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Abstract. In this paper we prove that the variety of complete cuspidal
cubics is smooth in codimension one and that there are no first order degen-
erations other than Schubert’s 13. We also establish a number of properties

of cuspidal cubics that give a geometric understanding of the ”Stammzahlen”
tables of Schubert.

Introduction

Hilbert’s 15th problem asks for a justification, and for a delimitation of their valid-
ity, of the geometric numbers computed by 19th century geometers, especially those
obtained by Schubert and included in his book Schubert [1879].

A key step in this direction, given some sort of figures, is a detailed study of the de-
generations that those figures can undergo, for then a modified version of the classical
method of degenerations (see Xambdé [1987]) allows in principle to compute several
sorts of numbers concerning the given figures, the significance of the numbers being
built-in in the method (see Miret - Xambé [1987]). The main feature of this approach
is that it does not rely on coincidence formulas, which often lead to computation of
multiplicities that are very difficult to control. Instead it relies on the idea, already
used by Schubert to cross-check his computations, that most geometric numbers can
be computed in several different ways. This circumstance, used sistematically, allows
to establish the required degeneration relations by simple algebra.

One of the non-trivial cases studied by Schubert is that of cuspidal cubics. These
objects were recently considered by Sacchiero [1984] and Kleiman - Speiser [1986].
Essentially these works are concerned with the verification of the 8 characteristic
numbers of the family of cuspidal cubics and, as it turns out, a single degeneration
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suffices for this purpose, namely, the so called degeneration o, consisting of a conic
and one of its tangent lines.

In Schubert’s book, however, we find a list of 13 degenerations for the (complete)
cuspidal cubics, with no formal verifications. In fact the process whereby they are
obtained (sometimes called a homolography) turns cut to be not hard to justify in
itself, but nevertheless it does not guarantee that the degenerations produced are all
possible degenerations, nor that the degenerations so obtained are simple on the variety
of complete cuspidal cubics.

On the other hand, the constitutive elements of some of the degenerations cannot
be independent, since their number exceeds what is allowed for by its dimension.
Therefore there must ezist relations among those elements. The knowledge of these
relations is important because it plays a key role in the determination of the funda-
mental numbers of cuspidal cubics. Schubert gives lists of such relations, expressed
in enumerative terms (tables of “Stammzahlen”, loc. cit., pp. 120-127), and asserts

that they were obtained by an indirect process (“a posteriori erschlossen”, ibid., p.
119).

In this paper we carry out an analytical investigation of the possible degenerations
of cuspidal cubics that allows, aside from verifying Schubert’s results, to settle the
questions raised above. In particular it turns out that a careful study of the ho-
molography process uncovers not only what the relations mentioned above are, but
also leads in a natural way to discover a number geometric properties of cuspidal cu-
bics that as far as we know have hitherto not been noticed. These properties then
allow to determine the relevant Stammzahlen following straigtforward enumerative
procedures.

The differences we find with Schubert are a few misprints and the fact that although
he uses a correct version of the degeneration 7, (as it may be inferred from the results
of his computations, or from duality), nevertheless his description of that degeneration
(loc. cit., p. 112) is incorrect, for, as we shall see, the double focus is v, not c.

The organization of the paper is as follows. Section 1 is for notations and prelim-
inaries. Sections 2 and 3 are devoted to introduce the space of complete cuspidal
cubics, and the analytic means to study them. Section 4 gives a simple analytic ac-
count of the homolography process for plane curves, which then is applied in Section 5
to obtain Schubert’s degenerations for cuspidal cubics {other than ¢). Section 5 also
considers the question, given some degeneration, of “normalizing” the cubics from
which it can be obtained. In Section 6 we prove that there are no other first order
degenerations in the space of complete cuspidal cubics and that this space is regular
in codimension one. Finally in Section 7 we prove a number of geometric properties of
cuspidal cubics which then are applied in Section 8 to describe in enumerative terms
the relations that exist between the building elements of the degenerations.
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1. Notations and preliminaries

Given a smooth variety X, an invertible sheaf £ on X and sections

o =180, ... ,8%)

of £, we shall denote by X, the blow up of X with respect to the sheaf of ideals
defined by the sections s; after removing their common codimension one components.
This means that if D is the maximal effective divisor on which the sections ¢ vanish,
then we take the blow up of X with respect to the sheaf of ideals defined by the
sections of

Ox(-D)®L

corresponding to the sections 0. We will say that X, is the blow up of X with respect
to sg, ... ,S%. More generally, if

X X

is a dominant map between smooth complete varieties the blow up of X' with respect
to the sections f*(o) of f*(L) will be referred to as the blowing up of X' with respect
to the sections o.

Let T, be the closure of the graph of the map
X - pk

defined by the sections o.
PROPOSITION 1. There exists a natural isomorphism X, = T,.

PROOF: There exists a regular map X, — P* that coincides, as a rational map, with
the composition
X, — X - P*

(Harshorne [1977], Ex. 7.17.3). This map, together with the natural map X, — X,
defines a map

X, — X x P¥

whose image is clearly contained in I';. On the other hand, T', satisfies the relations
X,'Sj —st,' =0,

from which it follows that the inverse image of the ideal defined by the sections ¢ on
T', is locally principal. Hence, by the universality of the blow up, there exists a map

' - X,
that composed with the map of X, to X coincides with the natural projection

'y - X.
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Now it is clear that the maps
Xy—Ty andT, — X,

are inverse isomorphisms. ¢

In the rest of this paper we shall deal with the variety S of non-degenerate plane
cuspidal cubics. It is an open subvariety of the variety T' of plane cuspidal cubics,
which itself is an irreducible closed subvariety of codimension 2 of the projective space
of all plane cubics. If P is a point and L a line through P, the closed subvariety of
T of cuspidal cubics with cusp at P and cuspidal tangent L will be denoted by Tp, .
It is a 4 dimension linear space. The open subset of Tp; whose points are the non-
degenerate cuspidal cubics will be denoted by Sp,1. We shall write G := PGL(3) and
will denote G’ the subgroup of G that leaves the point P and the line L fixed, or
equivalently, that leaves Sp 1 invariant (in order that an element of G belongs to G’
it is enough that it transforms some cubic in Sp 1, into another cubic of Sp1).

2. Point cuspidal cubics

Let P2 be the complez projective plane. The homogeneous coordinates of P? will
be denoted (¢, z1,z2).

