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A b s t r a c t .  We show how to compute all fundamental numbers for plane cus- 
pidal cubics. This updates and extends the work of Schubert on this subject. 
In our approach we need a far more precise description of the first order de- 
generations (13 in all) than that given by Schubert and this is obtained by 
proving a number of key geometric relations that are satisfied by cuspidal cu- 
bics. Moreover, our procedure does not require using coincidence formulas to 
derive the basic degeneration relations. 

I n t r o d u c t i o n  

The enumerative theory of cuspidal cubics was first considered by Maillard (doctoral 
thesis, 1871) and Zeuthen [1872]. Subsequently they were extensively studied by Schu- 
bert. For an exposition of his (and others) results, see Schubert [1879], § 23, pp. 106-143. 
Schubert also considers cuspidal cubics in p3, but here for simplicity we will study only 
cuspidal cubics in a fixed projective plane p2 over an algebraically closed ground field 
k. In case the characteristic p of k is positive we will assume that p # 2, 3. 

Let S be the space of plane non degenerate cuspidal cubics, so that S is an orbit under 
the action of the group G = PGL(P 2) on the space of plane cubics. Each cuspidal 
cubic determines a triangle, called singular t~angle (Singularltiitendreieck, Schubert 
[1879], p. 106), whose verteces c, v, y are, respectively, the cusp, the inflexion and the 
intersection point of the cuspidal and inflexional tangents. The sides of this triangle, 
denoted q, w, z are, respectively, the cuspidal tangent, the inflexional tangent and the 
line cv (see Fig. 1 at the end). 

The conditions that were first considered in the enumerative theory of cuspidal cubics 
were the characteristic conditions #, u (i.e., going through a point and being tangent 
to a line, respectively). Schubert also considers conditions imposing that a given vertex 
(side) of the singular triangle lies on a line (goes through a point), and denotes any of 
these six conditions with the same symbol used to denote the corresponding element 
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of the singular triangle. Altogether we have eight conditions, which will be called 
fundamental  conditions for the cuspidal cubics. 

By transversality of general translates (Kleiman [1974]), the cubics satisfying seven 
(possibly repeated) fundamental  conditions whose data  are in general position are finite 
in number and at least in characteristic zero they count with multiplicity 1. In charac- 
teristic p > 0 each solution may have to be weighted with a multiplicity that  is a power 
of p. The numbers so obtained are called fundamental  numbers for the cuspidal cubics. 
The fundamental  numbers involving only # and v are the characteristic numbers. 

It turns out that  there are 620 non-zero fundamental  numbers for the cuspidal cubics 
(discounting those that  may be obtained by duality), and of these Schubert gives explicit 
tables for 391 (loc. cir., pp. 140-142). Of the remaining 229, a few (actually 21) can be 
deduced from related entries in tables he gives for space cuspidal cubics. As we explain 
below, Schubert's work is also incomplete on other (more fundamental)  counts. The 
general problem of verifying and understanding all the geometric numbers computed 
by 19th century geometers, which is the main motivation of this and related works, was 
stated by Hilbert [1902] as Problem 15 of his list. 

Schubert's calculations rely on the method of degenerations, which in turn requires 
to know, if we want to compute all fundamental  numbers, 

i) that the space S* of  complete cubics (see Section 1) is smooth in codimension one, 

it) how many  boundary components (called degenerations) there are in S* (see Sec- 
tion 2), 

iii) how to solve a number of related enumerative problems on each of the degenerations 

(see Sections 4-7 and 9), and 

iv) to express, on S*, the fundamental conditions in terms of the degenerations (degen- 

eration relations, see Section 10) and to establish that a number  may  be computed 
by subst i tut ing one of  its conditions by its expression in terms of the degenerations. 

For a given subset of fundamental  numbers much less may be needed. Thus, in order 
to compute the 8 characteristic numbers, it is enough to know a single degeneration 
(degeneration a, whose points consist of a conic and one of its tangent lines), but for 
this one it is nevertheless still necessary to take care of the points i)-iv) to verify them. 
This was done recently, in different ways, by Sacchiero [1984] and by Kleiman - Speiser 
[1986]. 

Question i) is not considered by Schubert. As far as it) goes, Schubert constructs, in 
addition to a, 12 degenerations, by means of the so called homolography process, but 
he does not provide any formal verifications, nor does he prove that  they are all possible 
degenerations. These questions were clarified in Miret - Xamb6 [1987] (see Section 2 
below). 

Question iii) is rather involved. Since the building elements of some of the degen- 
erations exceed in number what would be allowed by their dimension, they cannot be 
independent and so there must exist relations among those elements. Schubert gives 
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lists of such relations, expressed in enumerative terms (tables of "Stammzahlen", loc. 
cit., pp. 120-127), and asserts that they were obtained by an indirect process ('% pos- 
teriori erschlossen", ibid., p. 119). Nov,- in Miret - Xamb6 [1987] the Stammzahlen that 
are needed to describe the degenerations were studied and were showed to be related to 
basic projective geometry properties of the cuspidat cubics. In this paper we continue 
the study of this topic and give a detailed geometric description of all the degenerations. 

Another difference with Schubert arises in the treatment of question iv). Schubert 
derived degeneration relations by means of coincidence formulas (loc. cir., p. 107 and 
ft.). This procedure leads, however, to computations of multiplicities that seem very 
difficult to hazldle, and which have been verified, as far as the authors know, only in 
very special cases, like some that arise in the verification of the characteristic numbers. 
Instead, one may work on the idea, already used by Schubert to cross-check his results, 
that most geometric numbers can be computed in several different ways. When used 
systematically, this observation allows to establish, if we already have assembled suit- 
able enumerative information on the various degenerations, the required degeneration 
relations by simple algebra. This version of the method of degenerations is explained 
in Section 8. 

The organization of this paper is as follows. Section 1 is devoted to the determination 
of the Picard group of S. At the end we define the space of complete cuspidal cubics. In 
Section 2 we briefly recall the description of the 13 first order degenerations of the cus- 
pidal cubics. Then in Section 3 we prove a few geometric properties of cuspidal cubics 
that supplement and refine those given in Miret-Xamb6 [1987]. In Sections 4-7 we carry- 
out systematic enumerative computations on the various degenerations (Stammzahlen) 
based on the properties inherited by the degenerations from corresponding properties 
of the cuspidal cubics. Then in Section 8 we outline, as we said above, a setup for the 
method of degenerations. In Section 9 we include a number of tables of degeneration 
numbers; they axe obtained from the elementary numbers by direct arithmetic calcu- 
lation. In Section 10 we determine the degeneration relations for the cuspidM cubics, 
that is, the expressions of the first order conditions in terms of the degenerations and 
of the condition that the cusp of the cubic be on a line. Section 11 contains examples 
that show how to put together the information gathered before to effectively compute 
the fundamental numbers of cuspidal cubics. Finally in Section 12 we give the tables 
of all the fundamental numbers. 

Acknowledgemen t s .  The second named author wants to thank Steven Kleiman 
for his suggesting that the method of degenerations be explained in the context 
of a non-trivial example, rather than in azl abstract form, and Robert Speiser for 
fruitful discussions about issues related to coincidence formulas. 
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1. Spaces of cuspidal cubics 

1.1.  Let p2  be the complex projective plane. The homogeneous coordinates of p2 will 
be denoted (x0, x l ,  x2). The point P0 = (1,0, 0) will be called the origin of coordinates. 
The space parametrizing plane cubics is isomorphic to p9 and we will identify these 
spaces. We shall let S denote the 7 dimensional locally closed subset whose points 
represent non-degenerate cuspidal cubics. Thus S is an orbit  of the natural  action of 
the group G = P G L ( P  2) on pg.  In part icular  S is a smooth variety. 

1.2. If X is a point or a line, we shall set Sx  to denote the subvariety of S whose points 
are cuspidal cubics with its cusp on X.  Similarly, if P is a point and L is a line, P E L, 
then Sp, L will denote the cycle of cuspidal cubics that  have the cusp at P with cuspidal 
tangent  L. The  cycle Sp ,  L is irreducible, because it is an open set of a linear space. 
From this it follows that  the cycle Sx  is also irreducible. The class of SL in Pic(S) will 
be denoted c and the class of the cycle of cuspidal cubics whose cuspidal tangent goes 
through a point will be denoted q. 

1.3.  T h e o r e m .  Pic(S) = Z @ Z/(5) .  The free generator of this group is c and the 
generator corresponding to Z/(5)  is the projection of q. 

P r o o f i  Let L be a given line, and let U be the open set of S whose points are cuspidal 
cubics with the cusp not on L. Thus S -  U = SL and hence we have an exact sequence 

A°(SL) --* A I ( s )  --+ AI(U) --~ O. 

From this we see that  Pic(S) = AI(S)  is generated by c and AI(U).  Now we have 
an isomorphism U ~- A 2 x SPo , induced by translations in A 2 __ p2 _ L, and so 

AI(U) ~_ AI(S,o).  

To s tudy the last group, let T denote the space of cubics tha t  have a double point, 
and let Tp denote the 6 dimension linear space of cubics tha t  have a double point at 
P .  Thus cubics in Tp o have equations of the form 

(1) xof2 + f3 -- 0, 

where f i ,  i = 2,3, is a homogeneous polynomial of degree i in the variables xl,x2.  It 
is clear tha t  S C T, where S is the closure of S in T. Now SP0 is a quadratic cone of 
rank 3 in Tpo, for it is clear that  (1) has a double tangent at P0 if and only if Disc(f2) 
= 0. Moreover, if F is the quintic hypersurface of Tp o given by the equation Res(f2, f3) 
= O, and F = F n SPo, then points in Fred represent degenerate cuspidal cubics and 
conversely. Indeed, if in (1) f2 = w 2, where w is a linear form in Xl,X2, then the cubic 
XoW 2 + f3 = 0 is a degenerate cuspidal cubic if and only if w divides f3. 
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We will show that  [F] -- 2[Fred], and that  Fre d is irreducible. 
exact sequence 

A°(rred)  ---+ Al(Sp0) --~ Al(Sp0) -+ 0 

and the fact, also proved below, that  

If this is so, from the 

AI('Spo) ~_ Z, 

generated by a ruling of the cone, we deduce that  AI(SPo) = Z/(5) ,  because a quintie 
hypersurface section is rationally equivalent to 10 rulings and so Fre  d is equivalent 
to 5 rulings. Now observe that  the rulings of the cone are the subspaces of cuspidal 
cubics that  have a given cuspidal tangent,  and that  one of these ruling~ generates, by 
translations, the cycle of cuspidal cubics whose cuspidal tangent  goes through a fixed 

point. 

To prove that  [F] = 2[Fred], consider an affine space A 5 and define a map 

f :  A5 ' SP0 

by transforming (s, b0, bl, b~, b3) into the cubic 

X0(X 1 -~- SX2) 2 = bo x3 + blx2x2 A t - b2xlx  ~ -At- b3 x3. 

This induces an isomorphism of A 5 with SP0 - R, where R is the ruling of SP0, given 
by the cuspidal cubics whose cuspidal tangent is the line {x2 = 0}. The pull-back under 

f of the subscheme F is the subscheme given by the equation ae s ( (x l  + sx2) 2, f3) -- 0. 
Now using Fulton [1984], Example A.2.1, p. 410, it is easy to see that  

Res((xl  + sx2) 2, f3) -- Res(xl  d- sx2, f3) 2 

and so on the open set S p  o - R we see that  F is divisible by 2, and that  the restriction 
1 of ~ F  to each ruling is a hyperplane of the ruling. Hence the equality [F] = 2[Fred] is 

correct on the complementary set of any ruling, and therefore it holds globally. 
To end the proof we have to see that  a rank three projective quadratic cone K satisfies 

A I ( K )  = Z, generated by a ruling. To see this notice that  in order to compute A I (K )  we 
may throw away the vertex of the cone, because its codimension is 2. Having done that ,  
K is a fibre bundle over a smooth conic C with fibre A 1. Hence A I ( K )  is isomorphic 
to AI (C) .  But A I ( C )  ~_ Z, generated by the class of a point of C, and from this the 

claim follows, o 

1.4. C o r o l l a r y .  The Picard group of  the space of  non degenerate nodal cubics is 

generated by the class o£ the cycle of  nodal curves wi~h node on a fixed line. 

