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Abstract. We show how to compute all fundamental numbers for plane cus-
pidal cubics. This updates and extends the work of Schubert on this subject.
In our approach we need a far more precise description of the first order de-
generations (13 in all) than that given by Schubert and this is obtained by
proving a number of key geometric relations that are satisfied by cuspidal cu-
bies. Moreover, our procedure does not require using coincidence formulas to
derive the basic degeneration relations.

Introduction

The enumerative theory of cuspidal cubics was first considered by Maillard (doctoral
thesis, 1871) and Zeuthen [1872]. Subsequently they were extensively studied by Schu-
bert. For an exposition of his (and others) results, see Schubert {1879], § 23, pp. 106-143.
Schubert also considers cuspidal cubics in P3, but here for simplicity we will study only
cuspidal cubics in a fixed projective plane P? over an algebraically closed ground field
k. In case the characteristic p of k is positive we will assume that p # 2, 3.

Let S be the space of plane non degenerate cuspidal cubics, so that § is an orbit under
the action of the group G = PGL(P?) on the space of plane cubics. Each cuspidal
cubic determines a triangle, called singular triangle (Singularititendreieck, Schubert
[1879], p. 106), whose verteces c,v,y are, respectively, the cusp, the inflexion and the
intersection point of the cuspidal and inflexional tangents. The sides of this triangle,
denoted ¢, w, z are, respectively, the cuspidal tangent, the inflexional tangent and the
line cv (see Fig. 1 at the end).

The conditions that were first considered in the enumerative theory of cuspidal cubics
were the characteristic conditions u, v (i.e., going through a point and being tangent
to a line, respectively). Schubert also considers conditions imposing that a given vertex
(side) of the singular triangle lies on a line (goes through a point), and denotes any of
these six conditions with the same symbol used to denote the corresponding element
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of the singular triangle. Altogether we have eight conditions, which will be called
fundamental conditions for the cuspidal cubics.

By transversality of general translates (Kleiman [1974]), the cubics satisfying seven
(possibly repeated) fundamental conditions whose data are in general position are finite
in number and at least in characteristic zero they count with multiplicity 1. In charac-
teristic p > 0 each solution may have to be weighted with a multiplicity that is a power
of p. The numbers so obtained are called fundamental numbers for the cuspidal cubics.
The fundamental numbers involving only i and v are the characteristic numbers.

It turns out that there are 620 non-zero fundamental numbers for the cuspidal cubics
(discounting those that may be obtained by duality), and of these Schubert gives explicit
tables for 391 (loc. cit., pp. 140-142). Of the remaining 229, a few (actually 21) can be
deduced from related entries in tables he gives for space cuspidal cubics. As we explain
below, Schubert’s work is also incomplete on other (more fundamental) counts. The
general problem of verifying and understanding all the geometric numbers computed
by 19th century geometers, which is the main motivation of this and related works, was
stated by Hilbert [1902] as Problem 15 of his list.

Schubert’s calculations rely on the method of degenerations, which in turn requires
to know, if we want to compute all fundamental numbers,
1) that the space S* of complete cubics (see Section 1) is smooth in codimension one,
ii) how many boundary components (called degenerations) there are in S* (see Sec-
tion 2),
iii) how to solve a number of related enumerative problems on each of the degenerations
(see Sections 4-7 and 9), and
iv) to express, on S*, the fundamental conditions in terms of the degenerations (degen-
eration relations, see Section 10) and to establish that a number may be computed
by substituting one of its conditions by its expression in terms of the degenerations.

For a given subset of fundamental numbers much less may be needed. Thus, in order
to compute the 8 characteristic numbers, it is enough to know a single degeneration
(degeneration o, whose points consist of a conic and one of its tangent lines), but for
this one it is nevertheless still necessary to take care of the points i)-iv) to verify them.
This was done recently, in different ways, by Sacchiero [1984] and by Kleiman — Speiser
[1986].

Question i) is not considered by Schubert. As far as ii) goes, Schubert constructs, in
addition to o, 12 degenerations, by means of the so called homolography process, but
he does not provide any formal verifications, nor does he prove that they are all possible

degenerations. These questions were clarified in Miret — Xambé [1987] (see Section 2
below).

Question iii) is rather involved. Since the building elements of some of the degen-
erations exceed in number what would be allowed by their dimension, they cannot be
independent and so there must exist relations among those elements. Schubert gives
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lists of such relations, expressed in enumerative terms (tables of “Stammzahlen”, loc.
cit., pp. 120-127), and asserts that they were obtained by an indirect process (“a pos-
teriori erschlossen”, ibid., p. 119). Now in Miret — Xambé [1987] the Stammzahlen that
are needed to describe the degenerations were studied and were showed to be related to
basic projective geometry properties of the cuspidal cubics. In this paper we continue
the study of this topic and give a detailed geometric description of all the degenerations.

Another difference with Schubert arises in the treatment of question iv). Schubert
derived degeneration relations by means of coincidence formulas (loc. cit., p. 107 and
ff.). This procedure leads, however, to computations of multiplicities that seem very
difficult to handle, and which have been verified, as far as the authors know, only in
very special cases, like some that arise in the verification of the characteristic numbers.
Instead, one may work on the idea, already used by Schubert to cross-check his results,
that most geometric numbers can be computed in several different ways. When used
systematically, this observation allows to establish, if we already have assembled suit-
able enumerative information on the various degenerations, the required degeneration
relations by simple algebra. This version of the method of degenerations is explained
in Section 8.

The organization of this paper is as follows. Section 1 is devoted to the determination
of the Picard group of S. At the end we define the space of complete cuspidal cubics. In
Section 2 we briefly recall the description of the 13 first order degenerations of the cus-
pidal cubics. Then in Section 3 we prove a few geometric properties of cuspidal cubics
that supplement and refine those given in Miret-Xambé [1987]. In Sections 4-7 we carry
out systematic enumerative computations on the various degenerations {Stammzahlen)
based on the properties inherited by the degenerations from corresponding properties
of the cuspidal cubics. Then in Section 8 we outline, as we said above, a setup for the
method of degenerations. In Section 9 we include a number of tables of degeneration
numbers; they are obtained from the elementary numbers by direct arithmetic caleu-
lation. In Section 10 we determine the degeneration relations for the cuspidal cubics,
that is, the expressions of the first order conditions in terms of the degenerations and
of the condition that the cusp of the cubic be on a line. Section 11 contains examples
that show how to put together the information gathered before to effectively compute
the fundamental numbers of cuspidal cubics. Finally in Section 12 we give the tables
of all the fundamental numbers.

Acknowledgements. The second named author wants to thank Steven Kleiman
for his suggesting that the method of degenerations be explained in the context
of a non-trivial example, rather than in an abstract form, and Robert Speiser for
fruitful discussions about issues related to coincidence formulas.
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1. Spaces of cuspidal cubics

1.1. Let P2 be the complez projective plane. The homogeneous coordinates of P? will
be denoted (¢, 1,z2). The point Py = (1,0,0) will be called the origin of coordinates.
The space parametrizing plane cubics is isomorphic to P? and we will identify these
spaces. We shall let S denote the 7 dimensional locally closed subset whose points
represent non-degenerate cuspidal cubics. Thus § is an orbit of the natural action of
the group G = PGL(P?) on P°. In particular S is a smooth variety.

1.2, If X is a point or a line, we shall set Sx to denote the subvariety of S whose points
are cuspidal cubics with its cusp on X. Similarly, if P is a point and L is a line, P € L,
then Sp 1 will denote the cycle of cuspidal cubics that have the cusp at P with cuspidal
tangent L. The cycle Sp 1 is irreducible, because it is an open set of a linear space.
From this it follows that the cycle Sx is also irreducible. The class of Sy, in Pic(S) will
be denoted ¢ and the class of the cycle of cuspidal cubics whose cuspidal tangent goes
through a point will be denoted q.

1.3. Theorem. Pic(S) = Z & Z/(5). The free generator of this group is ¢ and the
generator corresponding to Z/(5) is the projection of q.

Proof: Let L be a given line, and let U be the open set of S whose points are cuspidal
cubics with the cusp not on L. Thus $ —U = S and hence we have an exact sequence

A%S1) — AYNS) - AYU) — 0.

From this we see that Pic(S) = A!(S) is generated by ¢ and A}(U). Now we have
an isomorphism U =~ A? x Sp,, induced by translations in A? ~ P2 — L, and so

AYU) =~ AY(Sp,).

To study the last group, let T denote the space of cubics that have a double point,
and let Tp denote the 6 dimension linear space of cubics that have a double point at
P. Thus cubics in T'p, have equations of the form

(1) zofa+ f3 =0,

where f;, ¢ = 2,3, is a homogeneous polynomial of degree 7 in the variables z1,z,. It
is clear that S C T', where S is the closure of S in T. Now Sp, is a quadratic cone of
rank 3 in Tp,, for it is clear that (1) has a double tangent at P, if and only if Disc( f2)
= 0. Moreover, if F' is the quintic hypersurface of Tp, given by the equation Res(f2, f3)
=0,and F = Fn Sp,, then points in Fieq represent degenerate cuspidal cubics and
conversely. Indeed, if in (1) f, = w?, where w is a linear form in z,z;, then the cubic
zow? + f3 = 0 is a degenerate cuspidal cubic if and only if w divides fs.
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We will show that [F] = 2[Fyeq], and that Fieq is irreducible. If this is so, from the
exact sequence
A%(Frea) » A'(Sp,) = A'(Sp,) = 0

and the fact, also proved below, that
Al(—S_Po) ~Z,

generated by a ruling of the cone, we deduce that A!(Sp,) = Z/(5), because a quintic
hypersurface section is rationally equivalent to 10 rulings and so Freq is equivalent
to 5 rulings. Now observe that the rulings of the cone are the subspaces of cuspidal
cubics that have a given cuspidal tangent, and that one of these rulings generates, by
translations, the cycle of cuspidal cubics whose cuspidal tangent goes through a fixed
point.

