and y, 
and whose sides are z, q, w, is called singular triangle. The same notion can now 
be defined for degenerate cuspidal cubics in S*. In other words, given a degenerate 
complete cuspidal cubic C',  the six-tuple 

( c( c'), v( C'), y( c'), z( C'), q( C'), w( c') ) 

will be called singular triangle of C', the first three elements being the vertices and 
the last three the sides. The  cubic is degenerate if and only if its singular triangle is 
a degenerate triangle. 

The  project ion of a point C '  E S* to S will be referred to as the point cubic 
associated to C'.  

4 .  H o m o l o g r a p h i c  d e g e n e r a t i o n s  o f  p l a n e  c u r v e s  

In this Section we study the degeneration of contact s t ructure  of an irreducible 
plane curve by means of the so called horaolographic process (of. Fulton [1984]). 
The information gathered here will be used in next Section to describe Schubert 's  13 
degenerations for plane cuspidal cubits. Tha t  these are the only possible degenerations 
will be established in Section 6. 

Let C be an irreducible plane curve (that  is, a curve in p2)  of degree d _> 2. Given 
a p o i n t  P E p2 ,1e t  m p =  rap(C)  be the multiplicity o f P o n  C. I f P  ~ C, then 
rap  = 0, and conversely. We shall write Tp(C) to denote the cone of tangents to C 
at the point P. Thus Tp(C) is the union of rap  lines through P ,  each counted with 
its natural  multiplicity. It is empty  iff P ~ C. 

Dually, let L be a line in p2, and let T~(C) denote the contact locus of L with C. 
So if L has multiplicity #L on the dual curve C* then T~(C) consists of #L points on 
L, each counted with its natural  multiplicity. It is empty iff L does not touch C. 

Assume that  P ~ L. We shall also consider the cone whose vertex is P and whose 
directrix is the 0-dimensional scheme L V/C. It consists of d lines through P ,  each 

counted with its natural  multiplicity. We shall denote this scheme by Cp, L. Dually, 
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let C~,p denote the 0 dimensional scheme of points obta ined intersecting L with the 
tangents  to  C f rom P .  So it consists of a finite number  of points  on L, each counted 

with its na tura l  multiplicity. The tota l  number  of points is 5, the class of C. 
Now we have: 

THEOREM 1. The pairs 

and 

(Tp(C) + (d - mR)L,  C~,p) 

(Cp, L, T~(C) + (5 - #L)P)  

are #lat degenerations of the cycJe (C, C*), dual o£ each other. 

PROOF: We take coordinates in such a way tha t  P = (1, 0, 0), L -- {x0 = 0}. 

Let F be  a homogeneous equat ion of C. Then  

r = FmX d-m + Fro+ix d - m - '  + . . .  + Fd, 

where Fj is a degree j homogeneous polynomial  in x l ,  x:., and m = mR(C ). In terms 

of this equat ion we see tha t  

Tp(c )  = V(Fm) 

and so 

Similarly 

T~(C) + (d - m)L = Y(F~X~o-~). 

Now consider the polynomials  

cp, L = V(Fd). 

• (x0 ,xx,x~, t )  = F~x0 d-m + ~ + l x 0  ~ - ~ - '  + - - .  + t d - m ~ .  

and 

• ( x 0 , x l , x 2 , t )  .d-m,~ d - m  = r rmX o + " "  + Fd. 

Let 
V = V ( ¢ ) , W  = V(~,)  C P2 × n ' .  

It  is clear tha t  V and W are flat families of closed subschemes of p2.  Moreover, 

V 1 = W  1 ----C 

and the special fibers V0 and W0 are given by 

Vo = V(F~X~o - ~ )  = Tp(C)  + (d --re)L,  

Wo = V(Fd)  = Cp, L. 



198 

To see how these degenerations behave with respect to the dual curve, consider, for 
t 7~ 0, the map ht: p2 ___. p2 such that (xo, x~, x2) ~-* (txo, x l ,  x2). Since 

x E h t (C)  e==> F ( h ; / t x )  = 0 

we see that h i ( C )  is given by the relation 

which is equivalent to 

and so 

Similarly, 

F ( x o / t ,  x , ,  x~) = O, 

~(Xo, Xl,X2,t ) : 0 ,  

h , ( C )  = V,. 

h , / , ( C )  = W,. 

Now given a line of coordinates (u0, Ul,  U2), hi (u)  has coordinates (uo / t ,  Ul,U2). 
From this it follows that if 

G = G~,u~ -~  + . . .  + G6 

is the equation of C*, then the equation of Vt* is 

t~-UG~u~ -u  + " .  + G~ = 0 

and that the equation of Wt* is 

41,~ o 6 - - / J - - 1  G u u ~ - "  + ~'~+1~o + " " " + t~-UG~. 

From this we see that under the degeneration C = Va --+ 170 the dual curve C* 
degenerates into V ( G s )  = C~,p.  Similarly, under the degeneration C = W1 --+ W0 
the dual curve C* degenerates into 

v ( a J o - "  ) = T~(C)  + (6 - ~)P.  

This completes the proof, o 

The tangential aspect of the degenerations given in the theorem consist of pencils 
of lines through points, each counted with its natural multiplicity. Such points will 
be called loci of the degeneration. 