Cuspidal cubics in P? with cusp at the point ¢ = (1,0,0) and cuspidal tangent the
line ¢ = {2z = 0} form a 4 dimensional linear space T , in the P? of plane cubics. We
shall parametrize this linear space by homogeneous coordinates in such a way that a
point (ag, ... ,a4) € P* corresponds to the cuspidal cubic whose equation is

2 3 2 2 3
(%) QoToTy = a1T) + a2z3T2 + A3T1Z3 + aes.

For subsequent references, the right hand side of (*) will be denoted p(z1,z2). The
discriminant d of p(zy, z2) is given by the relation

3
d = 27a}a} — 18ajaza3a4 + 4a1a3 + 4a3a4 — aial.

We will also use the expression
d = 27a?a4 —9ajaza3 + Zag.

Notice that 2d’ = 0d/0ay. The relation d = 0 is equivalent to say that p has a double
factor and it is not hard to see that this factor is not triple iff either d' # 0 or else
a; =ay =0 and a3 # 0.

Now we shall describe a partition of T, 4 into locally closed subsets T},¢ =0,...,9.

To. The subset S, of T, , is the open orbit under the action of the group G' and it
is not hard to see that (x) isin S. 4 iff apa; # 0. We shall set Ty = S, ,.
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T,. This is the set defined by the conditions a; = 0 and agas # 0. Thus cuspidal
cubics in T} have the forin

2 2 —
z2(azxy + a3z122 + agzs — apzoz2) =0.

So the point cubic is the union of the line z; = 0 (line ¢) and the conic K whose
equation is

2 2
azxy +a3z1T2 + aglog — AT0T2 = 0.

It is easy to see that ¢ is tangent to K at the point (1,0,0), and that the determinant
of the matrix of K is 2a2a; # 0. Therefore cuspidal cubics in Ty consist of line ¢
together with a non-degenerate conic that is tangent to it at the point c.

T,. This set is defined by the relations ag = 0 and a;d # 0. Cubics in T3 are given
by the equation p(z;,x3) = 0, which consist of three distinct lines concurring at the
point ¢ = (1,0,0). Moreover, none of the lines coincides with q.

T3. The relations that define T; are ag = a; = 0 and d # 0. This set consists of three
distinct lines concurrent at ¢ = (1,0, 0), one of which coincides with g¢.

Ty. The conditions defining this set are a3 = a; = 0 and ag # 0. Under this
assumption the point equation of the cubic is

x%(aomo — azz; —aqze) =0,

which consists of the double line ¢ (z2 = 0) and a simple line different from ¢ and
meeting it at the point P = (a3, ap,0). Notice that P does not coincide with c.

Ts. This is the set satisfying the relations ap = d = 0 and a;d' # 0. The cubics in
this set consist of a double line and a simple line, both different from ¢, meeting at
c¢=(1,0,0).

Ts. Take a9 = a; = d = 0 and a; # 0. Such cubics consist of the line ¢ and a double
line through ¢ = (1, 0,0) different from g.

T7. ag = a3 = a3 = 0 and a3 # 0. They consist of the line ¢ counted twice and
another line through ¢, different from g¢.

Ts. ap =d=d' =0 and a; # 0. A triple line through ¢ which does not coincide with
q.
Ty. ap = a1 = as = ag = 0. It consists of line g counted three times.

ProPOSITION 2

(1) The sets T; are irreducible. T, has dimension 4, Ty, T, have dimension 3,
Ts, Ty and Ts have dimension 2, Tg, T and Ty have dimension 1 and Ty has
dimension 0.

(2) The locally closed sets T; are the orbits of G' acting on T.

(8) The sets GT; are orbits of G. More precisely we have:
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— GTy = S, which is the dense orbit of non—degenerate cuspidal cubics.

— GT; is the 6— dimensional orbit whose points correspond to cubics consisting
of a conic and one of its tangent lines.

— GTy = GT; is the 5-dimensional orbit whose points correspond to triples of
distinct concurrent lines.

- GTy = GTs = GTs = GTy is the 3—dimensional orbit whose points corre-
spond to a double line and a simple line different from the former.

- GTs = GTy is the 2-dimensional orbit whose points correspond to triple
lines. o

3. Complete cuspidal cubics

Let P°* be the dual space of the P? of plane cubics. We shall make the convention
that a point
(bo, ,bg) S Pg*

corresponds to the dual cubic
foud + fiug + fauo + f3=0
where

fo = bo, fi = bruy + bauy,
fa= bw% + baujug + bsué, and
3

f3 = bsu? + b7U%U2 + bgulug + bgu2.
We will put, following Schubert,

b: S — P"
¢S — P?
v:§ — P?
q:S—»PZ*
w: § — P?"
y:S — P?
228 — P

to denote the maps that transform a given cubic C in S into, respectively, the dual
cubic C*, the cusp, the inflexion point, the cuspidal tangent, the inflexional tangent,
the intersection point of w with ¢ and the line joining v and c.
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The expression of these maps for cubics in S, using the homogeneous coordinates
of C given by (*), Section 2, is as follows.

bo = 27a%aZ — 18ajaza3a4 + 4a1a3 + 4ajay — alal
b1 = 2a¢(—9ajaza4 + 6aja? — alaj)

by = 2a¢(27a%a4 — 9ajazaz + 2a3)

by = a2(12a;a; — a3)

b4 = —18(1%&1(12
bs = 27a3a?
bs = 4aja;

b7 = bg = bg = 0
vg = 27a%ay — 9ajazas + 2a3

v = —9aga1a2
vy = 27a0af
wo = —2Taga?

wy = 9a,(3a,a3 ~ a})
wy = 27a%ay — a3

_ 2
Yo = 3aia3 — a3

Y1 = 3aeay
y2=0

20 = 0

z1 = 3a1
22 = Ay

Notice that b is the discriminant d of the polynomial p(z,, z2).

Some algebraic computations in this paper have been checked using MACAULAY
(Bayer - Stillman [1986]), sometimes also using REDUCE. An example to illustrate
this is the calculation of the formulas for the b’s, which give the dual curve C*. In
fact these formulas can be obtained eliminating x4, 1,z from the relations

ui =0;f

and this operation is easily handled with MACAULAY.

