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ABSTRACT. This sketch is fairly complete. The verification is completely 

reduced in Sects. 2-3 to proving 4 lemmas. Their proofs are sketched in 

Sects." 4-7, and the new ideas are emphasized. Also, the enumerative 

significance of the number is fully treated. 

1. INTRODUCTION 

On January 29, 1875, the royal Danish Academy awarded a gold medal to 

Hermann Schubert for his response to its 1873 prize problem, whose statement 

here is translated from the original Danish (Zeuthen [1875], p. 14): 

"To extend the theory of characteristics to systems of geometric entities 

formed by the points and the osculating planes of space curves of 

degree 3, and to determine the characteristics of the systems that must 

be considered as elementary". 

Schubert's work was published solely in his book, Schubert [1899] (see Lit. 

35, p.339). On p. 184, the treatment of twisted cubics culminates with the famous 

example, the determination of the number tangent to 12 quadrics. 
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The rigorous verification of Schubert's number has been aparticular challenge: 

twisted cubics are curves of higher degree and are not complete intersections. 

This paper announces the first successful response ; it sketches a complete 

proof of the following theorem. 

3 
Theorem I. ~iven 12 arnooth qaacgroic_a in 9 ~ l ~  p o a ~ o n  in  ~ over an. 

a lgabra icaZ l  ~ c losed  f~ieid o[ c h a r a c t e r i s t i c  0 , let N be the  number o f  ~ i s t a d  

cubic~ £a~gar~ to  a l l  12 . Then, ~u/J£ a/J 5cAubcal ~our~d, 

N = 5 8 1 9 5 3 9 7 8 3 6 8 0  

• oraovar, each. cubic  appac~  i n  ~ a  cour~ ~ i ~  ~e£9]~ 1 , and_ ~ Z r ~ e ~ a c ~  aach 

quacb~,c i n  5 p o i n l a :  4 ~ ~ p l i c i ~  1 , and 1 ~ iAA m a l i i p l i c i i ~  2 . 

The spirit of the proof of Theorem ] is essentially that of Schubert's 

treatment, but there are 2 notable modifications. The first concerns the choice 

of aspects of the cubics. To solve the prize problem, Schubert found it necessary 

to incorporate the tangent lines with the points and the osculating planes. 

(Such liberty to modifly the statement of the problem is granted by its words, 

"which must be considered as elementary", according to Zeuthen [1875] , middle 

of p. 155). Now, Theorem 1 is proved by going one step further and employing 

these two aspects: the points and the tangent planes. Currently, it is an open 

problem to describe the geometric structure and the intersection ring of Schubert's 

space. (In fact, there are two distinct spaces: one parametrizes the locus of 

points, the locus of tangent lines, and the locus of osculating planes as 

subschemes; the other parametrizes them as cycles. See Piene [1983], Sect. 4, 

pp. 3 3 4 - 3 3 6 . )  

Secondly, Theorem 1 is proved without a determination of all of the 

characteristic numbers of the nodal cubics in a variable plane. Only the number, 

12960, of such cubics cutting 11 lines is necessary (see Sect. 3) and it may be 

determinated directy (see Sect. 8). Schubert too could have, in the same way, 

made do with 12960 to find 5819539783680. However, he had a general interest 

in finding geometric numbers. Moreover, his work rested logically on his own 
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version of the (independent) work of Zeuthen (1873) and Maillard (1872) on the 

determination of the characteristic numbers of the nodal cubics in a fixed plane, 

and this groundwork does not support a separate and direct determination of 

the number 12960. 

The proof of Theorem 1 does not fit the traditional 20th century idea of how 

to solve an enumerative problem: no determination is made of the intersection 

ring of a suitable complete, smooth variety of cubics. Rather, in Sect. 2, the 

Contact Theorem is used much as Schubert used it, and it applies equally to 

varieties of any dimension and degree. Thus Theorem 1 is reduced to Theorem 2, 

which gives the characteristic numbers of the twisted cubics. Theorem 2 is then 

established in Sect. 3 by considering certain intersection numbers of curves 

i and divisors on an appropriate open subscheme U of a component, H3,0, 3 , of 

the Hilbert scheme. 

The curves are defined by the 12 various combinations of ii of the two 

elementary conditions - to cut a general line, and to touch a general plane. In 

Section 5, the curves are shown to be complete - this is a key result - by using 

the Chow variety of the oubics' conormal cycles. Now t~e divisors' linear equivalence 

classes satisfy 2 key relations, found by Schubert [1879]. (Relations i) and 

2) on p. 168 involve additional terms, but they vanish in the case at hand 

according to the top of page 178.) The relations are established in Sect. 4. 

They are stated in Lemma 1, Sect. 3 and used in Sect. 3 to reduce the determination 

of the 13 characteristic numbers of the twisted cubics to the determination 

of the single characteristic number, 12960, of the nodal cubics and that of 

the 12 characteristic numbers of the unions of a smooth conic and a unisecant 

line. These subsidiary characteristic numbers are determined in Sect. 6, resp. 

