One  benchmark of our understanding of the

geometry of B 3 [the component of the Hilbeat

scheme parameirizing ithe twisted cubics and thein
degenerations] L4 being able to solve rigorously a
Lamows erumerative problem: Given 12 quadrics in
P3, how many twisted cubics are tangent 2o all 127

(Harris [1980], bottom of p. 38)
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ABSTRACT. This sketch is fairly complete. The verification is completely
reduced in Sects. 2-3 to proving 4 lemmas. Their proofs are sketched in
Sects.,” 4-7, and the new ideas are emphasized. Also, the enumerative

significance of the number is fully treated.

1. INTRODUCTION

On January 29, 1875, the royal Danish Academy awarded a gold medal to
Hermann Schubert for his response to its 1873 prize problem, whose statement
here is translated from the original Danish (Zeuthen [1875], p. 14}:

"To extend the theory of characteristics to systems of geometric entities

formed by the points and the osculating planes of space curves of

degree 3, and to determine the characteristics of the systems that must

be considered as elementary".

Schubert's work was published solely in his book, Schubert [1879] (see Lit.
35, p.339). On p. 184, the treatment of twisted cubics culminates with the famous

example, the determination of the number tangent to 12 quadrics.
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The rigorous verification of Schubert's number has been aparticular challenge:
twisted cubics are curves of higher degree and are not complete intersections.
This paper announces the first successful response ; it sketches a complete

proof of the following theorem.

Theorem 1. Given 12 smooth quadrics in  general position in IP3 over an
algebraically closed field of characteristic 0 , ldet N be the number of twisited
cubics tangent to all 12 . Then, just as Schubert found,

N = 5819539783680

Moreoven, each cubic appears in the count with weight 1, and it intersects each
quadriic in 5 points: 4 with mdtiplicity 1, and 1 with mdtiplicity 2 .

The spirit of the proof of Theorem 1 is essentially that of Schubert's
treatment, but there are 2 notable modifications. The first concerns the choice
of aspects of the cubics. To solve the prize problem, Schubert found it necessary
to incorporate the tangent lines with the points and the osculating planes.
(Such liberty to modifly the statement of the problem is granted by its words,
"which must be considered as elementary”, according to Zeuthen [1875], middle
of p. 153). Now, Theorem 1 1is proved by going one step further and employing
these two aspects: the points and the tangent planes. Currently, it is an open
problem to describe the geometric structure and the intersection ring of Schubert's
space. (In fact, there are two distinct spaces: one parametrizes the locus of
points, the locus of tangent lines, and the locus of osculating planes as
subschemes; the other parametrizes them as cycles. See Piene [1983], Sect. 4,

pp. 334-336.)

Secondly, Theorem 1 is proved without a determination of all of the
characteristic numbers of the nodal cubics in a variable plane. Only the number,
12960, of such cubics cutting 11 lines is necessary (see Sect. 3) and it may be
determinated directy ({see Sect. 6). Schubert too could have, in the same way,
made do with 12960 to find 5819539783680. However, he had a general interest

in finding geometric numbers. Moreover, his work rested logically on his own
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version of the (independent) work of Zeuthen (1873) and Maillard (1872) on the
determination of the characteristic numbers of the nodal cubics in a fixed plane,
and this groundwork does not support a separate and direct determination of

the number 12960.

The proof of Theorem 1 does not fit the traditional 20th century idea of how
to solve an enumerative problem:; no determination is made of the intersection
ring of a suitable complete, smooth variety of cubics. Rather, in Sect., 2, the
Contact Theorem is used much as Schubert used it, and it applies equally to
varieties of any dimension and degree. Thus Theorem 1 is reduced to Theorem 2,
which gives the characteristic numbers of the twisted cubics. Theorem 2 is then
established in Sect. 3 by considering certain intersection numbers of curves
and divisors on an appropriate open subscheme U of a component, H! , of

3,0,3
the Hilbert scheme,

The curves are defined by the 12 various combinations of 11 of the two
elementary conditions - to cut a general line, and to touch a general plane. In
Section 5, the curves are shown to be complete — this is a key result - by using
the Chow variety of the cubics' conormal cycles. Now the divisors' linear equivalence
classes satisfy 2 key relations, found by Schubert [1879]. (Relations 1) and
2) on p. 168 involve additional terms, but they vanish in the case at hand
according to the top of page 178.) The relations are established in Sect. 4.
They are stated in Lemma 1, Sect. 3 and used in Sect. 3 to reduce the determination
of the 13 characteristic numbers of the twisted cubics to the determination
of the single characteristic number, 12960, of the nodal cubics and that of
the 12 characteristic numbers of the unions of a smooth conic and a unisecant
line. These subsidiary characteristic numbers are determined in Sect. 6, resp.
Sect. 7, using a suitable compactification of the space of nodal cubics, resp.
of unions. The two compactifications are not directly related to any compac-—

tification of the space of twisted cubics.