To prove that [F] = 2[F;eq], consider an affine space A® and define a map
f:A’ —Sp,
by transforming (s, bo, b1, b2, b3) into the cubic
zo(zq + 822)% = boz3 + blzf:cg + bzil?ll'% + b3.’1?%.

This induces an isomorphism of A5 with Sp — R, where R is the ruling of Sp,, given
by the cuspidal cubics whose cuspidal tangent is the line {z5 = 0}. The pull-back under
f of the subscheme F is the subscheme given by the equation Res((z1 + sz2)?, f3) = 0.
Now using Fulton [1984], Example A.2.1, p. 410, it is easy to see that

Res((z1 + sz2)?, f3) = Res(z1 + szq, f3)?

and so on the open set Sp, — R we see that F' is divisible by 2, and that the restriction
of 1F to each ruling is a hyperplane of the ruling. Hence the equality [F] = 2[Fea] is
correct on the complementary set of any ruling, and therefore it holds globally.

To end the proof we have to see that a rank three projective quadratic cone K satisfies
AY(K) = Z, generated by a ruling. To see this notice that in order to compute A'(K') we
may throw away the vertex of the cone, because its codimension is 2. Having done that,
K is a fibre bundle over a smooth conic C with fibre A!. Hence A!(K) is isomorphic
to AY(C). But A}(C) ~ Z, generated by the class of a point of C, and from this the
claim follows. o

1.4. Corollary. The Picard group of the space of non degenerate nodal cubics is
generated by the class of the cycle of nodal curves with node on a fixed line.

PRroOF: Let Ty, be the cycle of nodal curves that have its node on a line L. This cycle
is irreducible and we have an exact sequence

ANTp) » AYT) —» A((V) =0, V=T-T.
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So Pic(T) = AY(T) is generated by the class b = [Ty] and by A}(V). Now V ~ AZx Tp,
so AY(V) = AY(Tp). Now cubics that have a double point at P form a 6 dimensional
linear space, which is nothing but T p. In this space we have the quadratic cone D = Sp
and the hypersurface E whose points consist of cubics that split in a conic and a line,
and, up to subvarieties of codimension 2 or higher, Tp — Tp = D U E. Thus we have
an exact sequence

A" (DUE) - AYTp) —» A (Tp) — 0

So it is clear that AY(Tp) = Z/(m), where m = gcd(d, e), d and e the degrees of D
and E in Tp, respectively, Now D has degree 2, as we noticed above, and E is a Segre
variety, which has degree 5. So we conclude that A'(Tp) = 0 and so our statement
follows. o

1.5. Complete cuspidal cubics. We will use the letters b, ¢, v, y, 2, ¢, w also to denote
the maps that transform a given cubic C in S into, respectively, the dual cubic C*, the
cusp, the inflexion point, the intersection of the cuspidal and inflexional tangents, the
line joining the inflexion and the cusp. the cuspidal tangent, and the inflexion tangent.
Set
P = P%" x (P?)® x (P?")?

and consider the map
h:S =P, h=(bc,v,y,2,qw).

Let S* be the closure of the graph of 2 in Z = S x P. The space S* will be referred to
as the space of complete cuspidal cubics. The points in S* — S will be called degenerate
cuspidal cubics, where the inclusion of S in S* is given by idxh. Since the composition
of h with the projection of P onto its first factor is b: § — P®*, it is natural to define
b: §* — P°" as the restriction to S* of the projection onto P?*. Given a point C’ of S*,
we shall say that b(C") is the tangential cubic associated to the complete cubic C'. In
the same way we can define morphisms ¢, v, ¥, z, ¢ and w from S* to the corresponding
factors of Z. Given C' € S*, ¢(C') will be called the cusp of C' and similarly with the
other maps.

For a non-degenerate cuspidal cubic, the triangle whose vertexes are ¢, v, and y, and
whose sides are z, ¢, w, is called singular triangle. The same notion can now be defined
for degenerate cuspidal cubics in S$*. In other words, given a degenerate complete
cuspidal cubic C’, the six-tuple

(e(C),v(C"),y(C"), 2(C"), ¢(C"), w(C"))

will be called singular triangle of C’, the first three elements being the vertices and
the last three the sides. The cubic is degenerate if and only if its singular triangle is a
degenerate triangle.

The projection of a point C' € §* to S will be referred to as the point cubic associated

to C'.
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1.6. Theorem (see Miret-Xambé [1987]). The variety S* of complete cuspidal cubics
is non-singular in codimension 1.

In next section we give a description of the boundary components of S*.

1.7. Conventions. Henceforth we will say that a point P is general with respect to
a cuspidal cubic C if it does not lie on C nor on any side of the singular triangle. A
point P of C will be said to be general if it is different from the cusp and the inflexion.
Given four colinear points 4, B,C,D we shall write p(A, B,C, D) to denote their
cross ratio.
We also recall here that given a cuspidal cubic of the form z¢z% = z3 then the dual
cubic has equation 27ugu? + 4ud = 0.

2. Degenerations

The boundary S*— S has 13 irreducible components D;, all of dimension 6 (see Miret-
Xambé [1987]). The brief descriptions given below are intended to outline the structure
of the general points of D;, t = 0,...,12 (see the drawings at the end). In each case
we indicate what the corresponding point and line cycles are, as well as the sides and

verteces of the singular triangle. The degenerations D, ... ,D;2 can be obtained by
applying a homolography to a non-degenerate cuspidal cubic with suitable choices of its
center P and axis L. This means that points on D;, 1 = 1,...,12, are the limit cycles

for t = 0 or t = oo of the cycles obtained transforming the given cuspidal cubic by a
homology of modulus ¢ with center at P and axis L.

In what follows instead of saying “the pencil of lines through point P is a component
of the dual cubic” we will say that “P is a focus of the cubic”. Thus, if three points
are declared as foci, this means that the dual cubic decomposes into the three pencils
of lines through the given points.

2.1. Dy. General points in Dy consist of a smooth conic K together with a distinguished
tangent line L of K. The three sides of the singular triangle of such a pair coincide
with L, while the three verteces coincide with the contact point, say P. The tangential
cubic consists of the dual conic K* and the pencil of lines through P.

2.2. D, and D;;. Points in D;3 consist of a triple line L with three distinct foci
on it. The sides of the singular triangle coincide with L and its three vertices are three
distinct points on L disjoint from the foci. The degeneration D; is dual of Dj,.

2.3. D, and Dy;. Points in D, consist of a triple line L with three distinct foci on it.
The vertices ¢ and y fall together on a focus, and the vertex v is a point on L which is
not a focus. The sides w and z coincide with L and ¢ is a line through ¢ = y different
from L. The degenerations Dj is dual of Dy;.
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2.4. D3 and D;g. Points in Dy consist of a triple line L with three distinct foci on it.
The sides ¢ and w coincide with L and z is a line different from L that does not go
through a focus. The verteces ¢ and v fall together on the intersection of z and L and
y is a point on L different from ¢ = v and which is not a focus. The degeneration D3

is dual of Dyy.

2.5. Dy and Dy. Points on Dy consist of a triple line L with a simple focus and a
double focus. The sides ¢ and z coincide with L, while w is a line through the double
focus distinct from L. The verteces v = y fall on the double focus and ¢ is a point on
L different from the foci. The degeneration Dy is dual of Dy.

2.6. Djs and Dg. Points in Dy consist of a triple line L with a simple focus and a
double focus. The side z coincides with L, while ¢ and w are lines different from L that
go through the simple and the double focus, respectively. The intersection of ¢ and w
is the vertex y, while ¢ falls on the simple focus and v on the double focus.

2.7. D¢ and D;. Degenerations of type D+ consist of a double line L and a simple
line L', with a simple focus ) on L and a double focus R that falls on L N L'. The
three sides of the singular triangle coincide with L, while the verteces are three distinct
points of L disjoint from the foci. The degeneration Dg is dual of Ds.

It is to be remarked that the elements with which a degeneration is built up need
not be independent. Take, for instance, D;;. We have six points on a line. Such
configurations fill a space D;, of dimension 8. Since D, has dimension 6 we see that
Dy, is a codimension 2 subvariety of Dyz. Similarly we can define varieties D11, D1o
and D7 of dimensions 7, 8 and 8 that contain the degenerations D;;, Dio and D7 as
subvarieties of codimensions 1, 2 and 2, respectively. Thus D, may be described as
the variety whose points are ordered pairs of lines with three distinguished points on
the first, and Dyo and Dy as varieties whose points are ordered pairs of lines with four
distinguished points on the first line. Of course, similar remarks can be made for the
dual degenerations Dy, D,, D3 and Ds.

The enumerative geometry of D7, Dyg, Dy; and Dy will be studied in Sections 4, 5,
6 and 7, respectively.

3. Projective properties of cuspidal cubics

3.1. Proposition. Let C' be a non-degenerate cuspidal cubic and P a general point
with respect to C. Let Ly, Ly, Ly be the tangent lines to C through P and set
pi = p(Pc,Pv,Py,L;). Then

1 1 1
—4+—=+==3
PL P2 P3

p1p2ps = 1.
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Conversely, given non-zero scalars p;, i = 1,2, 3, satisfying the two equations above,
three distinct concurrent lines Ly, Ly, L3, say at the point P, and a triangle ¢,v,y with
no vertex on the lines such that p; = p(Pc, Pv, Py, L;), then there exists a cuspidal
cubic C with singular triangle ¢, v,y which is tangent to the lines L;, (i = 1,2,3). (The
proof actually shows that C is unique.)

Proof: Take the singular triangle of C' as the reference triangle and take a general
point of C as the unit point. Let P = (a,b,1). The projection of y from P on the line
z =cvis y' = (a,0,1). Let M = (m,0,1) be the point where a tangent to C through
P meets the line z = cv. Then imposing that the line PM satisfies the dual equation
we find that m has to satisfy the relation

m® + (276* — 3a)m? + 3a*m — a® = 0.

Let m;, i = 1,2, 3, be the roots of this equation and M; the corresponding points. One
computes that p(c,v,y’, M;) = m;/a and from this the first part of the proposition
follows easily.