Sect. 7, using a suitable compactification of the space of nodal cubics, resp. 

of unions. The two compactifications are not directly related to any compac- 

tification of the space of twisted cubics. 

Theorem 1 is probably still valid in characteristic p > 3 . At any rate, 

the proof works if p divides neither 5819539783680 nor any of the 13 characteristic 

numbers of the twisted cubics; see Sect. 2. Moreover, a variation of the proof, 
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described at the end of Sect. 3, shows that if p > 3 , then: (i) 5819539783680 is 

the weighted number of cubics, (ii) the weights are all equal to the same power 

q of p (so q = 1 if p ~ 5819539783680), (iii) each cubic touches each quadric 

only once, and (iv) the intersection multiplicity at a point of contact is equal 

to 2 if q = i. This variation involves intersecting on U the 12 divisors of 

cubics touching the quadrics, and it may be possible using a little deformation 

theory to determine the tangent spaces of the divisors and to find conditions 

to guarantee that they are independent. The conditions might be of this sort (cf. 

Fulton [1984] , Ex. 9.1.9, p. 158): no 2 quadrics are tangent, no 3 have more 

than a finite number of common points or common tangent planes, no d have any 

common point or tangent: plane, etc. 

Theorem 1 is, of course, only an example. It is a trivial matter now to 

rigorously enumerate the twisted cubics that cut any c curves and touch any s 

surfaces, c + s = 12 , in general position, given the degree of each curve and 

the degree and rank of each surface. (The rank of a smooth surface of degree 

n , or one with only finitely many singular points, is n(n-1) ; see, for example, 

Kleiman [1984], II-(9), II-(5). A little additional arithmetic yields the number, 

and the present theory guarantees its significance. 

A variation of the proof of Theorem 2 verifies Schubert's values for the 

number of twisted cubics that pass through i general points, cut j general 

lines, and touch 12-2i-j general planes for 0 < i < 6 and 0 < j < 12-2i . The 

modification is similar in spirit to that in Kleiman-Speiser [1984] , Sect. 8. 

Vainsencher [1985] verified the cases i = 5,6 differently; he parametrized the 

cubics via the pencils of quadrics through a variable line containing a fixed point. 

The case i = 6 stands apart and may be handled by direct elementary means. 

For i < 6 , consider the curve on U defined by the i points and by all but 

one of the lines and planes. It is complete, because the closure in the Hilbert 

scheme of the variety of twisted cubics through a general point cuts each orbit 

in a set of codimension 2 or more. Applying the two key divisorial relations 

in Lemma 1 then reduces the problem to determining the corresponding numbers 

for the nodal cubics and for the conic-line cubics. Finally, Schubert's values for 
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the latter numbers may be verified by proceeding as in Sections 6 and 7 and 

carrying the work further. 

Some of Schubert's numbers involving the conditions to osculate a given 

plane, to send an osculating plane through a given line, and to send a tangent 

line through a given point now follow on considering the "strict" dual curve, the 

curve in the dual 3 parametrizing the osculating planes. However, it is still an 

open problem to verify the remainder of Schubert's numbers such as these two: 

the number 1146960 of cubics cutting 6 general lines and sending 6 osculating 

planes through 6 other general lines, and the number 120 of twisted cubics that 

touch 3 general lines and cut 3 others. And, of course, it is an open problem 

to treat most other curves. (Coray and Vainsencher [1985] have proved that there 

are 105 rational quintics through i0 general points by parametrizing the quintics 

via pencils of cubic surfaces doubled along a common line.) So, with an eye 

toward the future, an attempt has been made here to develop and use as many 

general arguments as possible. 

Assumption. From now on, the ground field will be algebraically closed of arbitrary 

characteristic p , but p ~ 2,3 . 

2. Reduction to theorem 2 

Theorem 1 will now be reduced to Theorem 2 below. Then, at the end of this 

section, the proof of Theorem 2 will be begun. 

Theorem 2. Fo~ 1 < m < 13 , ~e~! N der~o£e the ruth c]~arac;d~kia n.amber of. 
- - m 

£he £zpis ted c.zzbic.~, £ha£ i z ,  £hg ~ e i ~ e d  rugnber £Aa~ cu£ 13-m I L ~  and £oach 

m-1 pla~ ~z 9e_rt~'~z$. pos i£ io tz .  Then £Ae N are  ~a~£ £Ae ~ b ~  £ a b ~ a ~  b~ 
m 

S c h u b e r t  ( [1879] ,  midaSLe o~ p. 178):  80160, 134400, 209760, e t c .  

/~oreov~, (i) each aabic coar¢~ ~ N ~£XA £he da~e ~ei@4~i q , and q = 1 
m m m 

e 
i# p = 0 or i# p f Nm ' arLd qm = p for dome e _> 0 i# p > 3 ,' (i i) eaah 

cazbia caZ4 each o~ ~he i3-m 2kcze4 aX only orze pokn~, a~d £I 2oaahe4 each o~ the 
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m-i pZCl~J5 Ot on~ ona poiFz~; (~zd ( i i i )  ~ ~ O-]C/ZI~ b~Z rLorZ£ o~ a~a p~o~z~ 

i£ q : I . 
m 

Indeed, Theorem 2 and the Contact Theorem (Fulton-Kleiman-MacPherson [1982], 

pp. 161-2, or Kleiman [1984], III-(9)) yield 

212180160 12 1 /  N = + ( l )134400 + ( )209760  + . . . ]  , 

and a little arithmetic yields 5819539783680. (The arithmetic here and elsewhere 

has all been double checked, so it may be said that Schubert made no arithmetic 

mistake in determining N.) 