Theorem 1 1is probably still valid in characteristic p > 3 . At any rate,
the proof works if p divides neither 5819539783680 nor any of the 13 characteristic

numbers of the twisted cubics; see Sect. 2. Moreover, a variation of the proof,
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described at the end of Sect. 3, shows that if p > 3 , then: (i) 5819539783680 is
the weighted number of cubics, (ii) the weights are all equal to the same power
q of p (so gq=1 if p } 5819539783680), (iii) each cubic touches each quadric
only once, and (iv) the intersection multiplicity at a point of contact is equal
to 2 if q = 1. This variation involves intersecting on U the 12 divisors of
cubics touching the quadrics, and it may be possible using a little deformation
theory to determine the tangent spaces of the divisors and to find conditions
to guarantee that they are independent. The conditions might be of this sort (cf.
Fulton [1984], Ex. 9.1.9, p. 158): no 2 quadrics are tangent, no 3 have more
than a finite number of common points or common tangent planes, no 4 have any

common point or tangent plane, etc.

Theorem 1 is, of course, only an example. It is a trivial matter now to
rigorously enumerate the twisted cubics that cut any ¢ curves and touch any s
surfaces, ¢+ s =12 , in general position, given the degree of each curve and
the degree and rank of each surface. (The rank of a smooth surface of degree
n , or one with only finitely many singular points, is n(n-1) ; see, for example,
Kleiman [1984], II-(9), II-(5). A little additional arithmetic yields the number,

and the present theory guarantees its significance.

A variation of the proof of Theorem 2 verifies Schubert's values for the
number of twisted cubics that pass through i general points, cut j general
lines, and touch 12-2i-j general planes for 0 < i <6 and 0 < j < 12-2i . The
modification is similar in spirit to that in Kleiman-Speiser [1984] , Sect. 8.
Vainsencher [1985] verified the cases i = 5,6 differently; he parametrized the

cubics via the pencils of quadrics through a variable line containing a fixed point.

The case i = 6 stands apart and may be handled by direct elementary means.
For i < 6 , consider the curve on U defined by the 1 points and by all but
one of the lines and planes. It is complete, because the closure in the Hilbert
scheme of the variety of twisted cubics through a general point cuts each orbit
in a set of codimension 2 or more. Applying the two key divisorial relations
in Lemma 1 then reduces the problem to determining the corresponding numbers

for the nodal cubics and for the conic-line cubics. Finally, Schubert's values for



160

the latter numbers may be verified by proceeding as in Sections 6 and 7 and

carrying the work further.

Some of Schubert's numbers involving the conditions to osculate a given
plane, to send an osculating plane through a given line, and to send a tangent
line through a given point now follow on considering the "strict" dual curve, the
curve in the dual IP3 parametrizing the osculating planes. However, it is still an
open problem to verify the remainder of Schubert's numbers such as these two:
the number 1146960 of cubics cutting 6 general lines and sending 6 osculating
planes through 6 other general 1lines, and the number 120 of twisted cubics that
touch 3 general lines and cut 3 others. And, of course, it is an open problem
to treat most other curves. (Coray and Vainsencher [1985] have proved that there
are 105 rational quintics through 10 general points by parametrizing the quintics
via pencils of cubic surfaces doubled along a common line.) So, with an eye
toward the future, an attempt has been made here to develop and use as many

general arguments as possible.

Assumption. From now on, the ground field will be algebraically closed of arbitrary

characteristic p , but p # 2,3

2. Reduction to theorem 2

Theorem 1 will now be reduced to Theorem 2 below. Then, at the end of this

section, the proof of Theorem 2 will be begun.

Theorem 2. For 1< m <13, Jlet Nm denote the mth characteristic number of
the twisted cubics, that {4, the weighted nunben that cut 13-m dines and touch
m-1 planes in general position. Then zhe Nm are just the numberns tabulated by

Schubert ([1879], middle of p. 178): 80160, 134400, 209760, etc.