The formulas for the v’s and w’s can be obtained easily imposing that a line meets
the cuspidal cubic C at a point with multiplicity 3. The formulas for the y’s and 2’s

are obtained, taking into account their definition, by simple algebraic manipulations.
Set

P =P x (P?)® x (P¥")?
and consider the map
h:5—>P, h:(b,c,v,y,z,q,w)-

Let S* be the closure of the graph of h in Z = S x P. The space S* will be
referred to as the space of complete cuspidal cubics. The points in §* — S will be
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called degenerate cuspidal cubics, where the inclusion of S in S* is given by idxA.
Since the composition of & with the projection of P onto its first factor is b: § — P7,
it is natural to define b: S* — P°" as the restriction to S* of the projection onto P°”.
Given a point C' of $*, we shall say that b(C') is the tangential cubic associated to
the complete cubic C'. In the same way we can define morphisms ¢, v, y, z, ¢ and w
from S§* to the corresponding factors of Z. Given C' € S*, ¢(C’) will be called the
cusp of C' and similarly with the other maps.

Given a point P and a line L through P, we will write by S% ; to denote the space
of complete cuspidal cubics that have cusp at P and cuspidal tangent L. We shall
say that the points in S} ; are (P, L)—complete cuspidal cubics.

For a non-degenerate cuspidal cubic, the triangle whose vertexes are ¢, v, and y,
and whose sides are z, ¢, w, is called singular triangle. The same notion can now
be defined for degenerate cuspidal cubics in S*. In other words, given a degenerate
complete cuspidal cubic C’, the six-tuple

(e(€"),v(C"), y(C"), 2(C"), g(C"), w(C"))

will be called singular triangle of C’, the first three elements being the vertices and
the last three the sides. The cubic is degenerate if and only if its singular triangle is
a degenerate triangle.

The projection of a point C’ € S* to S will be referred to as the point cubic
associated to C’.

4. Homolographic degenerations of plane curves

In this Section we study the degeneration of contact structure of an irreducible
plane curve by means of the so called homolographic process (cf. Fulton [1984]).
The information gathered here will be used in next Section to describe Schubert’s 13
degenerations for plane cuspidal cubics. That these are the only possible degenerations
will be established in Section 6.

Let C be an irreducible plane curve (that is, a curve in P?) of degree d > 2. Given
a point P € P2, let mp = mp(C) be the multiplicity of P on C. If P ¢ C, then
mp = 0, and conversely. We shall write Tp(C) to denote the cone of tangents to C
at the point P. Thus T'p(C') is the union of mp lines through P, each counted with
its natural multiplicity. It is empty iff P ¢ C.

Dually, let L be a line in P2, and let T(C) denote the contact locus of L with C.
So if L has multiplicity py, on the dual curve C* then T7(C) consists of 1 points on
L, each counted with its natural multiplicity. It is empty iff L does not touch C.

Assume that P ¢ L. We shall also consider the cone whose vertex is P and whose
directrix is the 0-dimensional scheme L N C. It consists of d lines through P, each
counted with its natural multiplicity. We shall denote this scheme by Cp . Dually,
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let C7 p denote the 0 dimensional scheme of points obtained intersecting L with the
tangents to C from P. So it consists of a finite number of points on L, each counted
with its natural multiplicity. The total number of points is §, the class of C.

Now we have:

THEOREM 1. The pairs

(Tp(C) + (d - mp)L,C] p)
and
(Cp,L, TL(C) + (6 — pL)P)
are flat degenerations of the cycle (C,C*), dual of each other.

PROOF: We take coordinates in such a way that P = (1,0,0), L = {zq = 0}.

Let F be a homogeneous equation of C. Then
F= meg_m + -F'm-i-lil"g_"-l~1 +- 4 Fd:

where Fj is a degree j homogeneous polynomial in 2,22 and m = mp(C'). In terms
of this equation we see that

Tp(C) =V(Fn)

and so

Tp(C) + (d — m)L = V(Fppzl™™).

Similarly
CP,L = V(Fd)

Now consider the polynomials
®(zg,21,22,t) = meg_m + tFm+1z'g_"‘_1 +--+tTTFy,

and
U(zo,1,22,1) =t " Frzf ™™ + - + Fy.

Let
V=V(®),W=V(¥)C P2 x Al

It is clear that V and W are flat families of closed subschemes of P%. Moreover,
Vl = Wl = C
and the special fibers Vy and Wy are given by

Vo = V(Fprzd™™) = Tp(C) + (d — m)L,
Wo =V(Fs)=Cpp.
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To see how these degenerations behave with respect to the dual curve, consider, for
t # 0, the map hy: P2 — P2 such that (z9, 71, z2) — (tz0, 1, z2). Since

z € h;(C) < F(h]/g(l') =0
we see that A,(C) is given by the relation
F(xo/t3117$2) = Oa

which is equivalent to
Q(wo, T, .’Eg,t) = 0,

and so

Similarly,
h]/t(C) = Wt.

Now given a line of coordinates (ug,u;,us2), h¢(u) has coordinates (ug/t,u1,uz).
From this it follows that if

G=Gud™+ . +Gs
is the equation of C*, then the equation of V;* is
tPEG b 4+ G5 =0
and that the equation of W} is
Guud ™ +1G,ul™ 7 4 £RG,

From this we see that under the degeneration C = V; — V; the dual curve C*
degenerates into V(Gs) = C} p. Similarly, under the degeneration C = W; — W,
the dual curve C* degenerates into

V(Guug™) = TZ(C) + (6 ~ p)P.
This completes the proof. ¢

The tangential aspect of the degenerations given in the theorem consist of pencils
of lines through points, each counted with its natural multiplicity. Such points will
be called foci of the degeneration.

5. Schubert’s 13 degenerations

In this Section we shall study Schubert’s degenerations of plane cuspidal cubics.
For computational purposes we will denote the resulting degenerations in the form
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D;,: =0,...,12, instead of the greek letters with suffixes used by Schubert. (See the
table of illustrations at the end.) The degenerations Dy, ..., D1, are obtained by the
homolography process (see next table below). The degeneration Dy has been studied
by Sacchiero [1984] and Kleiman — Speiser [1986).

Dy (Schubert’s o)

Consider the family of plane cuspidal cubics
(1) gizg = tzd + a:f:cz.
The fiber over t = 0 consists of the smooth conic K
TaTo = I3,

and the line L = {z = 0}, which is tangent to K at P = (1,0,0). The curve dual of
(1) can be computed by means of the formulas in Section 3. The resulting family has

the fiber

uo(4uguz — uf)

over t = 0, which consists of the dual conic K* and the pencil of vertex P. Finally
the singular triangle of (1) can also be computed by means of the formulas in Section
3, and it turns out that in the limit all vertices come to coincide with P, while the
three sides come to coincide with the line L.

In what follows we shall let C' denote a fixed cuspidal cubic, P a point in the plane,
and L a line not through P. Choosing P to lie at special positions with respect
to C and applying THEOREM 1 we get the 12 degenerations D;,i = 1,...,12. The
correspondence with Schubert’s notation and the homolography involved in each case
is summarized in the following table.