To see the converse, take (c,y,v; P) as a reference. With respect to this reference the
line L; has coordinates (1, p; — 1, —p;). We know that the cuspidal cubics with singular
triangle ¢, v,y are of the form az? = 2922, a # 0. Using the line equation of this cubic

we see that it is tangent to the line L; if and only if
27 :
L+ (Ta—3)pl +3pi—1=0.

Thus if the p; satisfy the conditions in the first part of the statement, then in order
that the cubic be tangent to the three lines it is necessary and sufficient that Za—3 =
—(p1 + p2 + p3). Since this equation has a unique solution with respect to «, which is
non-zero, this ends the proof. ¢

The preceeding result still holds if P is a point on C not on the singular triangle,
taking the tangent to C at P twice. In this case, however, we have a more precise
statement:

3.2. Proposition. Given a point P of C, let L be the tangent to C' at P and L' the
tangent to C through P other than L. Then the cross-ratio of any four of the lines
Pe¢,Pv, Py, L, L' is independent of P. In fact we have that

p(Pe,Pv, Py, L) =—2

p(Pc, vapval) = i’
p(Pc,Pv,L, L") = —%
p(Pc,Py,L,L"y= %

1
3

p(Pv,Py,L,L') =

Notice that any two of these relations imply the other three.
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Conversely, given a triangle ¢,v,y and two lines L and L' meeting at a point P not
on the sides of the triangle and in such a way that two (and hence all} of the equations
above are satisfied, then there exists a cuspidal cubic C with singular triangle ¢,v,y
that is tangent to L at P and also tangent to L' (necessarily at a point different from
P).

Proof: A straightforward computation as in the proof of 3.1. ¢

3.3. Proposition. Given a point P of the cuspidal tangent q of a non-degenerate
cuspidal cubic C, different from c, then the pair of lines q, Pv is harmonic with respect
to the pair of tangents to C through P other than q. Conversely, given a harmonic
tetrad of concurrent lines q, L, L' and L” (say at P), and points ¢ on q and v on L,
both different from P, there exists a cuspidal cubic C with cusp at ¢ and inflexion at v
such that the tangent lines to C from P are q, L' and L".

Proof: Taking (¢,v,y) as reference triangle and the unit point on C then the equation
of C has the form z} = z¢z% and the point P is of the form (a,1,0). Let u,u' be the
tangents to C, other than ¢, through P. Let @ = (m,0,1) and Q' = (m',0,1) be the
intersections of u and u' with the line cv. It suffices to show that the pairs of points
(¢,v) and (@, Q') are harmonic. Imposing that the lines v = PQ and u' = PQ’ are
tangent to C (using the dual equation) we find that m +m' = 0, and this ends the first
part of the proof. The converse part can be seen in the same way as the converse part
of 3.1. ¢

3.4. Proposition.

(a) Given a point P of the line z of a non-degenerate cuspidal cubic C, different from
¢ and v, then the cross ratio of the lines z, Py and any pair of tangents to C from
P is a primitive cube root of unity.

(b) The line z and the three tangents to C from P form an equianharmonic tetrad,
that is, its cross-ratio is a primitive cube root of —1.

(¢) The line Py and the three tangents to C from P form also an equianharmonic
tetrad.

(e) Conversely, given a triple of concurrent lines {L, L', L"}, say at a point P, and a
pair of points ¢,y not on those lines, there is a cuspidal cubic with singular triangle
¢,y,v, where v is a point on the line c¢P, and which is tangent to the lines L, L'
and L'" if either the cross ratio of Pc, Py and any pair of L’s is a primitive cube
root of unity or the tetrads Pe, L, L' L" and Py,L,L', L" are equianharmonic.

Proof: Take the same reference as in the proof of 3.1 Let P = (a,0,1). Then the
line joining P and the point M = (m,1,0) on the line ¢ is given by the equation
—zg + mz; + ary = 0. Imposing that it satisfies the dual equation we get the relation

4m?® = 2742,

whose solutions are of the form m; = &¥mg, £ = 0,1,2, where ¢ is a primitive
cube root of unity and my/3 is a fixed cube root of a?/4. Computation shows that
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ple,y, M, M;) = €77%) which proves part (a). Similarly, p(c, Mo, My, M3) = € + 1,
which proves (b). The proof of (c¢) is similar. The converse part can be seen in the
same way as the converse part of 3.1. ¢

We also collect here a three lemmas about cross ratios because we do not know a
reference for them. The proofs are obtained by straightforward analytic computations.

3.5. Lemma. Given three non-concurrent lines Ly, Lo, L3, a point P not lying on
any of them and a scalar k # 1, there exists a unique line L through P such that
p(P,LﬂLl,LﬂLg,LﬂLg) =k.

3.6. Lemma. Given a four lines Ly, L,, L3, L4y such that no three of them are
concurrent, a point P not lying on any of them and a scalar k # 1, there exist exactly
two lines L through P such that the p(LN Li,LN Ly, LN L3, LN Ly)=k.

3.7. Lemma. Given five lines Ly, ... ,Ls in general position and two scalars k, and
ky different from 1, there exists a unique line L such that

p(LﬂLl,LﬂL2,LﬂL3,LﬂL4)=k1
p(LﬂLl,LﬁLg,LﬂLg,LﬂLs)=IC2.

We also need a few cycle identities for ordered and unordered triples of collinear
points. First recall that for flags “point-line” in the projective plane, {p, g}, we have the
relation gp = g%+p?, where g is the condition that the line goes through a point and p the
condition that the point be on a line. Now consider configurations (L; ¢, v,y) consisting
of aline L and three distinguished points ¢, v,y on L. The variety V parametrizing such
configurations is smooth and complete. Moreover, it follows easily from the relation just
recalled that on V we have the following relations:

3.8. Lemma.

L? 4 ¢ = Le,
L? + v? = Lv,
L? + 4% = Ly.

Now consider configurations consisting of a line L together with a zero cycle Z of
degree r on L. The points in the support of Z will be called foci of the configuration.
The variety V' of such configurations is smooth and complete. In fact, V' can be
defined as the projective bundle associated to the vector bundle ST(E*), where E is the
tautological rang 2 bundle on P2. Given j lines in general position, and a point (L; Z)
of V', write Z = Z' + Z", where the support of Z' lies on the union of the lines and
the support of Z" is disjoint from them. We shall write @; to denote the subvariety of
V' whose points (L; Z) satisfy that on each of the lines there is at least a point of Z
(hence of Z') and that deg(Z") < r —j. It is not hard to see that @, is irreducible of

codimension j. Now let ¥ be the set of ; points of intersection of the j lines. For
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each P € &, let Qf denote the subvariety of V' whose points (L; Z) satisfy that P < Z',
that on each of the j lines there is at least a point of Z, and that degZ"" <r—j+1. It
is also easy to see that Q;’ is an irreducible subvariety of codimension j. For each pair
of points P,Q) € X, P # @, let Qf’Q denote the subvariety of V' whose points (L; Z)
satisfy that P + @ < Z’', that on each of the j lines there is at least a point of Z, and
that deg Z"" <r — j + 2. It is also easy to see that Qf’Q is an irreducible subvariety of
codimension j.

3.9. Lemma.
Q=Q;+>.Qf+> Q¢
P PQ
Proof: That the left hand sides are equal to the right hand sides up to multiplicities
follows from simple combinatoric arguments. That the multiplicities are equal to 1 in
all cases can be seen by the principle of general translates (see Kleiman [1974] and

Laksov-Speiser [1987]). o

With the same notations, let @ and P denote the conditions that a configuration has,
respectively, a focus on a given line and a focus at a given point. If the number of foci
is 2 or 3, from the preceeding lemma we conclude:

3.10. Lemma.
[Q%] = [Q:] + [P] [Q%] = [Q2] + [P]
Q=3PQ]  [Q'=[2+3(PQ)
Q] = 3[P?] (Q*) = 6[PQ;] + 3[P?]
@ =0 [Q°] = 15[P*Q) °

4. Stammzahlen for D,

We shall use the notations introduced in 2.7.

4.1. Proposition. The singular triangle c¢,v,y of a degeneration of type D¢ may be
any triple of distinct collinear points. The simple focus ) and the double focus R are
collinear with ¢,v,y and are uniquely determined by the relations p(c,v,y,Q) = 1/4
and p(c,v,y, R) = —2. The simple line may be any line through R.

Proof: It is a direct consequence of 3.2 and the way the degeneration is obtained by
a homolography. o

Let ﬁ; be the variety of ordered 5-tuples of distinct collinear points ¢,v,y, @, R. Let
D! be the subvariety of Ef, given by the relations in 4.1. Let 7: D7 — —D—; be the
map that forgets the simple line L' and 7: D7 — D/ the restriction of 7 to D7. Next
lemma shows that the computation of the Stammzahlen for Dy is equivalent to the
computation of Stammzahlen for Dj.
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4.2. Lemma. Let N be a fundamental number for Dy,
(a) If the exponent of L' in N is 0 or at least 3, then N = 0.
(b) If the condition L' appears just once in N, then N = N', where N' is the number
on Dj obtained dropping the condition L' from N.
(c) If the condition L' appears just twice in N, say N = L'*z, then N = R'z’, where
the product z' on D} corresponds to the product z on Dy (that is, z = n*(z"))
and where R' is the condition on D} that the double focus be on a line.

Proof: Follows easily using the projection formula and we omit it. ¢

4.3. Theorem. The number L1 Q% R*3civ'sy's ) + ... +ig = 5, is equal to 1 if one
exponent is 2 and the others are at most 1 or if iy = 0 and the other exponents are at
most 2; is equal to 2 if iy = 1 and the remaning are at most 1; otherwise is 0.

Proof: If i; = 2, then the line is fixed and so by 4.1 the number must be one if the
remaining exponents are at most 1 and 0 otherwise. The similar reasoning works if
t; = 1 and some other exponent is 2 or if two exponents are 2. If ¢; = 0 and there is a
single square, then the conclusion follows from 3.5 and 4.1. If ¢; = 1 and the remaining
exponents are at most one, then the value is 2 by 3.6 and 4.1. If i3 = 0 and the others
are at most 1 (and hence all equal to 1), then we can apply 3.7. ¢

4.4. Remark The expression of [D+] in the Chow ring of Dy is as follows:

[D7] = L* —2Lc — 2Lv — 2Ly — 2LQ — 2LR
+ev+ey+eQ+cR+vy+v@+vR+yQ +yR+ QR.

