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7.1. Daubechies scaling and wavelet vectors 

Let 

 𝛼𝛼1 = 1+√3

4√2
, 𝛼𝛼2 = 3+√3

4√2
, 𝛼𝛼3 = 3−√3

4√2
, 𝛼𝛼4 = 1−√3

4√2
  

(we will see later where these numbers come from). Approximately, 

𝛼𝛼1 ≃ 0.48296, 𝛼𝛼2 ≃ 0.83652, , 𝛼𝛼3 ≃ 0.22414 , 𝛼𝛼4 ≃ −0.12941.    

Note that  

𝛼𝛼12 + 𝛼𝛼22 + 𝛼𝛼32 + 𝛼𝛼42 = 1,              [1] 

𝛼𝛼1 + 𝛼𝛼2 + 𝛼𝛼3 + 𝛼𝛼4 = √2,            [2] 

𝑎𝑎1𝛼𝛼3 + 𝛼𝛼2𝛼𝛼4 = 0,               [3] 

𝛼𝛼4 − 𝛼𝛼3 + 𝛼𝛼2 − 𝛼𝛼1 = 0.                [4] 

0𝛼𝛼4 − 1𝛼𝛼3 + 2𝛼𝛼2 − 3𝛼𝛼1 = 0.            [5] 
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Scaling vectors  

Define, for 𝑗𝑗 = 0, … , 𝑁𝑁
2
− 1, the 1st level scaling vectors 𝐯𝐯𝑗𝑗1 by 

 𝐯𝐯𝑗𝑗1 = 𝛼𝛼1𝐯𝐯2𝑗𝑗0 + 𝛼𝛼2𝐯𝐯2𝑗𝑗+10 + 𝛼𝛼3𝐯𝐯2𝑗𝑗+20 + 𝛼𝛼4𝐯𝐯2𝑗𝑗+30 , 

with the convention that 𝑁𝑁 + 𝑘𝑘 ≡ 𝑘𝑘 (wrap-around). In detail,  
𝐯𝐯01 = (𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4, 0, … ,0),  
𝐯𝐯11 = (0,0,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4, 0, … ,0),  
…  
𝐯𝐯𝑁𝑁/2−2
1 = (0, … ,0,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4),  

𝐯𝐯𝑁𝑁/2−1
1 = (𝛼𝛼3,𝛼𝛼4, 0, … ,0,𝛼𝛼1,𝛼𝛼2).  

 

Remark. If we define 𝜏𝜏𝑠𝑠(𝒇𝒇) = (𝑓𝑓𝑁𝑁−𝑠𝑠, … , 𝑓𝑓𝑁𝑁−1,𝑓𝑓0, … , 𝑓𝑓𝑁𝑁−𝑠𝑠−1), which 
means shifting 𝒇𝒇 by 𝑠𝑠 units, then 𝐯𝐯𝑗𝑗+11 = 𝜏𝜏2�𝐯𝐯𝑗𝑗1�, for 𝑗𝑗 = 0, … ,𝑁𝑁/2 − 1. 
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For 𝑟𝑟 > 1, the 𝑟𝑟 th level scaling vectors 𝐯𝐯𝑗𝑗𝑟𝑟,  𝑗𝑗 = 0, … ,𝑁𝑁/2𝑟𝑟 − 1, are de-
fined recursively (assuming 𝑁𝑁 is divisible by 2𝑟𝑟) as 

 𝐯𝐯𝑗𝑗𝑟𝑟 = 𝛼𝛼1𝐯𝐯2𝑗𝑗𝑟𝑟−1 + 𝛼𝛼2𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 + 𝛼𝛼3𝐯𝐯2𝑗𝑗+2𝑟𝑟−1 + 𝛼𝛼4𝐯𝐯2𝑗𝑗+3𝑟𝑟−1 . 

  

2𝑗𝑗 2𝑗𝑗 + 3 2𝑗𝑗 + 1 2𝑗𝑗 + 2 

𝐯𝐯𝑗𝑗1 

1 

𝛼𝛼1 

𝛼𝛼2 

𝛼𝛼3 

𝛼𝛼4 
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Proposition. The scaling vectors of any level form an orthonormal system. 
Proof. That �𝐯𝐯𝑗𝑗1� = 1 follows from [1] on page 2, and that 𝐯𝐯𝑗𝑗1 · 𝐯𝐯𝑘𝑘1 = 0 fol-
lows from [3] on page 2 when 𝑘𝑘 = ±1 and it is obvious otherwise. The 
statement for 𝑟𝑟 > 1 can be shown by induction. 