Moreover, (i) each cubic counts in Nrn with the same weight q , and q, = 1
m
i£ p=0 on if pj’Nm,(szclque forn some e >0 Uf p >3 ; (ii) each
- 2

cubic cuts each of the 13-m lines at only one point, and it Zouches each of the
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m-1 planes ot ondy one point; and (iii) it 4is oasculated by none of zthe planes

4 _,
iL a

Indeed, Theorem 2 and the Contact Theorem (Fulton-Kleiman-MacPherson [1982],

pp. 161-2, or Kleiman [1984], III-(9)) yield
12 12 12
N = 2°7[80160 + ( | 1134400 + (71)209760 + ]

and a little arithmetic yields 5819539783680. (The arithmetic here and elsewhere
has all been double checked, so it may be said that Schubert made no arithmetic

mistake in determining N.)

The Contact Theorem agsserts a priori that the number N is finite and given
by the formula,
12
N= (L +r L +r L)
oo 11 22
The r, are the ranks of a general quadric, and it is well-known that r =2 for
i i
all i . (In fact, these 2's characterize the smooth quadric; see for example,
Kleiman [1984], II-(10)). The expression on the right is evaluated by expanding it
formally and replacing each monomial LJQL]JlLZJZ by the weighted number
o)
N(j ,jl,j ) of cubics passing through J points, cutting j] lines, and
o o

2

touching j2 planes. Also, N(j ,jl,jz) =0 if j > O ; this vanishing is part
o o

of the Contact Theorem too.

A twisted cubic is reflexive, because its dual variety is a surface of
degree 4 and because p#2 {apply, for example, Kleiman [1984], II-{16),
II-(2)(iv}), I-{(4)). So, the Contact Theorem yields this too: (1} each cubic

counts in N , resp. in N(j ,j2) , with the same weight q ; (2) g =1 if

o"jl
p=0, and q = pe for some e >0 if p > 3 ; (3) each cubic touches each
quadrics at only one point, resp. each cubic cuts each of the jl lines in
only one point, and it touches each of the j2 planes at only one point; (4) if

q=1 , then each «cubic intersects each quadric, resp. each plane, with

multiplicity 2 at the point of contact ((4) is a refinement added to the Contact



162

Theorem in Kleiman [1984], III-4, on the basis of Goldstein's theory (Goldstein

[1984], Sect.5; Kleiman [1984], III-1) of a generalized second fundamental form).

Assume p = O . Then, by (1), (2) and Theorem 2, all the q and qm are

equal to 1 . Hence, for all m ,
N(0,13-m,m-1) = N .
m

Thus, Schubert's value of N is verified on the basis of Theorem 2. Moreover,

(2), (3) and (4) yield the rest of Theorem 1.

Assume p > 3 . Then N(0,13-m,m-1) and Nm still count the same cubics,
but, a priori, possibly with different weights, q and qm say, because ‘the
technical setups of the counts are different. By Theorem 2, the value of Nm is
the same as it is when p = O . The value of N(0,13-m,m-1) may, on the other
hand, be less: it is less iff some of the cubics degenerate under the reduction to
characteristic " p (see Kleiman [1984], III-(5), paragraph before (13)). Hence
q =< a (in fact, q divides qm), and q = a iff no cubic in characteristic O

degenerates under reduction.

Suppose p does not divide Nm . Then, by Theorem 2, qm =1 . So, by the
above, q = qm , and no cubic degenerates under reduction. Suppose instead
that no cubic degenerates under reduction. Then q = qm by the above. In any
event, as before, whenever q = qm for all m , Schubert's value of N is

correct; moreover, the remaining assertions of Theorem 1 are valid if p | N .

Finally, if q =1, then q =1 because q < q . Hence, (3) and (4) yield
m - m

the assertions (ii) and (iii) of Theorem 2.

The first two assertions of Theorem 2 are reformulated as Theorem 2* in the
next section, and they are derived there from 4 lemmas. The proofs of the lemmas
are sketched in the subsequent sections. The general formal setup is introduced
in the next section. However, additional notation and hypotheses will vary from

one later section to the next.
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3. Reduction to 4 lemmas

3
Consider the irreducible component of the Hilbert scheme of P

H '

3,0,3

formed by closing the open subscheme representing the twisted cubics. It is

12-dimensional and smooth by Piene-Schlessinger [1982], Theorem, p. 761. The group
3

of linear transformations of P acts naturally on it, and there are finitely

many orbits. (The orbits are enumerated in Piene [1981] and in Harris [1982],

pp. 39-41.) The following three orbits and their union U play a major role

in what follows:

S := the orbit of a twisted cubic;

the orbit of an irreducible cubic with an ordinary node plus an embedded

A =

point situated at the node and not contained in the plane of the cubic;
B := the orbit of an union of a smooth conic and a unisecant line;
U := the union of S5 , A and B .

The remaining orbits fill out the boundaries of A and of B . S0, A and B

are the only orbits of codimension 1, and U is open.