5. Schubert ' s  13 degenera t ions  

In this Section we shall study Schubert's degenerations of plane cuspidal cubics. 
For computational purposes we will denote the resulting degenerations in the form 
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Di, i = 0 , . . . ,  12, instead of the greek letters with suffixes used by Schubert. (See the 
table of illustrations at the end.) The degenerations D1, .... , D12 are obtained by the 
homolography process (see next table below). The degeneration Do has been studied 
by Sacchiero [1984] and Kleiman - Speiser [1986]. 

Do (Schuber t ' s  a) 

Consider the family of plane cuspidal cubics 

(1) X]Zo = tx~ + x~x2. 

The fiber over t = 0 consists of the smooth conic K 

X 2 X  0 ~ X 2, 

and the line L = {x2 = 0}, which is tangent to K at P = (1,0,0). The curve dual of 
(1) can be computed by means of the formulas in Section 3. The resulting family has 
the fiber 

Uo(4UoU~ - u 2) 

over t = 0, which consists of the dual conic K* and the pencil of vertex P. Finally 
the singular triangle of (1) can also be computed by means of the formulas in Section 
3, and it turns out that in the limit all vertices come to coincide with P, while the 
three sides come to coincide with the line L. 

In what follows we shall let C denote a fixed cuspidal cubic, P a point in the plane, 
and L a line not through P. Choosing P to lie at special positions with respect 
to C and applying THEOREM I we get the 12 degenerations Di,i  = 1, . . . ,12 .  The 
correspondence with Schubert's notation and the homolography involved in each case 
is summarized in the following table. 

Homolography Schubert's notation Di 

£ ~ CUqUzUw ~2 DI= 
P e q - {¢, f l} ~1 D l l  
P E z - {c ,  v }  e3 DlO 
P E w - {v, y} r/2 D9 
P = Y ql Ds 
P E C -  {c,v} 52 D7 
dual Dr 51 D6 
dual D8 81 D5 
dual Dg 8u D4 
dual D10 Ts D3 
dual  D l l  7"1 Dz 
dual D12 r2 D1 
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D1 a n d  D12 ( S c h u b e r t ' s  T2 and e2) 

Assume that  P is general with respect to C, that  is, that  P does not lie on C 

nor on any side of the singular triangle. In that case TpC is empty. On the other 

hand the three tangent lines to C from P are distinct and so C~,p consists of three 

distinct points on L. We have therefore a triple line (L counted three times) with 

three distinct loci on it. It is also clear that  the sides of the singular triangle coincide 

with L and that its three vertices are three distinc~ points on L disjoint from the 

loci. This degeneration will be denoted D12. The degeneration D1 is dual of D12, 

and hence pointwise it consists of three concurrent lines at P,  and tangentwise of the 

point P as a triple focus. The three sides of the singular triangle are three distinct 

lines through P,  disjoint from the three lines of the point cubic, and so the three 
vertices coincide at P .  

D2 and Dll  (Schubert's  rl and cl) 

Now take P E q -- {c,v}. Again TpC is empty, and so pointwise we have a triple 

line, L. The three tangent lines to C are distinct, but one coincides with q, so we 

have three distinct loci on L, one equal to c. The vertex y coincides with c, but  they 

are different from v, which moreover is not a loci. Sides w and z coincide with L, but 

q is a line through c different from L, namely, the line joining P and c. We will call 

this degeneration Dl l .  The dual degeneration is D2, which therefore consists of three 

concurrent lines at P ,  itself a triple loci. Vertices c and y coincide with P and sides 

w and z coincide with one of the lines. Finally q is a forth line through P and v is a 
point on w = z, namely, the intersection of L with w = z. 

D3 and Dlo (Schubert's  r3 and ~3) 

Assume now that  P E z - {c, v). Pointwise we again have line L counted three 

times. In this case we have also three loci on L. The sides q and w coincide with L 
and the vertices c and v coincide with a point of L which is not a loci. Finally z is 

the line joining P and c = v and y is a point on L distinct from c = v and the loci. 

This degeneration will be denoted Dlo. Its dual degeneration is denoted D3. Thus 

D5 consists of three distinct lines through P,  which is a triple focus. The sides of the 

singular triangle go through P and are different from the lines of the point cubic, but 

q = w. The vertices v and c coincide with P and y is the intersection of L with the 
line q = w. 

D4 and D9 (Schubert's  02 and r/2) 

This time take P E w - {v, V}. Then L becomes a triple line. Since from a point on 

w other than v and y there is one simple tangent (different from q) and the tangent w 

counted twice, we see that on L we have a simple and a double focus. The vertices v 

and Y coincide with the double focus, while c E L is different from both  foci. The sides 

z and q coincide with L and w is the line joining P and v = y. This degeneration will 

be denoted D9. The degeneration dual of D9 will be denoted by D4. It thus consists 
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of a double line and a simple line meeting it at P ,  which is a triple focus. We also 
have q and z coincide with the double line and that  v = y = P.  Finally w is a third 
line through P and c is the intersection point of L with the double line. 

D5 and Ds (Schubert's 01 and rh) 

Choose P to be point V of C. Then pointwise we get L as a triple line. Since the 
tangents to C from V are w counted twice and q, tangentwise we get a double and 
a simple focus. Side z of the triangle coincides with L, side w is the line joining P 
and the double focus, and side q is the line joining P and the simple focus. Finally 
v coincides with the double focus, c coincides with the simple focus and V is the 
intersection of w and q, tha t  is, V = P .  This type of degeneration will be denoted 

Ds. Its dual degeneration, Ds, may be described as follows. Pointwise it consists of 
a double and a simple line meeting at P and tangentwise it consists of P as a triple 
focus. Side q coincides with the double line, side w with the simple line and side z is 
L. Therefore c and v are the intersections of L with the double and the simple line, 
respectively, and V coincides with P.  