Wavelets 

The 1st level wavelet vectors 𝐰𝐰𝑗𝑗1, 𝑗𝑗 = 1, … ,𝑁𝑁/2, are defined by 

 𝐰𝐰𝑗𝑗1 = 𝛼𝛼4𝐯𝐯2𝑗𝑗0 − 𝛼𝛼3𝐯𝐯2𝑗𝑗+10 + 𝛼𝛼2𝐯𝐯2𝑗𝑗+20 − 𝛼𝛼1𝐯𝐯2𝑗𝑗+30 , 

again with the wrap-around convention that 𝑁𝑁 + 𝑘𝑘 ≡ 𝑘𝑘.  

In detail,  

𝐰𝐰0
1 = (𝛼𝛼4,−𝛼𝛼3,𝛼𝛼2,−𝛼𝛼1, 0, … ,0), …, 𝐰𝐰𝑁𝑁/2−1

1 = (𝛼𝛼2,−𝛼𝛼1, 0, … ,0,𝛼𝛼4,−𝛼𝛼3). 

For 𝑟𝑟 > 1, the 𝑟𝑟 th level wavelet vectors 𝐰𝐰𝑗𝑗𝑟𝑟,  𝑗𝑗 = 0, … ,𝑁𝑁/2𝑟𝑟 − 1, are de-
fined recursively (assuming 𝑁𝑁 is divisible by 2𝑟𝑟) as 

 𝐰𝐰𝑗𝑗𝑟𝑟 = 𝛼𝛼4𝐯𝐯2𝑗𝑗𝑟𝑟−1 − 𝛼𝛼3𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 + 𝛼𝛼2𝐯𝐯2𝑗𝑗+2𝑟𝑟−1 − 𝛼𝛼1𝐯𝐯2𝑗𝑗+3𝑟𝑟−1 . 
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Computation of the scaling and wavelet vectors, and applications to 
compression:  

The result are arrays 𝑉𝑉 and 𝑊𝑊 such that 𝑉𝑉[𝑟𝑟] is the matrix of the scaling 
vectors of level 𝑟𝑟 (𝑟𝑟 = 0,1, … ,𝑛𝑛) and 𝑊𝑊[𝑟𝑟 − 1] the matrix of the wavelet 
vectors of level 𝑟𝑟 (𝑟𝑟 = 1, … ,𝑛𝑛), where 𝑛𝑛 is the highest integer such that 
2𝑛𝑛|𝑁𝑁 

2𝑗𝑗 2𝑗𝑗 + 3 2𝑗𝑗+1 

2𝑗𝑗 + 2 

𝐰𝐰𝑗𝑗1 

1 

−𝛼𝛼1 

𝛼𝛼2 

−𝛼𝛼3 
𝛼𝛼4 
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Proposition. The wavelet vectors of level 𝑟𝑟 form an orthonormal system 
which is orthogonal to the scaling vectors of level 𝑟𝑟. 

Proof. It is similar to the preceding proof.  

If we let 𝒱𝒱𝑟𝑟 and 𝒲𝒲𝑟𝑟  denote the spaces spanned by the 𝐯𝐯𝑗𝑗𝑟𝑟 and 𝐰𝐰𝑗𝑗𝑟𝑟, re-
spectively, then we have 

 𝒱𝒱𝑟𝑟 ,𝒲𝒲𝑟𝑟 ⊂ 𝒱𝒱𝑟𝑟−1, 

dim𝒱𝒱𝑟𝑟 = 𝑁𝑁/2𝑟𝑟 = dim𝒲𝒲𝑟𝑟,  

𝒱𝒱𝑟𝑟−1 = 𝒱𝒱𝑟𝑟 ⊥ 𝒲𝒲𝑟𝑟. 

𝒱𝒱0 = 𝒱𝒱1 ⊥ 𝒲𝒲1  

  = 𝒱𝒱2 ⊥ 𝒲𝒲2 ⊥ 𝒲𝒲1 

= 𝒱𝒱𝑟𝑟 ⊥ 𝒲𝒲𝑟𝑟 ⊥ ⋯ ⊥ 𝒲𝒲2 ⊥ 𝒲𝒲1.  

This is the basis of the MRA developed in section 7.4 below. 
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7.2. Daubechies transform 𝐷𝐷1  

It is defined by  

𝐷𝐷1:𝒇𝒇 ↦ 𝒂𝒂1|𝒅𝒅1, with 𝑎𝑎𝑗𝑗1 = 𝒇𝒇 · 𝐯𝐯𝑗𝑗1, 𝑑𝑑𝑗𝑗1 = 𝒇𝒇 · 𝐰𝐰𝑗𝑗1. 