Homolography Schubert's notation D;
PgCUqUzUw €2 D12
Peqg—{cy} €1 Dy
Pez-— {c,v} €3 Dy
Pew—{v,y} M2 Dy
P=y m Dy
P € C - {C, ‘U} 52 D7
dual D7 51 De
dual Dg 61 D5
dual DQ 02 D4
dual Dlg T3 D3
dual Dll 1 Dz

dual Dy2 T2 D,
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D, and D;; (Schubert’s 7, and ¢,)

Assume that P is general with respect to C, that is, that P does not lie on C
nor on any side of the singular triangle. In that case TpC is empty. On the other
hand the three tangent lines to C' from P are distinct and so C} p consists of three
distinct points on L. We have therefore a triple line (L counted three times) with
three distinct foci on it. It is also clear that the sides of the singular triangle coincide
with L and that its three vertices are three distinct points on L disjoint from the
foci. This degeneration will be denoted D,,. The degeneration D, is dual of Dy,,
and hence pointwise it consists of three concurrent lines at P, and tangentwise of the
point P as a triple focus. The three sides of the singular triangle are three distinct
lines through P, disjoint from the three lines of the point cubic, and so the three
vertices coincide at P.

D; and D;; (Schubert’s 7; and ¢;)

Now take P € ¢ — {c,y}. Again TpC is empty, and so pointwise we have a triple
line, L. The three tangent lines to C are distinct, but one coincides with ¢, so we
have three distinct foci on L, one equal to ¢. The vertex y coincides with ¢, but they
are different from v, which moreover is not a foci. Sides w and z coincide with I, but
q is a line through ¢ different from L, namely, the line joining P and c¢. We will call
this degeneration D;;. The dual degeneration is D,, which therefore consists of three
concurrent lines at P, itself a triple foci. Vertices ¢ and y coincide with P and sides
w and z coincide with one of the lines. Finally ¢ is a forth line through P and v is a
point on w = 2z, namely, the intersection of L with w = z.

D3 and Do (Schubert’s 73 and e¢3)

Assume now that P € z — {¢,v}. Pointwise we again have line L counted three
times. In this case we have also three foci on L. The sides ¢ and w coincide with L
and the vertices ¢ and v coincide with a point of L which is not a foci. Finally z is
the line joining P and ¢ = v and y is a point on L distinct from ¢ = v and the foci.
This degeneration will be denoted D;g. Its dual degeneration is denoted D;. Thus
Dy consists of three distinct lines through P, which is a triple focus. The sides of the
singular triangle go through P and are different from the lines of the point cubic, but
¢ = w. The vertices v and ¢ coincide with P and y is the intersection of L with the
line ¢ = w.

D4 and Dy (Schubert’s §; and 7;)

This time take P € w— {v,y}. Then L becomes a triple line. Since from a point on
w other than v and y there is one simple tangent (different from ¢) and the tangent w
counted twice, we see that on L we have a simple and a double focus. The vertices v
and y coincide with the double focus, while ¢ € L is different from both foci. The sides
z and ¢ coincide with L and w is the line joining P and v = y. This degeneration will
be denoted Dgy. The degeneration dual of Dy will be denoted by Dy. It thus consists
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of a double line and a simple line meeting it at P, which is a triple focus. We also
have ¢ and z coincide with the double line and that v = y = P. Finally w is a third
line through P and c is the intersection point of L with the double line.

D5 and Dg (Schubert’s §; and 7,)

Choose P to be point y of C. Then pointwise we get L as a triple line. Since the
tangents to C from y are w counted twice and ¢, tangentwise we get a double and
a simple focus. Side z of the triangle coincides with L, side w is the line joining P
and the double focus, and side ¢ is the line joining P and the simple focus. Finally
v coincides with the double focus, ¢ coincides with the simple focus and y is the
intersection of w and ¢, that is, y = P. This type of degeneration will be denoted
Dg. Its dual degeneration, D5, may be described as follows. Pointwise it consists of
a double and a simple line meeting at P and tangentwise it consists of P as a triple
focus. Side ¢ coincides with the double line, side w with the simple line and side z is
L. Therefore ¢ and v are the intersections of L with the double and the simple line,
respectively, and y coincides with P.

D¢ and D7 (Schubert’s 6, and §,)

To obtain D7, let P lie on C — {¢,v}. Then we obtain L counted twice and a simple
line through P, the tangent L' to C at P. Since L' counts as a double tangent from
P, we have another tangent L, and so the point L' N L is a double focus and L"N L
is a simple focus. The three sides of the singular triangle coincide with L, while the
three vertices are three distinct points on L disjoint from the foci. The degeneration
dual of D7 is Dg. It therefore consists of a double line and a simple line meeting at
P. Tangentwise P is a double focus and the intersection of L with the double line is
a simple focus. The three vertices of the singular triangle coincide with P, while its
sides are three lines through P different from the lines of the point cubic.

Normalized homolographies

Given a homolographic degeneration of a cuspidal cubic, it is useful to be able to
exhibit the same degeneration as a homolographic degeneration of another cuspidal
cubic that is somehow normalized with respect to the given degeneration. The rest
of this Section is devoted to prove a few statements that will be used in Section 7 to
obtain several key numbers related to some of the degenerations.

Let C be a cuspidal cubic, P a general point with respect to C and L a line not
through P. Consider the degeneration of type D1, associated to such data, and let
Py, P,, P;, denote the foci of the degeneration and ¢g, v, ¥o the projections on L from
P of the verteces c, v, y of the singular triangle of C. Let P’ be any point not on L, and
choose non colinear points ¢/, v',y’, different from P’, on the lines P'cy, P'vg, Py,
respectively. Then we have the following

PROPOSITION 3 (1). The given degeneration of type D2 can be obtained as a ho-
molographic degeneration, with center P’, of a cuspidal cubic whose singular triangle
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isc, v,y

PROOF: Let o be the (unique) homography of the plane that transforms the points
P c,u,y into P’ c',v',y', respectively. Let C' be the image of C under o. Then the
singular triangle of C' is ¢/,v’,y'. It is clear that the homolographic degeneration of
C' with center P’ and axis L transforms ¢',v’,y’ into ¢q, vg, yo, respectively. Notice
that o transforms the pencil of lines through P into the pencil of lines through P’,
and that the induced trasformation is a perspectivity with axis L. This means that
a line through P and its transform meet on L. Now the three tangents to C from
P are transformed into the three tangents to C' from P’. Hence the foci of the
homolographic degeneration of C' (with center P’, axis L) coincide with the foci of
the initial degeneration. o

