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7.1. Daubechies scaling and wavelet vectors

Let

1++/3 3+4/3 343 13
M= T BT TR

(we will see later where these numbers come from). Approximately,

a; = 0.48296, a, =~ 0.83652, , a3 = 0.22414 , a, =~ —0.12941.

Note that
af +as+at+a; =1, 1]
a, +a, +az+a, =2,
a3 +ara, =0,

a4_a3+a2_a1=0.

bu o wN

Oa4 - 1a3 + 2“2 — 3“1 —_ O




Scaling vectors

Define, forj = 0, ,% — 1, the 15t level scaling vectors vjl by

1 _ 0 0 0 0
Vi = Q1Vy; T AaVpj1 T A3Vojp T AaVyjy3,

with the convention that N 4+ k = k (wrap-around). In detail,
V(% — (afl, Ay, U3, Ay, 0, ,0),
V% — (0,0, al, az, a3, a4, O, ,O),

1 —
VN/2—2 — (O’ !O! ai, Ay, A3, Cl4),

V]%//Z—l = (ag, Xy, 0, ...,0, aq, az).

Remark. If we define t,(f) = (fy—s > n-1for = [N—s—1), Which
means shifting f by s units, then vj1+1 = TZ(V]-l), forj=0,..,N/2 — 1.



2/ 2j+1 2j+2 2j+3

For r > 1, the r ™ level scaling vectors v , j=0,...,N/2" — 1, are de-

fined recursively (assuming N is divisible by 27) as

r r—1 r—1
V) = aivy; Vi + @z, + agvy s,
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Proposition. The scaling vectors of any level form an orthonormal system.
Proof. That |vj1| = 1 follows from [1] on page 2, and that le -V,% = 0 fol-
lows from [3] on page 2 when k = +1 and it is obvious otherwise. The
statement for v > 1 can be shown by induction.

Wavelets

The 15t level wavelet vectors w ,j=1,..,N/2, are defined by

1 _ 0o 0 o 0
W = ayVy; — agVyjq T QaVajp — A1Vyjy3,

again with the wrap-around convention that N + k = k.

In detail,
1 _ 1 —
Wy = (“4, —dU3, U0y, —Uq, O, ,O), cee) WN/2_1 — (az, —x4q, O, ,O, Xy, _C(B).

For r > 1, the r " level wavelet vectors w ,j=0,...,N/2" — 1, are de-
fined recursively (assuming N is divisible by 27) as

r __ r—1 r—1
Wi = ayuVy; “3V2]+1 + “2V2]+2 A1V2j+3-



WI-
2j  2j+1 2j +3
| ;
a '-\/ 2j +2 |
4 I I
|
—a; i

Computation of the scaling and wavelet vectors, and applications to
compression:

The result are arrays V and W such that V|[r] is the matrix of the scaling
vectors of level r (r = 0,1, ...,n) and W|r — 1] the matrix of the wavelet
vectors of level r (r = 1, ...,n), where n is the highest integer such that
2™ |N
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Proposition. The wavelet vectors of level r form an orthonormal system
which is orthogonal to the scaling vectors of level .

Proof. It is similar to the preceding proof.

If we let V" and W" denote the spaces spanned by the vf and W/, re-

spectively, then we have
'V?‘ WT - 'V?‘—l
dimV" = N/2" = dimW",
pr-1=pr | Wr.
PO =pl | Wt
=P2 1 w? 1wt
=V LW L. 1L W?1W

This is the basis of the MRA developed in section 7.4 below.



7.2. Daubechies transform D,
It is defined by
D,:f » a'ld', witha! =f-v},d} =f-w}

We call a and d* the 1%t level (Daubechies) trend and fluctuation (or dif-
ference) respectively.

Actually, ajl is a (weighted) average of four successive values of f multi-
plied by V2 (by [2] on page 2).

By contrast, djl can be seen, by the relation [4] on page 2, as differencing

operation on f, involving four successive values of f. The main property
of d is the following:

If f is (approximately) linear over the support of the Daubechies

wavelet wjl, then djl is (approximately) zero.

This follows readily from identities [4] and [5] on page 2.M
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The usefulness of D4, far better than the Haar transform, stems from the

property above and the following:

Proposition. D, preserves energy: E(f) = E(D.(f)).

Proof. Let 1 = a4, f, = —as3, f3 = a,, s = —a4. Consider the N X N matrix
v a, a, a3 a2 0 0 0 0---0 O
/wl\ pr b2 b3 p» 0 0 0 000
V2 0 0 a; a, az a4, 0 0---0 O
Dy = Wz =10 0 By B2 B3 o 0000

\N/Z/ az; a, 0 0 0 O O O---alaZ/
N/2 B B, 00O O O O O-

This matrix is orthonormal (Dy D% = Iy) and
T
(ao: do,ay,dy, .., AN /21, dN/Z—l) = Dyf".
Therefore,

ag +dg + -+ aN/Z 1t dN/Z . = DnfN)TDyfT = FDYDNfT = E(f),

and it is clear that a§ + d§ + -+ + aN/Z .+ dN/Z . = &(DL(P).
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7.3 Daubechies transform D,
The higher level Daubechies transform D,. is defined recursively by
D.:f »a’|d’|d"" |- |d}, witha”|d" = D;(a™™1).
We call @a” and d” the rt" level (Daubechies) trend and fluctuation (or dif-
ference), respectively, of the signal f.
Proposition. As for the Haar wavelets, we have that

T — .y’ AT = f.wl N2
aj =f-vi,dj =f-wj.