The proof of this relation and of the similar relations for Dyg, Dy and Dy, (see 5.4,
6.4 and 7.4) are similar and we will give details only for the case of Dy;. The method
of proof consists in writing the corresponding Dy as a linear combination of a basis of
the corresponding Chow group, with undetermined coefficients, and then to establish
enough linear relations among the coefficients by multiplying with suitable monomials
in the fundamental conditions, using the tables of Stammzahlen in each case. One
reason for bothering only about D2 is that in this case the expression is actually used
to complete the computation of the Stammazahlen , while in the remaining three cases
we do not need the expression for such a purpose.

5. Stammzahlen for Dy,

5.1. Proposition. The three foci of a degeneration of type Do may be any unordered
triple of collinear points. For each such triple there are two possible pairs {c,y} and z
is any line through c¢. More precisely,

(a) The cross ratio of ¢, y and any two foci is a primitive cube root of unity.

(b) The point ¢ and the three foci form an equianharmonic tetrad.
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{¢) The point y and the three foci form also an equianharmonic tetrad.

Proof: It is a direct consequence of 3.4 and the definition of D;g by the homolography
process. ©

Let -5;0 be the variety whose points are unordered triples @1, @2, @3 of colinear
points (that will be called foci) together with two distinguished points ¢ = v and y of
the line defined by the foci. Let D}, be the subvariety of -5'10 given by the relations
in 5.1. Let ®: D1p — B;O be the map that forgets the line z and w: Dyg — D}, the
restriction of T to Djg. Next lemma shows that the computation of the Stammzahlen
for Dy is equivalent to the computation of Stammzahlen for Di,.

5.2, Lemma. Let N be a fundamental number for D1,.
(a) If the exponent of z in N is 0 or at least 3, then N = 0.
(b) If the condition z appears just once in N, then N = N', where N' is the number
on Dy, obtained dropping the condition z from N.
(c) If the condition z appears just twice in N, say N = 2%z, then N = 'z’ where
the product ' on D}, corresponds to the product z on D1q (that is, z = 7*(z"))
and where ¢' is the condition on D}, that the cusp be on a line.

Proof: Projection formula. o

5.3. Theorem. The fundamental numbers of D}, are given in the following table:

L2Q3 =2 LQ%* =2 Qy=6-2+3-2
L2Q%c =2 LQ%y=4+1 Q*c?=2+3-2
LQ%y =2 LQ%y? =2 QPcy=2+3-2
LQcy=1 LQc*y =1 Qy?*=2+3-2
LQ*=6-2 LQcy? =1 Q*ty=2+1
LQ3c=4+3-2 Q>=15-2 Q*cy’ =2+1

LQ3y=4+3-2 Q*c¢=6-2+3-2 Qc?y? =1

In this table an expression of the form m - n on the right hand side means that the
factor m has a combinatorial origin and that n is due to the nature of the relations that
exist among the elements of the degeneration. On the other hand, the reason why we
decompose some of the numbers as the sum of two expressions comes from using lemma
3.10, as will be seen along the proof (cf. 7.4).

Proof: From 5.1 we immediately get the relations
L*Q3 =2,L%Q2c =2,L7Qay = 2,L*Qcy = 1.

From 5.1 and 3.5 we get

PQyc=2 Q3c?=2
PQoy=2 Qsy’=2
PQecy=2 Qucfy=2

Qacy” =2
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Similarly, from 5.1 and 3.6 we get

LQsc=4,LQ3y = 4, LQ2cy = 4.

Finally from 5.1 and 3.7 we get
Qacy = 2.

Now using 3.10 we see that the proof is reduced to computations. ¢

5.4. Remark The expression of [D;o) in terms of the fundamental conditions of Dy
is the following (cf. 4.4):

[D10) = 5L — 4Lc — 4Ly + Q* — 5QL + 2Qc + 2Qy + 2cy.

6. Stammzahlen for D,

6.1. Proposition. For Dy the point ¢ = y and the two foci Q, Q' other than c can be
any triple of collinear points and ¢ can be any line through c. The point v is uniquely
determined from @,Q' and c¢ by the relation that the pair (Q, Q') is harmonic with
respect to (¢,v).

Proof: This is a direct consequence of 3.1 and the description of Dy; by homologra-
phies. o

Given that the only relation among the elements of the degeneration D; is the one
given in 6.1, we may work, in order to find the Stammzahlen of Dy, on the variety
Dj, whose points parametrize unordered pairs of distinct points {Q, Q'} together with
two distinguished points ¢, v on the line Q@' that are harmonic with respect to the pair
{@,Q'}. In fact, if m: D13 — D}, is the map which forgets the line ¢, then next lemma
reduces the computation of the Stammzahlen for D;; to the computation of certain
numbers on D{,.

6.2. Lemma. Let N be a fundamental number for Dy;.
(a) If the exponent of ¢ in N is 0 or at least 3, then N = 0.
(b) If the condition q appears just once in N, then N = N', where N' is the number
on D}, obtained dropping the condition ¢ from N.
(c) If the condition z appears just twice in N, say N = ¢*z, then N = c'z', where
the product =’ on DY, corresponds to the product z on D1y (that is, z = 7*(z'))
and where ¢’ is the condition on DY, that the cusp be on a line.

Proof: Projection formula. ¢
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6.3. Theorem. The fundamental numbers of D}, are given in the following table:

L2Q% =1 LQ?’cv=2+1 @3:2=3-1
LQ%w =1 LQ%? =1 Q3cv=3-1
L*Qcv =1 LQc*v =1 Q*v?=3-1
LQ3c=2+3-1 LQw’=1 Q*ctv=1+1
LQ3v=2+3-1 Q%=3-1 Q*cv?=2+1
LQ%*? =1 Qv=3-1 Qc?v?=1

Proof: If the number contains L? then line is fixed. The three remaining conditions
fix three points and 6.1 fixes the last one. Hence all numbers containing L? are equal
to 1.

The same reasoning is valid if the number contains Lc?, Lv?, LP, ¢%v?, Pc?, Pv? or
P2,

From 6.1 and 3.5 one sees that

PQcv = 1,Qyc%v = 1, Qacv?® = 1.

From 6.1 and 3.6 we see that LQycv = 2.

Using now 3.10 it a simple computation to find the values in the table. o
6.4. Remark Let D;; be the variety parametrizing configurations consisting of an
unordered pair @, Q' of points together with two distinguished points ¢,y on the line
QQ' and a line q through ¢. Then the expression of Dj; in terms of the first order
fundamental conditions of D;; (with the obvious notations) is the following (cf. 4.4).

[D11]=C+U+Q—2L.

7. Stammzahlen for D,

7.1. Proposition. Given six distinct collinear points ¢,v,y and Q1,Q2,Qs, let p; =
p(e,v,y,Q;). Then in order that c,v,y is the singular triangle and {Q1,Q2,Q3} the
foci of a degeneration of type Dy it is necessary and sufficient that

1 1 1

—+—+—=3

1 P2 P3
p1p2ps = 1.

Proof: It is a direct consequence of 3.1 and the way the degeneration is obtained by
a homolography. o
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7.2. Theorem. The fundamental numbers of Dy, are given by the following table:

L2Q%c=4 L@%cy=6+3-2 LQecviy=1 Q3cty=4+3-2
L2Q3v=1 LQ3v? =1 LQcvy?’ =1 Q?*cv?=3+3-3
L2Q3y =2 LQ*vy=3+3-1 Q%=15-4 Qcvy=4+3-3
L?Q%v =3 LQ3y? =2 Q®v=15-1 Qcy*=2+3-2
L?Q%y =2 LQ%**w =3 Qy=15-2 Q*vy=1+3-1
L2Q%y =1 LQ?%?y =2 Qic*=6-4 Q*vy’ =2+3-1
L’Qcvy =1 LQ?cww? =3 Qv =6-44+3-3 Q%’Pvy=4+1
LQ%=6-4 LQ%vy=5+1 Q'cy=6-4+3-2 Qv’y=3+1
LQ*v=6-1 LQ%cy? =2 Q*v?=6-1 Q?cvy®* =2+1
LQ*y=6-2 LQ*wiy =1 Q*vy=6-2+3-1 Qchviy=1
L@3? =4 LQ%vy? =1 Q*'r=6-2 Qctvy? =1
LQ*cv =7+3-3 LQctwy=1 Q®tv=6+3-3 Qeviyt =1

Proof: The numbers that contain L? have been determined in Miret-Xambé {1987]
(Theorem 4, Table 1).

The computation of the remaining numbers of the table will be based on lemma
7.4, in which we first compute six auxiliary numbers; on lemma 3.10, which allows to
relate the auxiliary numbers to those we need, and on lemma 7.5, in which we give an
expression of the class [D;2] in terms of a basis of the codimension 2 Chow group of
Elg.

Given j lines in general position (j = 2, 3), we shall write @; to denote the condition
that there is exactly one focus on each of the j lines. We will also write P to denote

the codimension 2 condition that one focus coincides with a given point. With these
notations we have:

7.4. Lemma.

(1) Q3cv® =3,
(2) Qscvy=4.
(3) Qscy® =2.
(4) Q3v?y=1.
(5) Qqc?vy = 4.
(6) QPcvy = 3.

Proof: The proofs can be done, in more or less straightforward manner, choosing a
suitable reference and imposing the conditions 7.1 that a degeneration of type Dy, must
satisfy. We will only give details of (1).