The Contact Theorem asserts a priori that the number N is finite and given 

by the formula, 

12 
N = (roLo+rlL]+r2L2) 

The r are the ranks of a general quadric, and it is well-known that r = 2 for 
i i 

all i . (In fact, these 2's characterize the smooth quadric; see for example, 

Kleiman [1984], II-(lO)). The expression on the right is evaluated by expanding it 

formally and replacing each monomial L J°L JlL J2 by the weighted number 
o ] 2 

N(j ,jl,J2 ) of cubics passing through j points, cutting j] lines, and 
o o 

touching J2 planes. Also, N(Jo,Jl,J2) = 0 if Jo > 0 ; this vanishing is part 

of the Contact Theorem too. 

A twisted cubic is reflexive, because its dual variety is a surface of 

degree 4 and because p ~ 2 {apply, for example, Kleiman [1984], II-(]6), 

ll-(2)(iv), I-(4)). So, the Contact Theorem yields this too: (I) each cubic 

counts in N , resp. in N(Jo,Jl,J2) , with the same weight q ; (2) q = 1 if 

p - 0 , and q : pe for some e > 0 if p > 3 ; (3) each cubic touches each 

quadrics at only one point, resp. each cubic cuts each of the Jl lines in 

only one point, and it touches each of the J2 planes at only one point; (4) if 

q = 1 , then each cubic intersects each quadric, resp. each plane, with 

multiplicity 2 at the point of contact ((4) is a refinement added to the Contact 
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Theorem in Kleiman [1984], III-4, on the basis of Goldstein's theory (Goldstein 

[1984], Sect.5; Kleiman [1984], III-l) of a generalized second fundamental form). 

Assume p = 0 . Then, by (1), (2) and Theorem 2, all the 

equal to 1 . Hence, for all m , 

q and q are 
m 

N ( O , 1 3 - m , m - l )  = N 
m 

Thus, Schubert's value of N is verified on the basis of Theorem 2. Moreover, 

(2), (3) and (4) yield the rest of Theorem ]. 

Assume p > 3 . Then N(O,13-m,m-l) and N still count the same cubics, 
m 

but, a priori, possibly with different weights, q and q say, because .the 
m 

technical setups of the counts are different. By Theorem 2, the value of N is 
m 

the same as it is when p = 0 . The value of N(O,13-m,m-l) may, on the other 

hand, be less: it is less iff some of the cubics degenerate under the reduction to 

characteristic p (see Kleiman [1984], III-(5), paragraph before (13)). Hence 

q < q (in fact, q divides q ), and q = q iff no cubic in characteristic 0 
- -  m m m 

degenerates under reduction. 

Suppose p does not divide N . Then, by Theorem 2, q = 1 . So, by the 
m m 

above, q = q , and no cubic degenerates under reduction. Suppose instead 
m 

that no cubic degenerates under reduction. Then q = q by the above. In any 
m 

event, as before, whenever q = qm for all m , Schubert's value of N is 

correct; moreover, the remaining assertions of Theorem 1 are valid if p ~ N . 

Finally, if q = 1 , then q = 1 because q ~ q . Hence, (3) and (4) yield 
m m 

the assertions (ii) and (iii) of Theorem 2. 

The first two assertions of Theorem 2 are reformulated as Theorem 2* in the 

next section, and they are derived there from d lemmas. The proofs of the lemmas 

are sketched in the subsequent sections. The general formal setup is introduced 

in the next section. However, additional notation and hypotheses will vary from 

one later section to the next. 
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3. Reduction to 4 lemmas 

3 
Consider the irreducible component H' of the Hilbert scheme of 

3,0,3 

formed by closing the open subscheme representing the twisted cubics. It is 

12-dimensional and smooth by Piene-Schlessinger [1982], Theorem, p. 761. The group 

of linear transformations of 3 acts naturally on it, and there are finitely 

many orbits. (The orbits are enumerated in Piene [1981] and in Harris [1982], 

pp. 39-41.) The following three orbits and their union U play a major role 

in what follows: 

S := the orbit of a twisted cubic; 

A := the orbit of an irreducible cubic with an ordinary nods plus an embedded 

point situated at the node and not contained in the plane of the cubic; 

B := the orbit of an union of a smooth conic and a unisecant line; 

U := the union of S , A and B . 

The remaining orbits fill out the boundaries of A and of B . So, A and B 

are the only orbits of codimension i, and U is open. 

Fix, once and for all, a line L and a plane H . Form the following 2 closed 

subsets of U : 

ZL := the closure of the set of twisted cubics cutting L ; 

ZH := the closure of the set of twisted cubics touching H . 