D6 a n d  D7 ( S c h u b e r t ' s  61 a n d  62) 

To obtain DT, let P lie on C - {c, v}. Then  we obtain L, counted twice and a simple 
line through P ,  the tangent L ~ to C at P.  Since L ~ counts as a double tangent from 
P ,  we have another  tangent L",  and so the point L ~ n L is a double focus and L"  n L 
is a simple focus. The three sides of the singular triangle coincide with L, while the 
three vertices are three distinct points on L disjoint from the loci. The  degeneration 
dual of D7 is D6. It therefore consists of a double line and a simple line meeting at 
P .  Tangentwise P is a double focus and the intersection of L with the double line is 
a simple focus. The three vertices of the singular triangle coincide with P,  while its 
sides are three lines through P different from the lines of the point cubic. 

N o r m a l i z e d  h o m o l o g r a p h i e s  

Given a homolographic degeneration of a cuspidal cubic, it is useful to be able to 
exhibit the same degeneration as a homolographic degeneration of another  cuspidal 
cubic that  is somehow normalized with respect to the given degeneration. The  rest 
of this Section is devoted to prove a few statements that  will be used in Section 7 to 
obtain several key numbers related to some of the degenerations. 

Let C be a cuspidal cubic, P a general point with respect to C and L a line not 
through P .  Consider the degeneration of type D12 associated to such data,  and let 
P1, P2, P3, denote the loci of the degeneration and co, v0, :go the projections on L from 
P of the verteces c, v, V of the singular triangle of C. Let P~ be any point not on L, and 
choose non colinear points d ,  C, V ~, different from pt ,  on the lines P'co,P'vo, P'Vo, 
respectively. Then  we have the following 

PROPOSITION 3 (1).  The given degeneration of type D12 can be obtained as a ho- 
molographic degeneration, with center P~, of a cuspidal cubic whose singular tr/angle 
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is C t, yt ,  yt .  

PROOF: Let a be the (unique) homography of the plane that  transforms the points 
P, c, v, y into P', c', v', y', respectively. Let C'  be the image of C under  a. Then the 
singular triangle of C'  is c', v', y'. It is clear that  the homolographic degeneration of 

C'  with center P '  and axis L transforms c', v', y' into co, v0, y0, respectively. Notice 
that  a transforms the pencil of lines through P into the pencil of lines through P ' ,  
and that  the induced trasformation is a perspectivity with axis L. This means that  
a line through P and its t ransform meet on L. Now the three tangents to C from 
P are t ransformed into the three tangents to C'  from P ' .  Hence the foci of the 
homolographic degeneration of C'  (with center P ' ,  axis L) coincide with the foci of 
the initial degeneration, o 

Let C be a cuspidal cubic, P a point on the cuspidal tangent different from c and 
y. Consider a degeneration of type D 11 obtained as a homolography of C with center 
P and axis a line L not through P.  So we have four points on L - -  Co = Y0, v0 (the 
projections of c, y and v, respectively), and loci P1, P2, P3, the third coinciding with 
co = Y0. Let p t  be any point not on L, choose two points c', y' on the line P'c0 
(different from Co and p t )  and one point v' on the line P'vo (different from pi  and 
v0). Then  we have: 

PROPOSITION 3 (2). The given degeneration o£ type Dla can be obtained as a ho- 
molographic degeneration, with center P', of a cuspidal cubic whose singular triangle 
is  C t, V t, yr. 

PROOF: Let U be the point where the lines PP1 and vy meet,  and let U ~ be the point 
where the lines P'P1 and v~y ~ meet. There is a unique homography transforming the 
points /9, c, v, U into the points P ' ,  c', v ~, U t. Let C ~ be the image of C under this 
homography. Then the singular triangle of C t is c', v', yt and the homolography of C ~ 
with center p i  and axis L agrees with the given degeneration. This is clear because 
the lines PP1,Pco, Pvo are transformed into the lines PIP1,Ptco, P%o, and so the 
homography induces a perspectivity (whose axis is L) between the pencils of lines 
through P and P ' .  It follows that  the line PP2 is t ransformed into the line P'P2, ans 
so this line is tangent to C t. o 

Let C be a cuspidM cubic, P a point on the line z different from c and v. Consider 
a degeneration of type D10 obtained as a homolography of C with center P and axis 
a line L not through P .  So we have five points on L - -  Co = v0, Y0 (the projections 
of c, v and y, respectively), and foci P1,P2,P3. Let P '  be any point not on L, choose 
two points c I, v' on the line P'co (different from co and p t )  and one point y* on the 
line Ptyo (different from pr  and Y0)- Then  we have: 

PROPOSITION 3 (3). The given degeneration of type Dlo can be obtained as a ho- 
molographic degeneration, with center P', of a cuspidal cubic whose singular triangle 
is  C t, V t, yr. 