To establish (1) the reference we choose is the following. Let L;, L, L3 be the lines
in general position required to define @3, M the line required to define the condition ¢
and A the point v2. Then we take the points M N Ly, Ly N L3, A as the vertices of the
reference triangle and L; N L, as unit point. Thus we have that

L1 : Ty = Tg,
Lz : Ty = T2,
L3 : QLo = L9,

M: zy=mz,,
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where a,m # 0, 1.
Let L the axis of the degeneration, so that L goes through A and hence L: z; =
Azg. Let Q; = LN L; be the foci of the degeneration. A simple computation shows that

Ql = (lvAvA)7Q2 = (1a)‘,1)7Q3 = (LA,C")'

Let y = (1,A,¢). Then a computation of cross ratios shows that if we put p; =
ple,v,y,@;) then py = /A, p2 = p and p3 = p/a. The equations 7.1 are equivalent to
the conditions A = 3y —a — 1 and p® = a(3p — a — 1), and hence there are exactly 3
degenerations of type D, that satisfy the conditions Qscv?. o

7.5. Lemma.
[D12) = TL? —3Lc — 6Lv — TLy — 6LQ + Qc + 2Qu + 3Qy + Q% + 2cv + cy + 4vy.

Proof: From the fact that D is a projective bundle over P2 it follows that the Chow
group A?(Dj2) is freely generated by the degree 2 monomials in L,¢,7,7, Q. Hence
there exist integers my, ... ,mq, ny, ... ,n4, 71, ... ,74 and sy, ..., 83 such that

(*) [Di2] = mi@ + mov? + maF? + m4f2 +nyLe4 no Lo + na Ly + na LQ+
—_— il -_ _2 —_ - _—
r1QT+ r2QU + r3QT + r4Q" + $1C0 + s2¢Y + $30Y.

Now from the values of the three numbers that contain L? which are equal to 1 we see
that if @ is any of the first order conditions on Dj, then %|p,, = u. More generally,
given a monomial 7 on the first order conditions on Diz, let = denote its restriction to
D3, so that z is obtained replacing the first order conditions in Z by the corresponding
conditions on D;3. It turns out that + = T- Dj3. Using this relation with the 7 numbers
that contain L? it is easy to find the values of the r; and sjyt=1,...,4,5=1,...,3.
Notice that from 3.8 we may compute the following values:

(1) @*cw?=3+3-3=12.

(2) QPcvy=4+3-3=13.

3) QB®*cy?=2+3.2=38.

(4) Q*Py=1+3-1=4.

(5) Q*ctvy=4+1=5.

Now we have:

5=Q%%y =n4+ry +7r3+6rs =ng+ 11, so ng = —6.

4 = Q%% =my +ny + 671 + 52, and so ng = —(m; + 3).

8 =Q%y? =my +ny+6ry +5; = my +ny + 14, and so ng = —(my + 6).
12 = Q%v? = m3 + n3 + 6r3 + 53 = mz + n3 + 19, and so ng = —(m3z + 7).

13 = Q%cvy = my + n1 + ny + n3 + 6ng + 6r1 + 6r3 + 1504 + 51 + 52 + s3, and so
my =my +mg+mg+ 7.
The conclusion follows from the relations 3.6. ¢
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With the expression () and the knowledge of the fundamental numbers of Dy (which
can be obtained by combinatorial arguments and so here will be assumed to be known)
we can now obtain the values of the table 7.3. We omit the details. There is, however,
one aspect of the table which we want to comment, namely, the boldfaced numbers.
We will do this by looking at an example. Take the number Q%cv. Its value can be
obtained as follows:

Q%cv = Dy,-Q'e0 = —TLQ e05+3Q cog+0Q 257 +4Q @2 = —7-6+3-15-+6+4-6 = 33.
Now by 3.8
Q*cv = 6PQycv + 3P%cv = 6PQycv + 3 - L2Q%cv = 6PQycv +3 - 3,

from which it follows that
PQocv = 4.

This has been taken into account in the form we write the value of Q*cv in the table
decomposed as 6-4+3-3. o

8. On the method of degenerations

In this section we introduce a version of the method of degenerations, especially as
used by Schubert, which does not rely on coincidence formulas. Then in next section
we indicate how we have used it to derive the degeneration relations (9.1) for the
plane cuspidal cubics. To see how conditions arise in practice, and also for additional
terminology, see 8.11.

8.1. Let S be a smooth variety and let d = dim S. Let
(8.1.1) X1, s Xp Zay e, By (p2 1,8 20)

be subvarieties of S, where the X; are hypersurfaces and the Z; have at least codimen-
sion 2. The varieties (8.1.1) will be referred to as conditions. The codimension of a
condition will also be called order of the condition. Conditions of order one are said
to be simple conditions. We shall assume that the given list of conditions satisfies the
conditions Al and A2 below. In this paper we will not use higher order conditions
(the Z’s); they are included here because they are needed in other cases, like in twisted
cubics.

A1l. The sum of the codimensions of the Z; ( = 1,...,s) is d—p, and the intersection
of all the varieties X1, ... ,X,,Z;, ..., Z, is a finite set.

A 2. The intersection of all the varieties

Xla s 7-Xi—1?Xi+17 ’Xp7zla aZs
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is a reduced curve C;, (i = 1,...,p).

We shall let N denote the number of points in this set, counting multiplicities if they
are present and we will write

N=Xy--Xp-Z1-Z,

We shall say that N is the number of figures of type S that satisfy the conditions
X1 Xpy 2y, oo, Zs.

We shall also assume that we have hypersurfaces Y7, ... ,Y; of S that satisfy the
following condition:

A3. The classes [Y1], -+, [Y,] generate Pic(S)q (as a Q-vector space).

8.2. In order to explain how we will approach the computation of N, let us first remark
that if S were complete, then we would have

N =degg[Xy] - [X,] - [Z1] -+ [Za),

where {Z] denotes the rational class of the cycle Z, which often is an affordable com-
putation, inasmuch as under the completeness assumption one sometimes knows the
rational intersection ring of S. This is the case, for example, if § is a Grassmannian, or
a flag manifold, in which case the computation is just “Schubert calculus”, but it is not
the case for, say, smooth conics and quadrics or plane cuspidal cubics. So to end the
description of our setup we need a modified procedure, with respect to the complete
case, that is sufficient for the the computation of N.

8.3. To that end we shall assume that there exists a smooth variety S’ (not necessarily
complete) that satisfies the conditions D1-D3 below (azioms for degenerations). Given
any subset A4 of S, we shall write A’ to denote its closure of 4 in §'.

Di. SC S'"and D := §' - 8§ = D, U...U D,, where Dy, ...,D, are smooth
irreducible hypersurfaces of S’ and D; N D; = ¢. The varieties D; will be called
degenerations.

D2. Let
D;- X; =3 mijeXijk,
D;-Z; = 3 nijeZijr,
where the X, Z;;i are the irreducible components of I; N X ; and D; N Z",», S0
that they have the same codimension in D; as X, Z; in S, respectively, and m;jx,

nijk are the corresponding multiplicities. Then we assume that for any choice of
integers ky, ... ,kp, h1, ... , hs, each in its appropriate range, the varieties

Xilku .. 7Xipk,a Zilhu" . 7Xish,9
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have empty intersection, and that omiting any of the X’s, say Xjjx,, the remain-
ing have finite intersection. The number of points in this intersection, counting
multiplicities if present (computed on D;), will be denoted by

Nijlk1, ... kpy b1, -..  hs) = Nijlk, R
These numbers will be called elementary numbers with respect to the problem

of computing N.

D3. Let C;] be the intersection of the varieties X7, ..., X}, Z], ... ,Z,, except X;
by assumptions A2 and C2, C} is a curve. We shall assume that this curve is
complete and that the inclusion

.t '

is a regular embedding,.

8.4. Lemma. The classes
[Dl],...,[D,],[Yl’],...,[Yq’]

generate Pic(S')q.
Proof: We have an exact sequence (Fulton [1984], Prop. 1.8)

(8.4.1) — A%(D)q — A'(8")q — A'(S)q — 0.

By A3, A'(S)q is generated by [Y1],---,[Y,]. On the other hand, the classes of the
components of D form a free Q-basis of A%(D)q. The conclusion follows readily. ¢

8.5. We may inparticular express the classes [X]] as rational linear combinations of

D]y, (D, ¥ [V,
(DR) [X_;] = alj[Dl] +...4+ a,.j[.D,-] + blj[y’ll] +...+ bq][l/q']

Any such equation will be called a degeneration relation for X;. The rational numbers
akj, bij will be called coefficients of the degeneration relation. A priori they need not
be uniquely determined, but in concrete applications they will. Notice that they are
uniquely determined if [D4],...,[D/],[Y{],...,[Y;] are Q-linearly independent. Con-
versely, if the coefficients in a degeneration relation are all non-zero and unique, then
(Di], ..., [De], [¥7],- .., [Yy] are Q-linearly independent. This is the criterion we shall
use to determine Pic(S’)q in our examples. We could also proceed observing that the
sequence (8.4.1) is exact to the left if and only if the map

cls: Pic(S)q — Ha(S)q

is an isomorphism and using the fact that the latter holds, for instance, if S has a
cellular decomposition, or even in more general cases (see Rossell6-Xambé [1987]).
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8.6. Let
d,’: D,' — S’

be the inclusions. Then we will write N;; = deg(D; - C}) and we will say that the Ny,
i =1,...,r, are the degeneration numbers of C;. Since C; is a complete curve, we also
have

N,'j == degc; [D,‘ . C;] = degCJg(u;‘[D,-]).
8.7. Degeneration lemma.

(a) N= degc-; (u[X;]) forallj =1,...,p.
(b) Given a degeneration relation DR for X}, then

N =3 aiNij + N',
foranyi=1,...,p, where
N'= 3 bij deg (w5[Y])

(so N' does not involve X;).

(c) If welet
Mj(k, ) = (I] maw) - (ITnan,)
i#5 i
then we have
Nij = 2k Mij(k, R)N sk, b].

Proof:
(a) By definition N = deg(X,-Cj), and N = degc;(u;f(X})) by D2. Now the fact that
C} is complete implies that N = degc; ([ujXj]) = degC;(u;[X}]).

(b) It is a direct consequence of (a) and the definitions.