Fix, once and for all, a line L and a plane H . Form the following 2 closed

subsets of U :

ZL := the closure of the set of twisted cubics cutting L ;
ZH := the closure of the set of twisted cubics touching H .
Then ZL and ZH are irreducible; in fact, ZL  {(resp. ZH) is the closure

of an orbit under the subgroup fixing L (resp. H).
— 1
Lemma 1. - 7he following two relations are valid in AU :
(1) 2[ZL] = 3[A]+[B]; (2) 3[2H] = 2[ZL]+2[B] .

A proof of Lemma 1 will be sketched in the next section. (Of course, analogous



164

relations hold on Hé 0.3 because the complement of U is of codimension 2.
bd ’

However, the relations are proved and used on U .)

Fix 12 general linear transformations: gl,...,glz

means that in each of the following 4 results, the 12-tuple of gi may be chosen

The term "general"

arbitrarily from a certain dense (=nonempty) open set, whose existence is

implicitly being asserted.

For 1 <m < 12 , form in U the following scheme intersection:
T := ZH) ... ZH) ... “ZL) ... ZL
N (g, ZH) (g ZH) (g ) (g12 )

Lemma 2. T L4 a complete cunve.

Lemma 3. f [Tl].[A] = 12960 , the number given by Schubert [1879], Zop p.178,

Lon the numben of nodal cubics meeting 11 lines.

Lemma 4. f [Tm}.[B] = 121440, 180240, 236160, etc., zhe nunbers given by Schubent
[1879], #op p. 178, fLon ithe numbers of unions of a conic and a unigecant Aine
cutting 12-m Lines and Zouching m-1 planes.

Theorem 2*. For 1 < m < 13, fown the sun of docal inteasection numbenrs,

N := [ [g2zH] ... [g

n 1 m_IZH].[ngL] oo (g 2L)

12

Then the Nm are: 80160, 134400, 209760, etc. Moreoven, the points of
intensection all lie in 8, and each docal intersection number is equal o 1 if
p =0 and, for fixed m , to the same power q of p 4L p >0 .

m

Proofs of the Lemmas 2-4 will be sketched in Sects. 5-7 respectively.
Theorem 2* may now be derived from the lemma as follows. Observe that
N = T ]. ZL d N = T ]. ZH

= 0T, 1-[e 7L] an el /It 1.lg 7H]

for 1 <m <12 . Now, Tm is complete by Lemma 2. Hence, Lemma 1 yields this:



2N =3 [Tm].[A] + f [Tm].[B] and
3N = 2Nm +2 f [Tm].[B] .

m+1

Therefore, Lemmas 3 and 4 yield this:

N1 = (3 x 12960 +121440)/2 = 80160 ,
N2 = 2(80160 + 180240)/3 = 134400 ,
N3 = 2(134400 + 236160)/3 = 209760 ,
etc.

The second assertion of Theorem 2* is a standard consequence of the general
theory of transversality of a general translate; see Kleiman [1974] and Vainsencher

[1978), (7.2).

A variation of the proof of Theorem 1 runs as follows. First, if the proof of
Lemma 1 is modified slightly about (4.5) and (4.6), then it yields this: Given a

surface G of degree n with only finitely many singularities, then

[2G] = n(n-1)[ZL] + n[ZH]

Secondly, the proof of Lemma 2 yields this: The intersection of 11 general

translates of Z2G , ZL and ZH is a complete curve. Finally, proceeding as

in the proof of Theorem 2* yields (without an appeal to the Contact Theorem)

statements (i) and (ii), which were asserted in the fifth paragraph after Theorem

1. Statements (iii) and {iv) there follow now from the reasoning in Sect. 2.

4. Proof of lemma 1

(In an earlier proof, the relations were derived from corresponding relations



166

on a lovely compactification of the scheme of maps from Pl to IP3 =: P(E) . The
compactification is the Quot scheme parametrizing the quotients of rank 1 and
degree 3 of Elpl . The corresponding relations are derived by identifying the
quotients corresponding to the nodal cubics and to the unions of a conic and a
unisecant line, and then computing some Chern classes. The basic setup is discussed

in Strgmme [1985].)
Consider the total space of the universal (flat) family.
3
CclP x U.