The  proof is similar to the preceeding one and so will be omited. 
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Let C be a cuspidal cubic, P a point on C different from c and v, and L a line 
not through P.  Consider the degeneration of type D7 associated to such data,  and 
let Q, R denote the loci of the degeneration (simple and double, respectively). Let 
Co, v0, Y0 be the projections on L, with center P ,  of the verteces c, v, y of the singular 
triangle of C. Let p t  be any point not on L, and choose non colinear points d ,  v r, yt 
different from P~ and on the lines P~co, P%o, Ptyo, respectively. Then  we have the 
following 

PROPOSITION 3 (4). The given degeneration of  type Dr can be obtained as a ho- 
molographic degeneration, with center P~, of  a cuspidal cubic going through P '  and 

whose singular triangle is c', v ~, y~. 

Since the proof is similar to the proof of PROPOSITION 3 ( l ) ,  it will be omited. 

6 .  A n d  t h e r e  a r e  n o  m o r e  

The goal in this Section is to prove that  there are no more degenerations of cuspidal 
cubics other  than the Di. 

THEOREM 2. S* is smooth in codimension one and S* - S has exactly  13 compo- 

nents. All  these components  have codimension one and therefore coincide with the 
hypersurfaces D i. 

PROOF: We shall give a proof for the space S*q. The s ta tement  follows from this 

case using the natural  fibration (c, q): S* --* I,  where I C p2 x p2* is the incidence 
variety. According to the Proposit ion in Section 1,S*,qis the result of blowing up five 
successive times the space of point cuspidal cubics. The method of the proof is to 
look carefully at the centers of these blow ups to keep track of how many components 
the final exceptional divisor will have. 

Let Z C p4 x p1 be the blow up of T with respect to the sections zl = 3al and 

z2 = a2. The scheme of zeroes of zl and z2 coincides with the closure of 7"4 ( that  is, 
T4 U T6 tA Tg). The except!ional divisor on Z, which we will denote E ( Z ) ,  is given by 
the equations 

a l = 0 i f z l ~ 0 a n d a 2 = 0 i f z 2 ~ 0 .  

The points of E ( Z )  are obtained adding a line z through c to points in the closure 
of T4. The subvariety of E ( Z )  whose points satisfy that  z coincides with q will be 
denoted Er(Z) .  The strict t ransform on Z of those orbits Ti not contained in T4 
will be denoted by T z .  Similar notations will be used henceforth to denote strict 
t ransforms on the successive blow ups we will consider. 

Now let Y C Z x p1 be the blow up of Z with respect to the sections 

YO ~-" a2z2 -- a3zl and Yl = aozl. 

The scheme of zeroes of these sections on Z is the reducible subvariety defined by the 
equations 

ao ~-- a2z 2 - a3z 1 -.~ 0 or a2 ~-~ Zl ~ 0. 
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The exceptional  divisor E ( Y )  has therefore two components .  The  component  lying 

on the variety V(ao, a 2 z 2  - -  a 3 z l  ) consists of cuspidM cubics in the closure of T z whose 
three lines satisfy the relation a~ = 3ala3,  together  with a distinguished point y on 
the line q, while the component  lying on the variety V(a2, z l )  consists of cubics in the 
closure of E~(Z) together  with a point y on the double line. These two components  will 
be  denoted E l ( Y )  and E2(Y),  respectively. We will denote by E ' ( Y )  the 2-dimension 

subvariety of E l ( Y )  whose points represent cubics such tha t  the three lines and z 
are coincident. The subvariety of E~(Y) for whose points y coincides with c will be 

denoted by E " ( Y ) .  

To look at next blow up notice that  the expressions for Vo, Vl,V2 on Z have a 

fixed component ,  since they vanish along the center of the first blow up. Once this 

component  is removed, the expression for vo, vl,  v2 is as follows: 

Vo = 2a2z~ - 3a3zlz2 + 3a4z~, 

V l  = - - 3 a o z l z 2 ,  

v2 = 3aoz~. 

Let us consider the variety V obtained by blowing up Y with respect  to v0, vl,  v2. It 
is not hard  to see tha t  the scheme of zeros of vo, vl,  v2 is given by the relations 

ao = O, 2a2 z2 - 3a3zlz2 + 3a4z~ = O. 

The first of these relations says tha t  the cubic splits into three lines and the second 

tha t  line z coincides with one of them. It turns out tha t  the exceptional divisor E ( V )  
splits into two components  E l ( V )  and E2(V).  These components  may  be described 

as follows. Looking at the intersection 

E l ( V )  N {d # O} 

one sees tha t  E l ( V )  consists of cubics in the closure of T Y whose three lines satisfy 
the relat ion 

27a2a4 - 9ala2a3 + 2a~ = 0 

together  with a distinguished point v on line z (which is one of the three lines). 
Similarly, looking at the intersection 

E2(V) n {Yl # 0} 

we see tha t  E2(V) consists of cubics in the closure of E ' ( Y )  together  with a distin- 
guished point v on the triple line. 

Now consider the expressions of w0, wl, w2. These sections do not have a fixed 

component  up to Z, where they take the form 

wo = --3aoz~ 

W l  = 3 z l ( a 2 z 2  - -  a3zl) 
= - 3a4z . 
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The scheme of zeroes of W o , W l , W  2 on Z intersects the closed set {ao = 0} precisely 

along the scheme of zeroes of v o , v l , v 2  on Z. The  expressions of w o , w l , w 2  on V, 

after removing the fixed component ,  are 

Wo = - - 3 a o z l Y l  

Wl  = 3aozaYo 

w2 = 3 a o z l y l  + (aoYo -- a3y l ) z2 .  

From this is follows tha t  the scheme of zeroes of wo, w l , w 2  on V is given by the 

relations 

z l  = O, aoYo -- a3Yl  = O. 