(c) Nij = deg(D; - C;) = deg d}(C})
— degd} (X} X}y Xy X} 24 2,
= degd(X1) - di(Xj 1) - di(Xjy1) -~ di(X}) - i (Zy) - -- d}(Z).

From this, the expression of D2 and the definitions of N;;{k, k] and M;;(k, h), the stated
expression for N;; follows immediately. o

8.8. The degeneration lemmima gives a foundation to the “method of degenerations”,
especially as used by Schubert. The expression of N given in {b) breaks up the problem
of computing N into (i) the determination of the degeneration coefficients, (i¢) the
computation of the degeneration numbers N;; and (i¢7) the computation of the numbers
N'. Part (¢) of the lemma reduces the computation of degeneration numbers into the
determination of the varieties X;;x and Z;ji, the multiplicities m;;x and n,;; with which
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they appear, and the computation of the elementary numbers Nyj[k, h]. The latter are
enumerative problems in a space of dimension d — 1 and for their determination usually
the same method can be applied, so that the whole procedure has a recursive quality.
As far as (i2) goes, in practice the numbers N' will be easier to compute than the
number N itself.

8.9. Part (a) of the degeneration lemma gives p ezpressions for the number N. Soin
particular we have equalities

degcy (u5[X}) = degey, (w3 X)])

for any j,7' in {1,...,p}. Thus if we know degeneration relations DR for X ;and X,
then we get an equation of the form

(8.9.1) alel]' + ...aer,j +N' = alerljr +. ..arj/Nrj; + N",

This yields a necessary condition that the coefficients of the degeneration relations must
satisfy. It turns out that in interesting enumerative situations a suitable selection of
equations of the form (8.9.1) is enough to determine them. If some of the multiplicities
m, n that appear in the definition of the degeneration numbers were also unknown, they
may as well be left in (8.9.1) as integer unknowns.

8.10. Classically degeneration relations were established through the use of “coinci-
dence formulas”, which often lead to elusive computations of multiplicities. For exam-
ple, Schubert’s derivation of the 4 degeneration relations for twisted cubics (Schubert
[1879], p. 168) has not been made rigorous because of his application of the coincidence
formulas (or rather the way he suggests to apply them) leaves undetermined certain
fundamental multiplicities. The approach advanced here suffices to determine those
degeneration formulas without needing coincidence formulas. Below we will show how
to find suitable degeneration relations for the cuspidal cubics.

8.11. Let us discuss how conditions arise. A common way to describe cycles on a variety
S which parametrizes a certain kind of figures is by means of geometric relations imposed
to the figures (“raumliche Bedingungen” in Schubert’s terminology; see Schubert [1879),
p. 5). The geometric relations will involve some other kind of figure. When we allow
the latter to move we obtain an algebraic family of cycles on S. Such algebraic families
of cycles are the usual source for supplying conditions in the sense given above.

In order to simplify notations, we shall use the conventions, which go back to Schubert
and before, that we explain presently. Suppose S is a smooth variety of dimension d
and that X is an algebraic family of cycles on S. Then given an integer n, X ™ will mean
that we take n (independent) general values of the parameter space of the family and
that we consider as conditions the cycles X, ..., X, corresponding to those values.
Given families

X, X',....2,2',...
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(X,X',... of codimension 1, Z,Z’,... of codimension at least 2) and integers

the expression
N=X"Xx'"...zmz'™ ...

will mean the enumerative problem whose conditions are n general cycles of the family
X, n' general cycles of the family X', and so on. In order for the problem to be
well posed we need that the sum of the codimensions be equal to d. In the explicit
examples the assumptions A1, A2 and D2 can be ascertained from general principles
such as the transversality of the general translates (Kleiman [1974]), or a generalized
version in which it is not required that the group acts transitively on S (Casas [1987],
Laksov-Speiser [1988]).

In specific examples, the conditions in the list X, X',...,Z, Z',... will be selected so
that they express basic geometric relationships that our figures satisfy and will be re-
ferred to as fundamental conditions. The numbers formed with fundamental conditions
will be called fundemental numbers. If the only conditions involved are (simple) con-
tact conditions with linear varieties then the numbers are referred to as characteristic
numbers.

9. Tables of degeneration numbers

In Sections 4-7 we have studied the elementary numbers with respect to the funda-
mental conditions for cuspidal cubics. With the elementary numbers we can compute
the degeneration numbers. In this section we assemble the tables of all degeneration
numbers that are needed to compute all fundamental numbers. Each table is labled
with a monomial & in the variables ¢,v,y,q,w, 2z and the monomials are ordered lexi-
cographically. The numbers to the right of a given D; are the degeneration numbers
of the form D; - (X8 %"*Xia), i = 0,...,6 — d, where d is the degree of a, X the
condition of going through a point and X, of being tangent to a line. Thus there are
7 — d numbers in each row. A row corresponding to a degeneration is omited if it turns
out to be identically 0.
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Table 1

Dy 42 87 141 168 141 87 42
Table ¢
27 45 54 45 27 12 Dy; 0 0 0 36 72 60
0 24 78 78 24 0
Table v
27 45 54 45 27 12 Dy 0 24 78 78 24 O
45 54 27 0 0 O Di 0 0 0 9 18 15
Table y
27 45 54 45 27 12 D; 0 24 78 78 24 O
30 36 18 0 0 O Dy; 0 0 0 18 36 30
Table c?
D;, 5 8 8 5 2 D2 0 0 0 12 24
D;, 0 6 21 18 O
Table cv
Dy 5 8 8 5 2 D; 24 60 57 18 O
Dy 18 9 0 0 0 Dy 0 0 27 48 33
Ds 24 54 36 0 O
Table cy
Dy 5 8 8 5 2 D, 24 60 57 18 O
Dy 12 6 0 0 0 Dy 0 0 18 36 30
Table cz
Dy 7 13 16 13 7 D; 0 6 21 18 0
Dy 12 6 0 0 O Dy 0 0 18 30 18
Ds 24 54 3 0 O D, 0 0 0 12 24
D¢ 0 18 21 6 O
Table cq
Dy 7 13 16 13 7 D; 0 6 21 18 O
Dy 6 3 0 0 0 Dy 0 0 9 18 15
De 0 18 21 6 0 D, 00 0 12 24
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Table cw

7 13 16 13 7 D, 0 6 21 18 O
24 12 0 0 0 Dy 0 0 36 54 24
24 54 36 0 O Dy 0 0 0 12 24
0 18 21 6 0
Table v?
5 8 8 5 2 D; 0 6 21 18 0
15 18 9 0 0 D, 00 0 3 6
Table vy
5 8 8 5 2 D; 24 60 57 18 0
18 9 0 0 0 Dy, 0 0 9 18 15
12 6 0 0 0
Table y?
5 8 8 b5 2 Dg 0 0 36 54 24
18 30 18 0 O Dy, 00 0 6 12
0 6 21 18 0
Table c?v
D, 3 0 00 D; 6 15 9 0
Dy 6 15 9 0 Dy, 0 0 9 15
Table %y
2 0 00 D; 6 15 9 0 D2 0 0 6 10
Table %z
Dy 1 2 2 1 D;: 01 4 0
D, 2 0 00 Dy 0 0 6 8
Ds 6 15 9 0 Dy, 0 0 0 4
Dg 0 4 1 0
Table ¢%¢
Dy 12 2 1 D; 01 40
D, 1 0 00 Dy; 0 0 3 3
D¢ 04 10 Dy, 0 0 0 4
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Table 2w

1 D,
0 Dy
0 Dy,
0
Table cv?
0 Dy
0 Dy,
Table cvy
0 D,
0 Dy,
0
Table cvz
1 Dg
0 D,
0 Do
0 D,
Table cvg
1 Ds
0 Dy
0 Dy,
0 Dy,
Table cy?
0 Dy
0 Dy,
Table cyz
1 De
0 D+
0 Dy
0 Dy,
Table v%y
0 D4
0 Dy,

0
0
0

6
0

24

0

oo cooo co oo

oo

(=2

1 4 0
g 12 18
0 0 4
15 9 0
6 9 12
27 9 0
9 18 13
4 1 0
16 13 0
0 6 8
0 9 16
4 1 0
16 13 0
9 15 9
g 9 16
18 24 12
0 6 8
4 1 0
16 13 0
9 15 8
0 6 12
15 9 0
0 3 4
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Table v%g

2 21 D; 0
0 0 0O Dy 0
15 9 0 Dy, 0O
4 1 0
Table vy?
6 0 Dy
6 0 0 Dys
15 9 0
Table vyz
2 21 Dg O
0 0 0O D; 6
3 00 Dy 0
6 0 0 Dyy 0
12 0 0
Table y?z
2 21 D; 0
0 0 0 Dg 0
15 9 0 Dy, O
4 10 Di; 0O
Table c?v? = clvz
1 00 D; 1
4 9 9 Dyy; O
Table cZvy
D, 5 3 0
Table c?vq
D: 130
Dyy 0 3 2

Table c2vw

Ds
D,

4
1

9
3

9
0

0
0

o =
O N
wo

L)
iy

4 1
16 13
9 15
6 3
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Table c?y?

00 Dg 0 6 4
3 0 Dy; 0 0 2
Table c?yz

D; 1 3 0 Dys
Dy 0 3 3

Table cyw

D; 1 3 0 Dy
Dg 0 6 4 Dy
Table c?zq

Ds 0 3 1 D11
Dy, 0 0 2

Table cZzw

D5 4 9 9 D9
Dg 0 3 1 Dy
Table c?qu

Dg 0 3 1 Dy
Dsg 0 6 4 Dy,
Table c?w?

3 0 Dy 0 3 5
Table cv?y

0 0 D; 5 3 0
6 0 Dy 0 3 4
Table cvy?