Then ZL and ZH are irreducible; in fact, ZL (resp. ZH) is the closure 

of an orbit under the subgroup fixing L (resp. H). 

1 
Lemma i. TAe followin 9 c-too ~zelalion~ one valid in A U : 

(1) 2[ZL] : 3[A]+[B]; (2) 3[ZH] : 2[ZL]+2[B] . 

A proof of Lemma 1 will be sketched in the next section. (Of course, analogous 
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relations hold on H' because the complement of 
3,0,3 

However, the relations are proved and used on U .) 

U is of codimension 2. 

Fix 12 general linear transformations: gl,...,gl2 . The term "general" 

means that in each of the following 4 results, the 12-tuple of gi may be chosen 

arbitrarily from a certain dense (=nonempty) open set, whose existence is 

implicitly being asserted. 

For I < m < 12 , form in U the following scheme intersection: 

T m := (glZH) . . .  (gm_]ZH) . . .  (gm+iZL) ... (gl2ZL) 

Lemma 2. T £4 a compleie curve. 
m 

Le.~ma 3 .  f [ T 1 ] . [ A ]  = 1 2 9 6 0  , / h e  ruzrabe~z ~ziven b~ Schuber t  [ 1879 ] ,  £op 

#or i/ze ruzraber or nodaf_ cubic~ meeZin 9 11 f .Zaes .  

p. 178, 

Lemma 4 .  

[ 1 8 7 9 ] ,  

C u 2 2 k ~  

I [T ] . [ B ]  = 121440, 180240, 236160, e t c . ,  / h e  ru lmb~e ~Lv~z by: 5cJ~be4Z 
m 

top  p. 178, /~or / h e  n/z, nbo_j:,_.d o/~ /./n.ion_.d o r  (7. c o n i c  cz/zd cz un . /~ecan . /  .J.A2ne 

12-m .g./z~e.4 o n d  i o a c h / a ~ ,  m-1 p./_an_e~. 

Theorem 2 " .  Yor  1 < m < 13 , [ o ~  / h e  4um o r  l o c a l  inlo_~declion rucmben4, 

N m := I [ g l  ZH] . . .  [ gm_ lZH] . [gmZL]  . . .  [ g l 2 Z L ]  • 

2-Ae3% / h e  N cute: 80160, 134400, 209760, e t c .  /~c,.,zeove2_, ~J'Le poJ~5~ o# 
m 

in te~z4ec~on a l l  ZLe i n  S , and each local in/ce,,v~eciiorz numbe~z Z~ equal  ;to 1 i~ 

p = 0 an_d, For ~6xed m , £o /he dame powe~z qm o# p i~ p > 0 . 

Proofs of the Lemmas 2-4 will be sketched in Sects. 5-7 respectively. 

Theorem 2 ~ may now be derived from the lemma as follows. Observe that 

N m = I[Tm].[gmZL ] and  Nm+ 1 = I[Tm].[gmZH] 

for i < m < 12 . Now, T is complete by Lemma 2. Hence, Lemma 1 yields this: 
m 
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2Nm = 3 I [Tm].[A] + I [Tm].[B] and 

3Nm+ 1 = 2Nm + 2 f [Tin] . [ B ]  

Therefore, Lemmas 3 and 4 yield this: 

N = (3 x 12960 + 1 2 1 4 4 0 ) / 2  = 80160 , 
1 

N = 2 ( 8 0 1 6 0  + 1 8 0 2 4 0 ) / 3  = 134400 , 
2 

N = 2 ( 1 3 4 4 0 0  + 2 3 6 1 6 0 ) / 3  = 209760 , 
3 

etc. 

The second assertion of Theorem 2* is a standard consequence of the general 

theory of transversality of a general translate; see Kleiman [1974] and Vainsencher 

[1978], (7 .2 ) .  

A variation of the proof of Theorem 1 runs as follows. First, if the proof of 

Lemma 1 is modified slightly about (4.5) and (4.6), then it yields this: Given a 

surface G of degree n with only finitely many singularities, then 

[ZG] = n(n-l)[ZL] + n[ZH] 

Secondly, the proof of Lemma 2 yields this: The intersection of ii general 

translates of ZG , ZL and ZH is a complete curve. Finally, proceeding as 

in the proof of Theorem 2* yields (without an appeal to the Contact Theorem) 

statements (i) and (ii), which were asserted in the fifth paragraph after Theorem 

I. Statements (iii) and (iv) there follow now from the reasoning in Sect. 2. 

4 .  P r o o f  o f  lemma 1 

(In an earlier proof, the relations were derived from corresponding relations 
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1 ]p3 
on a lovely compactification of the scheme of maps from Im to =: ]P(E) . The 

compactification is the Quot scheme parametrizing the quotients of rank 1 and 

degree 3 of E 1 . The corresponding relations are derived by identifying the 

quotients corresponding to the nodal cubies and to the unions of a conic and a 

unisecant line, and then computing some Chern classes. The basic setup is discussed 

in Str~mme [1985] .) 

Consider the total space of the universal (flat) family. 