Let A' (resp. B') denote the set of points in the preimage of A (resp. of B)
that are singular in their fibers. Clearly, C is nonsingular off the union of

Al and Bt'. By Serre's criterion, C is reduced, and normal off A' . Obviously,

C 1is irreducible.
Consider the (birational) normalization map,
n: X~»2C
By the above, n 1is an isomorphism off n_lA' . Let

f:X+1U

be the canonical map. Then £ is flat; indeed, it is homogeneous, and flat

over the generic points of A and B , because X is integral and U is

nonsingular.
Let u be a geometric point of A , and consider the fiber of n
n(u) : X(u) » C(u)

It is finite, and an isomorphism over the nonsingular locus of C{u) . Moreover,

X(u) has no embedded points; indeed, this claim holds if wu 1is generic in A
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because X is normal and A is a divisor, so it holds if wu is arbitrary by

homogeneity. Hence X{u} is reduced and irreducible. Now, X(u) is of arithmetic
1

genus O , because f is flat. Therefore, X(u) is isomorphic to TP , and it is

equal to the normalization of C(u) a
re

Consider the following projection and invertible sheaf on X :
p. : C+P and L := n*p; (1)

For each geometric point u of U , the fiber L(u) 1is very ample on X(u) , and

1
H (L(u)) vanishes. Hence, by standard base-change theory, the direct image

is locally free of rank 4 on U , its formation commutes with base-change, the

natural map f*D + L 1is surjective, and the corresponding morphism
i: X+ P :=P(D)

is a closed embedding. In fact, i is a regular embedding of codimension 2,

because its fibers are so and because X and P are flat over U .

3
Consider the base-change-like map on U associated to pln X +P o,

o_3
v : H(P ,0(1)) & 0U + D .
Its formation commutes with passage to the fibers. So, v is an isomorphism off
3 1
A , because if u lies off A , then X(u} is linearly normal in P . In AU,
therefore, cl(D) is a multiple of [A] . In fact,

(4.1) [A] = ¢,D

1
because this equation holds after being pulled back to the parameter space, A ,

of the following family of cubics Xt in Pa
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3 2 2 2 2 3 1
Xt Pxg = tu” x = u(u ~v) , X, = viu -v ) , x3 =v , (u,v) EP
Consider the singular locus, Sing(f) , the subscheme of X defined by the
1
Fitting ideal F (QX/U) . Its formation commutes with base-change. Now,
(4.2) f,[sing(f)] = [B]

Indeed, it suffices to show that (4.2) holds after pullback to a suitable family
1
of cubics Xt , t €A ; the formation of the cycle [Sing(f)] commutes with

pullback because the higher tor's vanish. A suitable family is this:

2
: -t = - = - =0
Xt xox2 (xl) o, xox3 txlx2 o, xlx3 (x2)

(In fact, Sing(f) is smooth, because its pullback is. Hence f induces a map,
Sing (f) » B ,
and it is an isomorphism because its fibers are reduced points.)

Let J denote the ideal of the embedding i : X + P . Consider the standard

sequence,

(4.3) 0+ i*J i*Q > Q 0
T sy T ke

It is exact on the left, because it is so generically, i*J is locally free, and

X is reduced. Apply Porteous's formula. Then (4.2) yields this:

(4.4) (B] = e 0, -

Consider the closed subscheme VY := (pln)_lﬁ of X . Since X is integral,
Y is a divisor. Since X is regularly embedded in P , so is Y . Obviously, Y
does not contain either f_lA or f_lB . So Y is the set closure of its trace
on f_ls . This trace is clearly the set closure of an orbit under the subgroup

fixing H . Thus Y 1is irreducible and Cohen-Macaulay.
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Let g : Y+ U Dbe the restriction of f . Obviously, g 1is smooth on an

-1 -1
open subset of Y meeting both g A and g B .

Consider the ramification locus R of g ; it is the closed subscheme defined
o
by the Fitting ideal F QY/U . Because of the above, R is a divisor with no
- -1
component contained in g A or in g B . So R 1is the set closure of its trace

-1
on g S . Obviously, this trace dominates ZH , in fact,

(4.5) [zH] = g, [R] = 8,00y -

Indeed, as with (4.2), it suffices to check the first equation after pullback to

1 1
A for a suitable family of cubics Xt , t € A7 . A suitable family is this:

X, (% etx)x.—(x)° = 0 (x.+tx.) = 0 (x +tx_)% = 0
do(x_+tx )x_-(x =0, -X x ) =0, —(x_+ =0,
t 177 %37 R B A R AR B

provided the plane H 1is defined by x =0
To compute the c1 , consider the inclusion j Y+ X and the sequence

0+ 0 (-1) » j*0_ _+ga  +0
R R T

This sequence, (4.5) and the projection formula yield this:

. L R 2
(4.6) [2H]= £,4,d (clnx/U+c10X(1.)) = f*(clnx/u clOX(1)+clOX(1) ) .