D;: 5 3 0 Dy,
Dg 9 9 4

Table cvyz

Ds 13 9 0 Dy
D; 6 6 0 D,

o

o

o

oo
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Table cvyg
D, 3 0 0 D; 6 6 0 D, 0 3 2
D; 2 0 0 Dg 9 9 4 D, 0 3 6
D, 5 3 0
Table v?y?
D, 1 0 0 D; 1 3 0 Dy, 0 0 1
Dy 2 0 0 Dg 0 3 1
Table v?yz
D, 1 0 0 D; 8 6 0 Dy 0 3 3
Dy 2 0 0 D, 1 30 Dz 0 0 1
Table vy?2z
D, 1 0 0 D; 1.3 0 Dy 0 3 3
Dy 5 3 0 Dg 0 3 & Dy 0 0 1
D; 4 00
Table c?v?y
D5 3 3 D7 1 0 D12 0 1

10. Degeneration relations

In next theorem we state the degeneration expressions of the first order conditions
for cuspidal cubics and then we indicate how they can be obtained by application of
the procedure explained in section 8. Here we see that Pic(S)q is generated by ¢ (see
1.3) and hence Pic(S")q, is generated by ¢ and the 13 degenerations.

10.1. Theorem. Let D = Dy + D3+ D3 and D' = D1y + D1y + D1s. Then the expres-
sions on S’ of the first order conditions in terms of ¢ and the first order degenerations
is as follows:

1) 5Xo = 3¢+2D¢ +3D +6D4 +2D5 + 3D¢ + 4D7 +3Dg + 9Dg + 9D'.

2) 5Xy = -3¢+ 8Dy + 12D + 9Dy + 3Ds + TDg + 6D7 + 2Dg + 6Dg + 6D'.

3) 5v = —4¢+9Dg + 6Dy + Dy +6D3 + 2Dy — Dg + 6D + 3D7 + Dg + 3Dg + 3D'.
4) by = —¢c+6Dg+4Dy +4D3 — D3 + 3Dy + D5 +4Dg +2D7 — Dg + 2Dy + 2D,
5) S52=c¢c+4+4Dg+ D+ 2Dy — D5+ Dg +3D7+ Dg +3Dg — 2Dy + 3Dy +3D;2

6) 5q=4c+ Dy —D+3Dy+ Dy —Dg+2D7 — Dg +2Dg + 2D — 3Dy + 2D5.

7) w=—c+2D¢+ D+ Dg+ D; + D"

Here is the same information in matrix form:
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Dy Dy D; D3 Dy Ds Ds D7 Ds Dy Dy Du Diz ¢

5Xo 2 3 3 3 6 3 4 3 9 9 9 9 3
5X; 8 12 12 12 9 7 6 2 6 6 6 6 -3
S5v 9 6 1 6 2 -1 6 3 1 3 3 3 3 —4
5y 6 4 4 -1 3 1 4 2 -1 2 2 2 2 -1
5z 4 1 1 1 2 -1 1 3 1 3 =2 3 3 1
5¢q 1 -1 -1 -1 3 1 -1 2 -1 2 2 -3 2 4
w 2 1 1 1 0 0 1 1 0 0 1 1 1 -1

10.1.1. Remark. If we take into account only the degeneration Dy, which is enough
to compute the characteristic numbers (see Table 1 in Section 9), then the relations
above for Xy and X; become the following:

5Xo =3¢+ 2Dy, 5X,=-3c+8D,.

These relations were obtained for the first time, using coincidence formulas, by Zeuthen
[1872] and were recently verified by Kleiman-Speiser [1986]. Notice that a priori we
know, by 1.3, that 5X, and 5X; are linear combinations of ¢ and the degenerations
with integer coefficients.

Proof: The proof of the seven degeneration relations can be done by a judicious choice
of equations of the form 8.9. To write such equations we need to know enough de-
generation numbers. Those that will be used are contained in the tables given in the
preceeding section. Since the procedure is straightforward, here we will prove only the
first two relations. We shall write a; and a to denote the coefficients of X with respect
to D; and ¢ and b; and b for the coeflicients of X;.

We want to determine the values of a,aq, ... ,a12,0,00, ... ,b;2. To this end first
notice that XZc? = 2 and X} X1c? = 8. From these relations we obtain, taking into
account the degeneration numbers given in Table ¢ and using 8.7 (b), the equations
S5ag = 2, 5by = 8, 8agy + 6ay = 8. Hence

ao = 2/5,by = 8/5, a7 = 4/5.

In what follows we briefly point out what relation we take, the equations it leads to
and the value of the coefficients they determine.
From Xo(X2X2c?) = X1(X§X1c?) we get the relation 8ag + 21ar = 8bg + 6b7. So

by = 6/5.

From Xo(XoX3c?) = X1(XEX2c?) we get the relation 5ag+15a7+12a12 = 8bo+21br,
and so

ajns = 9/5

From Xo(X{c?) = X1(XoX3c?) we get the relation 2ag + 24a;2 = 5bo + 18b7 + 1251,
and so

b12 = 6/5
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As a corollary we get, using 8.7 (b}, the following numbers:
=2, 8, 20, 38, 44, 32.

[By this we mean the numbers X5 Xic?, i =0,...,5].

Using table ¢ and and the numbers for ¢? just obtained we can determine the coeffi-
cients a and b. In fact, from the relation Xo(XgX1c) = X1(X§c) we get the equation
8a + 45ag + 24a7 = 2b + 27by. Similarly, from the relation Xo(X3XZc) = X1(X¢Xic)
we get the equation 20a + 54aq + 7T8a; = 85+ 45by +24b7. Solving for @ and b we obtain

a=—b=23/5.

From Xo(X3c%v) = X1(XoX%c?v) we obtain 15a1; = 9b5 + 9b7 + 9b;2
and so

From Xo(XeX?c%) = X;(XEX1cv) we obtain 9as + 9ar + 9a;2 = 15b5 + 15b7 which
implies that
as = 2/5.

From Xo(X2X c*v) = X;(X3c?v) we obtain 15as + 15a7 = 3b, + 6bs + 6b7 which
implies that
b, = 12/5.

As a corollary we obtain the following numbers:

ctv =9, 18, 27, 27, 18.

Using table cv and the numbers for c?v just obtained we can determine az. From
the relation Xo(X3X1cv) = Xi(X¢cv) we obtain 60ar + 9a; + 54as + 8ag + 18a =
24b, + 18by + 24b5 + 55 + 9b and so

g = 3/5

From X;(X3c%y) = Xo(XEX1c%y) and the table of c?y we get 6b7 + 2b3 = 15a7 and
hence

From X;(XZc%y?) = Xo(XoX1c%y?) we obtain by + 2b; = 3a3 + 6ag and hence
ag = 3/5

From X(XoX1c%y?) = Xo(X2c?y?) we obtain 3b; + 6bs = 2a,2 + 4ag, and so

Now we have X;XZc?y? = 6 and X3c*y? = a7 + 2as.
From the relation Xo(XZX1cy?) = X1(X3cy?) we obtain 15a7 + 6as + 18as + 6a =
6b7 + 10b; + b(a7 + 20.3), 80
az = 3/5.
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From Xo(X2X;c%z) = X;(X3c?z) and Xo(XEX1c%q) = X1(X§c%q) we obtain

dag + a7 + 15as + 2a¢ = 2by + 6bs + bg
4a¢ + ar + 2a9 = by + by }
which yields
by =12/5, as=3/5.
Now we have Xo(X3c%q) = ag + a1, XZX,c%q =4, X2X2c%q = 10.
From X,(Xgcq) = Xo(X3 X cq) we obtain 7bg 4+ 6b; +b(ao +a1) = 18ag + 6ar +3a; +

13ay + 4a, and so
a; = 3/5

From X (X3Xieq) = Xo(XZX}cq), X1(XEXic%q) = Xo(XoX?icq), and
X1(XoX3%c%q) = Xo(X3c?q), we obtain
18b6 -+ 6b7 + 351 + 13by + 4b = 2lag + 21ar + 9a11 + 16ag + 10a
4b(~’, + b7 + Zbo = Qg + 407 '{" 3(111 + 2(10
b + 4b; + 3by; + 2by = 3ay1 + 4ayz + ag

Solving for bg, @11 and by; we obtain

bﬁ = 7/5, al = 9/5, 611 = 6/5

From X;(X¢X:c%z) = Xo(XoXZc?z) we obtain 4bg + by + 15b5 + 2by = as + 4a7 +
Baig + 9as + 2a¢, and so
a1 = 9/5
From Xl(X()X%CzZ) = Xo(X%sz) we obtain bg + 4by + 6byg + 9bs + 2by = 4days +
8&10 + ag, and so
b10 = 6/5.

From X1{X3c’w) = Xo(X23X1¢%2) and X;(XEc?quw) = Xo(XoX1¢%qw) we obtain

48y + 6by + b = 4ag + a7 + 15a4 + 2a0
3by + by = 3ag + 3a4 + 6ag }
Solving for a4 and by we obtain
a; =6/5,by =9/5.

From Xl(Xgchzw) = Xo(XoXlzczw) we obtain 4bg + b7 + 15by + 2by = ag + 4a7 +
9a4 + 12a9 + 2ay, and so
ag = 9/5

From (XoX?c?w) = Xo(X;c*w) we obtain bg+4by+9b,+12bg+2bg = 4a1+18ae+ao,
and so

by = 6/5.
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11. Fundamental numbers

Once we know degeneration relations for the first order conditions and the degen-
eration numbers, the computation of fundamental numbers is reduced to arithmetic
operations (see 8.7 (b)). This has been applied in the proof of 10.1 to find several
fundamental numbers that were needed along the way. Here we include a couple of
examples that will further illustrate the use of 8.7.

11.1. N' = Xc%?

Since X2c*v? only contains degenerations of type Dy, Ds and D (see Table c2v? in
section 9), with degeneration numbers 1, 4 and 1, respectively, we have, by 10.1 (1),
that

N'=ay+4as+a7=(3+8+4)/5=3.

Notice that the term %c in the expression of X does not give any contribution to N/,
because numbers with ¢ are 0 (see 8.8).

11.2. N = Xjcv?
Since X$cv? only contains degenerations of type Dy, Ds and D; (see Table cv? in

section 9), with degeneration numbers 6, 12 and 6, respectively, we have, by 10.1 (1),
that

N =6a; + 12a5 4+ 6a7 + alN' = (18 + 24 + 24 + 9)/5 = 15.