PROOF: Let TL be the cycle of nodal curves that have its node on a line L. This cycle 
is irreducible and we have an exact sequence 

A°(TL)  ~ A I ( T )  ---, A I ( V )  ---, 0, V = T - TL. 
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So Pie(T)  = A I ( T )  is generated by the class b = [TL] and by AI (V) .  Now V ~ A 2 × Tp, 
so AI(V)  = AI(Tp). Now cubics tha t  have a double point at P form a 6 dimensional 

linear space, which is nothing but  T p .  In this space we have the quadrat ic  cone D = SR 
and the hypersurface E whose points consist of cubics tha t  split in a conic and a line, 
and, up to subvarieties of codimension 2 or higher, Tp - Tp = D U E. Thus  we have 

an exact sequence 
A°(D OE) ~ A I ( T p )  ---+ AI(Tp) --+ 0 

So it is clear tha t  AI(Tp) = Z / ( m ) ,  where m = gcd(d, e), d and e the degrees of D 

and E in Tp, respectively. Now D has degree 2, as we noticed above, and E is a Segre 
variety, which has degree 5. So we conclude tha t  AI(Tp) = 0 and so our s ta tement  
follows, o 

1.5.  Complete cuspidal c u b i c s .  We will use the letters b, c, v, y, z, q, w also to denote 

the maps  tha t  t ransform a given cubic C in S into, respectively, the dual cubic C*, the 
cusp, the inflexion point,  the intersection of the cuspidal and inflexional tangents ,  the 

line joining the inflexion and the cusp. the cuspidal tangent ,  and the in_flexion tangent.  

Set 
p = pg* × (p2)3 x (p2*)a 

and consider the map  

h : S - - ~ P ,  h = (b, c, v, y, z, q, w). 

Let S* be the closure of the graph of h in Z = S x P.  The  space S* will be referred to 
as the space of complete cuspidal cubics. The points in S* - S will be called degenerate 
cuspidal cubics, where the inclusion of S in S* is given by idxh .  Since the composit ion 

of h with the project ion of P onto its first factor  is b: S --+ pg*,  it is na tura l  to define 
b: S* ~ pg* as the restr ict ion to S* of the project ion onto pg*.  Given a point C '  of S*, 
we shall say tha t  b(C t) is the tangential cubic associated to the complete  cubic C ~. In 
the same way we can define morphisms c, v, y, z, q and w from S* to the corresponding 

factors of Z. Given C ~ E S*, c(C') will be called the cusp of C ~ and similarly with the 
other  maps.  

For a non-degenerate  cuspidal cubic, the triangle whose vertexes are c, v, and y, and 

whose sides are z, q, w, is called singular triangle. The same notion can now be defined 
for degenerate  cuspidal cubics in S*. In other  words, given a degenerate  complete 
cuspidal cubic C ~, the six-tuple 

(c(c'), v( C'), v( c'), z( C'), q( c'), w( c') ) 

will be called singular triangle of C ' ,  the first three elements being the vertices and 
the last three the sides. The  cubic is degenerate if and only if its singular triangle is a 
degenerate  triangle. 

The  project ion of a point C t E S* to S will be referred to as the point cubic associated 
to C t. 
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1.6. T h e o r e m  (see Mire t -Xamb6 [1987]). The variety S* of complete cuspidal cubics 
is non-singular in codimension 1. 

In next  section we give a description of the boundary  components  of S*. 

1.7.  C o n v e n t i o n s .  Henceforth we will say tha t  a point P is general with respect to 
a cuspidal cubic C if it does not lie on C nor on any side of the singular triangle. A 
point P of C will be said to be general if it is different f rom the cusp and the inflexion. 

Given four colinear points A, B,  C, D we shall write p(A, B, C, D) to denote their  
cross ratio. 

We also recall here tha t  given a cuspidal cubic of the form XoX~ = x 3 then the dual 

cubic has equat ion 27u0u22 + 4ul 3 -- 0. 

2. Degenerations 

The  boundary  S * - S  has 13 irreducible components  Di,  all of dimension 6 (see Miret- 

Xamb6 [1987]). The  brief descriptions given below are intended to outline the s t ructure  

of the general points  of Di, i = 0 , . . . ,  12 (see the drawings at the end). In each case 
we indicate what  the corresponding point and line cycles are, as well as the sides and 
verteces of the singular triangle. The degenerations D1, . . .  , D12 can be obtained by 
applying a homolography to a non-degenerate  cuspidal cubic with suitable choices of its 

center P and axis L. This  means tha t  points on Di, i = 1 , . . . ,  12, are the limit cycles 

for t = 0 or t = oo of the cycles obta ined t ransforming the given cuspidal cubic by a 
homology of modulus  t with center at P and axis L. 

In what  follows instead of saying "the pencil of lines through point P is a component  

of the dual cubic" we will say tha t  " P  is a focus of the cubic". Thus,  if three points 

are declared as loci, this means tha t  the dual cubic decomposes into the three pencils 
of lines through the given points. 

2.1.  Do. General  points in Do consist of a smooth  conic K together  with a distinguished 

tangent  line L of K .  The  three sides of the singular triangle of such a pair  coincide 

with L, while the three verteces coincide with the contact point,  say P.  The  tangential  

cubic consists of the dual conic K* and the pencil of lines through P.  

2.2.  D1 a n d  D12. Points in D12 consist of a triple line L with three distinct loci 
on it. The  sides of the singular triangle coincide with L and its three vertices are three 
distinct points on L disjoint f rom the loci. The  degenerat ion Di  is dual of D12. 

2.3.  D2 a n d  Dl1.  Points in D l l  consist of a triple line L with three distinct foci on it. 
The  vertices c and y fall together  on a focus, and the vertex v is a point on L which is 
not a focus. The  sides w and z coincide with L and q is a line through c = y different 
f rom L. The  degenerations D2 is dual of Dil. 



202 

2.4.  Da a n d  D10. Points in D10 consist of a triple line L with three distinct loci on it. 
The  sides q and w coincide with L and z is a line different from L that  does not go 
through a focus. The verteces c and v fall together on the intersection of z and L and 
y is a point on L different from c = v and which is not a focus. The degeneration D3 
is dual of D10. 

2.5.  D4 a n d  D0. Points on D9 consist of a triple line L with a simple focus and a 
double focus. The sides q and z coincide with L, while w is a line through the double 
focus distinct from L. The verteces v = y fall on the double focus and c is a point on 
L different from the loci. The  degeneration D4 is dual of Dg. 

2.6.  D5 a n d  Ds.  Points in Ds consist of a triple line L with a simple focus and a 
double focus. The  side z coincides with L, while q and w are lines different from L that  
go through the simple and the double focus, respectively. The intersection of q and w 
is the vertex y, while c falls on the simple focus and v on the double focus. 

2.7.  Ds a n d  DT. Degenerations of type D7 consist of a double line L and a simple 
line L' ,  with a simple focus Q on L and a double focus R that  falls on L n L r. The 
three sides of the singular triangle coincide with L, while the verteces are three distinct 
points of L disjoint from the loci. The  degeneration D6 is dual of D7. 

It is to  be remarked tha t  the elements with which a degeneration is built  up need 
not be independent.  Take, for instance, D12. We have six points on a line. Such 
configurations fill a space D12 of dimension 8. Since D12 has dimension 6 we see that  
D12 is a codimension 2 subvariety of D12. Similarly we can define varieties D l l ,  D10 
and D7 of dimensions 7, 8 and 8 that  contain the degenerations Dl l ,  D10 and D7 as 
subvarieties of codimensions 1, 2 and 2, respectively. Thus D l l  may be described as 
the variety whose points are ordered pairs of lines with three distinguished points on 
the first, and D10 and D~ as varieties whose points are ordered pairs of lines with four 
distinguished points on the first line. Of course, similar remarks can be made for the 
dual degenerations D1, D2, D3 and Ds. 

The  enumerat ive geometry of DT, D10, Dl l  and D12 will be studied in Sections 4, 5, 
6 and 7, respectively. 

3 .  P r o j e c t i v e  p r o p e r t i e s  o f  c u s p i d a l  c u b i c s  

3 .1 .  P r o p o s i t i o n .  Let C be a non-degenerate cuspidal cubic and P a general point 
with respect to C. Let L1, L2, La be the tangent lines to C through P and set 
Pi = p(Pc, Pv,  Py, Li). Tfien 

1 1 1 
- - + ~ + - - =  3 
Pl P2 P3 

PlP2P3 = 1. 
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Conversely, given non-zero scalars Pi, i = 1,2,3, satisfying the two equations above, 
three distinct concurrent I/nes L1, L2, L3, say at the point P, and a triangle c, v, y with 
no vertex on the lines such that pi -- p(Pc, Pv, Py,  Li), then there exists a cuspidM 
cubic C with singular triangle c, v, y which is tangent to the lines Li, (i -- 1, 2, 3). (The 
proof actually shows that C is unique.) 

Proo f i  Take the singular triangle of C as the reference triangle and take a general 
point of C as the unit point. Let P -- (a, b, 1). The projection of y from P on the line 
z = cv is y '  = (a, 0, 1). Let M = (m, 0, 1) be the point where a tangent to C through 
P meets the line z = cv. Then imposing that  the line P M  satisfies the dual equation 
we find that  m has to satisfy the relation 

m 3+(27b  3 - 3 a ) m  2 + 3 a 2 m - a  3 =0. 

Let mi, i = 1,2,3, be the roots of this equation and Mi the corresponding points. One 
computes that  p(c ,v ,y ' ,Mi)  = mi /a  and from this the first part of the proposition 
follows easily. 

To see the converse, take (c, y, v; P )  as a reference. Wi th  respect to this reference the 
line Li has coordinates (1, pi - 1 , -P i ) .  We know that  the cuspidal cubics with singular 
triangle c, v, y are of the form ax~ = xox~, a ~ O. Using the line equation of this cubic 
we see tha t  it is tangent to the line Li if and only if 

p~ + ( ~ a  - 3)p~ + 3pi - 1 = 0. 

Thus if the pl satisfy the conditions in the first part  of the statement,  then in order 
tha t  the cubic be tangent to the three lines it is necessary and sufficient that  ~ a  - 3 = 
- ( p l  + p2 + P3). Since this equation has a unique solution with respect to a ,  which is 
non-zero, this ends the proof, o 

The preceeding result still holds if P is a point on C not on the singular triangle, 
taking the tangent  to C at P twice. In this case, however, we have a more precise 
statement:  

3.2.  P r o p o s i t i o n .  Given a point P of C, let L be the tazlgent to C at P and L' the 
tangent to C through P other than L. Then the cross-ratio of any four of the lines 
Pc, Pv, Py, L, L ~ is independent of P. In fact we have that 

p(Pc, Pv, Py, L) = - 2 

p(Pc, Pv, Py,L') = ¼ 
1 p(Pc, Pv, L, L') = - ~  

p(Pc, Py, L,L ' )  - 1 - ¥ 

p(Pv, Py, L, L') = _ !  2" 

Notice that  any two of these relations imply the other three. 
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Conversely, given a triangle c , v , y  and two lines L and L ~ mee t ing  at a point  P not  

on the sides o f  the triangle and in such a way that two (and hence all) o f  the equations 

above are satisfied, then there exists a cuspidal cubic C with singular triangle c, v, y 
that is tangent to L at P and also tangent to L ~ (necessarily at a point different from 
P). 