We call 𝒂𝒂1 and 𝒅𝒅1 the 1st level (Daubechies) trend and fluctuation (or dif-
ference)  respectively. 

Actually, 𝑎𝑎𝑗𝑗1 is a (weighted) average of four successive values of 𝒇𝒇 multi-

plied by √2 (by [2] on page 2). 

By contrast, 𝑑𝑑𝑗𝑗1 can be seen, by the relation [4] on page 2, as differencing 
operation on 𝒇𝒇, involving four successive values of 𝒇𝒇. The main property 
of 𝒅𝒅 is the following: 

If 𝒇𝒇 is (approximately) linear over the support of the Daubechies 
wavelet 𝐰𝐰𝑗𝑗1, then  𝑑𝑑𝑗𝑗1 is (approximately) zero. 

This follows readily from identities [4] and [5] on page 2.N1  
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The usefulness of 𝐷𝐷1, far better than the Haar transform, stems from the 
property above and the following:  

Proposition. 𝐷𝐷1 preserves energy: ℰ(𝒇𝒇) = ℰ(𝐷𝐷1(𝒇𝒇)). 

Proof. Let 𝛽𝛽1 = 𝛼𝛼4,𝛽𝛽2 = −𝛼𝛼3,𝛽𝛽3 = 𝛼𝛼2,𝛽𝛽4 = −𝛼𝛼1. Consider the 𝑁𝑁 × 𝑁𝑁 matrix  

 𝐷𝐷𝑁𝑁 =

⎝

⎜
⎜
⎜
⎛

𝐯𝐯1
𝐰𝐰1

𝐯𝐯2
𝐰𝐰2

⋮
𝐯𝐯𝑁𝑁 2⁄

𝐰𝐰𝑁𝑁 2⁄ ⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

𝛼𝛼1   𝛼𝛼2   𝛼𝛼3   𝛼𝛼4    0     0     0   0 ···  0   0 
𝛽𝛽1   𝛽𝛽2   𝛽𝛽3   𝛽𝛽4     0     0     0   0 ···  0   0
0      0     𝛼𝛼1   𝛼𝛼2   𝛼𝛼3   𝛼𝛼4   0   0 ···  0   0 
0      0     𝛽𝛽1   𝛽𝛽2   𝛽𝛽3   𝛽𝛽4    0   0 ···  0   0 
·······················································
𝛼𝛼3   𝛼𝛼4    0    0     0     0     0    0 ··· 𝛼𝛼1 𝛼𝛼2
𝛽𝛽3   𝛽𝛽4    0    0     0     0     0    0 ··· 𝛽𝛽1 𝛽𝛽2⎠

⎟
⎟
⎟
⎞

 

This matrix is orthonormal (𝐷𝐷𝑁𝑁𝐷𝐷𝑁𝑁𝑇𝑇 = 𝐼𝐼𝑁𝑁) and 
 �𝑎𝑎0,𝑑𝑑0, 𝑎𝑎1,𝑑𝑑1, … ,𝑎𝑎𝑁𝑁 2⁄ −1,𝑑𝑑𝑁𝑁 2⁄ −1�

𝑇𝑇 = 𝐷𝐷𝑁𝑁𝒇𝒇𝑇𝑇. 

Therefore, 

 𝑎𝑎02 + 𝑑𝑑02 + ⋯+ 𝑎𝑎𝑁𝑁 2⁄ −1
2 + 𝑑𝑑𝑁𝑁 2⁄ −1

2 = (𝐷𝐷𝑁𝑁𝒇𝒇𝑇𝑇)𝑇𝑇𝐷𝐷𝑁𝑁𝒇𝒇𝑇𝑇 = 𝒇𝒇𝐷𝐷𝑁𝑁𝑇𝑇𝐷𝐷𝑁𝑁𝒇𝒇𝑇𝑇 = 𝓔𝓔(𝒇𝒇), 

and it is clear that 𝑎𝑎02 + 𝑑𝑑02 + ⋯+ 𝑎𝑎𝑁𝑁 2⁄ −1
2 + 𝑑𝑑𝑁𝑁 2⁄ −1

2 = ℰ�𝐷𝐷1(𝒇𝒇)�. 
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7.3 Daubechies transform 𝐷𝐷𝑟𝑟   

The higher level Daubechies transform 𝐷𝐷𝑟𝑟  is defined recursively by  

𝐷𝐷𝑟𝑟:𝒇𝒇 ↦ 𝒂𝒂𝑟𝑟|𝒅𝒅𝑟𝑟|𝒅𝒅𝑟𝑟−1| ··· |𝒅𝒅1, with 𝒂𝒂𝑟𝑟|𝒅𝒅𝑟𝑟 = 𝐷𝐷1(𝒂𝒂𝑟𝑟−1). 