The value of this number that we find in Schubert [1879] (p. 141, line 4) is 17. This
looks like a misprint, rather than a mistake, for on p. 138, line —11, we find that the
value given to the dual number is 15.
11.3. M" = XZcvyz

Here it is not hard to see that Xoc*vyz = Xoc?v?y and hence this only contains
degenerations of type Ds and D7 (see Table c?v2y in section 9), with degeneration
numbers 3 and 1, respectively. Therefore we have, by 10.1 (1), that

M"=3as+a; =(6+4)/5=2.

11.4. M' = X3cvyz
Since XZcvyz only contains degenerations of type D,, D3, D5 and Dy (see Table

cvyz in section 9), with degeneration numbers 1, 2, 13 and 6, respectively, we have, by
10.1 (1), that

M' = a; + 2a3 + 13as + 6ar + aM" = (3+ 6 + 26 + 24 + 6)/5 = 13.

11.5. M = XX, vy=

Here X3vyz contains degenerations of type Do, D1, D;, D3, D5 and D7 (see Table
vyz in section 9), with degeneration numbers 1, 2, 6, 10, 18 and 6, respectively, we
have, by 10.1 (2), that
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This is one of the numbers that we can not find in Schubert’s book.

12. Old and new tables of fundamental numbers of cuspidal
cubics

Here we collect the values of all non-zero fundamental numbers (see the Remarks at
the end). They have been calculated, as illustrated in the preceeding section, by means
of formula 8.7 (b), using the degeneration formulas 10.1 (basically (1) and (2)). Most
have been calculated in more than one way. Those not listed in Schubert [1879] (nor
anywhere else, as far as we know) are distinguished with a **. A few numbers are
marked with *; this means that their value can be deduced from some table of Schubert
corresponding to space cuspidal cubics. The arrangement of the tables is as follows. A
number like M = X3 X vyz is located at the second place of the row that begins with
vyz =. The row ends with = yzq because by duality M is equal to XoX3gzy. The
rows are ordered lexicographically by the leading monomials. To the monomial 1 there

corresponds the list of characteristic numbers:
24,60,114,168, 168,114, 60, 24.

Order 1

c= 12 42 96 168 186 132 T2=w
v= 66 123 177 168 105 51 18=¢
y= 48 96 150 168 132 78 36==z

Order 2

2= 2 8 20 38 44 32=w?
co= 47 89 128 119 71 32=quw
cy= 32 62 92 92 62 32=zw
*cz= 22 52 94 112 88 &2=yw
cq= 7 25 58 85 79 H2=ovw
cw= 52 106 166 166 106 52=cw
v?= 20 35 47 38 17 5=4?
vy= 89 83 92 65 35 14=z¢q
pz= 40 79 121 112 61 25=ygq
vg= 34 79 139 139 79 34=vg
y?= 20 44 T4 T4 44 20=2°
yz= 34 70 112 112 70 34=y=
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Order 3
Av= 9 18 27
Ay= 6 12 18
ctz= 4 10 19
g= 1 4 10
Aw= 10 22 37
cw?= |15] 27 36
cvy= 33 48 45
**evz= 19 37 55
evg= 19 49 64
*eoow= 43 67 73
cy?= 12 30 36
eyz= 22 46 55
*eyg= 13 34 46
**eyw= 40 70 73
cz’=c%z= 4 10 19
**ezq= T 19 37
cg?=c%*q= 1 4 10
viy= 15 21 18
viz= 10 19 28
vi¢g= 10 22 37
vy?= 21 30 27
*vyz= 31 55 55
**vyg= 31 61 64
vz?=viz= 10 19 28
y’z2= 10 22 37

Order 4
A= 3 6 9
coy= 6 9 9
vz=c%?= 3 6 9
ctvg= 3 9 9
*ow= 9 15 18
Ay?l= 2 6 6
yz= 4 9 9
ctyg=c*y?= 2 6 6
*Zyw= 8 15 15
cz¢g= 1 3 6
czw= 4 9 15
qw= 3 9 12
cw?= 6 9 9
cw?ly= 9 12 9
cv?z=c%?= 3 6 9
“*evlg= 6 15 18
cw?w= 9 12 9

27
18
22
13
40
27
27
49
49
49
24
40
37
46
22
43
13

22
31
15
31
37
22
34

wpOwoohoaSkraor Lo oo
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cvyl= 14 15
evyz = 13 21
evyg = 17 24
*evyw = 23 27

cw?=ctt= 3 6
*evzg= 7 18
evzw = 13 21

cwg®? =c*vg= 3 9
**cvgw = 21 33
“*eylz= 6 15

cylq=c*y?= 2 6

clw= 14 15

cyzl=clyz= 4 9
eyzq= T 18
eyzw = 16 30

cyi?=c%y = 2 6

cz?q = czqz = 1 3

czg*=clqz= 1 3

viy?= 5 6

viyz= T 12
*plyg= 8 15

vizg= 4 9

v¥¢? = 3 9
*pylz= 9 15

vy?g= 11 15

vyz? =vlyz= 7 12
oyzg = 13 27
yiz’= 4 9
Order 35
vly= 2 3
vl¢g= 1 3
cPw= 2 3
Avy?= 3 3
czvyz =chly= 2 3
Avyg=c?vy’ = 3 3
“*cloyw= 5 6
cvzqg=c*v?q= 1 3
vzw = c2v2w = 2 3
*Zyqgqw= 4 6
cvw? =c?w= 2 3
Ay?z= 1 3
Ay*w= 3 3
Ayzqg=cy*z= 1 3
*clyzw= 3 6

18
18
18

24
24

33
15

21

(&) — — w
co\,cocomcoo‘wcooacsc:cso

TN NN WOTWWOTN WNWWW

4= 2%qu
9 = yzqw
10= vzqw
7= czqw
9=1y2quw
17= vyqw
17= cyqw
6 = viquw
21= cvqw
8 = y22w
4 =v2%w
4 =c2?w
6 = y22w
13= vyzw
16= cyzw
= viw
5= vyw
5= viyw
1= z2q2
3=yzq?
= vzg?
11= vyq?
3= ,U2q2
= yz’q
4=vzq
=y’zq
13= vyzq
4 = y?2?
= 2¢%w?
= vgw?
= cqlw?
= 2qu?
= yzquw?
= vzqu?
= czqu?
= vyquw?
= cyqu?
= cvqw?
= c?quw?
= yz2w?
— c22w?
= vyzw?
= cyzw?
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yqw=cyl¢q= 3 3 2 =cvzw?
ywi=cy*w= 3 3 2 =clzw?
cdzqu= 1 3 4 = coyw?

cwiy?= 4 3 1 =22 w
eviyz=c*iy= 2 3 3 =yzq’w
“*eyg= 5 6 4 =vzq’w
calyw=cv?y?= 4 3 1 = czq?w
evizg=c¥= 1 3 3 =vyg’w
owaw=cviw= 2 3 3 =cyq®w
i =ctvlg= 1 3 3 =v2¢*w
*evlqw=coqu?= 5 6 4 =cvg’w
*evylz= 5 6 3 =yzlqu
coylg=cloy’= 3 3 2 =vw2lqu
cvtw=cr’yt= 4 3 1 =clqu
coyz? =ctvly= 2 3 3 =y’zquw
**coyzg= 6 9 6 =vyzquw
*cvyzw= 7 9 6 =cyzqw

cvyg? =ctvyt= 3 3 2 =vlzquw
*coyqw = 8 9 6 = cvzquw
cwzlg=cwiq= 1 3 3 =vylquw
cw2lw=ciw= 2 3 3 =cy’qu
cvzg? =ctvig= 1 3 3 =oviyquw
cy??=cty?z= 1 3 2 =y?w
cy?zg=cy?z= 1 3 2 =ovyz?w
“*eylzw=cyzw?i= 5 6 3 =cyziw
cyzlq=cy?z= 1 3 2 =vylzw
cyzg*=c*y?z= 1 3 2 =viyw
viylz= 2 3 1 =yz%¢?

viy?g= 3 3 1 =wz2g?
“*plyzg= 3 6 4 =vyzq?

viyg? =v¥y?q= 3 3 1 =02z¢?
vyl =ov¥ylz= 2 3 1 =y2%
“*yylzg =vyzq® 4 6 3 =wyzlq

12.1. Remark. For any condition « in the list {c,v,y,2,¢,w}, it is clear that if a
fundamental number N contains a3, then N = 0. We may conveniently phrase this by
writing a® = 0. Similarly, if (e, 8) is any pair on the list

{(c, 9)7 (cv Z)’ ('U, z)’ (vv w), (¥, w)a (v, ‘I)}y

then o232 = 0, for whenever a and S refer to incident elements of the singular triangle
we cannot fix both independently. Finally it is also clear that if (@, /) is a pair of
distinct vertices or sides of the singular triangle and v is the side or vertex defined by
the pair, then o28%y = 0.
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12.2. Remark. In the tables above we have used identities of the form o?8 = af?,
which is valid for any pair («, 8) on the list

{(¢,9),(c, 2), (v, 2), (v, w), (y,w), (¥, 9)},

inasmuch as they are valid for triangles.

12.3. Remark. We have not listed the table corresponding to order 6. In this case,
if the order six monomial involves at least one square and it is not in one of the cases
in 12.1, or amenable to such a case by 12.2, then the row corresponding to it is (1,1),
for it is not hard to see that such a monomial fixes the singular triangle. On the other
hand, the list corresponding to the unique square free monomial cvyzqw is (2,2), for
there are 2 triangles satisfying this condition. In any case, the cuspidal cubics having
a given triangle as a singular triangle form a pencil and so there is a unique cubic in it
going through a point or (by duality) tangent to a line (cf. Schubert [1879], Remark on
top of p. 143).

12.4. Remark. For reasons of dimensions, it is clear that all monomials of degree 7
not involving Xy and X; are 0.

12.5. Remark. It turns out that the fundamental numbers which do not satisfy one
of the vanishing conditions given in the preceeding remarks are automatically non-zero.
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