The  cubics in the exceptional divisor E ( W )  consist of cubics tha t  are in the closure 
of T4 together  with a line w through point P = (a3, a0, 0). In this case z coincides 

wi th  q and the points y and v with P.  

FinMly we blow up W with respect  to the sections b 0 , . . . ,  b6. The  expression of 

these sections on Z is the following 

4 3 4a22a4z2 a2a]z2  bo = 9 a l a 2 z l  - 6 z la2a3a4  + ~ z l a  3 + 

bl = 2 a o ( - 3 z ~ a 2 a 4  + 2zla23 - a2a3z2)  

b2 = 2 a o ( 9 a l a 4 z l  - 3 z la2a3  + 2a22z2) 

b3 = a~ (4z la3  - a2z2)  

b4 = - - 6 a 2 z l a 2  

b5 = 9 a 2 a l z l  

b6 4 3 m -~aoZ 1 

The scheme of zeroes of the sections b o , . . . ,  b6 on W is contained in {ao = 0}. 

Indeed, if ao ~ 0, then on Y the sections b3 and b6 can be expressed as follows: 

b 3 = a3yo + 3a2a3Yl  

bs 4 s = -~aoYl, 

which do not vanish simultaneously. 

Therefore  the scheme of zeroes of the sections b0 , . . . ,  b6 on W is given by the 
relations 

ao = O, 

4 3 4a~a4z2 -- a2a]z2  = O. bo = 9 a l a ~ z l  - 6 z la2a3a4  + ~ z l a  3 + 

This scheme, say X ,  has 6 irreducible components ,  namely  E2(V),  which has codi- 
mension one, and five more of codimension two not contained in E2(V).  To see this 
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we shall first s tudy the intersection of the subscheme X with five open sets U1 , . . . ,  U5 

that  we define presently. 

Vl :={(a2z2 --a3zl)(a2z~ --3a3zlz2+3a4z~)#O}. 

The intersection X N U1 coincides with T W, and so its points are cubics consisting 

of a double and a simple line meeting at c = v = y together with three lines q, z and 

w through that  point. 

:= {ZlVl # 0}. 

So X N U2 -- E " ( Y )  W. 

U3 := {vlw0 # 0}. 

Here X N U3 is contained in the closure of T W and its points are cubics that  consist 

of line q counted three times, z -- q, and a line w meeting q at the point v -- y. 

U 4 := {'Vly 1 ¢ 0}. 

X N U4 is contained in the closure of T W and its points are cubics that  consist of line 
q counted three times, z -- w -- q, and v, y are two points on q. 

U5 := {Zlyl # 0}. 

X N U5 is contained in the closure of T W and its points are cubics that consist of line 

q counted three times, w = q, and a line z meeting q at the point v = c. 

7. Projective geometry of cuspidal cubics 

There are a number of questions which one is lead to investigate when at tempting 

to find out how to translate properties of the degenerations to properties of the curves 

themselves. The theorem below summarizes those properties of cuspidal cubics that  

have been found to underlie the computat ion of several basic numbers (Stammzahlen) 

related to some of the degenerations of cuspidal cubics. 

THEOREM 3. 

(1) Let P1, P2, P3 be three points on line z, different from v and P1, P2 different 

from c, let QI, Q2, Q3 be three points aligned with y, and assume that tile lines 
P1Qi, and QIPi are tangent to C. Then the lines PIQj are tangent to C for 
i , j  -- 1,2,3. 

(2) Let P1,P2, P3 be three points on line q, and Q1,Q2 two points aligned with v 
and not on line q. Assume that the lines P1Qi and PjQ1 are tangent to C. 

Then tile lines PiQ j are tangent to C for i = 1 , 2 , 3 , j  = 1,2. 
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(3) Let P1 and P2 be two points on line z. Then the nine points of intersection of 

the tangents to C from P1 and P2 lie on three lines through y, three on each 
line. 

(4) Let PI,  P2 be two points on q. Tfien the two diagonals (other than q) of 
the quadrilateral formed by the tangents from P1 and P2 (other than q) pass 
through v. 

(5) Let P be a point on z and Pl,P~,p3 the tangent lines to C from P. Then 
the three contact points are aligned with y, and so do the three additional 

intersection points. 

(6) Let P be a point on q and let Pl,P2 be the two tangent lines to C from P that 
are different from q. Then the contact points of pl ,p2 with C are aligned with 

v, and so do the two additional points where those tangents meet  C. 

By duality we have 

THEOREM 3*. 

(1") Let PI,P2,P3 be three lines through y different from q, Pl,P2 different from 
w, and ql,q2,q3 three lines through a given point on z, and assume that the 

intersection points Pxqi,Pjql lie on C. Then the points piqj lie on C for i , j  = 
1,2,3. 

(2*) Let Pl ,p2,p3 be three lines through point v and ql,q2 be two lines that do not 
pass through z and meeting at a point on q. Assume that the points plqi and 

Pjql lie on C. Then the points piqj lie on C for i  = 1 ,2 ,3 , j  = 1,2. 

(3*) Let Pl,P2 be two lines through y. Then the nine lines joining the points of 
intersection of  pl and C with the points of intersection of  p2 and C go through 

three points on z, three through each point. 

(4*) Let Pl,P2 be two lines through v. Then the two vertexes (other than v) of  the 
diagonal triangle of the quadrangle formed by the intersection points (other 

than v) of  pl ,p2 with C lie on q. 