Let C be a cuspidal cubic, P a point on the cuspidal tangent different from ¢ and
y. Consider a degeneration of type D, obtained as a homolography of C' with center
P and axis a line L not through P. So we have four points on L — ¢o = yg, v (the
projections of ¢, y and v, respectively), and foci Py, Py, Ps, the third coinciding with
¢o = yo. Let P' be any point not on L, choose two points ¢’,y’ on the line P'cy
(different from cq and P') and one point v’ on the line P'v, (different from P’ and
vg). Then we have:

PROPOSITION 3 (2). The given degeneration of type D4y can be obtained as a ho-
molographic degeneration, with center P', of a cuspidal cubic whose singular triangle
isc, v,y

PROOF: Let U be the point where the lines PP, and vy meet, and let U’ be the point
where the lines P'P; and v'y’ meet. There is a unique homography transforming the
points P,¢,v,U into the points P’ ¢',v',U’. Let C' be the image of C under this
homography. Then the singular triangle of C' is ¢',v',y’ and the homolography of C’
with center P’ and axis L agrees with the given degeneration. This is clear because
the lines PPy, Pcy, Pvg are transformed into the lines P'Py, P'cy, P'vg, and so the
homography induces a perspectivity (whose axis is L) between the pencils of lines
through P and P'. It follows that the line PP, is transformed into the line P'P;, ans
so this line is tangent to C'. o

Let C be a cuspidal cubic, P a point on the line 2z different from ¢ and v. Consider
a degeneration of type D obtained as a homolography of C' with center P and axis
a line L not through P. So we have five points on L — ¢¢ = vg,yo (the projections
of ¢, v and y, respectively), and foci Py, P,, P3. Let P’ be any point not on L, choose
two points ¢',v’ on the line P'cy (different from ¢y and P') and one point y' on the
line P'y, (different from P’ and y,). Then we have:

PRrROPOSITION 3 (3). The given degeneration of type D1y can be obtained as a ho-
molographic degeneration, with center P’', of a cuspidal cubic whose singular triangle
isc, v,y

The proof is similar to the preceeding one and so will be omited.
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Let C be a cuspidal cubic, P a point on C different from ¢ and v, and L a line
not through P. Consider the degeneration of type D7 associated to such data, and
let @, R denote the foci of the degeneration (simple and double, respectively). Let
Co, Vg, Yo be the projections on L, with center P, of the verteces ¢, v,y of the singular
triangle of C. Let P’ be any point not on L, and choose non colinear points ¢’,v’,y’
different from P’ and on the lines P'cg, P'vg, P'yo, respectively. Then we have the
following

PROPOSITION 3 (4). The given degeneration of type D7 can be obtained as a ho-
molographic degeneration, with center P', of a cuspidal cubic going through P' and
whose singular triangle is ¢',v',y’.

Since the proof is similar to the proof of PROPOSITION 3 (1), it will be omited.

6. And there are no more

The goal in this Section is to prove that there are no more degenerations of cuspidal
cubics other than the D;.

THEOREM 2. S* is smooth in codimension one and S* — S has exactly 13 compo-
nents. All these components have codimension one and therefore coincide with the
hypersurfaces D;.

PROOF: We shall give a proof for the space S7,. The statement follows from this
case using the natural fibration (c,q): S* — I, where I C P2 x P?” is the incidence
variety. According to the Proposition in Section 1,5 ¢ gis the result of blowing up five
successive times the space of point cuspidal cubics. The method of the proof is to
look carefully at the centers of these blow ups to keep track of how many components
the final exceptional divisor will have.

Let Z C P* x P! be the blow up of T with respect to the sections z; = 3a; and
23 = az. The scheme of zeroes of z; and 2z, coincides with the closure of Ty (that is,
Ty UTs UTs). The exceptional divisor on Z, which we will denote E(Z), is given by
the equations

a; =01if zy # 0 and a; = 0 if 2, # 0.
The points of E(Z) are obtained adding a line z through ¢ to points in the closure
of T,. The subvariety of E(Z) whose points satisfy that z coincides with ¢ will be
denoted E'(Z). The strict transform on Z of those orbits T; not contained in T}
will be denoted by TZ. Similar notations will be used henceforth to denote strict
transforms on the successive blow ups we will consider.

Now let Y C Z x P! be the blow up of Z with respect to the sections

Yo = @229 — a3z; and y; = ag2;.

The scheme of zeroes of these sections on Z is the reducible subvariety defined by the
equations

Qg = ag29 —azzy = 0 or ay = z; =0.
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The exceptional divisor E(Y') has therefore two components. The component lying
on the variety V(ao, azz2 —a3z;) consists of cuspidal cubics in the closure of T# whose
three lines satisfy the relation a? = 3a;a3, together with a distinguished point y on
the line ¢, while the component lying on the variety V(agq, z;) consists of cubics in the
closure of E'(Z) together with a point y on the double line. These two components will
be denoted E1(Y) and E2(Y), respectively. We will denote by E’(Y") the 2-dimension
subvariety of F1(Y) whose points represent cubics such that the three lines and z
are coincident. The subvariety of E'(Y) for whose points y coincides with ¢ will be

denoted by E"(Y).

To look at next blow up notice that the expressions for vy, v;,vs on Z have a
fixed component, since they vanish along the center of the first blow up. Once this
component is removed, the expression for vg, v1, v is as follows:

vy = 2(12222 — 3azzyz9 + 3a4zf,

v = —3a02122,

vy = 3aozl2.
Let us consider the variety V obtained by blowing up Y with respect to vo,v1,v2. It
is not hard to see that the scheme of zeros of vg,v1,vs is given by the relations

ag =0, 20222 — 3a3z122 + 3a422 = 0.
’ 2 1

The first of these relations says that the cubic splits into three lines and the second
that line z coincides with one of them. It turns out that the exceptional divisor E(V)
splits into two components E,(V) and E,(V). These components may be described
as follows. Looking at the intersection

E\(V)Nn{d+#0}

one sees that E1(V) consists of cubics in the closure of T whose three lines satisfy
the relation

27a%a4 —9ajasa3 + 2ag =0

together with a distinguished point v on line z (which is one of the three lines).
Similarly, looking at the intersection

E;(V)n {y: # 0}
we see that E(V') consists of cubics in the closure of E'(Y) together with a distin-
guished point v on the triple line.
Now consider the expressions of wg,w;,w;. These sections do not have a fixed
component up to Z, where they take the form
wo = —3a0zf
wy = 321(0,222 — 0321)

Wy = azzg — 3a4zf.
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The scheme of zeroes of wy,w;,w, on Z intersects the closed set {aq = 0} precisely
along the scheme of zeroes of vg,v1,v2 on Z. The expressions of wg,w;, w2 on V,
after removing the fixed component, are

Wo = —3(2021y1
wy = 3a0z1y0

wy = 3aoz1y1 + (aoyo — asy1 )22

From this is follows that the scheme of zeroes of wp,w;,w; on V is given by the
relations

z1 =0, agyo — azy; = 0.