3 
C~]P × U . 

Let A' (resp. B') denote the set of points in the preimage of A (resp. of B) 

that are singular in their fibers. Clearly, C is nonsingular off the union of 

A' and B'. By Serre's criterion, C is reduced, and normal off A' . Obviously, 

C is irreducible. 

Consider the (birational) normalization map, 

n : X÷ C . 

By the above, n is an isomorphism off n-iA ' . Let 

f : X÷ U 

be the canonical map. Then f 

over the generic points of A 

nonsingular. 

is flat; indeed, it is homogeneous, and flat 

and B , because X is integral and U is 

Let u be a geometric point of A , and consider the fiber of n , 

n(u) : X(u) ~ C(u) . 

It is finite, and an isomorphism over the nonsingular locus of C(u) . Moreover, 

X(u) has no embedded points; indeed, this claim holds if u is generic in A 
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because X is normal and A is a divisor, so it holds if u is arbitrary by 

homogeneity. Hence X(u) is reduced and irreducible. Now, X(u) is of arithmetic 

1 
genus 0 , because f is flat. Therefore, X(u) is isomorphic to ~ , and it is 

equal to the normalization of C(U)re d 

Consider the following projection and invertible sheaf on X : 

3 
Pl : C ÷ ]P and L :: n~Pl ~ 0(i) 

For each geometric point u of U , the fiber L(u) is very ample on X(u) , and 

HI(L(u)) vanishes. Hence, by standard base-change theory, the direct image 

D := f.L 

is locally free of rank 4 on U , its formation commutes with base-change, the 

natural map f*D ~ L is surjective, and the corresponding morphism 

i : X ~ P :=]P(D) 

is a closed embedding. In fact, i is a regular embedding of codimension 2, 

because its fibers are so and because X and P are flat over U . 

3 
Consider the base-change-like map on U associated to pl n : X + ]P I 

v : H°(IP 3, 0(i)) ~ OU + D . 

Its formation commutes with passage to the fibers. So, v Is an isomorphism off 

3 1 
A , because if u lies off A , then X(u) is linearly normal in ~ . In A U , 

therefore, Cl(D ) is a multiple of [A] . In fact, 

(4.1) [A] : ClD 

i 
because this equation holds after being pulled back to the parameter space, A , 

of the following family of cubics X in ]p3 : 
t 
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= 3 3 1 
X t : x 0 tu , x I = u(u2-v 2) , x2 = v(u2-v 2) , x3 = v , (u,v) C ]P . 

Consider the singular locus, Sing(f) , the subscheme of X defined by the 

Fitting ideal FI(~x/u ) . Its formation commutes with base-change. Now, 

( 4 . 2 )  f [ S i n g ( f ) ]  = [B]  

Indeed, it suffices to show that (4.2) holds after pullback to a suitable family 

] 
of cubics X , t 6 A ; the formation of the cycle [Sing(f)] commutes with 

t 

pullback because the higher tor's vanish. A suitable family is this: 

X t : XoX2-t(xl )2 = 0 , XoX3-txlx 2 = 0 , xlx3-(x2 )2 = 0 

(In fact, Sing(f) is smooth, because its pullback is. Hence f induces a map, 

Sing (f) + B , 

and it is an isomorphism because its fibers are reduced points.) 

Let J denote the ideal of the embedding i : X ÷ P . Consider the standard 

sequence, 

i~P + ~X ÷ 0 . (4.3) 0 ~ i~J ~ /U /U 

It is exact on the left, because it is so generically, i~J is locally free, and 

X is reduced. Apply Porteous's formula. Then (4.2) yields this: 

( 4 . 4 )  [B]  = f . C 2 ~ x / U  . 

Consider the closed subscheme Y := (Pln)-iH of X . Since X is integral, 

Y is a divisor. Since X is regularly embedded in P , so is Y . Obviously, Y 

f -1  A -1 does not contain either or f B . So Y is the set closure of its trace 

on f-Is . This trace is clearly the set closure of an orbit under the subgroup 

fixing H . Thus Y is irreducible and Cohen-Macaulay. 
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Let g : Y ÷ U be the restriction of f . Obviously, g 

-i -i 
open subset of Y meeting both g A and g B . 

is smooth on an 

Consider the ramification locus R of g ; it is the closed subscheme defined 

o 
by the Fitting ideal F ~YIU, " Because of the above, R is a divisor with no 

-1 -] 
component contained in g A or in g B . So R is the set closure of its trace 

-i 
on g S . Obviously, this trace dominates ZH , in fact, 

(4.5) [ZH] = g~[R] = g cl£y/U . 

Indeed, as with (4.2), it suffices to check the first equation after pullback to 

i 1 
A for a suitable family of cubics X , t 6 A . A suitable family is this: 

t 

X t : (xl+tx3)x3-(x2)2 = 0 , XoX3-X2(Xl+tx 3) = 0 , XoX2-(xl+tx3) 2 = 0 , 

provided the plane H is defined by x I = 0 . 

To compute the c , consider the inclusion j : Y ÷ X and the sequence 
1 

o ~ 0¥.(-i) * J~x/u * ~Y/u + o . 