We call 𝒂𝒂𝑟𝑟 and 𝒅𝒅𝑟𝑟 the 𝑟𝑟th level (Daubechies) trend and fluctuation (or dif-
ference), respectively, of the signal 𝒇𝒇. 

Proposition. As for the Haar wavelets, we have that  

𝑎𝑎𝑗𝑗𝑟𝑟 = 𝒇𝒇 · 𝐯𝐯𝑗𝑗𝑟𝑟, 𝑑𝑑𝑗𝑗𝑟𝑟 = 𝒇𝒇 · 𝐰𝐰𝑗𝑗𝑟𝑟. N2 

Proposition. The transform 𝐷𝐷𝑟𝑟  preserves energy.N3 

Remark. It turns out that 𝑎𝑎𝑗𝑗2 is a (weighted) average of ten successive 
values of 𝒇𝒇 multiplied by 2. This observation continues for higher 𝑟𝑟: 𝑎𝑎𝑗𝑗𝑟𝑟 is 
a weighted average over longer intervals as 𝑟𝑟 increases, multiplied by 
2𝑟𝑟/2. 
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Remark. Let us indicate where the values 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4 come from. Set, 
as before, 

 𝛽𝛽1 = 𝛼𝛼4,𝛽𝛽2 = −𝛼𝛼3,𝛽𝛽3 = 𝛼𝛼2,𝛽𝛽4 = −𝛼𝛼1, 

so that 

 𝐰𝐰𝑗𝑗1 = 𝛽𝛽1𝐯𝐯2𝑗𝑗0 + 𝛽𝛽2𝐯𝐯2𝑗𝑗+10 + 𝛽𝛽3𝐯𝐯2𝑗𝑗+20 + 𝛽𝛽4𝐯𝐯2𝑗𝑗+30 . 

Since we want that these form an orthonormal set, we require that 

  𝛽𝛽12 + 𝛽𝛽22 + 𝛽𝛽32 + 𝛽𝛽42 = 1 and 𝛽𝛽1𝛽𝛽3 + 𝛽𝛽2𝛽𝛽4 = 0. 

We also need that 

  𝛽𝛽1 + 𝛽𝛽2 + 𝛽𝛽3 + 𝛽𝛽4 = 0 and 0𝛽𝛽1 + 1𝛽𝛽2 + 2𝛽𝛽3 + 3𝛽𝛽4 = 0. 

Now we can solve these relations and we obtain ± the values quoted on 
page two, or ± those values reordered as 𝛼𝛼3,𝛼𝛼4,𝛼𝛼1,𝛼𝛼2. If we want that 
the sum be positive (actually √2), we have two solutions: 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4 
and 𝛼𝛼3,𝛼𝛼4,𝛼𝛼1,𝛼𝛼2. We choose the first because 𝛼𝛼1 < 𝛼𝛼2. 
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7.4. MRA and compression 

As in the case of the Haar wavelets, define 

 𝐴𝐴𝑟𝑟(𝒇𝒇) = Π𝒱𝒱𝑟𝑟(𝒇𝒇) = ∑ (𝒇𝒇 · 𝐯𝐯𝑗𝑗𝑟𝑟)𝐯𝐯𝑗𝑗𝑟𝑟𝑗𝑗 = ∑ 𝑎𝑎𝑗𝑗𝑟𝑟𝑗𝑗 𝐯𝐯𝑗𝑗𝑟𝑟 (𝑟𝑟 = 0,1, … ,𝑛𝑛), 

 𝐷𝐷𝑟𝑟(𝒇𝒇) = Π𝒲𝒲𝑟𝑟(𝒇𝒇) = ∑ (𝒇𝒇 · 𝐰𝐰𝑗𝑗𝑟𝑟)𝐰𝐰𝑗𝑗𝑟𝑟𝑗𝑗 = ∑ 𝑑𝑑𝑗𝑗𝑟𝑟𝑗𝑗 𝐰𝐰𝑗𝑗𝑟𝑟 (𝑟𝑟 = 1, … ,𝑛𝑛).  