P r o o f :  A straightforward computat ion as in the proof of 3.1. o 

3.3.  P r o p o s i t i o n .  Given a point P of  the cuspidal tangent q of  a non-degenerate 

cuspidM cubic C, different from c, then the pair of  lines q, P v  is harmonic with respect 

to the pai r  of  tangents to C through P other than q. Conversely, given a harmonic 
te trad of  concurrent lines q, L, L t and L"  (say at P) ,  and points  c on q and v on L, 

both  d/fferent from P,  there exists a cuspidal cubic C with cusp at c and inflexion at v 

such that the tangent lines to C from P are q, L r and L".  

P r o o f :  Taking (c, v, y) as reference triangle and the unit point on C then the equation 
of C has the form x~ = XoX~ and the point P is of the form (a, 1,0). Let u, u'  be the 
tangents to C, other  than q, through P .  Let Q -- (m, 0,1) and Q'  -- (m' ,  0, 1) be the 
intersections of u and u ~ with the line cv. It suffices to  show that  the pairs of points 
(c, v) and (Q, Q') are harmonic. Imposing that  the lines u = P Q  and u' = P Q '  are 

tangent  to C (using the dual equation) we find that  m q- rn ~ -- 0, and this ends the first 
par t  of the proof. The  converse part  can be seen in the same way as the converse part  
of 3.1. o 

3.4.  P r o p o s i t i o n .  

(a)  Given a point P of  the line z o f  a non-degenerate cuspidM cubic C, different from 

c and v, then the cross ratio of  the lines z, P y  and any pair of  tangents to C from 
P is a primit ive  cube root o f  unity. 

(b )  The  line z and the three tangents to C from P form an eqnianharmonic tetrad, 

that is, i ts cross-ratio is a primit ive  cube root of  - 1 .  

(c)  The line P y  and the three tangents to C from P form a/so an equia~harmonic 
tetrad. 

( e )  Conversely, given a triple o f  concurrent lines { L , L ' , L " ) ,  say at a point  P ,  and a 

pair o f  points  c, y not  on those lines, there is a cuspidal cubic wi th  singular triangle 

c, y, v, where v is a point on the line cP,  and which is tangent to the lines L, L t 
and L t~ i f  either the cross ratio of  Pc,  P y  and any pair of  L 's  is a primit ive  cube 

root o f  uni ty  or the tetrads Pc,  L, L t, L ~ and Py ,  L, L~ L"  are equianharmonic. 

P r o o f :  Take the same reference as in the proof of 3.1 Let  P = (a, 0,1).  Then  the 

line joining P and the point M = (m, 1,0) on the line q is given by the equation 
-Xo  -~- tax i  q- ax2 : O. Imposing that  it satisfies the dual equation we get the relation 

4m a _-- 27a2 

whose solutions are of the form rni = ~kmo, k = 0 ,1 ,2 ,  where ~ is a primitive 
cube root of unity and mo/3  is a fixed cube root of a2/4. Computa t ion  shows that  
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p(c, y, Mi, Mj) = ~j-i, which proves part  (a) .  Similarly, p(c, Mo, M1, Me) = ( + 1, 
which proves (b) .  The proof of (c)  is similar. The  converse part  can be seen in the 
same way as the converse part  of 3.1. 

We also collect here a three lemmas about  cross ratios because we do not know a 
reference for them. The  proofs are obtained by straightforward analytic computations.  

3.5.  L e m m a .  Given three non-concurrent lines L1, L2, L3, a point P not lying on 
any of them and a scalar k ¢ 1, there exists a unique line L through P such that 
p(P, L N L1,L N L2,L N L3) = k. 

3.6.  L e m m a .  Given a four lines L1, L2, L3, L4 such that no three of  them are 
concurrent, a point P not lying on any of them and a scaJar k ~ 1, there exist exactly 
two/ines L through P such that the p(L N L1,L n Lu,L n L3,L n L4) = k. 

3.7.  L e m m a .  Given five lines L1, . . .  , L5 in genera /pos i t ion  and two scalars kl and 
k2 different from 1, there exists a unique/ ine  L such that 

p(L N L1,L  n L2, LN La ,L  n L4) = kl 

p(L N L1,L A L2, L N L3,L N Ls) = k2. 

We also need a few cycle identities for ordered and unordered triples of collinear 
points. First recall tha t  for flags "point-line" in the projective plane, {p, g}, we have the 
relation gp = g2+p2, where g is the condition that  the line goes through a point and p the 
condition that  the point be on a line. Now consider configurations (L; c, v, y) consisting 
of a line L and three distinguished points c, v, y on L. The variety V parametrizing such 
configurations is smooth and complete. Moreover, it follows easily from the relation just 
recalled that  on V we have the following relations: 

3.8.  L e m m a .  

L 2 -4- c 2 = Lc, 

L 2 + v 2 = i v ,  

L 2 + y2 = Ly. 

Now consider configurations consisting of a line L together  with a zero cycle Z of 
degree r on L. The points in the support  of Z will be called loci of the configuration. 
The variety V'  of such configurations is smooth and complete. In fact, V'  can be 
defined as the projective bundle associated to the vector bundle St(E*),  where E is the 
tautological rang 2 bundle on p2. Given j lines in general position, and a point (L; Z)  
of V ~, write Z = Z '  + Z" ,  where the support  of Z '  lies on the union of the lines and 
the support  of Z"  is disjoint from them. We shall write Qj to denote the subvariety of 
V I whose points (L; Z) satisfy that  on each of the lines there is at least a point of Z 
(hence of Z ' )  and that  deg(Z")  < r - j .  It is not hard to see that  Qj is irreducible of 

cod imens ion j .  Nowle t  E b e t h e s e t o f  ( ~ ) p o i n t s o f i n t e r s e c t i o n o f t h e j l i n e s .  For 



206 

each P E E, let QP denote the subvariety of V' whose points (L; Z) satisfy that  P ~ Z',  
that  on each of the j lines there is at least a point of Z, and that  d e g Z "  ~ r - j  + 1. It 
is also easy to see that  QP is an irreducible subvariety of codimension j .  For each pair 

of points P, Q c E, P ¢ Q, let QP'Q denote the subvariety of V' whose points (L; Z) 
satisfy that  P + Q _~ Z ~, that  on each of the j lines there is at least a point of Z, and 
that  deg Z"  _~ r - j + 2. It is also easy to see that  QP'Q is an irreducible subvariety of 
codimension j .  

3.9. L e m m a .  

QJ: qJ+ E q ;  + EQ;Q 
P P,Q 

Proof: That  the left hand sides are equal to the right hand sides up to multiplicities 
follows from simple combinatoric arguments. That  the multiplicities are equal to 1 in 
all cases can be seen by the principle of general translates (see Kleiman [1974] and 
Laksov-Speiser [1987]). o 

With  t hesame  notations, let Q and P denote the conditions that  a configuration has, 
respectively, a focus on a given line and a focus at a given point. If the number of loci 
is 2 or 3, from the preceeding lemma we conclude: 

3.10. L e m m a .  

[Q2] = [Q2] + [P] 

[Qa] = 3[PQ] 
[Q4] _- 3[p2] 

= 0 

resp. 

[Q2] = [Q2] + [P] 

[Q3] = [Qa] + 3[PQ] 

[Q4] = 6[PQ2] + 3[P 2] 

[QS] = 15[P2Q] O 

4.  S t a m m z a h l e n  f o r  D7 

We shall use the notations introduced in 2.7. 

4.1. P r o p o s i t i o n .  The singular triangle c, v, y of a degeneration of type D7 may be 
any triple of  distinct collinear points. The simple focus Q and the double focus R are 
collinear with c, v, y and are uniquely determined by the relations p(c, v, y, Q) = 1/4 
and p(c, v, y, R )  = - 2 .  The simple line may  be any line through R. 

Proof: It is a direct consequence of 3.2 and the way the degeneration is obtained by 
a homolography, o 

Let 917 be the variety of ordered 5-tuples of distinct collinear points c, v, y, Q, R. Let 

D~ be the subvariety of D'7 given by the relations in 4.1. Let ~: D7 --4 9'7 be the 
map that  forgets the simple line L ~ and z~ : D~ --~ D~ the restriction of ~ to DT. Next 
lemma shows that  the computation of the Stammzahlen for D7 is equivalent to the 
computat ion of Stammzahlen for D~. 
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4.2. L e m m a .  Let N be a fundamental  number for DT. 
(a) If the exponent  of  L' in N is 0 or at least 3, then N = O. 

(b) If the condition L'  appears jus t  once in N ,  then N = N ' ,  where N '  is the number  

on D~ obtained dropping the condition L'  from N .  
(c) If  the condition L' appears jus t  twice in N ,  say N = L'2x,  then N = R ' x ' ,  where 

the product  x '  on D'7 corresponds to the product  x on D7 ( that  is, x = zc*(x')) 

and where R'  is the condition on D'~ that the double focus be on a line. 

Proof:  Follows easily using the projection formula and we omit it. o 

4.3. T h e o r e m .  The number Li 'Qi2Risci4vi~y is, il + . . .  + is = 5, is equal to 1 i f  one 

exponent  is 2 and the others are at most  I or i f  J1 = 0 and the other exponents  are at 
most  2; is equal to 2 i f  il = 1 and the remaning are at mos t  1; otherwise is O. 

Proof :  If il = 2, then the line is fixed and so by 4.1 the number must be one if the 
remaining exponents are at most 1 and 0 otherwise. The similar reasoning works if 
il = 1 and some other exponent is 2 or if two exponents are 2. If il = 0 and there is a 
single square, then the conclusion follows from 3.5 and 4.1. If il = 1 and the remaining 
exponents are at most one, then the value is 2 by 3.6 and 4.1. If iX ---- 0 and the others 
are at most 1 (and hence all equal to 1), then we can apply 3.7. o 

4.4. R e m a r k  The expression of [DT] in the Chow ring of D7 is as follows: 

[DT] = L 2 - 2Le - 2Lv - 2Ly  - 2LQ - 2 L R  

+ cv + cy + cQ + c R +  vy  + vQ + v R +  yQ + y R +  QR.  

The proof of this relation and of the similar relations for D1o, Dll  and D12 (see 5.4, 
6.4 and 7.4) are similar and we will give details only for the case of D12. The method 
of proof consists in writing the corresponding Dk as a linear combination of a basis of 
the corresponding Chow group, with undetermined coefficients, and then to establish 
enough linear relations among the coefficients by multiplying with suitable monomials 
in the fundamental conditions, using the tables of Sta.mmzahlen in each case. One 
reason for bothering only about D12 is that in this case the expression is actually used 
to complete the computation of the Stammzahlen , while in the remaining three cases 
we do not need the expression for such a purpose. 

5. S t a m m z a h l e n  for D10 

5.1. P ropos i t ion .  The three loci of a degeneration of  type Dlo m a y  be any unordered 

triple of  collinear points. For each such triple there are two possible pairs {c, y} and z 
is any line through c. More  precisely, 

(a) The  cross ratio of  c, y and any two loci is a pr imi t ive  cube root o f  unity. 

(b) The point c and the three loci form an equianharmonic tetrad. 
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(c) The point y and the three loci form a/so an equianhaxmonic tetrad. 

Proof :  It is a direct consequence of 3.4 and the definition of D10 by the homolography 
process, o 

Let Dr10 be the variety whose points axe unordered triples Q1, Q~, Q3 of collnear 
points (that will be called loci) together with two distinguished points c -- v and y of 

the line defined by the foci. Let D~0 be the subvariety of D10 given by the relations 

in 5.1. Let ~: D10 ~ D10 be the map that forgets the line z and ~r: D10 ~ D~0 the 
restriction of ~ to D10. Next lemma shows that the computation of the Stammzahlen 
for D10 is equivalent to the computation of Stammzahlen for D~0. 

5.2. L e m m a .  Let N be a fundamental  number for D10. 
(a) I f  the exponent  of  z in N is 0 or at least 3, then N = O. 

(b) I f  the condition z appears just  once in N ,  then N = N ~, where N I is the number  

on D~o obtained dropping the condition z from N .  

(c) I f  the condition z appears jus t  twice in N ,  say N = z2x, then N ---- c% r, where 
the product x'  on D;o corresponds to the product x on Dlo (that is, x = rr*(x')) 

and where d is the condition on D~o that the cusp be on a line. 