Almost by definition,
(4.7) [zL] = f*(pln)*[L]

Indeed, the two sides obviously have the same support. So it remains to check
that the cycle on the right is reduced. To check it, fix a twisted cubic V that
cuts L once and is not tangent to it, fix a smooth gquadric that contains
V but not L , and on @ consider the complete linear system of V . Then, on

the projective space parametrizing the system, the trace of the cycle in question
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is equal to the trace of the cycle of the union of 2 distinct hyperplanes; whence,

it is reduced.
To proceed, use (4.3) and the projection formula to obtain this in A*P :
-1 .
'i*(ci*J)

s e T
=i, ((ci QP U)(c1 J) 7)) = cq

1,88y 0 / P/U

A formula of Mumford and Fulton (see Fulton [1984], 15.3.5, p.298, and 18.21,

p-353) now yields this:

(4.8) i cQ ' (1—ci*0x)

sy =
To find ci*C& , use the following resolution on P :
(4.9) 0 » (h*F)(-3) » (h*E)(-2) ~» 0p + i*OX + 0
where E , resp. F , is locally free on U of rank 3, resp. 2, and

h:P=+1U

is the structure map. Such a resolution exists on each fiber of P/U , and it

may be globalized as follows. Set
E := h J(2)

Then E is locally free of rank 3, its formation commutes with base-change, and
a : h*E + J(2)

is surjective by standard base-change theory. Set
F := h ker(a(l)) .

Then F is locally free of rank 2, its formation commutes with base-change, and
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h*F + ker(a(1))
is an isomorphism by base-change theory.
Work modulo elements in A*U of degree > 2 for convenience. Set
4 := ch ) e = clE(:ch) , and X = clOP(l)
Then (4.8) and 4.9) and a little "algebra" yields this:

2 2 2 3 3 3 4
i = (=ex+3x ) + (3dx -ex -2x ) + (dx -2ex +2x )

C
*“Ry 0

4
Since f = hi and h x = d , therefore (4.4), (4.6) and (4.7) yield this:

[B} = h*i*c2ﬂX/U = 3d-2e ;
[ZH] = h (x+i c @ + x2 i,eq , ) = 4d-2e ;
R NS 741 *“ox/u’ T '
[ZL]:f(cO(l))2=h(x2-icQ ) = 3d-e .
* 71X * *70 X/U

Finally, these formulas plus (4.1) readily yield the relations of Lemma 1.

5. Proof of lemma 2

Let I denote the graph of the point-plane incidence correspondence. Given
a subscheme V of ZPS , let CV' denote its conormal variety; that is, the closure
in I of the point-plane pairs (Q,M) such that Q is a simple point of
V  and such that M contains the tangent space TQV . Denote by V' the dual

3*
variety of V ; that is, V' is the image of CV in the dual projective space P .,

It is basic general fact in characteristic p = 0 (Kleiman [1983], Sect. 3)
that, given a specialization V =V* (that is, V 1is the generic fiber and V*

is the special fiber of a flat family over a discrete valuation ring), then the
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induced specialization CV = C* , is such that

[e*] =) gemylcu]

where (A} the W include every component of V* , (B) if W 1is a component that
is not multiple, then mW =1, and (C) if W is not a component, then it

lies in the singular locus of V*

If p >0 , the proceding result is not always valid. However, it is valid if
V and V¥ are reduced curves; a simple direct argument shows this. Moreover, in
the case at hand where V is a twisted cubic and p > 3 , the result is also
valid. Indeed, the proof of the general result works in this case; the separability
that is required holds, because, on the one hand, the degree of inseparability
is a power of p and, on the other hand, in the present case this degree can be

at most 3

Consider the subset of the Chow variety of I representing the "conormal

cycles [CV] of the twisted cubics V . Denote the normalization of the subset's

closure by T. Normalize in the function field of U (the open subscheme of
the Hilbert scheme), because, if p > 0 , then the natural map possibly is not
birational. Since U is smooth, there is an induced map, U+ T , and it is

clearly an open embedding.

x11
In the product I X5 , form the following set:

X := {x:=((Q1,M1),...,(Qll,Mll),V) | (Qi,Mi) in CV , and V in S}

Then X is a closed subvariety, because S parametrizes the flat family of all

x11
x

twisted cubics. Denote the closure of X in I T by X* ., Consider an

arbitrary point =x* of X* ; say,

x* = ((QI,M*),-.-,(Q’i‘l,MI ),c*)

1 1

Then x* 1is the specialization of a point x of X ; say
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X = ((Ql,Ml),-—-,(Qll,Mll),V)

Let Z* denote the cycle corresponding to c* , and C* its support. Then
(Qi,Mi) is in C* for all i . Consider the image Z' of Z* in ZP3 . Then 2!
is the specialization of the cycle [V'] of the dual variety V' of V . Hence,
c’ is of pure dimension 2 and of degree 4, because V' is. Let V* be a
corresponding specialization of V as a subscheme. In view of the facts discussed

above, it is clear that the only probabilities forthe cycle Z* are these:
(1) [cv*] if V* 1is twisted or nodal.
(2) [cv¢] + [cQ] if V* is cuspidal and Q is the cusp.