(5*) Let L be aline through y and P1,P2,P3 the points where L meets C. Then the 
tangent lines at P1, P2,1°3 meet at a point on z, and so do the three additional 
tangents to C from P1,P2,P3. 

(6*) Let L be a line through v and let P1, P2 be the points different from v where 
L meets  C. Then the tangents to C at the points Pi meet  at a point on q, and 

so do the two additional tangents to C from Pi, P2. 

PROOF OF (1): Let L be a line through y different from w. Its equation has the form 
x2 = axo. Let Pi = (1, 0, ti), and Qj = (1, bj, a). The line PiQj  has equation 

bjtixo + (a - t i )x l  - bjxo. 
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This line belongs to the dual curve if and only if 

4 ( t / -  a )  3 = 27b~ti 

and from this the assertion follows easily. 

PROOF OF (2): Let P / =  ( t i ,  1, 0) and Qj = (1, a, bj).  Then the line P i Q j  is given by 
the equation 

bjxo - t i b j x l  + (a t i  - 1)x2 = 0. 

The condition for this line to be tangent to C is 

: 2 7 ( a t , -  1) 2, 

and from this the claim follows readily. 

PROOF OF (3): Let Pi = (1,0,ti). The equations of the tangent lines to C from P/ 
are 

Lik  : - - t l xo  -4- p k a i x l  A- x2 = O, k = O, 1, 2, 

where p is a primitive cubic root of 1 and ai satisfies the equation 

4a 3 = 27ti. 

Let Qkh denote the intersection point of Llk and L2h. Then the triples 

Qoo, Qll, Q22, 
Qol, Q12, Q20, 
Q02, Q21, Qlo 

lie on the lines Lo, L1, L2, respectively, where Lk is given by the equation 

x2(a j  - pk a~) ---- x o ( t i a j  -- t j pk  a,) .  

This ends the proof of (3). 

PROOF OF (4): Let Pi = (t i ,  1, 0). The equation of the two tangents other than q to 
C from Pi is 

--X 0 -4- t i x  I -J- a i x  2 = O, 

where ai is a solution of the equation 

27a,? = 4t~. 

The equations of the two diagonals (other than q) of the quadrilateral formed by 
the tangents from P1 and P2 (other than q) are the following: 

x o ( a j  4- ai) = x l ( t i a j  4- t j a i ) .  

So they clearly go through v. 
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PROOF OF (5*): Let L be the line x0 = ax2. The points Pi have coordinates 
(ao~i,o~i,1), where o~i are the square roots of a. Let Q = ( t , l , 0 )  be a point on 
line q. Then  in order tha t  the line joining Q and a point P = (as ,  a,  1), c~ a square 
root of a, be tangent to C it is necessary and sufficient that  

4t 3 = 27a(t - a) 2. 

Prom this the claim follows immediately. 

PROOF OF (6*): Let L be the line x0 = ax2. The points Pi of intersection of L with 
C have coordinates (a, c~i, 1), where c~i are the cubic roots of a. Let Q = (t, 0, 1) be 
a point on line z. Then in order that  the line joining Q and a point P = (a, a ,  1), 
a cubic root of a, be tangent to C it is necessary and sufficient tha t  

4 ( a -  t) 3 = 27at 2. 

From this the claim follows immediately. This completes the proof of the Theorem. 
o 

8 .  S t a m m z a h l e n  

For some of the degenerations there must exist relations among the elements from 
which it is built up. Thus in degeneration D12 we have a triple line with 6 distin- 
guished points on it, so these points cannot vary independently. In fact, since D12 
has dimension 6, given any 4 of the 6 points there must be only a finite number  of 
possibilities for the other  2. The numbers expressing such possibilities were called 
Stammzahlen by Schubert. The goal in this Section is to s tudy these numbers. 

The  degenerations for which there must exist relations among its distinguished 
elements are D12,D1],Dlo and D7 (e's and 6~) and, by duality, D1,D2,D3 and D6 
( r ' s  and 61). For the former the relations that  may exist are relations among its 
distinguished points (on the multiple line), and hence by duality for the lat ter  the 

relations involve only the distinguished lines through the multiple focus. 

The number  of distinguished points in these degenerations is 6 for D12, 4 for D n ,  
and 5 for D10 and DT. These points will be denoted as in Section 5. The  notat ion we 
shall use to denote tha t  we fix some of the points agrees with the monomial notat ion 
used for expressing fundamental  numbers. So for instance the notat ion QRc = 1 for 
degeneration D~ means that  there is a single determinat ion for the pair of points v 
and y when we fix the the simple focus Q, the double focus R and the cusp c. For 
D10, D n  and D12, condition P means that  a simple focus be on a line. 

Now we first give the tables of Stammzahlen and afterwards we will show how to 
establish them using the results of Sections 5 and 7. 
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THEOREM 4. The S tammzahlen  are given by the following tables: 

Table 1. S tammzahlen  for D12 

P3c = 4 p3v  = 1 p 3 y  = 2 

P2cv -- 3 P2cy = 2 p 2 v y  = 1 

P c v y  = 1 

Table 2. S tammzahlen  for Dl l  

P2c = 1 P~v = 1 Pcv  = 1 

Table 3. S tammzahlen  for D10 

p 3 = 2  P 2 c = 2  p 2 y  = 2 Pcy  = l 

Table 4. S tammzahlen  for D7 

QRc  = 1 QRv  = 1 Q R y  = 1 
Qcv = 1 Qcy = 1 Qvy  = 1 
R c v =  1 R c y =  l R v y =  l 
cry  = 1 

The computat ion of some of these numbers can be done directly, and others by 
means of THEOREM 3 together with PROPOSITION 3. Here we will not show how to 
compute  them all, but  only a sample that  will be representative of the ideas involved. 