Proof i  Projection formula, o 

5.3. T h e o r e m .  The fundamental  numbers of D~o axe given in the following table: 

L2Q a = 2 LQ2c ~ = 2 Q4y = 6 . 2  + 3 . 2  

L2Q2c = 2 LQ2cy = 4 + 1 Qac2 = 2 + 3 . 2  
L2Q2y = 2 LQ2y 2 = 2 Qacy = 2 + 3 . 2  

L2Qcy = 1 LQc2y = 1 Q3y2 = 2 + 3 . 2  
LQ 4 = 6 . 2  LQcy 2 = 1 Q2 c2y = 2 + 1 
LQac = 4 + 3 . 2 Q 5 = 1 5 . 2  Q2cy2 = 2 + 1  

LQay = 4 + 3 . 2  Q4c = 6 . 2  + 3 . 2  Qc2y ~ = 1 

In this table an expression of the form m • n on the right hand side means that the 
factor m has a combinatorial origin and that n is due to the nature of the relations that 
exist among the elements of the degeneration. On the other hand, the reason why we 
decompose some of the numbers as the sum of two expressions comes from using lemma 
3.10, as will be seen along the proof (cf. 7.4). 

Proof :  From 5.1 we immediately get the relations 

L2Q3 = 2, L2Q2c = 2, L2Qey = 2, L2Qcy = 1. 

From 5.1 and 3.5 we get 

PQ2c = 2 Q3c 2 = 2 

PQ2y  = 2 Q3y 2 = 2 

P Q c y =  2 Q2cey=  2 

Q2cy 2 :~ 2 



209 

Similarly, from 5.1 and 3.6 we get 

LQac = 4, LQay  = 4, LQ2cy = 4. 

Finally from 5.1 and 3.7 we get 

Qacy = 2. 

Now using 3.10 we see that the proof is reduced to computations, o 

5.4. R e m a r k  The expression of [D10] in terms of the fundamental conditions of D10 
is the following (cf. 4.4): 

[D10] = 5L 2 - 4Lc - 4Ly  + Q2 _ 5QL + 2Qc + 2Qy + 2cy. 

6. S t a m m z a h l e n  for Dn 

6.1. P ropos i t i on .  For D l l  the point c = y and the two loci Q, Q' other than c can be 

any triple of  collinear points and q can be any line through c. The  point v is uniquely 

determined from Q, Q' and c by the relation that the pair (Q, Q') is harmonic with 
respect to (c, v). 

Proof :  This is a direct consequence of 3.1 and the description of Dll  by homologra- 
phies, o 

Given that the only relation among the elements of the degeneration Dll is the one 
given in 6.1, we may work, in order to find the Stammzahlen of DI1, on the variety 
D~I whose points parametrize unordered pairs of distinct points {Q, Q'} together with 
two distinguished points c, v on the line QQ~ that are harmonic with respect to the pair 
{O, O'}. In fact, if ~r: Dll --* D~I is the map which forgets the line q, then next lemma 
reduces the computation of the Stammzahlen for Dll to the computation of certmn 
numbers on D~I. 

6.2. L e m m a .  Let  N be a fundamental  number  for Dll .  

(a) / f  the exponent  of  q in N is 0 or at least 3, then N = O. 

(b) / f  the condition q appears jus t  once in N ,  then N = N ' ,  where N '  is the number  

on D{I  obtained dropping the condition q from N .  

(c) / f  the condition z appears jus t  twice in N ,  say N = q2x, then N = c'x' ,  where 

the product  x '  on D~I corresponds to the product  x on Dl l  ( that  is, x = rc*(x')) 

and where c' is the condition on Dill that  the cusp be on a line. 

Proof :  Projection formula, o 
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6.3.  T h e o r e m .  T h e  f undame n t a l  n u m b e r s  o f  D~ll are given in the  fol lowing table: 

L2Q2c = I LQ2cv  = 2 + l Qac2 = 3 . 1  
L2Q2v  = 1 L Q 2 v  2 = 1 Qacv = 3 . 1  
L2Qcv  = 1 LQc2v  = 1 Q3v2 = 3 . 1  
L Q 3 c = 2 + 3 . 1  L Q c v  2 = 1  Q2c2v = l + l 
LQav  = 2 + 3 • 1 Q4c = 3 . 1  Q2cv2 = 2 + 1 
LQ2c  2 = 1 Q %  = 3 . 1  Qc2v 2 = 1 

P r o o f :  If the number  contains L 2 then line is fixed. The  three remaining conditions 

fix three points  and 6.1 fixes the last one. Hence all numbers  containing L 2 are equal 

to 1. 
The  same reasoning is valid if the number  contains Lc 2, Lv  2, L P ,  c2v 2, P c  2, P v  2 or 

p2.  

From 6.1 and 3.5 one sees tha t  

P Q c v  = 1, Q2c2v = 1 ,Q2cv 2 = 1. 

From 6.1 and 3.6 we see tha t  LQ2cv  = 2. 

Using now 3.10 it a simple computa t ion  to find the values in the table, o 

6.4.  R e m a r k  Let D l l  be the variety parametr iz ing configurations consisting of an 
unordered pair  Q, Q~ of points together  with two distinguished points c, y on the line 
QQ~ and a line q through c. Then  the expression of D l l  in te rms of the first order 

fundamenta l  conditions of D n  (with the obvious notat ions)  is the following (cf. 4.4). 

[Dill  -- c -]- v -[- Q - 2L. 

7. S t a m m z a h l e n  for D12 

7.1.  P r o p o s i t i o n .  Given six dist inct  collinear po in t s  c, v, y and  Q1, Q2, Q3, let pi = 

p(c, v, y, Qi).  T h e n  in order that  c, v, y is the  singular triangle and {QI,  Q2, Qa} the  

loci o f  a degenerat ion o f  t ype  D12 it is necessary and  suftJcient that  

1 1 1 
- - + - - + - - =  3 
Pl p2 p3 

PlP2P3 = 1. 

P r o o f :  It  is a direct consequence of 3.1 and the way the degenerat ion is obta ined by 

a homolography. <> 
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7.2.  T h e o r e m .  

L2Q3c  = 4 
L 2 Q 3 v  = 1 L Q 3 v  2 = 1 

L 2 Q 3 y  = 2 L Q 3 v y  = 3 + 3 . 1  

L2Q2cv  = 3 L Q a y  2 = 2 
L2Q2cy  = 2 LQ2c2v  = 3 
L 2 Q 2 v y  :- 1 LQ2c2y  = 2 

L 2 Q c v y  = 1 L Q 2 c v  2 : 3 

LQ4c  = 6 . 4  L Q 2 c v y  = 5 + 1 
L Q 4 v  = 6" 1 L Q 2 c y  2 = 2 

L Q 4 y  = 6" 2 L Q 2 v 2 y  = 1 
LQ3  c 2 = 4 L Q 2 v y  2 = 1 

The f u n d a m e n t a l  n u m b e r s  o f  D12 are g iven  b y  the £ollowing table: 

L Q a c y = 6 + 3 . 2  L Q c v 2 y = l  Q Z c 2 y = 4 + 3 . 2  
L Q c v y  2 = 1 

QSc = 15 4 
QSv = 15 1 
Q~y = 15 2 
Q4c2 -~ 6 4 

Q 4 c v = 6  4 + 3 . 3  
Q 4 c y = 6  4 + 3 . 2  
Q4v2 = 6 1 

Q 4 v y = 6  2 + 3 . 1  
Q4y2 = 6 . 2  

Q3 cv2 = 3 +  3 . 3  

Q3 c v y  = 4 + 3 . 3  
Q3 cy2 = 2 + 3 . 2  

Q3v~y = 1 + 3 . 1  

Q3vy2 = 2 + 3 . 1  
Q2 c2vy -~ 4 + 1 
Q2cv2y = 3 + 1 

Q~ cvy  2 = 2 + 1 

Qc2v2y  = 1 
Q c 2 v y  2 = 1 

LQ3  cv = 7 + 3 . 3 L Q c 2 v y  = l Q a c 2 v = 6 + 3 . 3  Qcv~y  2 = 1  

Proof i  The numbers that contain L 2 have been determined in Miret-Xamb6 [1987] 
(Theorem 4, Table 1). 

The computation of the remaining numbers of the table will be based on lemma 
7.4, in which we first compute six auxiliary numbers; on lemma 3.10, which allows to 
relate the auxiliary numbers to those we need, and on lemma 7.5, in which we give an 
expression of the class [D12] in terms of a basis of the codimension 2 Chow group of 
D12. 

Given j lines in general position (j = 2, 3), we shall write Q j  to denote the condition 
that there is exactly one focus on each of the j lines. We will also write P to denote 
the codimension 2 condition that one focus coincides with a given point. With these 
notations we have: 

7.4. L e m m a .  
( 1 )  Q3cv 2 = 3. 

(2) Q3cvy  = 4. 

(3) Q3cy 2 = 2. 

(4) Qav2y  = 1. 

(5) Q2c2vy  = 4. 

(6) Q P c v y  = 3. 

Proof :  The proofs can be done, in more or less straightforward manner, choosing a 
suitable reference and imposing the conditions 7.1 that a degeneration of type D12 must 
satisfy. We will only give details of (1). 

To establish (1) the reference we choose is the following. Let L1, L2, L3 be the lines 
in general position required to define Qa  M the line required to define the condition c 
and A the point v 2. Then we take the points M N L1, L2 n L3, A as the vertices of the 
reference triangle and L1 N L2 as unit point. Thus we have that 

L1 : xl ~ x2, 

L2 : x0 ~ x2, 

L3 : axo -~ x2,  

M : Xl ~ r e x 2 ,  
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where  a,  m # 0, 1. 

Let  L the  axis  of  t h e  degene ra t i on ,  so t h a t  L goes  t h r o u g h  A a n d  hence  L : x l  = 

Ax0. Le t  Qi = L N Li  be  the  foci of  t he  degene ra t ion .  A s imple  c o m p u t a t i o n  shows t h a t  

Q1 = (1, A ,A) ,Q2 = (1, A ,1 ) ,Q3 = (1, A,a).  

Let  y = (1, A ,# ) .  T h e n  a c o m p u t a t i o n  of  cross r a t i o s  shows t h a t  if we p u t  pi --  

p(c, v, y, Qi)  t h e n  Pl = # /A ,  p2 = # and  p3 = # / a .  T h e  equa t i ons  7 .1  a re  equ iva len t  to  

t he  cond i t i ons  A = 3# - a - 1 a n d  #3 = a (3#  - a - 1), a n d  hence  t h e r e  a re  e xa c t l y  3 

d e g e n e r a t i o n s  of  t y p e  D12 t h a t  sa t i s fy  t he  cond i t ions  Q3cv 2. <> 

7 .5 .  L e m m a .  

[D12] = 7L 2 - 3Lc - 6Lv  - 7Ly - 6 L Q  + Qc + 2Qv + 3Qy  + Q2 + 2cv + cy + 4vy.  