We say that 𝐴𝐴𝑟𝑟(𝒇𝒇) is the level (or scale) 𝑟𝑟 approximation of 𝒇𝒇. By the 
formula above, it can be computed from the level 𝑟𝑟 trend vector 𝒂𝒂𝑟𝑟 as 
∑ 𝑎𝑎𝑗𝑗𝑟𝑟𝑗𝑗 𝐯𝐯𝑗𝑗𝑟𝑟, provided we also know the level 𝑟𝑟 scaling vectors 𝐯𝐯𝑗𝑗𝑟𝑟. Similarly, 
𝐷𝐷𝑟𝑟(𝒇𝒇) is the level (or scale) 𝑟𝑟 difference (or detail) vector and it can be 
computed from the level 𝑟𝑟 fluctuation vector 𝒅𝒅𝑟𝑟 as ∑ 𝑑𝑑𝑗𝑗𝑟𝑟𝑗𝑗 𝐰𝐰𝑗𝑗𝑟𝑟, provided 
we also know the level 𝑟𝑟 wavelet vectors 𝐰𝐰𝑗𝑗𝑟𝑟. 

Taking into account the fact that 𝒱𝒱𝑟𝑟−1 = 𝒱𝒱𝑟𝑟 ⊥ 𝒲𝒲𝑟𝑟 (page 7), we have 

 𝐴𝐴𝑟𝑟−1(𝒇𝒇) = 𝐴𝐴𝑟𝑟(𝒇𝒇) + 𝐷𝐷𝑟𝑟(𝒇𝒇).  

So the level 𝑟𝑟 − 1 approximation can be decomposed as the sum of the 
(coarser) level 𝑟𝑟 approximation and the level 𝑟𝑟 difference vector. 
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Iterating, we see that  

 𝒇𝒇 = 𝐴𝐴0(𝒇𝒇) = 𝐴𝐴1(𝒇𝒇) + 𝐷𝐷1(𝒇𝒇) = 𝐴𝐴2(𝒇𝒇) + 𝐷𝐷2(𝒇𝒇) + 𝐷𝐷1(𝒇𝒇) 

     = 𝐴𝐴𝑟𝑟(𝒇𝒇) + 𝐷𝐷𝑟𝑟(𝒇𝒇) +··· +𝐷𝐷2(𝒇𝒇) + 𝐷𝐷1(𝒇𝒇). 

for any allowable 𝑟𝑟.  

Compression/decompression. We can regard the level 𝑟𝑟 trend vector 𝒂𝒂𝑟𝑟 
as a (lossy) compression of 𝒇𝒇 (the compression factor is 1/2𝑟𝑟) and the (it-
erative) function D4trend(f,r) provides and efficient means to compute 
it. The vector 𝐴𝐴𝑟𝑟(𝒇𝒇) is then the decompression of 𝒂𝒂𝑟𝑟 and one way to 
compute it is to use the formula ∑ 𝑎𝑎𝑗𝑗𝑟𝑟𝑗𝑗 𝐯𝐯𝑗𝑗𝑟𝑟, which presupposes knowing 
the matrix 𝑉𝑉[𝑟𝑟] of the level 𝑟𝑟 scaling vectors 𝐯𝐯𝑗𝑗𝑟𝑟.  

Fast decompression. We are going to describe a procedure to compute 
𝐴𝐴𝑟𝑟(𝒇𝒇) in terms 𝒂𝒂𝑟𝑟 that does not depend on the matrix 𝑉𝑉[𝑟𝑟].  

To keep the indices in a convenient range, define ℎ = [ℎ0,ℎ1, ℎ2,ℎ3] =
[𝛼𝛼1,𝛼𝛼2,𝛼𝛼3,𝛼𝛼4] and 𝑔𝑔 = [𝑔𝑔0,𝑔𝑔1,𝑔𝑔2,𝑔𝑔3] = [𝛽𝛽1,𝛽𝛽2,𝛽𝛽3,𝛽𝛽4]. 
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Now we need to introduce the high filter 𝐻𝐻. This is the linear map 

  𝐻𝐻:𝐑𝐑𝑁𝑁 → 𝐑𝐑𝑁𝑁,  𝐻𝐻(𝒙𝒙)𝑘𝑘 = ∑ℎ𝑗𝑗𝑥𝑥𝑘𝑘−𝑗𝑗, 

with the convention that the components with index out of range are 
taken to be 0. The low filter 𝐺𝐺 is defined in a similar way, but using the 𝑔𝑔𝑗𝑗 
instead of the ℎ𝑗𝑗. 

We also need the upsampling operator  

𝑈𝑈:𝐑𝐑𝑚𝑚 → 𝐑𝐑2𝑚𝑚,   (𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚−1) ↦ (𝑥𝑥0, 0, 𝑥𝑥1, 0, … , 𝑥𝑥𝑚𝑚−1, 0).  