Examp l e s  for D12 
(1) p3c = 4 

(2) P2cy = 2 

(3) P c v y  = 1 

The  relation (1) will follow directly from the following: 

PROPOSITION 4. Let c, v, y be three non cotinear points  and let L be a line through 

c d/fferent from cv and cy. Let P1 be the point  where L and vy meet ,  and let P2 and 

P3 be two additional points of  L different from c. Then there exist  exact ly  four points  

P such that  the three lines PP1, P P 2 , P P 3  are tangent to a cubic whose singular 

triangle is c, v, y. 

PROOF: Choose coordinates so that  c, v, y is the triangle of reference and that  the 
unit point is P2. Thus we have P1 = (0, 1, 1) and P3 = (t, 1, 1), where t # 0, 1. Since 
a point P that  satisfies the conditions of the s ta tement  cannot be on the cuspidal 
tangent  (the line cy), we will have P = (a, b, 1). The tangential equation of a cuspidal 
cubic C with singular triangle c, v, y has the form 

u~ + ,~uou~ = O. 
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Now given a point X = (x, 1, 1) it is a simple computat ion to show that  the line X P  
is tangent  to C iff 

x 3 + [~(b - 1)b ~ - 3.]x ~ + [3. 2 - 2~ab(b - 1)]x - a2[a - ~(b - 1)] = 0. 

Therefore,  if the lines PP1, PP2, PP3 are to be tangent to C, this equation will have 
0, 1, t  as roots. Since a # 0, this is equivalent to the relations 

a = ~ ( b - 1 ) ,  a[3a-2~b(b-1)l---t, 3 a - ~ ( b - 1 ) b  2 = l + t .  

Substi tut ing cz(b-  1) by a in the second and third relations we get the relations 

a2(3-2b)=t, a ( 3 - b  ~)=l+t. 

From these we get the relation 

(1 + t ) 2 ( 3 -  2b) = t ( 3 -  b2) ~. 

It can easily be seen that  the only possible double root of this equation is b = - 1 ,  
which only can occur when 

5(1 + t) 2 = 4t. 

Therefore for general values of t the 4 solutions are indeed different. 

Relation (2) can be derived from THEOREM 3 as follows. We take degenerations 

of type  DI2 with two loci PI,  P2 and points c, y fixed. We want to show that  there 
are exactly 2 possibilities for the pair P3, v. In order to do this, normalize the cubic 
from which the degeneration is obtained so that  its singular triangle has the c-vertex 
at c and the y-vertex at y. Then  the possible centers of the homolography are the 
4 intersection points of the two tangents to the cubic other  than q from 71 with the 
similar two tangents from P2. The possibilities for the pair P3, v will be the points of 
intersection with the line L of the third tangent through each of the four points and 
the lines joining them with the v-vertex. Now according to THEOREM 3 (4) and (2) 
there are only 2 possibilities. 

Relation (3), Pcvy = 1, can be shown similarly. We want to show that  if we fix 
a focus / ) I  and the points c, v, y then there is only one possibility for the other  two 
loci. To see this, normalize the cubic so that  its singular triangle has verteces at v 
and y. Then  the center of the homolography has to be on the line joining the cusp c' 
of the cubic and point c. On the other hand, from PI there is only one tangent  to the 
cubic other  than  the line w (which counts as a double tangent) .  So this proves the 
claim. Let us remark that  the same relation can be proved by normalizing so that  
two verteces of the singular triangle are c and v (in which case it suffices to apply 
THEOREM 3(1)) ,  or c, y (in which case it suffices to apply THEOREM 3(2)) .  

E x a m p l e s  f o r  D n  
(1) P2v  = 1 
(2) P c v  = 1 
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To see (1), let vo,P1,P2 be three colinear points, and set L to denote the line 
containing them. We want to see tha t  there is only one point co = Y0 on L such 

tha t  the da ta  {P1,/)2, co, v0} is a degeneration of type  D11. Take two points c and Z 
outside L and colinear with P1. Let y be a point on the vZ and let P be  the point 

of intersection of yc with the line ZP2. By PROPOSITION 3(2),  we may  assume tha t  
the degenerat ion is obta ined by a homolography of a cuspidal cubic C with singular 

tr iangle c, v, y with center P and axis L. So we want to  see tha t  there is only one 
possible posit ion for y, and that  for such y there is a single cuspidal cubic C that  is 
tangent  to the lines PP1 and PP2. 

Choose c, Z, v as triangle of coordinates and  P2 as unit point .  Then  it is easy to 
see tha t  P~ = (1, 1, 0), and tha t  y = (0, 1, x), P -= (x, 1, x). The  tangent  equat ion of 
the cubics whose singular triangle is c, v, y has the form 

(U 1 - -  X U 2 )  3 ~--- OlUoU22 . 

The relations obta ined when imposing tha t  the lines PP1, PP2 are tangent  to C are 

x 6 = o ~ x ( 1 - x )  2 a n d x  a - -  

which have only one solution, namely x = 1/2, a = 1/8. 