P r o o f :  F r o m  t h e  fac t  t h a t  9 1 2  is a p ro j ec t i ve  b u n d l e  over  152 i t  follows t h a t  t he  Chow 

g r o u p  A2(D12)  is f ree ly  g e n e r a t e d  by  the  degree  2 m o n o m i a l s  in  L , ~ , ~ , ~ , Q .  Hence  

t h e r e  exis t  in tegers  m l ,  . . .  ,m4 ,  n l ,  . . .  ,n4 ,  r l ,  . . .  , r4  a n d  s l ,  . . .  ,s3 such  t h a t  

(*) [O12] : m l  ~2 ~- m2 ~2 -4- m a y  2 -4- m4 ~2 + rtlLC" -4- n2L~  -4- n a T y  -~- n 4 L Q +  

r l Q--~ + r2 Q---~ + ra Q-~ + r4"O 2 + S l -~  "4- S2"~y Jr .S3 v--y, 

Now f rom the  va lues  of  t he  t h r e e  n u m b e r s  t h a t  con ta in  L 2 which  are  equa l  to  1 we see 

t h a t  if ~ is any  of  t he  first  o rde r  cond i t ions  on  D12 then  ~'1D12 = U. More  genera l ly ,  

g iven  a m o n o m i a l  ~ on  t h e  first  o r d e r  cond i t ions  on  O12, let  x deno t e  i t s  r e s t r i c t i o n  to  

D12, so t h a t  x is o b t a i n e d  r ep l ac ing  the  first  o r d e r  cond i t i ons  in Y by  the  c o r r e s p o n d i n g  

cond i t i ons  on  D12. I t  t u r n s  ou t  t h a t  x = Y-D12. Us ing  th is  r e l a t i o n  w i t h  t h e  7 n u m b e r s  

t h a t  c o n t a i n  L 2 i t  is easy  to  f ind the  va lues  of  t he  r i  a n d  s j ,  i = 1 , . . . ,  4, j = 1 , . . . ,  3. 

Not ice  t h a t  f r om 3 . 8  we m a y  c o m p u t e  t he  fol lowing values:  
( 1 )  QScv2 = 3 + 3 . 3  = 12. 

( 2 )  QScvy = 4 + 3 . 3  = 13. 

(3) Q 3 c y 2  = 2 + 3 .  2 = 8. 

( 4 )  QSv2y = 1 +  3 . 1 =  4. 
( 5 )  Q2c2vy = 4 + 1 = 5. 

Now we have:  

5 = Q2c2vy = na + r2 + r3 + 6r4 -- n4 + 1 1 ,  so n4 = - 6 .  

4 = QSv2y = rnl + n l  + 6rl  + s2, a n d  so n l  = - ( m l  + 3). 

8 = Q3cy2 = m2 + n2 + 6r2 + s l  = m2 + n2 + 14, a n d  so n2 = - ( m 2  + 6). 

12 = Q 3 c v 2  : m 3 + n 3 + 6r  3 + s2 = m3 + n3 + 19, a n d  so n 3 = - ( m  3 + 7). 

13 = Q3cvy = m 4 + n l + n 2 + n 3 + 6 n 4 + 6 r l + 6 r s + 1 5 r 4 + s l + s 2 + s 3 ,  a n d  so 

m4 = m l  + m 2  -4- m3 + 7. 
T h e  conc lus ion  follows f rom the  r e l a t i ons  3 .6 .  



213 

With  the  expression (*) and  the knowledge of the fundamenta l  numbers  of D12 (which 
can be ob ta ined  by  combinator ial  a rguments  and so here will be  assumed to be  known) 
we can now obtain  the values of the table  7.3. We omit  the  details. There  is, however, 
one aspect  of the  table  which we want to comment ,  namely, the boldfaced numbers.  
We will do this by looking at an example.  Take the number  Q4cv. I ts  value can be 
obta ined  as follows: 

Q 4 CV ~-~-4~ 4 - - 5  m 4  - - 4  2 = D12.Q cv = - 7 L Q  c-~y+3Q c--~y+Q ~2~-~+4Q ~ = - 7 - 6 + 3 . 1 5 + 6 + 4 . 6  = 33. 

Now by 3.8, 

Q % v  = 6PQ2cv  + 3p2cv  = 6PQ2cv  + 3.  L2Q2cv = 6PQ2cv  + 3 . 3 ,  

f rom which it follows tha t  

PQ2cv  = 4. 

This has been taken into account in the form we write the value of Q % v  in the table 
decomposed as 6 • 4 + 3 • 3. o 

8 .  O n  t h e  m e t h o d  o f  d e g e n e r a t i o n s  

In this section we introduce a version of the me thod  of degenerations,  especially as 

used by Schubert ,  which does not rely on coincidence formulas. Then  in next  section 
we indicate how we have used it to derive the degenerat ion relations (9.1)  for the 

plane cuspidal cubics. To see how conditions arise in practice,  and also for addit ional 
terminology, see 8.11. 

8 .1 .  Let S be a smooth  variety and let d = dim S. Let 

(8.1.1) X~, . . .  ,Xp ,  Z1, . . .  ,Z, (p >_ 1,s >__ O) 

be subvarieties of S, where the  Xi  are hypersurfaces and the Zj have at least codimen- 
sion 2. The  varieties (8 .1 .1 )  will be  referred to as conditions. The  codimension of a 
condition will also be called order of the condition. Conditions of order  one are said 

to be simple conditions. We shall assume that  the given list of conditions satisfies the 
conditions A1  and A2  below. In this paper  we will not use higher order conditions 

( the Z 's) ;  they are included here because they are needed in other  cases, like in twisted 
cubics. 

A 1 .  The  sum of the codimensions of the Zj  ( j  = 1 , . . . ,  s) is d - p ,  and the intersection 
of all the varieties X1, . . .  , Xp, Z1, . . .  , Z8 is a finite set. 

A 2 .  The  intersection of all the varieties 

X1, . . .  , X i - ~ , X i + l ,  . . .  ,Xp ,  Z~, . . .  ,Z8 
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is a reduced curve Ci, (i = 1 , . . .  ,p). 

We shall let N denote the number  of points in this set, counting multiplicities if they 
axe present and we will write 

N = X 1 - ' - X p "  Z1 " ' Z ,  

We shall say that  N is the number of figures of type S that  satisfy the conditions 
X1, . . .  ,Xp,  Z1, . . .  ,Zs.  

We shall also assume that  we have hypersurfaces Y1, . . - , Y q  of S that  satisfy the 
following condition: 

A3.  The  classes []/1],"" , [Yq] generate Pic(S)Q (as a Q-vector  space). 

8.2.  In order to explain how we will approach the computat ion of N,  let us first remark 
that  if S were complete, then we would have 

N = degs [Xa] . . .  [Xp]- [Z1] . . .  [Zs], 

where [Z] denotes the rational class of the cycle Z,  which often is an affordable com- 
putat ion,  inasmuch as under  the completeness assumption one sometimes knows the 
rational intersection ring of S. This is the case, for example, if S is a Grassmannian, or 
a flag manifold, in which case the computat ion is just  "Schubert  calculus", but  it is not  
the case for, say, smooth conics and quadrics or plane cuspidal cubics. So to  end the 
description of our setup we need a modified procedure, with respect to the complete 
case, tha t  is sufficient for the the computat ion of N.  

8.3.  To that  end we shall assume that  there exists a smooth variety S '  (not necessarily 
complete) tha t  satisfies the conditions D 1 - D 3  below (axioms for degenerations). Given 
any subset A of S, we shall write A' to denote its closure of A in S ~. 

D1.  S C_ S'  and D := S ' -  S = D1 U . . . U D r ,  where D 1 , . . .  , D r  axe smooth 
irreducible hypersurfaces of S' and Di N Dj = ¢. The varieties Di will be called 
degenerations. 

D2.  Let 

Di " X~ = ~ k  rnijkX~jk, 
t Di .  Zj = ~ k  nijkZij  k, 

where the Xijk,  Zijk axe the irreducible components  of Di N X~ and Di F1Z~, so 
tha t  they have the same codimension in Di as X j ,  Zj  in S, respectively, and mijk, 
nijk axe the corresponding multiplicities. Then  we assume that  for any choice of 
integers kl, • .. , kp, hi,  . . .  , hs, each in its appropriate range, the varieties 

X i l k l  , . . . , X i p k p  ~ Z i l h t  , . . . ~ X i s h ~  
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have empty intersection, and that omiting any of the X's, say Xijkj, the remain- 
ing have finite intersection. The number of points in this intersection, counting 
multiplicities if present (computed on Di), will be denoted by 

N0[kl, . . ,  k p ,  h l ,  . . .  , h , ]  = h]. 

These numbers will be called elementary numbers with respect to the problem 
of computing N. 

D3. Let Cj be the intersection of the varieties X~, . . .  ,X~, Z~, . . .  , Z~,, except X~; 
by assumptions A2 and C2, Cj is a curve. We shall assume that this curve is 
complete and that the inclusion 

is a regular embedding. 

8.4. L e m m a .  The classes 

generate Pic(S')Q. 

uj: C~ --* S' 

[D1],.. . ,  [Dr], [Y~],..., [Y~] 

Proof :  We have an exact sequence (Fulton [1984], Prop. 1.8) 

(8.4.1) --, A°(D)Q ~ AI(S')Q --~ AI(S)Q ---r 0. 

By A3, AI(S)Q is generated by [Y1],"" , [Yq]. On the other hand, the classes of the 
components of D form a free Q-basis of A°(D)Q. The conclusion follows readily, o 

8.5. We may inparticular express the classes IX)] as rational linear combinations of 
[D1],.. . ,  [Dr], [Y~],..., [rq], 

(DR) [X~] -- alj[D1] + . . .  + arj[Dr] + blj[Y~] %.. .  W bqj[f~]. 

Any such equation will be called a degeneration relation for X~. The rational numbers 
akj, bkj will be called coefficients of the degeneration relation. A priori they need not 
be uniquely determined, but in concrete applications they will. Notice that they are 
uniquely determined if [Oi l , . . . ,  [Dr], [Y~],..., [Y~] are Q-linearly independent. Con- 
versely, if the coefficients in a degeneration relation are all non-zero and unique, then 
[D1],.. . ,  [Dr], [Y~],..., [Yq] are Q-linearly independent. This is the criterion we shall 
use to determine Pic(S~)q in our examples. We could also proceed observing that the 
sequence (8.4.1) is exact to the left if and only if the map 

cls: Pic(S)q -* H2(S)Q 

is an isomorphism and using the fact that the latter holds, for instance, if S has a 
cellular decomposition, or even in more general cases (see Rossell6-Xamb6 [1987]). 
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8.6. Let 
di: Di --+ S s 

be the inclusions. Then we will write Nij  = deg(Di • C~) and we will say that  the Nij ,  
i -- 1 , . . . ,  r, axe the degeneration numbers of Cj. Since C~ is a complete curve, we also 
have 

Nij  = degc~ [Di" C~] = degc~ (u;[Di]). 

8.7. D e g e n e r a t i o n  l e m m a .  

(a) g = degcj(uj[Xj])* ' for all j = 1 , . . . , p .  

(b) Given a degeneration relation D R  for X j ,  then 

N = ~,i  aijNij + N' ,  

t'or any i = 1 , . . . , p ,  where 

N' = E,  degq (uT[U]) 

(so N I does not involve Xj) .  

(c) I£ we let 

Mij(k ,  h) = ( H mak,)"  (Hni th , )  
I#j l 

then we have 
Ni j  = ~ k , h  Mi j (k ,  h)Nij[k, h]. 

P r o o f :  

(a) By definition N = deg(X/ .  Cj), and N = degcj (u ; (Xj ) )  by D2. Now the fact that  

' = * ' degc~ (uj [Xj]). Cj is complete implies that  g degcj ([ujXj]) = * ' 

(b) It is a direct consequence of (a) and the definitions. 

( c )  Nij  = deg(Di .  C~) = deg d i*(Cj)' 
* t . X I I I I I = d e g d  i (X  1. • j - I " X j + I " " X v ' Z I " " Z , ) ,  
. i . l A . [ X I  ~ . s • l (Zl). .-  di (Z,). = d , ( X D . .  I deg di (X1)" "~i~ j+lJ .. d i ( X j - I )  . . . .  

From this, the expression of D2 and the definitions of Nij[k,  hi and Mi j (k ,  h), the stated 
expression for Nij  follows immediately, o 

8.8. The degeneration lemmma gives a foundation to the "method of degenerations", 
especially as used by Schubert. The expression of N given in (b) breaks up the problem 
of computing N into (i) the determination of the degeneration coefficients, (it) the 
computat ion of the degeneration numbers Nij  and (iii) the computat ion of the mtmbers 
N' .  Part  (c) of the lemma reduces the computation of degeneration numbers into the 
determination of the varieties X i j t  and Zijk, the multiplicities mij  k and nij k with which 
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they appear, and the computation of the elementary numbers Nij[k, h]. The latter are 
enumerative problems in a space of dimension d -  1 and for their determination usually 
the same method can be applied, so that the whole procedure has a recursive quality. 
As far as (iii) goes, in practice the numbers N ~ will be easier to compute than the 
number N itself. 