This sequence, (4.5) and the projection formula yield this: 

(4.6) [zH]= f j~j*(Cl~x/u+ClO(~)) = f (cl~x/u ClOx(1)+ClOx(1)2) 

Almost by definition, 

(4.7) [ Z L ]  = f . ( P l n ) ~ [ L ]  . 

Indeed, the two sides obviously have the same support. $o it remains to check 

that the cycle on the right is reduced. To check it, fix a twisted cubic V that 

cuts L once and is not tangent to it, fix a smooth quadric that contains 

V but not L , and on Q consider the complete linear system of V . Then, on 

the projective space parametrizing the system, the trace of the cycle in question 
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is equal to the trace of the cycle of the union of 2 distinct hyperplanes; whence, 

it is reduced. 

To proceed, use (4.3) and the projection formula to obtain this in A*P : 

i.Cnx/U = i.((ci*np/u)(Ci*j)-l) = Cnp/U • i.(ci*J) -I • 

A formula of Mumford and Fulton (see Fulton [1984] , 15.3.5, p.298, and 18.21, 

p.353) now yields this: 

(4.8) i.C~x/U = cnp/u. (l-ci.Ox) . 

To find ci.% , use the following resolution on P : 

(4.9) 0 ÷ (h'F)(-3) ÷ (h'E)(-2) + Op + i.% ÷ 0 

where E , resp. F , is locally free on U of rank 3, resp. 2, and 

h : P ÷ U 

is the structure map. Such a resolution exists on each fiber of P/U , and it 

may be globalized as follows. Set 

E := h.J(2) . 

Then E is locally free of rank 3, its formation commutes with base-change, and 

a : h*E ÷ J(2) 

is surjective by standard base-change theory. Set 

F := h.ker(a(1)) . 

Then F is locally free of rank 2, its formation commutes with base-change, and 
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h*F + ker(a(1)) 

is an isomorphism by base-change theory. 

Work modulo elements in A*U of degree > 2 for convenience. Set 

d := ClD , e := clE(=ClF) , and x := ClOp(1) . 

Then (4.8) and (4.9) and a little "algebra" yields this: 

Since f = hi 

1.C~x/U = 

4 
and h x 

(-ex+3x 2) + (3dx2-ex2-2x 3) + (dx3-2ex3+2x 4) . 

= d , therefore (4.4), (4.6) and (4.7) yield this: 

[B] = h i.C2~x/U = 3d-2e ; 

2 
[ZH] = h.(x'i.Clnx/U + x • i.Conx/U) = 4d-2e ; 

[ZL] = f (ci%(i))2 = h (x 2 • i CO~X/U) = 3d-e . 

Finally, these formulas plus (4.1) readily yield the relations of Lemma i. 

5. Proof of lemma 2 

Let I denote the graph of the point-plane incidence correspondence. Given 

a subscheme V of 3 , let CV' denote its conormal variety; that is, the closure 

in I of the point-plane pairs (Q,M) such that Q is a simple point of 

V and such that M contains the tangent space T V . Denote by V' the dual 

Q 3* 
variety of V ; that is, V' is the image of CV in the dual projective space 

It is basic general fact in characteristic p = 0 (Kleiman [1983], Sect. 3) 

that, given a specialization V ~V* (that is, V is the generic fiber and V* 

is the special fiber of a flat family over a discrete valuation ring), then the 
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induced specialization CV ~C* , is such that 

[C*] =EW< v.mw[CW] 

where (A) the W include every component of V* , (B) if W is a component that 

is not multiple, then m = 1 , and (C) if W is not a component, then it 
W 

lies in the singular locus of V ~ . 

If p > 0 , the proceding result is not always valid. However, it is valid if 

V and V * are reduced curves; a simple direct argument shows this. Moreover, in 

the case at hand where V is a twisted cubic and p > 3 , the result is also 

valid. Indeed, the proof of the general result works in this case; the separability 

that is required holds, because, on the one hand, the degree of inseparability 

is a power of p and, on the other hand, in the present case this degree can be 

at most 3 . 

Consider the subset of the Chow variety of I representing the "conormal" 

cycles [CV] of the twisted cubics V . Denote the normalization of the subset's 

closure by T. Normalize in the function field of U (the open subscheme of 

the Hilbert scheme), because, if p > 0 , then the natural map possibly is not 

birational. Since U is smooth, there is an induced map, U + T , and it is 

clearly an open embedding. 

xll 
In the product I xS , form the following set: 

X := {x:=((QI,MI) ..... (QII,MII), V) I (Qi,Mi) in CV , and V in S} 

Then X is a closed subvariety, because S parametrizes the flat family of all 

twisted cubics. Denote the closure of X in IXllxT by X* Consider an 

arbitrary point x * of X* ; say, 

x* = ((n~ M*~ (n~ M* ~1 '  1 ' " ' "  ) , c * )  . " ~ 1 1 '  11 

Then x* is the specialization of a point x of X ; say 
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x = ( ( Q 1 , M Z )  . . . . .  ( Q l l , M l l ) , V )  . 