To see (2), we want to show tha t  if we fix a focus P1 and the points  co = yo,vo 
of a degenerat ion of type D l l ,  then there is only one possibility for the other  focus 
P2. To see this, normalize the cubic so tha t  its singular tr iangle has verteces at c and 

v (use PROPOSITION 3(2)) .  Then  the center of the homolography has to be  one of 
the points  of intersection with q of the tangents  to C from P1. The  claim is a direct 
consequence of THEOREM 3(1). 

E x a m p l e s  fo r  D10 
(1) p3 = 2 

(2) P2c = 2 
(3) B e y  = 1 

To see (1) consider a degenerat ion of type Dlo with the three foci P1, P2, P3 fixed. 
We want to see tha t  there are exact ly two solutions for the pair  co -- Vo and Yo. 
Choose two points  c, y outside the line L of the degenerat ion and colinear with P3, 

a point  v on YP1 (different from y and P1), and  a point v on the line cv (different 
f rom c and v). According to PROPOSITION 3(3) the degenerat ion may  be obtained 
by means of a homolography with center P and axis L applied to a cuspidal cubic 

whose singular tr iangle is c, v, y. Thus  what  we want to see is tha t  there are exact ly 

two posit ions for the pair  {v, P} for which there exists such a cuspidal cubic with the 
lines PP1, PP2, PPa tangent  to it. 

Choose as coordinate  tr iangle c, y, P1, and let P2 be the unit point.  Then we will 

have P3 = (1,1,0) ,  v = (0, x ,1) ,  P = (7, x ,1) ,  where x # 0,1, 7 # 0, x. It  is easy 
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to see tha t  the tangential  equat ion of the cuspidal cubics with singular tr iangle c, v, y 

has the fo rm 

=   0(XUl + u 2 )  2. 

When we impose tha t  the lines PP1, PP2, PP3 belong to such a dual curve, we get 

the relations 
7 : --O~X3, (3/"/2 = --1, (1 - 7) 3 = a72(x  - 1) 3. 

After some t ransformat ions  these relations are seen to be equivalent to the relations 

7 = px, where p3 = 1, p # 1; 

- 1)  = x ( x  - 1); 

7 = --O~X3" 

1 
Since x # 0, the second of these relations gives tha t  x - (two possible values), 

l + p  
for each of which there is a single value for 7 and a.  

Now let us consider (2). Assume given a degenerat ion of type  D10, with Co = v0 
and two foci P1, P2 fixed. We want to see tha t  there are exactly two possible positions 

for the pair  (Y0, P3)- Choose two points v, y outside the line L of the degenerat ion and 
colinear with P1, and a point P colinear with v and co = v0. By PROPOSITION 3(3),  
the degenerat ion can be obtained by means of a homolography of center P and axis L 

apphed  to a cuspidal cubic whose singular triangle is Co = Vo, v, y. So what  we want 

to see is tha t  there are exactly two positions of P such tha t  the lines PP1, PP2 are 

tangent  to such a cuspidal cubic. Take as coordinate triangle co = v0, y, v and unit 
point P2, so tha t  P1 = (0, 1, 1 ) , P  = (1,0, x ) , x  # 0. Then the tangent ia l  equat ion of 

a cuspidal cubic with singular triangle co = v0, v, y has the form 

u~ = auou~. 

The  relations obta ined when we impose tha t  the lines PP1, PP2 belong to tha t  dual 

cubic are the following 

aX = 1 , ( X - -  1) 3 : - - a X ,  

f rom which the claim follows. 

Finally let us consider the relation (3). So assume tha t  we have a degenerat ion of 

type  D10 with a focus, say P1, and the points co = v0 and Y0 fixed. We want to see 
tha t  there is only one posit ion for the remainig two foci of the degeneration.  Take 

a point v outside the line L of the degeneration. By the PROPOSITION 3(3) we can 

assume tha t  the degenerat ion is obta ined by a homolography with axis L applied to 

a cuspidal cubic C whose singular triangle is co = vo, v, yo. So the possible centers of 
such a homolography are the intersection with the line z with the tangents  to C from 

P other  than  q. So the claim follows f rom THEOREM 3(2).  
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Examples  for D7 
(1 )  R ~ v  = 1 
(2) cvy = 1 

To see (1), assume we have a degeneration of type D7 with fixed co, v0 and R (the 
double focus). We want to see that there is a unique position for Q (the simple focus) 
and Y0. Now choose a point y not on the line L of the degeneration. By PROPOSITION 
3(4), we may assume that the given degeneration can be obtained by a homolography 
of a cuspidal cubic C with singular triangle co, v0 and y. The possible centers are the 
contact points Q1, Q2, Q3 of the three tangents to C from R. These three points are 
colinear with y, by THEOREM 3(5). Let Li be the tangent to C going through Qi 
that is different from the tangent to C at Qi. Then our claim follows because the 
three lines Li axe concurring at a point on z, by THEOREM 3* (5*). 

To see (2), assume we have a degeneration of type D7 with fixed co, v0 and y0. Our 
goal is to see that there is a unique position for the foci R and Q (double and simple, 
respectively). Take a point c not on the line L of the degeneration. By PROPOSITION 
3(4) we can assume that the degeneration is obtained by a hom01ography of a cuspidal 
cubic C whose singular triangle is c, v0 and y0. Since the center of the homolgraphy 
must be on the line CCo and on C - {c,v}, we see that there is a unique solution. 
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