8.9. Part (a) of the degeneration lemma gives p expressions for the number N.  So in 
particular we have equalities 

degcj (u;{Xj]) = deg~, (u~, [X~,]) 

for any j , j '  in {1,. . .  ,p}. Thus if we know degeneration relations D R  for X~ and X~,, 
then we get an equation of the form 

(8.9.1) a l jN l j  -{- . . .  a~jN~j + N ~ = alj, Nlj ,  + . . .  arj, Nrj, + N ' .  

This yields a necessary condition that the coefficients of the degeneration relations must 
satisfy. It turns out that in interesting enumerative situations a suitable selection of 
equations of the form (8.9.1) is enough to determine them. If some of the multiplicities 
m, n that appear in the definition of the degeneration numbers were also unknown, they 
may as well be left in (8.9.1) as integer unknowns. 

8.10. Classically degeneration relations were established through the use of "coinci- 
dence formulas", which often lead to elusive computations of multiplicities. For exam- 
ple, Schubert's derivation of the 4 degeneration relations for twisted cubics (Schubert 
[1879], p. 168) has not been made rigorous because of his application of the coincidence 
formulas (or rather the way he suggests to apply them) leaves undetermined certain 
fundamental multiplicities. The approach advanced here suffices to determine those 
degeneration formulas without needing coincidence formulas. Below we will show how 
to find suitable degeneration relations for the cuspidal cubics. 

8.11. Let us discuss how conditions arise. A common way to describe cycles on a variety 
S which parametrizes a certain kind of figures is by means of geometric relations imposed 
to the figures ("rgumliche Bedingungen" in Schubert's terminology; see Schubert [1879], 
p. 5). The geometric relations will involve some other kind of figure. When we allow 
the latter to move we obtain an algebraic family of cycles on S. Such algebraic families 
of cycles are the usual source for supplying conditions in the sense given above. 

In order to simplify notations, we shall use the conventions, which go back to Schubert 
and before, that we explain presently. Suppose S is a smooth variety of dimension d 
and that X is an algebraic family of cycles on S. Then given an integer n, X n will mean 
that we take n (independent) general values of the parameter space of the family and 
that we consider as conditions the cycles X1, . . .  , Xn corresponding to those values. 
Given families 

X , X ~ , . . . , Z , Z ' , . . .  
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(X, X~ , . . .  of codimension 1, Z, Z ' , . . .  of codimension at least 2) and integers 

n, n l ,  . . . ,  m,  m l ,  . . .  

the expression 

N = X " X ' " '  " " Z m Z  'm' "'" 

will mean the enumerative problem whose conditions are n general cycles of the family 
X ,  n I general cycles of the family X I, and so on. In order for the problem to be 
well posed we need that  the sum of the codimensions be equal to d. In the explicit 
examples the assumptions A1,  A2  and D2  can be ascertained from general principles 
such as the transversality of the general translates (Kleiman [1974]), or a generalized 
version in which it is not required that  the group acts transitively on S (Casas [1987], 

Laksov-Speiser [1988]). 

In specific examples, the conditions in the list X, X ' , . . . ,  Z, Z ' , . . .  will be selected so 
that  they express basic geometric relationships tha t  our figures satisfy and will be re- 
ferred to as fundamental  conditions. The numbers formed with fundamental  conditions 
will be called fundamental  numbers. If the only conditions involved are (simple) con- 
tact  conditions with linear varieties then the numbers are referred to as characteristic 

numbers.  

9. Tables  o f  d e g e n e r a t i o n  n u m b e r s  

In Sections 4-7 we have studied the elementary numbers with respect to the funda- 
mental  conditions for cuspidal cubics. With the elementary numbers we cmu compute 
the degeneration nurnbers. In this section we assemble the tables of all degeneration 
numbers tha t  are needed to compute all fundamental  numbers. Each table is labled 
with a monomial  a in the variables c, v, Y, q, w, z and the monomials are ordered lexi- 
cographically. The  numbers to the right of a given D j  are the degeneration numbers 

6- -d - - i  i of the form Dj  • (X  0 XI~) ,  i = 0 , . . . , 6  - d, where d is the degree of ~, X0 the 
condition of going through a point and X1 of being tangent to a line. Thus there are 
7 - d numbers in each row. A row corresponding to a degeneration is omited if it turns 
out to be identically 0. 
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Table  1 

Do 42 87 141 168 141 87 42 

Table  c 

Do 27 45 54 45 27 12 
D7 0 24 78 78 24 0 

D12 0 0 0 36 72 60 

Table  v 

Do 27 45 54 45 27 12 
D2 45 54 27 0 0 0 

D7 0 24 78 78 24 0 
D12 0 0 0 9 18 15 

Table  y 

Do 27 45 54 45 27 12 
D3 30 36 18 0 0 0 

D7 0 24 78 78 24 0 
D~2 0 0 0 18 36 30 

Table  c 2 

Do 5 8 8 5 2 
D7 0 6 21 18 0 

D12 0 0 0 12 24 

Table  cv  

Do 5 8 8 5 2 
D2 18 9 0 0 0 
Ds 24 54 36 0 0 

D7 24 60 57 18 0 
D12 0 0 27 48 33 

Table  c y  

Do 5 8 8 5 2 
D3 12 6 0 0 0 

D7 24 60 57 18 0 
DI~ 0 0 18 36 30 

Table  c z  

Do 7 13 16 13 7 
D1 12 6 0 0 0 
D5 24 54 36 0 0 
D6 0 18 21 6 0 

D7 0 6 21 18 0 
Dlo 0 0 18 30 18 
D12 0 0 0 12 24 

Table  cq 

Do 7 13 16 13 7 
D1 6 3 0 0 0 
D6 0 18 21 6 0 

D7 0 6 21 18 0 
Dl l  0 0 9 18 15 
D12 0 0 0 12 24 
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Table  cw 

Do 7 13 16 13 7 
D1 24 12 0 0 0 
D4 24 54 36 0 0 
D6 0 18 21 6 0 

D7 0 6 21 18 0 
D9 0 0 36 54 24 
D12 0 0 0 12 24 

Table  v 2 

Do 5 8 8 5 2 
D2 15 18 9 0 0 

D7 0 6 21 18 0 
D12 0 0 0 3 6 

Do 5 8 8 5 2 
D2 18 9 0 0 0 
D3 12 6 0 0 0 

Table  vy 

D7 24 60 57 18 0 
D12 0 0 9 18 15 

Table  y2 

Do 5 8 8 5 2 
D3 18 30 18 0 0 
D7 0 6 21 18 0 

Ds 0 0 36 54 24 
D12 0 0 0 6 12 

Table  c2v 

D2 3 0 0 0 
D5 6 15 9 0 

D7 6 15 9 0 
DI~ 0 0 9 15 

Tab le  c2y 

D3 2 0 0 0 D7 6 15 9 0 D12 0 0 6 10 

Table  c2z 

Do 1 2 2 1 D7 0 1 4 0 
D1 2 0 0 0 Dlo 0 0 6 8 
D5 6 15 9 0 DI~ 0 0 0 4 
D6 0 4 1 0 

Tab le  c2q 

Do 1 2 2 1 D7 0 1 4 0 
D1 1 0 0 0 Dll  0 0 3 3 
D6 0 4 1 0 D12 0 0 0 4 



221 

Table c2w 

Do 1 2 2 1 
D1 4 0 0 0 
D4 6 15 9 0 
Ds 0 4 1 0 

D7 0 1 4 0 
D9 0 0 12 18 
D12 0 0 0 4 

Table cv ~ 

D2 6 3 0 0 
D~ 12 24 18 0 

D7 6 15 9 0 
D12 0 0 9 12 

Table cvy  

D2 3 0 0 0 
D3 2 0 0 0 
D5 1.8 12 0 0 

D~ 24 27 9 0 
/912 0 9 18 13 

Table cvz  

Do 1 2 2 1 
D1 2 0 0 0 
D2 6 3 0 0 
Ds 18 39 27 0 

D¢ 0 4 1 0 
D7 6 16 13 0 
Dlo 0 0 6 8 
D12 0 0 9 16 

Table cvq 

Do 1 2 2 1 
D1 1 0 0 0 
D2 15 9 0 0 
D5 6 15 9 0 

D6 0 4 1 0 
D~ 6 16 13 0 
Dll  0 9 15 9 
D12 0 0 9 16 

Table cy 2 

D3 10 6 0 0 Ds 0 18 24 12 
D7 6 15 9 0 D12 0 0 6 8 

Table cyz  

Do 1 2 2 1 
D1 2 0 0 0 
D3 10 6 0 0 
D~ 18 12 0 0 

D6 0 4 1 0 
D~ 6 16 13 0 
DlO 0 9 15 8 
D12 0 0 6 12 

Table v2y 

D2 6 3 0 0 D7 6 15 9 0 
D3 2 0 0 0 D12 0 0 3 4 
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Table c2y 2 

D3 2 0 0 D8 0 6 4 
D7 1 3 0 D12 0 0 2 

Table c2yz 

D7 1 3 0 
Dlo 0 3 3 

Table c2yw 

D7 1 3 0 
D8 0 6 4 

Table c2zq 

Ds 0 3 1 
Dlo 0 0 2 

Table c2zw 

D5 4 9 9 
D6 0 3 1 

Table c2 qw 

D6 0 3 1 
D8 0 6 4 

Table c2w 2 

D4 5 3 0 D9 0 3 5 

Table cv2y 

D2 1 0 0 D7 5 3 0 
D5 8 6 0 D12 0 3 4 

Table cvy 2 

D~ 5 3 0 
D8 9 9 4 

Table cvyz 

D5 13 9 0 
D7 6 6 0 

D12 0 0 2 

D9 0 3 5 
D12 0 0 2 

Dll  0 0 1 

D9 0 0 4 
Dlo 0 0 2 

D9 0 0 4 
Dll 0 0 1 

Dlo 0 3 3 
D12 0 3 6 

D12 0 3 3 



224 

D2 3 0 0 
D3 2 0 0 
D5 5 3 0 

D2 1 0 0 
D3 2 0 0 

D2 1 0 0 
D~ 2 0 0 

D2 1 0 0 
Da 5 3 0 
D5 4 0 0 

Table  cvyq 

Dr 6 6 0 
Ds 9 9 4 

Table  v2y 2 

D7 1 3 0 
Da 0 3 1 

Table  v2yz  

D5 8 6 0 
D7 1 3 0 

Table  vy2z  

D7 1 3 0 
Da 0 3 5 

Dll  0 3 2 
D12 0 3 6 

D12 0 0 1 

D10 0 3 3 
D12 0 0 1 

D10 0 3 3 
D12 0 0 1 

Table  c2v2y 

D5 3 3 D7 1 0 D12 0 1 

1 0 .  D e g e n e r a t i o n  r e l a t i o n s  

In next theorem we state the degeneration expressions of the first order conditions 
for cuspidal cubics and then we indicate how they can be obtained by application of 
the procedure explained in section 8. Here we see that Pic(S)Q is generated by c (see 
1.3) and hence Pic(S')Q is generated by c and the 13 degenerations. 

10.1. T h e o r e m .  Let  D = DI + D 2 +  D3 and D '  = Dlo + D11+ D12. Then the expres- 

sions on S '  o f  the first order conditions in terms of  c and the first order degenerations 
is as follows: 

1) 5X0 -- 3c + 2Do + 3D q- 6D~ + 2D5 + 3D6 + 4D~ + 3Ds + 9D9 + 9D'. 
2) 5X1 -- - 3 c  + 8Do + 12D + 9D4 + 3D5 + 7D6 + 6D7 ~- 2Ds + 6D9 + 6D'. 
3) 5 v - - - 4 c + 9 D o + 6 D l + D 2 + 6 D 3 + 2 D 4 - D h + 6 D ~ + 3 D ~ + D s + 3 D g + 3 D ' .  