The cubics in the exceptional divisor E(W) consist of cubics that are in the closure
of T, together with a line w through point P = (a3,a9,0). In this case z coincides
with ¢ and the points y and v with P.

Finally we blow up W with respect to the sections bg,...,bs. The expression of
these sections on Z is the following

by = 9a1a221 ~— 6z1aqa3a4 + %zlag + 4a§a4z2 — a2a322
by = 2a0(—8z1a2a4 + 22105 — azazzy)

by = 2ap(9a1a42, — 3z1a0a3 + 2aiz;)

by = aZ(4z1a3 — ag23)

by = —Gagzlag

by = Qagalzl

— 4.3
bs = 30,021

The scheme of zeroes of the sections bg,...,bs on W is contained in {ao = 0}.
Indeed, if ag # 0, then on Y the sections b3 and b¢ can be expressed as follows:

b3 = ajyo + 3ajasy

_ 4.3
be = Fapy1,

which do not vanish simultaneously.

Therefore the scheme of zeroes of the sections bp,...,bs on W is given by the
relations

ao=0,

bo = 9a1a3z; — 621a2a3a4 + 2103 + 4a3asz2 — azalz = 0.

This scheme, say X, has 6 irreducible components, namely E2(V'), which has codi-
mension one, and five more of codimension two not contained in E;(V'). To see this
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we shall first study the intersection of the subscheme X with five open sets Uy,...,Us
that we define presently.

Uy = {(azz2 — a3z1)(az22 — 3azz122 + 3as2?) # 0}

The intersection X NU; coincides with TV, and so its points are cubics consisting
of a double and a simple line meeting at ¢ = v = y together with three lines ¢,z and
w through that point.

U2 = {211)1 :,é 0}
So X NU, = E"(Y)W.

U; := {vywy # 0}.

Here X N U; is contained in the closure of T4V and its points are cubics that consist
of line ¢ counted three times, 2 = ¢, and a line w meeting ¢ at the point v = y.

U4 = {vlyl 7é 0}

X NU, is contained in the closure of Ty” and its points are cubics that consist of line
g counted three times, z = w = ¢, and v, y are two points on q.

U5 = {21y1 # 0}

X NUs is contained in the closure of Ty¥ and its points are cubics that consist of line
g counted three times, w = ¢, and a line z meeting q at the point v = ¢.

7. Projective geometry of cuspidal cubics

There are a number of questions which one is lead to investigate when attempting
to find out how to translate properties of the degenerations to properties of the curves
themselves. The theorem below summarizes those properties of cuspidal cubics that
have been found to underlie the computation of several basic numbers (Stammzahlen)
related to some of the degenerations of cuspidal cubics.

THEOREM 3.

(1) Let Py, P,, P; be three points on line z, different from v and P;, P, different
from ¢, let @1, @2, Qs be three points aligned with y, and assume that the lines
P1Q;, and Q1 P; are tangent to C. Then the lines P;Q; are tangent to C for
1,5 =1,2,3.

(2) Let Py, P,, P; be three points on line q, and @1, Q2 two points aligned with v
and not on line q. Assume that the lines P;Q; and P;Q; are tangent to C.
Then the lines P;Q); are tangent to C for: =1,2,3,j = 1,2.
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Let Py and P, be two points on line z. Then the nine points of intersection of
the tangents to C from P, and P; lie on three lines through y, three on each
line.

Let Py, P, be two points on q. Then the two diagonals (other than gq) of
the quadrilateral formed by the tangents from P; and P, (other than q) pass
through v.

Let P be a point on z and p,,ps,ps the tangent lines to C from P. Then
the three contact points are aligned with y, and so do the three additional
intersection points.

Let P be a point on g and let p;, ps be the two tangent lines to C from P that
are different from q. Then the contact points of py, py with C are aligned with
v, and so do the two additional points where those tangents meet C.

By duality we have

THEOREM 3*.

(1%)

(2%)

(3%)

(4%)

(5%

(6%)

Let py,p2,p3 be three lines through y different from gq, p;,ps; different from
w, and q1,q2,qs three lines through a given point on z, and assume that the
intersection points p1gi,p;jq1 lie on C. Then the points piq; lie on C for i,j =
1,2,3.

Let p1,p2, p3s be three lines through point v and q1, g2 be two lines that do not
pass through z and meeting at a point on q. Assume that the points p;q; and
p;jq1 lie on C. Then the points p;q; lie on C fori=1,2,3,5 = 1,2.

Let p1,ps be two lines through y. Then the nine lines joining the points of
intersection of p; and C with the points of intersection of p; and C go through
three points on z, three through each point.

Let py,p2 be two lines through v. Then the two vertexes (other than v) of the
diagonal triangle of the quadrangle formed by the intersection points (other
than v) of py, p2 with C lie on q.

Let L be a line through y and P, P>, P3 the points where L meets C. Then the
tangent lines at Py, P2, P; meet at a point on z, and so do the three additional
tangents to C from Py, P;, P;.

Let L be a line through v and let Py, P, be the points different from v where
L meets C. Then the tangents to C at the points P; meet at a point on ¢, and
so do the two additional tangents to C from Py, P,.

PROOF OF (1): Let L be a line through y different from w. Its equation has the form
z3 = azo. Let Py =(1,0,¢;), and Q; = (1,b;,a). The line P;Q; has equation

bjtizg + (a —t;)zq — bjze.
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This line belongs to the dual curve if and only if
4(t; — a)® = 276%;

and from this the assertion follows easily.
PROOF OF (2): Let P; = (¢;,1,0) and Q; = (1,4a,b;). Then the line P;Q; is given by
the equation

b]‘xo — t,-b}'xl + (ati — 1)$2 = 0.

The condition for this line to be tangent to C is
4b%t% = 27(at; — 1)%,

and from this the claim follows readily.