Theorem. The vector 𝐴𝐴𝑟𝑟(𝒇𝒇) is the result of applying 𝑟𝑟 times 𝐻𝐻𝐻𝐻 to 𝒂𝒂𝑟𝑟. 
The vector 𝐷𝐷𝑟𝑟(𝒇𝒇) is the result of applying 𝑟𝑟 − 1 times the operator 𝐻𝐻𝐻𝐻 to 
the vector 𝐺𝐺𝐺𝐺𝒅𝒅𝑟𝑟.N4 
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7.5. Other wavelets 

There are other Daubechies wavelets, mainly DaubJ, with 𝐽𝐽 = 6,8, … ,20 
(we have worked out Daub4), and CoifI for 𝐼𝐼 = 6,12,18,24,30.  

Let us consider, for definiteness, the case 𝐽𝐽 = 6. In this case there are six 
𝛼𝛼: 

 𝛼𝛼0 = 0.332670552950083,    𝛼𝛼1 = 0.806891509311092, 

 𝛼𝛼2 = 0.459877502118491,     𝛼𝛼3 = −0.135011020010255, 

 𝛼𝛼4 = −0.0854412738820267,    𝛼𝛼5 = 0.0352262918857095. 

They satisfy the identities 

 ∑ 𝛼𝛼𝑙𝑙2𝑙𝑙 = 1, ∑ 𝛼𝛼𝑙𝑙𝑙𝑙 = √2. 

With them we can define scaling vectors 𝐯𝐯𝑗𝑗1 as for Daub4 (in this case 
there are two wraparounds at the end). 
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Now with 𝛽𝛽𝑙𝑙 = (−1)𝑙𝑙𝛼𝛼5−𝑙𝑙, 𝑙𝑙 = 1, … ,6, we can define wavelet vectors 𝐰𝐰𝑗𝑗1 
and the machinery can be copied to this case. What is the advantage? Ba-
sically the relations 

  ∑ 𝛽𝛽𝑙𝑙𝑙𝑙 = 0,  ∑ 𝑙𝑙𝛽𝛽𝑙𝑙𝑙𝑙 = 0,  ∑ 𝑙𝑙2𝛽𝛽𝑙𝑙𝑙𝑙 = 0. 

These identities insure that 

If 𝒇𝒇 is (approximately) quadratic over the support of the Daubechies 
wavelet 𝐰𝐰𝑗𝑗1, then  𝑑𝑑𝑗𝑗1 is (approximately) zero. And similarly for 𝑑𝑑𝑗𝑗𝑟𝑟. 

In general,  

If 𝒇𝒇 is (approximately) a polynomial of degree < 𝐽𝐽/2 over the support 
of the Daubechies wavelet 𝐰𝐰𝑗𝑗1, then  𝑑𝑑𝑗𝑗1 is (approximately) zero. And 
similarly for 𝑑𝑑𝑗𝑗𝑟𝑟. 

The framework developed in the preceding pages for the system Daub4 
can be adapted to the Daub6 system in a straightforward way. 
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Summary 

Data. A vector 𝒇𝒇 ∈ 𝐑𝐑𝑁𝑁. Usually obtained by sampling an analog signal 𝜑𝜑 
at 𝑁𝑁 points. We let 𝑛𝑛 denote the highest integer such that 2𝑛𝑛 divides 𝑁𝑁. 

Lossy compression of level 𝑟𝑟 ≤ 𝑛𝑛. The trend vector 𝒂𝒂𝑟𝑟 of level 𝑟𝑟. The 
compression factor is 1/2𝑟𝑟. 

Decompression. The level 𝑟𝑟 approximation of 𝒇𝒇, 𝐴𝐴𝑟𝑟(𝒇𝒇) = ∑ 𝑎𝑎𝑗𝑗𝑟𝑟𝐯𝐯𝑗𝑗𝑟𝑟𝑗𝑗 . This 
can be obtained by first calculating the array 𝑉𝑉 of scaling vectors. 

Fast decompression algorithm. Apply 𝑟𝑟 times the operator 𝐻𝐻𝐻𝐻 to 𝒂𝒂𝑟𝑟. 

Differences. The difference vector 𝐷𝐷𝑟𝑟(𝒇𝒇) = 𝐴𝐴𝑟𝑟−1(𝒇𝒇) − 𝐴𝐴𝑟𝑟(𝒇𝒇) can also be 
computed efficiently from the level 𝑟𝑟 fluctuation 𝒅𝒅𝑟𝑟: apply 𝑟𝑟 − 1 times 
the operator 𝐻𝐻𝐻𝐻 to 𝐺𝐺𝐺𝐺𝒅𝒅𝑟𝑟. 