4) 5y -- - c  -b 6Do q- 4D1 -k 4D2 - D3 + 3D4 -b D5 + 4D6 + 2D7 - Ds + 2D9 + 2D'. 
5) 5z ---- c + 4Do + D + 2D4 - D~ q- De + 3D7 + Ds + 3D9 - 2Die -b 3Dll  + 3D12 

6) 5q = 4c + Do - D + 3D4 q- D~ - D6 + 2Dr - Ds + 2D9 + 2Dlo - 3Dll + 2D12. 
7) w = - c  + 2Do + D + D6 + DT + D'.  

Here is the same information in matrix form: 
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Do D1 D2 D3 D4 D5 D6 D7 Ds D9 Dlo D l l  D12 c 

5Xo 2 3 3 3 6 2 3 4 3 9 9 9 9 3 
5X1 8 12 12 12 9 3 7 6 2 6 6 6 6 - 3  
5v 9 6 1 6 2 - 1  6 3 1 3 3 3 3 - 4  
5y 6 4 4 - 1  3 1 4 2 - 1  2 2 2 2 - 1  
5z 4 1 1 1 2 - 1  1 3 1 3 - 2  3 3 1 
5q 1 - 1  - 1  - 1  3 1 - 1  2 - 1  2 2 - 3  2 4 
w 2 1 1 1 0 0 1 1 0 0 1 1 1 - 1  

10.1.1.  R e m a r k .  If we take into account only the degeneration Do, which is enough 
to compute the characteristic numbers (see Table 1 in Section 9), then the relations 
above for X0 and X1 become the following: 

5 X 0 = 3 c + 2 D 0 ,  5 X 1 = - 3 c + 8 D 0 .  

These relations were obtained for the first time, using coincidence formulas, by Zeuthen 
[1872] and were recently verified by Kleiman-Speiser [1986]. Notice that  a priori we 
know, by 1.3, that  5X0 and 5X1 are linear combinations of c and the degenerations 
with integer coefficients. 

P r o o f :  The  proof of the seven degeneration relations can be done by a judicious choice 
of equations of the form 8.9. To write such equations we need to know enough de- 
generation numbers. Those that  will be used are contained in the tables given in the 
preceeding section. Since the procedure is straightforward, here we will prove only the 
first two relations. We shall write ai and a to denote the coefficients of X0 with respect 
to Di and c and bi and b for the coefficients of X1. 

We want to determine the values of a, a0, . . .  ,a12, b, b0,  . . .  , b12. To this end first 
notice that  X~c 2 = 2 and X~Xlc  2 = 8. From these relations we obtain, taking into 
account the degeneration numbers given in Table c 2 and using 8.7 (b) ,  the equations 

5a0 = 2, 5b0 = 8, 8a0 + 6a7 = 8. Hence 

ao = 2/5, bo - 8/5, a7  = 4/5. 

In what  follows we briefly point out what relation we take, the equations it leads to 
and the value of the coefficients they determine. 

From Xo(X2X~c 2) = X l ( Z ~ X l c  z) we get the relation 8a0 + 21a7 = 8b0 + 6b7. So 

b7 = 6/5. 

From Xo(XoX~c 2) = Xl(X2oX~c 2) we get the relation 5ao q- 15a7 + 1 2 a 1 2  = 8bo  +21b7, 
and so 

a12 ---- 9/5. 

From Xo(X~c 2) = XI(XoX3c  2) we get the relation 2a0 + 24a12 = 5b0 + 18b7 + 12b12, 
and so 

b12 = 6/5. 
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As a corollary we get, using 8 .7  (b ) ,  the following numbers:  

c 2 =  2, 8, 20, 38, 44, 32. 

[By this we mean  the numbers  y S - i y i  2 i 0 , . . . ,  5]. 

Using table  c and and the numbers  for c 2 just  obtained we can determine the coeffi- 

cients a and b. In fact,  f rom the relation X o ( X ~ X l c )  = XI (X~c)  we get the equat ion 

8a + 45a0 + 24a7 = 2b + 27b0. Similarly, f rom the relation Zo(X~X~c)  = X l ( Z ~ Z l c )  
we get the equat ion 20a + 54a0 + 78a7 = 8b + 45b0 + 2467. Solving for a and b we obtain 

a = - b  = 3/5. 

From Xo(X~c2v) = X~(XoX~¢~v) we obtain 1 5 a ~  = 9b~ + 967 + 9b~ 
and so 

b~ = 3/5 .  

From Xo(XoZ21c2v) = Xl(X2oZlc2v)  we obta in  9a5 + 9a7 + 9a12 = 1565 + 1567 which 
implies tha t  

a5 = 2/5. 

From Xo(X~X~c2v)  = Z~(X~c2v) we obtain 15a~ + 15a7 = 3b2 + 6b5 + 657 which 
implies tha t  

b2 = 12/5. 

As a corollary we obtain  the following numbers:  

c2v = 9, 18, 27, 27, 18. 

Using table  cv and the numbers  for c2v just  obta ined we can determine a2. From 

the relation X o ( Z 3 X l c v )  = Xl(X4oCV) we obta in  60a7 + 9a2 + 54a5 + 8a0 + 18a = 
24b7 + 1862 + 24b5 + 5b0 + 9b and  so 

a2 = 3/5. 

From Xl (X~c2y)  = Xo(X2oX~c2y) and the table of c2y we get 6b7 + 2b3 = 15a7 and 
hence 

b3 = 12/5. 

From x l (x~c~v  ~) = Xo(XoX~c~v ~) we obtain b7 + 2b3 = 3a3 + 6as and hence 

as = 3 / 5 .  

From Xl (XoXlC2y  2) 2 2 2 = X o ( X  1 c y ) we obtain 3b7 + 6bs = 2a12 + 4a8, and so 

bs - 2/5. 

Now we have X1X~c2y 2 = 6 and X~c2y 2 = aT + 2a3. 
From the relation X o ( X ~ X l c y  2) = X l ( X ~ c y  2) we obtain  15a7 + 6a3 + 18as + 6a = 

667 + 10b3 + b(a7 + 2a3), so 

a3 =- 3/5. 
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From Xo(X~Xlc2z)  = Xl(X2c2z) and X o ( X 2 X l c 2 q )  -~. Xl(X3c2q) we obtain 

4a6 + a7 + 15a5 + 2ao = 2bl + 6b5 + bo 

J 4a6 + a7 + 2ao bl + bo 

which yields 

b 1 = 1 2 / 5 ,  a s - - 3 / 5 .  

Now we have Xo(X3oc2q) = ao 4- al,  X3XlC2q = 4, X o X 1  c 2  2 2q ~_ 10.  

From Xl(X~cq) = Xo(X~Xlcq) we obtain 7bo +6bl  +b(ao + a l )  = 18a6 +6a7 + 3 a l  + 
13a0 + 4a, and so 

al = 3/5. 

From Xl(X2Xlcq)  = Xo(X X cq), Xl(X X,c q) = Xo(ZoX c2q), and 
Zl(XoX~c2q) -- Zo(X~c2q), we obtain 

1866 4- 667 + 361 + 13bo + 4b = 21a6 + 21a7 4- 9al l  4- 16a0 4- 1 0 a )  

4b6 4- b7 + 2bo -- a6 4- 4a7 4- 3all + 2a0 

b6 + 4by 4- 3611 + 2bo = 3al l  4- 4a12 + ao 

Solving for b6, a l l  and bll we obtain 

b 6 = 7 / 5 ,  a 1 1 = 9 / 5 ,  b n = 6 / 5 .  

From XI(X(~XlC2Z) = Xo(XoX~c2z) we obtain 4bs 4- b7 + 15b5 4- 2bo = as 4- 4a7 4- 
6alo 4" 9a5 4- 2ao, and so 

a lO  --~ 9/5. 

From Xl(XoX2c~z)  = Xo(X~c2z) we obtain be + 4b7 4- 6blo + 9b~ 4- 2bo = 4a12 4- 
8a10 + a0, and so 

blo = 6/5. 

From Xl(X2c2w) = Xo(X2oXlc2z) and Xl(X~c2qw) = Xo(XoXlc2qw) we obtain 

4bl 4- 6ba 4- b0 = 4a6 + a7 4- 15a4 4- 2a0 

J 361 + b4 = 3a6 + 3a4 + 6a8 

Solving for a4 and b4 we obtain 

a4 = 6/5, b4 = 9/5. 

From XI(X~Xlc2w)  = Xo(XoX~c2w) we obtain 4b6 + b7 4- 15b4 4- 2b0 = as 4- 4a7 + 
9a4 4- 12a9 4- 2ao, and so 

a9 = 9/5. 

From (XoX~ c ~ w) = Xo(X~c2w) we obtain b6 +4b7 +9ba 4-12b9 +2bo = 4a 12 4-18a9 +ao,  
and so 

b9 = 6/5. 
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11.  F u n d a m e n t a l  n u m b e r s  

Once we know degeneration relations for the first order conditions and the degen- 
eration numbers, the computation of fundamental numbers is reduced to arithmetic 
operations (see 8.7 (b)). This has been applied in the proof of 10.1 to find several 
fundamental numbers that were needed along the way. Here we include a couple of 
examples that will further illustrate the use of 8.7. 

11.1. N I = X3oc2v 2 

Since X2c2v 2 only contains degenerations of type D2, D0 and D7 (see Table c2v 2 in 
section 9), with degeneration numbers 1, 4 and 1, respectively, we have, by 10.1 (1), 
that 

N ~ = a2 +4a5 + a7 = (3 + 8  + 4)/5 = 3. 

Notice that the term ~c in the expression of X0 does not give any contribution to N f, 
because numbers with c 3 are 0 (see 8.8). 

11.2. N = X~cv 2 

Since X~cv 2 only contains degenerations of type D2, D5 and D7 (see Table cv 2 in 
section 9), with degeneration numbers 6, 12 and 6, respectively, we have, by 10.1 (1), 
that 

N -- 6a2 + 12a5 + 6a7 + aN '  = (18 + 24 + 24 + 9)/5 -- 15. 

The value of this number that we find in Schubert [1879] (p. 141, line 4) is 17. This 
looks like a misprint, rather than a mistake, for on p. 138, line -11,  we find that the 
value given to the dual number is 15. 

11.3. M "  = X~c2vyz  

Here it is not hard to see that Xoc2vyz = Zoc2v2y  and hence this only contains 
degenerations of type D5 and D7 (see Table c2v2y in section 9), with degeneration 
numbers 3 and 1, respectively. Therefore we have, by 10.1 (1), that 

M ' = 3 a s + a T = ( 6 + 4 ) / 5 = 2 .  

11.4. M I = Xg cvyz  

Since X 2 c v y z  only contains degenerations of type D2, D3, Do and D7 (see Table 
cvyz in section 9), with degeneration numbers 1, 2, 13 and 6, respectively, we have, by 
10.1 (1), that 

M'  = a2 + 2as + 13a5 + 6a7 + a M "  = (3 + 6 + 26 + 24 + 6)/5 -- 13. 

11.5. M = X ~ X l v y z  

Here X 3 v y z  contains degenerations of type Do, Dt, D2, Ds, D5 and DT (see Table 
vyz  in section 9), with degeneration numbers 1, 2, 6, 10, 18 and 6, respectively, we 
have, by 10.1 (2), that 

M = b0 + 2bl + 662 + 1063 + 1865 + 667 + bM I = (8 + 24 + 72 + 120 + 54 + 36 - 39)/5 -- 55. 
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This is one of the numbers  tha t  we can not find in Schubert ' s  book. 