(3) [cw] + 2[cQ] if V* is the union of a smooth conic W and a unisecant

line L and if Q is the common point.

(4) [cv*] + {CQl} + [CQZ} + [CQE} + [CQA] if V* is a connected union of

3 distinct lines and if each Qi is the common point of 2 lines.

5 Cw cw C i v*] = [W 2{w

(5) [cw ]+ 2few,] + [cQ ] + [CQ,] + [ca ] + [cQ,]  if  [V*] = [W ] + 2[W,]
where the wi are distinct lines with a common point Q , say, and if
the Qi are suitable points on W2 , one which is equal to Q . (One

must be equal to Q because (' 1is a pure surface.)

(6) 3[cw] + [CQl] + [CQ2] + [CQS] + [CQA] if  [v*] = 3{w] and the Qi are

points on W .

In view of the above list, it is clear that, if C is any orbit on T whose

preimage in X* is of codimension 1, then C is equal to A or B . Now,
x11

for 1< 1i<11 , let P, ¢ I xT » I denote the projection onto the ith factor,

and consider the scheme intersection,

-1 -1 -1 -1
T* := ZCH) ... ( ZCH) . ZCL) ... ZCL) . X*
m (pl gl ) ‘pm—lgm—l ) (pm gm+l ) (p11g12 )
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Then, since gl,... are general, therefore T;l is a complete curve, which

’glz
does not meet the preimage of the complement of U . Consequently, T;‘l projects

onto Tm and Tm is a complete curve. Thus, Lemma 2 holds.

1
Remark. Let T' be any variety such that there exists a homogeneous birational
map T'+ T . For example, one obvious choice for T' would be Schubert's model:
it is normal and parametrizes the complete cubics with 3 aspects --- a cycle

of points, a cycle of tangent lines, and a cycle of osculating planes.

The closed preimages Z'H and Z'L of ZH and ZL contain no orbit on

T' as their images in T contain no orbit. So, as B yeeer8 are general,

1’ 12

the intersection,

Tm .o (glz‘H)-u(gm_lZ'H)‘(gnH Z'L)-..(gl2Z'L) ’

1

is a complete curve in T' that meets no orbit of codimension at least 2; also,

the trace of Tr'n on the open orbit is dense in Tl';l . Clearly, the preimage U’

of U maps isomorphically onto U , and the trace of T' on U' maps isomorphi-
m

cally onto T' . Hence, Lemma 2 is equivalent to the statement that Tr;‘ meets no

orbit on T' of codimension 1 other than the preimages of A and B .

Conceivably, the above statement could be checked directly on Schubert's
model. (Schubert [1879], top of p. 178, gives the impression that it can be).
However, to check it will require a good description of each of the codimension
1 orbits. Schubert described 11 of them, but possibly there are more; see Piene

[1983], Sect. 4.

6. Proof of lemma 3

The proof is, in part, similar to the verification of the number, 92, of

3
conics in TP meeting 8 lines that is given in Harris [1980] , p. 26, and in
Fulton [1983], Ex. 14.7.12, p. 275, and Ex. 3.2.22, p. 63. It is also, in part,

similar to the verification of the number, 12, of nodal cubics in a fixed plane
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meeting 8 points that is given in Sacchiero [1984].

3 3
Say P :=IP(E) , where E is a 3-dimensional vector space. Then P =

P(E*) . Denote the tautological sequence by

0+ R » E*:[P(E*) +Q ~0 ,
where rk(R) = 3 , rk(Q) =1 . Then P(R*) is the total space of the universal

family of planes of IPP(E). So ]P(SymBR) parametrizes the planar cubics in IP(E)
Let K denote the 2-dimensional subspace of E such that
L =P (E/K)
Consider the following composition of natural maps:

: K + vV + R* ,
P(E*) P(E*)

There exists a maximal open subset W of IP(E*) on which ¢ is injective
and cok{c) is invertible. In geometric terms, W is the subset of planes not

containing L . So the complement of W 1is of dimension 1. On W , moreover,

1

cok(c) = det(R*) 8 det(K) = = Q
because K and E are vector spaces.
The canonical map, R* + cok(c} , defines a section over W of P{R*) ; the

section assigns to a hyperplane its point of intersection with L . Hence, on the
3
preimage of W in P(Sym R) , the composition

3 ]
o 3_.(-1) > Sym R* cok(c) s

3 >
P(Sym R) P(Sym R)

vanishes precisely at the points representing cubics meeting L . The zero scheme

of the composition is obviously a reduced divisor (it is a hyperplane in each
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3 3 .
fibre of P{Sym R} over W). Now, the complement in ®P(Sym R) of the preimage
of W isof codimension 2, because the preimage of W is. Hence, if the closure of
this zero scheme is denoted by DL , then

83

[DL] = cl(Q ] QP(Sym3R)(]))

Note that DL is the divisor of all planar cubics meeting L .