Multiresolution. 𝒇𝒇 = 𝐴𝐴𝑟𝑟(𝒇𝒇) + 𝐷𝐷𝑟𝑟(𝒇𝒇) +··· +𝐷𝐷2(𝒇𝒇) + 𝐷𝐷1(𝒇𝒇). 
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Notes 

N1 (p. 8). Since a sample of a function 𝜑𝜑 with small difference 𝛿𝛿 is locally ap-
proximately linear, their 1st level Daubechies fluctuation is approximately zero. 
We can quantify this a bit more as follows. For 𝑙𝑙 = 0,1,2,3, 

 𝑓𝑓2𝑗𝑗+𝑙𝑙 = 𝜑𝜑�𝑡𝑡2𝑗𝑗+𝑙𝑙� = 𝜑𝜑�𝑡𝑡2𝑗𝑗 + 𝑙𝑙𝑙𝑙� = 𝑓𝑓2𝑗𝑗 + 𝜑𝜑′�𝑡𝑡2𝑗𝑗�𝑙𝑙𝑙𝑙 + 𝑂𝑂(𝛿𝛿2) 

Consequently 

 𝛼𝛼4𝑓𝑓2𝑗𝑗 − 𝛼𝛼3𝑓𝑓2𝑗𝑗+1 + 𝛼𝛼2𝑓𝑓2𝑗𝑗+2 − 𝛼𝛼1𝑓𝑓2𝑗𝑗+3 

        = 𝑓𝑓2𝑗𝑗(𝛼𝛼4 − 𝛼𝛼3 + 𝛼𝛼2 − 𝑎𝑎1) + 𝜑𝜑′�𝑡𝑡2𝑗𝑗�𝛿𝛿(0𝛼𝛼4 − 1𝛼𝛼3 + 2𝛼𝛼2 − 3𝑎𝑎1) + 𝑂𝑂(𝛿𝛿2) 

         = 𝑂𝑂(𝛿𝛿2).   

We have used the relations [4] and [5] on page 2. 
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N2 (p. 10). The proof follows readily by induction: 

 𝑎𝑎𝑗𝑗𝑟𝑟 = 𝛼𝛼1𝑎𝑎2𝑗𝑗𝑟𝑟−1 + 𝛼𝛼2𝑎𝑎2𝑗𝑗+1𝑟𝑟−1 + 𝛼𝛼3𝑎𝑎2𝑗𝑗+2𝑟𝑟−1 + 𝛼𝛼1𝑎𝑎2𝑗𝑗+3𝑟𝑟−1  

      = 𝛼𝛼1�𝒇𝒇 · 𝐯𝐯2𝑗𝑗𝑟𝑟−1� + 𝛼𝛼2�𝒇𝒇 · 𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 � + 𝛼𝛼3�𝒇𝒇 · 𝐯𝐯2𝑗𝑗+2𝑟𝑟−1 � + 𝛼𝛼4�𝒇𝒇 · 𝐯𝐯2𝑗𝑗+3𝑟𝑟−1 � 

      = 𝒇𝒇 · �𝛼𝛼1𝐯𝐯2𝑗𝑗𝑟𝑟−1 + 𝛼𝛼2𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 + 𝛼𝛼3𝐯𝐯2𝑗𝑗+2𝑟𝑟−1 + 𝛼𝛼4𝐯𝐯2𝑗𝑗+3𝑟𝑟−1 � 

      = 𝒇𝒇 · 𝐯𝐯𝑗𝑗𝑟𝑟. 

The proof of the relation 𝑑𝑑𝑗𝑗𝑟𝑟 = 𝒇𝒇 · 𝐰𝐰𝑗𝑗𝑟𝑟 is similar. 

N3 (p. 10). The proof is by induction again. For 𝑟𝑟 = 1, see the proposition on 
page 9. For 𝑟𝑟 > 1, we have: 

  ℰ(𝒂𝒂𝑟𝑟|𝒅𝒅𝑟𝑟|𝒅𝒅𝑟𝑟−1| ··· |𝒅𝒅2|𝒅𝒅1) 

= ℰ(𝒂𝒂𝑟𝑟|𝒅𝒅𝑟𝑟) + ℰ(𝒅𝒅𝑟𝑟−1| ··· |𝒅𝒅2|𝒅𝒅1)  

= ℰ�𝐷𝐷1(𝒂𝒂𝑟𝑟−1)� + ℰ(𝒅𝒅𝑟𝑟−1| ··· |𝒅𝒅2|𝒅𝒅1)  