12.  O l d  a n d  n e w  t a b l e s  o f  f u n d a m e n t a l  n u m b e r s  o f  c u s p i d a l  
c u b i c s  

Here we collect the values of all non-zero fundamenta l  numbers  (see the Remarks  at 

the end). They  have been calculated, as i l lustrated in the preceeding section, by means 

of formula 8.7 (b ) ,  using the degenerat ion formulas 10.1 (basically (1)  and (2)) .  Most 
have been calculated in more than  one way. Those not listed in Schubert  [1879] (nor 
anywhere else, as far as we know) are distinguished with a **. A few numbers  are 
marked  with *; this means  tha t  their  value can be deduced f rom some table  of Schubert  

corresponding to space cuspidal cubics. The  arrangement  of the tables is as follows. A 

number  like M = X a X l v y z  is located at the second place of the row tha t  begins with 

v y z  =. The  row ends with = yzq  because by duali ty M is equal to X o X a q z y .  The 
rows are ordered lexicographically by the leading monomials.  To the monomial  1 there 

corresponds the list of characterist ic numbers: 

24, 60,114, 168,168,114, 60, 24. 

O r d e r  1 

c =  12 42 96 168 186 132 7 2 = w  
v =  66 123 177 168 105 51 1 8 = q  
y =  48 96 150 168 132 78 3 6 = z  

O r d e r  2 

c ~ =  2 8 20 38 44 3 2 = w  2 
c v =  47 89 128 119 71 3 2 = q w  
c y =  32 62 92 92 62 3 2 = z w  

* * c z =  22 52 94 112 88 5 2 = y w  
*cq = 7 25 58 85 79 52= v w  

c w =  52 106 166 166 106 5 2 = c w  
v 2 =  20 35 47 38 17 5 = q ~  
vy  = 59 89 92 65 35 14= zq 

**vz = 40 79 121 112 61 25= yq 

v q =  34 79 139 139 79 3 4 = v q  
y2 = 20 44 74 74 44 20= z 2 
y z =  34 70 112 112 70 3 4 = y z  
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O r d e r  3 

c2v --  9 18 27 27 
c2y = 6 12 18 18 
c2z --  4 10 19 22 
c2q = 1 4 10 13 

c 2 w =  10 22 37 40 

cv~= 115] 27 36 27 
c v y =  33 48 45 27 

**cvz = 19 37 55 49 
**cvq = 19 49 64 49 
*cvw = 43 67 73 49 

cy 2--  12 30 36 24 
**cyz= 22 46 55 40 
**cyq = 13 34 46 37 

**cyw= 40 70 73 46 
cz 2 = c 2 z =  4 10 19 22 

**czq = 7 19 37 43 
cq 2 = c2q = 1 4 10 13 

v 2 y =  15 21 18 9 
v 2 z =  10 19 28 22 
v 2 q =  10 22 37 31 
vy 2 =  21 30 27 15 

**vyz=  31 55 55 31 
**vyq = 31 61 64 37 

vz 2 = v 2 z =  10 19 28 22 

y 2 z =  10 22 37 34 

O r d e r  4 

c2v 2 = 3 6 9 9 
c2vy = 6 9 9 6 

c2vz = c2v 2 =  3 6 9 9 
c2vq = 3 9 9 6 

*c2vw= 9 15 18 15 

c2y ~ = 2 6 6 4 
c2yz = 4 9 9 6 

c 2 y q  = c 2 y  2 = 2 6 6 4 

**c2yw= 8 15 15 10 
c2zq = 1 3 6 5 

c 2 z w =  4 9 15 14 
c2qw= 3 9 12 9 
c2w 2 = 6 9 9 6 

cv2y = 9 12 9 3 
c v 2 z = c 2 v  2 =  3 6 9 9 

**cv2q= 6 15 18 12 
cv2w = 9 12 9 3 

18=  qw 2 
12=  zw 2 
16=  yw 2 
10=  vw 2 
2 8 =  cw 2 
9 = q2w 

12=  zqw 
2 5 =  yqw 
2 8 =  vqw 
19=  cqw 
12=  z2w 

22---- yzw 
22---- vzw 
22---- czw 
1 6 =  y2w 

3 1 =  vyw 
I0= v2w 
3 = zq 2 
7 = yq2 

10=  vq 2 
6 = z2q 

13---- yzq 
16=  vzq 
7 = y2q 

16=  y z  2 

~_ q 2 w 2  

z q w  2 

= yqw 2 

= Y a w  2 

= c a w  2 

~_ z 2 w  2 

= y zw  2 
~_ U Z W  2 

~_ C Z W  2 

~- v y w  2 

=- c y w  2 

-~_ c v w  2 

c2w 2 

= z q 2 w  

= yq2w 

=_ v q 2 w  

~_ c q 2 w  
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cvy 2 ---- 14 15 9 4 --~ z2qw 

* * c v y z =  13 21 18 9 = y z q w  

**cvyq---- 17 24 18 10= v z q w  

* * c v y w =  23 27 18 7 = c z q w  
cvz  2 = C2V 2 = 3 6 9 9 = y2qw 

**cvzq = 7 18 24 17---- v y q w  

** c v z w  = 13 21 24 17= cyqw 
cvq 2 = c2vq = 3 9 9 6 = v2qw 

**cvqw = 21 33 33 2 1 =  cvqw 
**cy2z = 6 15 15 8 --~ yz2w  

cy2q = c2y 2 = 2 6 6 4 = vz2w 

c y 2 w =  14 15 9 4 = C Z 2 W  

cyz  2 ---- c2yz = 4 9 9 6 = y 2 z w  

**cyzq---- 7 18 21 13= v y z w  

**cyzw = 16 30 30 16= c y z w  
cyq 2 = c2y 2 = 2 6 6 4 = v2zw 

cz2q = c2qz = 1 3 6 5 = vy2w 

czq 2 = c2qz ~-- 1 3 6 5 = v~yw 

v2y 2 = 5 6 3 1 = z2q u 

v : y z  = 7 12 9 3 ---- yzq  2 

**v2yq= 8 15 12 4 = v z q  2 

v2zq = 4 9 15 11---- vyq ~ 
v2q ~ = 3 9 9 3 = v2q 2 

**vy2z = 9 15 12 5 = yz2q 

vy2q---- 11 15 9 4 = v z 2 q  
v y z  2 = v 2 y z  - ~  7 12 9 3 = y2zq 

**vyzq = 13 27 27 13= vyzq  
y 2 z ~ =  4 9 9 4 = y ~ z  2 

O r d e r  5 

c2v2y ~ -  2 3 3 = zq2w 2 

C2v2q = 1 3 3 = vq2w 2 

C~V2W = 2 3 3 = cq2w 2 
c2vy 2 =  3 3 2 = z2qw 2 

c2vyz  : C 2 v 2 y  : 2 3 3 = y z q w  2 

c2vyq = c 2 v y  2 ~ -  3 3 2 = v z q w  2 

**c2vyw = 5 6 5 ~-- czqw 2 

c2vzq = c2v2q = 1 3 3 = vyqw  2 

c2vzw = c2v2w = 2 3 3 = cyqw 2 

*c2vqw = 4 6 5 = cvqw 2 
c2vw 2 = c2v2w = 2 3 3 = c2qw 2 

c2y2z = 1 3 2 = yz2w  2 

c2y2w = 3 3 2 = cz2w ~ 

c2yzq = c2y2z = 1 3 2 = v y z w  2 

**c2yzw = 3 6 5 = c y z w  2 
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c 2 y q w  = c2y2q  = 3 3 2 = c v z w  2 

c 2 y w  2 = c 2 y 2 w  = 3 3 2 = c 2 z w  2 

c 2 z q w  = 1 3 4 = c v y w  2 

c v 2 y  2 ~- 4 3 1 = z 2 q 2 w  

c v 2 y z  = C2v2y = 2 3 3 = y z q 2 w  

** c v 2 y q  = 5 6 4 = v z q 2 w  

c v 2 y w = c v 2 y  2 =  4 3 1 = c z q 2 w  

c v 2 z q  : c2v2q = 1 3 3 --  v y q 2 w  

c v 2 z w  : c2v2w = 2 3 3 = c y q 2 w  

cv2q  2 = c2v2q  = 1 3 3 = v 2 q 2 w  

* c v 2 q w  = c v q w  2 = 5 6 4 = c v q 2 w  

** c v y 2 z  -~ 5 6 3 = y z 2 q w  

c v y 2 q  = c 2 v y  2 = 3 3 2 = v z 2 q w  

c v y 2 w  = c v 2 y  2 = 4 3 1 = c z 2 q w  

c v y z  2 = c 2 v 2 y  = 2 3 3 = y 2 z q w  

** c v y z q  = 6 9 6 = v y z q w  

* * c v y z w  = 7 9 6 = c y z q w  

c v y q  2 = c 2 v y  2 = 3 3 2 = v 2 z q w  

** c v y q w  = 8 9 6 = c v z q w  
c v z 2 q  = c2v2q = 1 3 3 = v y 2 q w  

c v z 2 w  = c 2 v 2 w  = 2 3 3 = c y 2 q w  

c v z q  2 = c2v2q  ~- 1 3 3 = v 2 y q w  

c y 2 z  2 = c 2 y 2 z  = 1 3 2 = y 2 z 2 w  

c y 2 z q  = c 2 y 2 z  = 1 3 2 = v y z 2 w  

** c y 2 z w  = c y z w  2 = 5 6 3 = c y z 2 w  

c y z 2 q  = c 2 y 2 z  = 1 3 2 = v y 2 z w  

c y z q  2 = c 2 y 2 z  = 1 3 2 = v 2 y z w  

v 2 y 2 z  = 2 3 1 = y z 2 q  2 

v 2 y 2 q  = 3 3 1 = v z 2 q  2 

* * v 2 y z q  = 3 6 4 = v y z q  2 

v 2 y q  2 = v 2 y 2 q  = 3 3 1 = v 2 z q  2 

v y 2 z  2 = v 2 y 2 z  = 2 3 1 = y 2 z 2 q  

* * v y 2 z q  = v y z q  2 4 6 3 = v y z 2 q  

12 .1 .  R e m a r k .  For any condi t ion  a in the  list { c , v , y , z , q , w } ,  it is clear t h a t  if a 
f u n d a m e n t a l  n u m b e r  N contains  a 3, then  N = 0. We m a y  convenient ly  phrase  this by  

wri t ing a 3 = 0. Similarly, if (a ,  fl) is any  pair  on  the  list 

{(c, q), (c, z), (v, z), (v, w), (v, w), (v, q)), 

t hen  a2/3 2 = O, for whenever  a and /~  refer to incident  e lements  of  the  s ingular  t r iangle 

we cannot  fix b o t h  independent ly .  Final ly it is also clear t h a t  if (a ,  t3) is a pai r  of 

dis t inct  vert ices or  sides of  the  singular t r iangle and  7 is the  side or  ver tex  defined by 

the  pair,  then  a2/~2 7 = O. 
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12.2. R e m a r k .  In the tables above we have used identities of the form a2fl = aft  2, 
which is valid for any pair (a,  fl) on the list 

{(c, q), (c, z), (v, z), (v, (y, (y, q)}, 
inasmuch as they axe valid for triangles. 

12.3. R e m a r k .  We have not listed the table corresponding to order 6. In this case, 
if the order six monomial involves at least one square and it is not in one of the cases 
in 12.1, or amenable to such a case by 12.2, then the row corresponding to it is (1,1), 
for it is not hard to see that  such a monomial fixes the singular triangle. On the other 
hand, the list corresponding to the unique square free monomial cvyzqw is (2,2), for 
there are 2 triangles satisfying this condition. In any case, the cuspidal cubics having 
a given triangle as a singular triangle form a pencil and so there is a unique cubic in it 
going through a point or (by duality) tangent to a line (cf. Schubert [1879], Remark on 
top of p. 143). 

12.4. R e m a r k .  For reasons of dimensions, it is clear that  all monomials of degree 7 
not involving X0 and X1 are 0. 

12.5. R e m a r k .  It turns out that  the fundamental  numbers which do not satisfy one 
of the vanishing conditions given in the preceeding remarks are automatically non-zero. 
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