PROOF OF (3): Let P; = (1,0,¢;). The equations of the tangent lines to C' from P;
are

Lig: —tizo+ pka,-wl +z,=0, £=0,1,2,

where p is a primitive cubic root of 1 and a; satisfies the equation
4a? = 27t;.

Let Qi denote the intersection point of L1 and Lox. Then the triples

QOO, Q117 Q??a
Qo1, Qi2, @2,
QOZ) QZla QIO

lie on the lines Lg, L1, L2, respectively, where Ly is given by the equation
k _ k.
.’Ez(a]' —p a,—) = xo(tiaj — t]'p a,).

This ends the proof of (3).

PROOF OF (4): Let P; = (¢;,1,0). The equation of the two tangents other than ¢ to
C from P; is

—xg + t;xy T a;x, =0,

where g; is a solution of the equation
3
27a% = 443

The equations of the two diagonals (other than ¢) of the quadrilateral formed by
the tangents from P; and P, (other than ¢) are the following:

:co(aj + a,—) = zl(t,-aj + tja,-).

So they clearly go through v.
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PROOF OF (5*): Let L be the line oy = ar;. The points P; have coordinates
(ac;, @i, 1), where «; are the square roots of a. Let @ = (¢,1,0) be a point on
line ¢. Then in order that the line joining @ and a point P = (aa,a,1), @ a square
root of a, be tangent to C it is necessary and sufficient that

4¢* = 27a(t — a)>.

From this the claim follows immediately.

PROOF OF (6*): Let L be the line 2o = az,. The points P; of intersection of L with
C have coordinates (a, a;,1), where a; are the cubic roots of a. Let @ = (£,0,1) be
a point on line z. Then in order that the line joining @ and a point P = (a,a,1), a
a cubic root of a, be tangent to C it is necessary and sufficient that

4(a —1)* = 27at*.

From this the claim follows immediately. This completes the proof of the Theorem.
o

8. Stammmzahlen

For some of the degenerations there must exist relations among the elements from
which it is built up. Thus in degeneration D,; we have a triple line with 6 distin-
guished points on it, so these points cannot vary independently. In fact, since Djq
has dimension 6, given any 4 of the 6 points there must be only a finite number of
possibilities for the other 2. The numbers expressing such possibilities were called
Stammzahlen by Schubert. The goal in this Section is to study these numbers.

The degenerations for which there must exist relations among its distinguished
elements are Dj2, D1y, D19 and D7 (€’s and §;) and, by duality, Dy, D2, D3 and Ds
(7’s and é;). For the former the relations that may exist are relations among its
distinguished points (on the multiple line), and hence by duality for the latter the
relations involve only the distinguished lines through the multiple focus.

The number of distinguished points in these degenerations is 6 for Djz, 4 for Dy,
and 5 for Dyp and D;. These points will be denoted as in Section 5. The notation we
shall use to denote that we fix some of the points agrees with the monomial notation
used for expressing fundamental numbers. So for instance the notation QRc = 1 for
degeneration D; means that there is a single determination for the pair of points v
and y when we fix the the simple focus @, the double focus R and the cusp ¢. For
Do, Dy; and Dy4, condition P means that a simple focus be on a line.

Now we first give the tables of Stammzahlen and afterwards we will show how to
establish them using the results of Sections 5 and 7.
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THEOREM 4. The Stammzahlen are given by the following tables:

Table 1. Stammzahlen for D,
P3¢=4 Pdly=1 Py=2

Plcy=3 Pley=2 Pluy=1
Pevy =1

Table 2. Stammzahlen for Dy,
Plc=1 Py =1 Pev =1
Table 3. Stammzahlen for Dy
P*=2 P?=2 Ply=2 Pey=1
Table 4. Stammazahlen for D,
QRc=1 QRv=1 QRy=1
Qev=1 Qcy =1 Quy=1

Rev=1 Rey=1 Roy =1
cvy =1

The computation of some of these numbers can be done directly, and others by
means of THEOREM 3 together with PROPOSITION 3. Here we will not show how to
compute them all, but only a sample that will be representative of the ideas involved.

Examples for D,

(1) P3c=4
(2) Plcy=2
(3) Pewvy=1

The relation (1) will follow directly from the following:

PROPOSITION 4. Let ¢,v,y be three non colinear points and let L be a line through
c different from cv and cy. Let P, be the point where L and vy meet, and let P, and
P; be two additional points of L different from c. Then there exist exactly four points
P such that the three lines PPy, PP,, PP; are tangent to a cubic whose singular
triangle is ¢, v, y.

PROOF: Choose coordinates so that c, v,y is the triangle of reference and that the
unit point is P;. Thus we have P; = (0,1,1) and P3 = (¢,1,1), where ¢t # 0,1. Since
a point P that satisfles the conditions of the statement cannot be on the cuspidal
tangent (the line cy), we will have P = (a,b,1). The tangential equation of a cuspidal
cubic C with singular triangle ¢, v,y has the form

3
ud + augul = 0.
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Now given a point X = (z,1,1) it is a simple computation to show that the line X P
is tangent to C iff

23 + [a(b— 1)b? — 3a]z? + [3a® — 2aab(b— 1)]z — a*la — a(b—1)] = 0.

Therefore, if the lines PP,, PP,, PP; are to be tangent to C, this equation will have
0,1,¢ as roots. Since a # 0, this is equivalent to the relations

a=alb—1), a[8a—2abb—1)]=t, 3a—a(b—1)b* =1+t
Substituting a(b~ 1) by a in the second and third relations we get the relations
a’(3-2b)=t, a(3-0") =1+t
From these we get the relation
(14 1)%(3 — 2b) = t(3 — b*)*.

It can easily be seen that the only possible double root of this equation is b = —1,
which only can occur when
5(1 +1)% = 4t.

Therefore for general values of ¢ the 4 solutions are indeed different.

Relation (2) can be derived from THEOREM 3 as follows. We take degenerations
of type D15 with two foci Pi, P; and points ¢,y fixed. We want to show that there
are exactly 2 possibilities for the pair P;, v. In order to do this, normalize the cubic
from which the degeneration is obtained so that its singular triangle has the c-vertex
at ¢ and the y-vertex at y. Then the possible centers of the homolography are the
4 intersection points of the two tangents to the cubic other than ¢ from P; with the
similar two tangents from P;. The possibilities for the pair P;, v will be the points of
intersection with the line L of the third tangent through each of the four points and
the lines joining them with the v-vertex. Now according to THEOREM 3 (4) and (2)
there are only 2 possibilities.