3
Clearly DL contains no orbit on P(Sym R*) . So, transversality theory
applies. Let A’ denote the orbit of nodal cubics. Then, therefore, the
intersection of the eleven translates gZDL,...,glzDL and the closure of A' is

a finite set of points entirely contained in A'
Consider the third Veronese embedding,
P(R*) » 1P(Sym3R*) ,
form its normal sheaf, N say, and its conormal variety,

CP(R*) = IP(N 8 O (-1)) = P(N 8 O )(—3)) .

3
P(Sym R) P(R*

Then the natural map,
3
f : CIP(R¥*) - P(Sym R) ,
is birational onto its image. In fact, it is an isomorphism over A' .

There is a canonical isomorphism between A' and the orbit A on U .
Indeed, A' parametrizes a natural flat family of nodal cubics, and it is possible
to add an embedded point with 3-dimensional Zariski tangent space at each node
so that the resulting family is still flat. Therefore, there is a natural map,
A' » U , and it obviously factors through A . (The induced map, A' + A, is
obviously bijective; hence, in characteristic p=0 , it is an isomorphism,

alternatively because both source and target are smooth). Now, A parametrizes a
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flat family of nodal cubics with an embedded point at the node. Reducing the total
space yields, by homogeneity, a flat family of nodal cubics. So, there exists a

3
natural map A +IP(Sym R} , and it obviously factors through A' .

The isomorphism from A' to A identifies the pullback cycle [DL] . A' as
[ZL].A . Indeed, it is evident from the definition of DL that [DL] may be

described by a formula like (4.7); whence, the assertion.

Thus, to prove Lemma 3, it remains to compute this intersection number:

83 11
3 f [CIP(R*)].c 8 O 3 1) .
IHWSym R) « [CP(R®)] 1(Q P(Sym R)( )
It is not hard to compute it using standard methods - the projection formula, the
theory of Segre classes, and standard exact sequences - to lift the intersection

3*
up to CIP (R*) , then push it down to IP(R¥*) , then down to IP , and finally to

work it out. Thus Lemma 3 is proved.

7. Proof of lemma 4

The proof follows the lines indicated by Schubert [1879], pp. 99-100, and it
is similar to the verification of the characteristic numbers of the cubics of type

¢ in Sect. 6 of Kleiman-Speiser [1984].

Denote by B the (smooth) variety of complete conics in PS , and by 1 the
graph of the point-line incidence correspondence. Denote by Fo the subvariety
of B xI of elements (X,(P,M)) such that X is a nondegenerate conic, M is
a unisecant line, and P 1is the common point. Denote by F the closure of FO .

On F , consider the following divisors:

n := the pullback from B of the divisor of complete conics
cutting L
r := the pullback from B of the divisor of complete conics

touching H ;
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N := the pullback from 1N of the divisor of pairs (P,M) such

that M cuts L ;

R := the pullback from 1 of the divisor of pairs (P,M) such

that P 1lies in H .

The proof has 2 mains steps. The first is to prove that FO and B are

canonically isomorphic and that the following identifications obtain:

fzL].B = ([n}+[N]).FO and [2H].B = ([r‘]+2[R]).FO .

The idea is to proceed basically as in the corresponding part of the proof of
Lemma 3. Of course, when treating [ZH].B , it is necessary to consider the family

of the dual surfaces of the cubics and to use (3) of Sect. 5.
The second step is to determine the following intersection numbers:
J.[n] [P]J[N] [R] for  i+j+k+1l = 11

The idea is to use the knowledge of the intersection rings of 1 and of B (for

that of B , see Casas-Xambd [1985]). The determination is reduced via the
k 1

projection formula to finding the direct images on B of the N R and to

doing dome arithmetic. An example is worked out on p. 100 in Schubert [1879].

With these two steps carried out, the proof of Lemma 4 is easily completed
with another application of transversality theory and a little more arithmetic.

Thus, the verification of Schubert's number is accomplished.
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