Let Z* denote the cycle corresponding to c* , and C* its support. Then 

3 
(Q.,M.) is in C* for all i . Consider the image Z' of Z ~ in ]P . Then Z' 

1 I 

is the speciaIization of the cycle [V'] of the dual variety V' of V . Hence, 

C' is of pure dimension 2 and of degree 4, because V' is. Let V* be a 

corresponding specialization of V as a subscheme. In view of the facts discussed 

above, it is clear that the only probabilities forthe cycle Z* are these: 

(1) [CV*] if V ~ is twisted or nodal. 

(2) [CV*] + [CQ] if V* is cuspidal and Q is the cusp. 

(3) [CW] + 2[CQ] if V ~ is the union of a smooth conic W and a unisecant 

line L and if Q is the common point. 

(4) [CV*] + [CQ1] + [CQ2] + [CO3] + [CO4] i f  V* is  a connected union o f  

3 distinct lines and if each Qi is the common point of 2 lines. 

(5) [CW1] + 2[CW2] + [CQ1] + [CO2] + [CQ3] + [CO4] i f  [V ~] : [W1] + 2[W2] 

where the W are distinct lines with a common point Q , say, and if 
i 

the Qi are suitable points on W 2 , one which is equal to Q . (One 

must be equal to Q because C' is a pure surface.) 

(6) 3[CW] + [CO1] + [CO2] + [CQ3] + [CQ4] 

points on W . 

if [V*] = 3[W] and the Q. are 
1 

In view of the above list, it is clear that, if C is any orbit on T whose 

preimage in X ~ is of codimension ], then C is equal to A or B . Now, 

xll 
for 1 < i < II , let Pi : I xT + I denote the projection onto the ith factor, 

and consider the scheme intersection, 

T m = !Pm igmlZ0,   P Igm+IZCL  
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Then, since gl,...,gl2 are general, therefore T*m is a complete curve, which 

does not meet the p r e i m a g e  o f  t h e  c o m p l e m e n t  o f  U . C o n s e q u e n t l y ,  T* p r o j e c t s  
m 

onto Tm, and Tm is a complete curve. Thus, Lemma 2 holds. 

Remark. Let T' be any variety such that there exists a homogeneous birational 

map T' + T . For example, one obvious choice for T' would be Schubert's model: 

it is normal and parametrizes the complete cubics with 3 aspects --- a cycle 

of points, a cycle of tangent lines, and a cycle of osculating planes. 

The closed preimages 

T' as their images in T 

the intersection, 

Z'H and Z'L of ZH and ZL contain no orbit on 

contain no orbit. So, as gl,...,gl2 are general, 

T'm := (glZ'H)'''(gm-iZ'H)'(gm+iZ'L)'''(gl2 Z'L) , 

is a complete curve in T' that meets no orbit of codimension at least 2; also, 

the trace of T' on the open orbit is dense in T' . Clearly, the preimage U' 
m m 

of U maps isomorphically onto U , and the trace of T' on U' maps isomorphi- 
m 

cally onto T' . Hence, Lemma 2 is equivalent to the statement that T' meets no 
m 

orbit on T' of codimension 1 other than the preimages of A and B . 

Conceivably, the above statement could be checked directly on Schubert's 

model. (Schubert [1879] , top of p. 178, gives the impression that it can be). 

However, to check it will require a good description of each of the codimension 

1 orbits. Schubert described ll of them, but possibly there are more; see Piene 

[1983], Sect. 4. 

6 .  P r o o f  o f  l e m m a  3 

The proof is, in part, similar to the verification of the number, 92, of 

conics in 3 meeting 8 lines that is given in Harris [1980], p. 26, and in 

Fulton [1983], Ex. 14.7.12, p. 275, and Ex. 3.2.22, p. 63. It is also, in part, 

similar to the verification of the number, 12, of nodal cubics in a fixed plane 
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meeting 8 points that is given in Sacchiero [1984]. 

Say 3 :=~(E) , where E is a 3-dimensional vector space. Then 3* = 

• (E*) . Denote the tautological sequence by 

0 ÷ R ÷ E* ÷ Q ÷ 0 , 
~ ( E * )  

w h e r e  r k ( R )  = 3 , r k ( Q )  = 1 . Then  P ( R * )  i s  t h e  t o t a l  s p a c e  o f  t h e  u n i v e r s a l  

f a m i l y  o f  p l a n e s  o f  ~ ( E )  . So ~ ( S y m 3 R )  p a r a m e t r i z e s  t h e  p l a n a r  c u b i c s  i n  P ( E )  . 

L e t  K d e n o t e  t h e  2 - d i m e n s i o n a l  s u b s p a c e  o f  E s u c h  t h a t  

L = ~(E/K) . 

Consider the following composition of natural maps: 

c : K (E.)* V (E.) + R* . 

There exists a maximal open subset W of P(E*) on which c is injective 

and cok(c) is invertible. In geometric terms, W is the subset of planes not 

containing L . So the complement of W is of dimension i. On W , moreover, 

cok(c) = det(R*) ® det(K) -l = Q 

because K and E are vector spaces. 