= ℰ(𝒂𝒂𝑟𝑟−1) + ℰ(𝒅𝒅𝑟𝑟−1| ··· |𝒅𝒅2|𝒅𝒅1)  

= ℰ(𝒂𝒂𝑟𝑟−1|𝒅𝒅𝑟𝑟−1| ··· |𝒅𝒅2|𝒅𝒅1) = ℰ(𝒇𝒇). 
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N4 (p. 14). For the first part, the key point is that if 𝒂𝒂 = ∑ 𝑎𝑎𝑗𝑗𝐯𝐯𝑗𝑗𝑟𝑟
𝑁𝑁/2𝑟𝑟−1
𝑗𝑗=0 ∈ 𝒱𝒱𝑟𝑟  then 

𝐻𝐻𝐻𝐻(𝑎𝑎0, … ,𝑎𝑎𝑁𝑁/2𝑟𝑟−1) are the components of 𝒂𝒂 with respect to the basis 𝐯𝐯𝑘𝑘𝑟𝑟−1 of 
𝒱𝒱𝑟𝑟−1 (remember that 𝒱𝒱𝑟𝑟 ⊂ 𝒱𝒱𝑟𝑟−1). To see this, it is enough to expand the 𝐯𝐯𝑗𝑗𝑟𝑟  in 

terms of the 𝐯𝐯𝑘𝑘𝑟𝑟−1 (𝐯𝐯𝑗𝑗𝑟𝑟 = ∑ ℎ𝑘𝑘𝐯𝐯2𝑗𝑗+𝑘𝑘𝑟𝑟−1
𝑘𝑘 , with wraparound for the index 2𝑗𝑗 + 𝑘𝑘) and 

rearrange the expression: 

 𝒂𝒂 = ∑ 𝑎𝑎𝑗𝑗𝐯𝐯𝑗𝑗𝑟𝑟2𝑟𝑟−1
𝑗𝑗=1 = ∑ ∑ 𝑎𝑎𝑗𝑗𝑘𝑘𝑗𝑗 ℎ𝑘𝑘𝐯𝐯2𝑗𝑗+𝑘𝑘𝑟𝑟−1 = ∑ ∑ 𝑎𝑎𝑗𝑗𝑗𝑗𝑙𝑙 ℎ𝑙𝑙−2𝑗𝑗𝐯𝐯𝑙𝑙𝑟𝑟−1, 

which shows that the 𝑙𝑙-th component of 𝒂𝒂 ∈ 𝒱𝒱𝑟𝑟−1 is 𝑏𝑏𝑙𝑙 = ∑ 𝑎𝑎𝑗𝑗ℎ𝑙𝑙−2𝑗𝑗𝑗𝑗 . If we now 
introduce the vector 𝒖𝒖 = (𝑎𝑎0, 0, 𝑎𝑎1, 0, … , 𝑎𝑎2𝑟𝑟−1, 0), we have 

 𝑏𝑏𝑙𝑙 = ∑ 𝑢𝑢2𝑗𝑗ℎ𝑙𝑙−2𝑗𝑗𝑗𝑗 = ∑ 𝑢𝑢𝑗𝑗ℎ𝑙𝑙−𝑗𝑗𝑗𝑗 = 𝐻𝐻�𝑢𝑢0, … ,𝑢𝑢𝑁𝑁 2𝑟𝑟−1⁄ −1�𝑙𝑙, 

and this proves the claim.  

The second part is proved similarly. The key point is that if 𝒅𝒅 = ∑ 𝑑𝑑𝑗𝑗𝐰𝐰𝑗𝑗𝑟𝑟
𝑁𝑁/2𝑟𝑟−1
𝑗𝑗=0 ∈

𝒲𝒲𝑟𝑟, then 𝐺𝐺𝐺𝐺(𝑑𝑑0, … ,𝑑𝑑𝑁𝑁/2𝑟𝑟−1) are the components of 𝒅𝒅 with respect to the ba-
sis 𝐯𝐯𝑘𝑘𝑟𝑟−1 of 𝒱𝒱𝑟𝑟−1. And this is proved much in the same way, inasmuch as 𝐰𝐰𝑗𝑗𝑟𝑟 =
∑ 𝑔𝑔𝑘𝑘𝐯𝐯2𝑗𝑗+𝑘𝑘𝑟𝑟−1
𝑘𝑘 . And then we only need to apply 𝑟𝑟 − 1 times the operator 𝐻𝐻𝐻𝐻. 