Relation (3), Pcvy = 1, can be shown similarly. We want to show that if we fix
a focus P; and the points ¢, v,y then there is only one possibility for the other two
foci. To see this, normalize the cubic so that its singular triangle has verteces at v
and y. Then the center of the homolography has to be on the line joining the cusp ¢’
of the cubic and point ¢. On the other hand, from P, there is only one tangent to the
cubic other than the line w (which counts as a double tangent). So this proves the
claim. Let us remark that the same relation can be proved by normalizing so that
two verteces of the singular triangle are ¢ and v (in which case it suffices to apply
THEOREM 3(1)), or ¢,y (in which case it suffices to apply THEOREM 3(2)).

Examples for Dy,
(1) Pv=1
(2) Pow=1
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To see (1), let vy, Py, P, be three colinear points, and set L to denote the line
containing them. We want to see that there is only one point ¢y = yo on L such
that the data {Py, P2, co,vo} is a degeneration of type D;;. Take two points ¢ and Z
outside L and colinear with P;. Let y be a point on the vZ and let P be the point
of intersection of yc with the line ZP,. By PROPOSITION 3(2), we may assume that
the degeneration is obtained by a homolography of a cuspidal cubic C' with singular
triangle ¢, v,y with center P and axis L. So we want to see that there is only one
possible position for y, and that for such y there is a single cuspidal cubic C that is
tangent to the lines PP; and PP,.

Choose ¢, Z,v as triangle of coordinates and P, as unit point. Then it is easy to
see that P, = (1,1,0), and that y = (0,1,z), P = (z,1,z). The tangent equation of
the cubics whose singular triangle is ¢, v,y has the form

(w1 — zuy)? = augul.

The relations obtained when imposing that the lines PP;, PP, are tangent to C are

2 =az(l —z)? and 2®* =«

which have only one solution, namely z = 1/2, o = 1/8.

To see (2), we want to show that if we fix a focus P; and the points ¢o = yo,v0
of a degeneration of type Dj;, then there is only one possibility for the other focus
P,. To see this, normalize the cubic so that its singular triangle has verteces at ¢ and
v (use PROPOSITION 3(2)). Then the center of the homolography has to be one of
the points of intersection with ¢ of the tangents to C from P;. The claim is a direct
consequence of THEOREM 3(1).

Examples for D,

(1) P*=2
(2) P?c=2
(3) Pey=1

To see (1) consider a degeneration of type Do with the three foci Py, Py, Ps fixed.
We want to see that there are exactly two solutions for the pair ¢ = vy and yo.
Choose two points ¢, y outside the line L of the degeneration and colinear with Pj,
a point v on yP; (different from y and P,;), and a point v on the line cv (different
from ¢ and v). According to PROPOSITION 3(3) the degeneration may be obtained
by means of a homolography with center P and axis L applied to a cuspidal cubic
whose singular triangle is ¢, v, y. Thus what we want to see is that there are exactly
two positions for the pair {v, P} for which there exists such a cuspidal cubic with the
lines PPy, PP;, PP; tangent to it.

Choose as coordinate triangle ¢, y, P;, and let P, be the unit point. Then we will
have P; = (1,1,0), v = (0,z,1), P = (v,z,1), where z # 0,1, v # 0,z. It is easy
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to see that the tangential equation of the cuspidal cubics with singular triangle ¢, v,y
has the form

ui‘ = aug(ru; + u2)2.

When we impose that the lines PPy, PP,, PP; belong to such a dual curve, we get
the relations

v =—az’, ey’ = =1,(1-7)° = ar’(z - 1)%.

After some transformations these relations are seen to be equivalent to the relations

v = pz, where p° = 1,p # 1;

Yy —1) = z(z - 1);

v = —az.

. 1 )
Since z #£ 0, the second of these relations gives that z = 75 (two possible values),
p

for each of which there is a single value for v and «.

Now let us consider (2). Assume given a degeneration of type Diq, with ¢o = vy
and two foci Py, P; fixed. We want to see that there are exactly two possible positions
for the pair (yg, P3). Choose two points v, y outside the line L of the degeneration and
colinear with Pj, and a point P colinear with v and ¢y = vy. By PROPOSITION 3(3),
the degeneration can be obtained by means of a homolography of center P and axis L
applied to a cuspidal cubic whose singular triangle is ¢y = vg,v,y. So what we want
to see is that there are exactly two positions of P such that the lines PPy, PP, are
tangent to such a cuspidal cubic. Take as coordinate triangle ¢ = vg,y,v and unit
point Py, so that P, =(0,1,1), P =(1,0,z),z # 0. Then the tangential equation of
a cuspidal cubic with singular triangle ¢y = v, v, y has the form

3 _ 2
U] = alpls.

The relations obtained when we impose that the lines PP;, PP, belong to that dual
cubic are the following

az =1,(z —1)® = —az,
from which the claim follows.

Finally let us consider the relation (3). So assume that we have a degeneration of
type Dy¢ with a focus, say Py, and the points ¢y = vo and yo fixed. We want to see
that there is only one position for the remainig two foci of the degeneration. Take
a point v outside the line L of the degeneration. By the PROPOSITION 3(3) we can
assume that the degeneration is obtained by a homolography with axis L applied to
a cuspidal cubic C whose singular triangle is co = vg,v,ys. So the possible centers of
such a homolography are the intersection with the line z with the tangents to C' from
P other than ¢. So the claim follows from THEOREM 3(2).
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Examples for D,
(1) Rev=1
(2) ecwy=1

To see (1), assume we have a degeneration of type D7 with fixed co,vo and R (the
double focus). We want to see that there is a unique position for @ (the simple focus)
and yo. Now choose a point y not on the line L of the degeneration. By PROPOSITION
3(4), we may assume that the given degeneration can be obtained by a homolography
of a cuspidal cubic C with singular triangle cg, vy and y. The possible centers are the
contact points @)1, @2, @3 of the three tangents to C from R. These three points are
colinear with y, by THEOREM 3(5). Let L; be the tangent to C going through Q;
that is different from the tangent to C' at ;. Then our claim follows because the
three lines L; are concurring at a point on z, by THEOREM 3* (5%).

To see (2), assume we have a degeneration of type D7 with fixed cg, vo and yo. Our
goal is to see that there is a unique position for the foci B and @ (double and simple,
respectively). Take a point ¢ not on the line L of the degeneration. By PROPOSITION
3(4) we can assume that the degeneration is obtained by a homolography of a cuspidal
cubic C' whose singular triangle is ¢,vo and yo. Since the center of the homolgraphy
must be on the line cco and on C — {c,v}, we see that there is a unique solution.
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