The canonical map, R* ÷ cok(c) , defines a section over W of ]P(R*) ; the 

section assigns to a hyperplane its point of intersection with L . Hence, on the 

preimage of W in ~(Sym3R) , the composition 

3 
0 (Sym3R)(-l) ÷ Sym R* ~ 3 ~ + c o k ( c )  @3 

~ym nj 

vanishes precisely at the points representing cubics meeting L. The zero scheme 

of the composition is obviously a reduced divisor (it is a hyperplane in each 
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fibre of P(SymSR) over W). Now, the complement in ~(SymSR) of the preimage 

of W is of codimension 2, because the preimage of W is. Hence, if the closure of 

this zero scheme is denoted by DL , then 

(Q~3 
[DL] : c I ~ O(sym3R)(~)) . 

Note that DL is the divisor of all planar cubics meeting L . 

Clearly DL contains no orbit on ~(Sym3R ~) So, transversality theory 

applies. Let A' denote the orbit of nodal cubics. Then, therefore, the 

intersection of the eleven translates g2DL,...,gI2DL and the closure of A' is 

a finite set of points entirely contained in A' . 

Consider the third Veronese embedding, 

m(R ~) ÷ ~(Sym3R ~) , 

form its normal sheaf, N say, and its conormal variety, 

C::tF(R ~) = ]P(N 8 0 ] p ( S y m 3 R ) ( - l ) )  = IP(N 8 0 ] p ( R ~ ) ( - 3 ) )  . 

Then the natural map, 

f : CP(R*) ~ ~(Sym3R) , 

is birational onto its image. In fact, it is an isomorphism over A' 

There is a canonical isomorphism between A' and the orbit A on U . 

Indeed, A' parametrizes a natural flat family of nodal cubics, and it is possible 

to add an embedded point with 3-dimensional Zariski tangent space at each node 

so that the resulting family is still flat. Therefore, there is a natural map, 

A' ÷ U , and it obviously factors through A (The induced map, A' ÷ A , is 

obviously bijective; hence, in characteristic p = 0 , it is an isomorphism, 

alternatively because both source and target are smooth). Now, A parametrizes a 
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flat family of nodal cubics with an embedded point at the node. Reducing the total 

space yields, by homogeneity, a flat family of nodal cubies. So, there exists a 

3 
natural map A ÷~(Sym R) , and it obviously factors through A' 

The isomorphism from A' to A identifies the pullback cycle [DL] . A' as 

[ZL].A . Indeed, it is evident from the definition of DL that [DL] may be 

described by a formula like (4.7); whence, the assertion. 

Thus, to prove Lemma 3, it remains to compute this intersection number: 

./]P(Sym3R)f [C~(R~)] .c1(983 80ip(Sym3R) (1))ll 

It is not hard to compute it using standard methods - the projection formula, the 

theory of Segre classes, and standard exact sequences - to lift the intersection 

3 ~ 
up to C~ (R ~) , then push it down to P(R ~) , then down to P , and finally to 

work it out. Thus Lemma 3 is proved. 

7. Proof o f  lemma 4 

The proof follows the lines indicated by Schubert [1879], pp. 99-100, and it 

is similar to the verification of the characteristic numbers of the cubics of type 

o in Sect. 6 of Kleiman-Speiser [1984]. 

Denote by B the (smooth) variety of complete conics in 3 , and by ~ the 

graph of the point-line incidence correspondence. Denote by F the subvariety 
o 

of B ×ff of elements (X,(P,M)) such that X is a nondegenerate conic, M is 

a unisecant line, and P ks the common point. Denote by F the closure of F 
o 

On F , consider the following divisors: 

n := the pullback from B of the divisor of complete conics 

cutting L : 

r := the pullback from B of the divisor of complete conics 

touching H ; 
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N := the pullback from H of the divisor of pairs (P,M) such 

that M cuts L ; 

R := the pullback from ~ of the divisor of pairs (P,M) such 

that P lies in H . 

The proof has 2 mains steps. The first is to prove that F 
o 

canonically isomorphic and that the following identifications obtain: 

and B a r e  

[ZL].B = ([nI+[N]).F and 
o 

[ZH].B = ([rb2[R]).F 
o 

The idea is to proceed basically as in the corresponding part of the proof of 

Lemma 3. Of course, when treating [ZH].B , it is necessary to consider the family 

of the dual surfaces of the cubics and to use (3) of Sect. 5. 

The second step is to determine the following intersection numbers: 

i 
I F [ n  ] [ r ] J [ N ] k [ R ]  1 f o r  i + j + k + l  : 11 . 

The idea is to use the knowledge of the intersection rings of H and of B (for 

that of B , see Casas-Xamb6 [1985]). The determination is reduced via the 

kl 
projection formula to finding the direct images on B of the N R and to 

doing dome arithmetic. An example is worked out on p. lO0 in Schubert [1879]. 

With these two steps carried out, the proof of Lemma 4 is easily completed 

with another application of transversality theory and a little more arithmetic. 

Thus, the verification of Schubert's number is accomplished. 
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