Proposition. The transform D,. preserves energy.N3

Remark. 1t turns out that ajz is a (weighted) average of ten successive

values of f multiplied by 2. This observation continues for higher 7: af is

a weighted average over longer intervals as r increases, multiplied by
2712,
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Remark. Let us indicate where the values a4, a5, a3, @, come from. Set,

as before,
b1 = a4, P2 = —a3,B3 = a3, By = —y,
so that

1 _ 0 0 0 0

Since we want that these form an orthonormal set, we require that

Bf + B5 + B35 + Bi = 1and B1 B3 + B2Bs = 0.
We also need that

181 -I-,32+,33+,34=0and0,31+1,32+2,33+3,34=0
Now we can solve these relations and we obtain + the values quoted on
page two, or * those values reordered as a3, a4, aq, @,. If we want that

the sum be positive (actually v2), we have two solutions: a4, a5, a3, a4
and as, a4, a1, @>. We choose the first because a; < a,.
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7.4. MRA and compression

As in the case of the Haar wavelets, define
AT(F) = Tlyr (f) = Z;(F V)V = 5,0 V] (r =0,1,...,m),
D™(f) =y (f) = 2;(f -wj)wj =X;dj w; (r=1,..,n).
We say that A" (f) is the level (or scale) r approximation of f. By the

formula above, it can be computed from the level r trend vector a” as
.ja; v, provided we also know the level r scaling vectors v; . Similarly,

D" (f) is the level (or scale) r difference (or detail) vector and it can be
computed from the level r fluctuation vector d” as Zj d}" w}", provided

we also know the level r wavelet vectors wf.

Taking into account the fact that V"~1 = V" 1 W (page 7), we have

A" () = AT(f) + DT ().

So the level r — 1 approximation can be decomposed as the sum of the
(coarser) level r approximation and the level r difference vector.



Iterating, we see that
f=4°() = A (f) + D*(f) = A*(f) + D*(f) + D*(f)
=A"(f) + DT (f) +-- +D*(f) + D*(f).
for any allowable 7.

Compression/decompression. We can regard the level r trend vector a”
as a (lossy) compression of f (the compression factor is 1/2") and the (it-
erative) function D4trend(f,r) provides and efficient means to compute

it. The vector A" (f) is then the decompression of a” and one way to

compute it is to use the formula };a; v/

the matrix V[r] of the level r scaling vectors v; .

, Which presupposes knowing

Fast decompression. We are going to describe a procedure to compute
A" (f) interms a” that does not depend on the matrix V[r].

To keep the indices in a convenient range, define h = [hy, hq, hy, h3] =
(a1, az, a3, a4] and g = [go, 91, 92, 93] = [B1, B2, B3, Bal:
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Now we need to introduce the high filter H. This is the linear map
H: RN — RN, H(x)k = Zhjxk_j,

with the convention that the components with index out of range are
taken to be 0. The low filter G is defined in a similar way, but using the g;

instead of the hj.

We also need the upsampling operator
U: Rm — Rzm, (XO, X1y ves ,Xm_l) = (XO, O, X1, O, vy Xm—1 0)

Theorem. The vector A" (f) is the result of applying r times HU to a’.
The vector D" (f) is the result of applying r — 1 times the operator HU to
the vector GUd"™ N
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7.5. Other wavelets

There are other Daubechies wavelets, mainly DaubJ, with | = 6,8, ...,20
(we have worked out Daub4), and Coifl/ for I = 6,12,18,24,30.

Let us consider, for definiteness, the case | = 6. In this case there are six
a:

ag = 0.332670552950083, a; = 0.806891509311092,
a, = 0.459877502118491, az = —0.135011020010255,
a, = —0.0854412738820267, as = 0.0352262918857095.

They satisfy the identities
Zlalz = 1,Zlal — \/E

With them we can define scaling vectors vjl as for Daub4 (in this case

there are two wraparounds at the end).
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Now with 8, = (—=D'az_;, L = 1, ...,6, we can define wavelet vectors wjl

and the machinery can be copied to this case. What is the advantage? Ba-
sically the relations

Y18 =0, %18 =0 %1°8 =0.
These identities insure that

If f is (approximately) quadratic over the support of the Daubechies
wavelet wjl, then djl is (approximately) zero. And similarly for d]’-".

In general,

If f is (approximately) a polynomial of degree < | /2 over the support
of the Daubechies wavelet w3, then djl is (approximately) zero. And

similarly for d; .

The framework developed in the preceding pages for the system Daub4
can be adapted to the Daub6 system in a straightforward way.
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Summary

Data. A vector f € RN, Usually obtained by sampling an analog signal ¢
at N points. We let n denote the highest integer such that 2™ divides N.

Lossy compression of level r < n. The trend vector a’ of level r. The
compression factoris 1/2".

Decompression. The level r approximation of f, A" (f) = Zj aj’-ﬂvf. This

can be obtained by first calculating the array V' of scaling vectors.

Fast decompression algorithm. Apply r times the operator HU to a’.

Differences. The difference vector D" (f) = AT"Y(f) — A" (f) can also be
computed efficiently from the level r fluctuation d": apply r — 1 times
the operator HU to GUd" .

Multiresolution. f = A" (f) + D" (f) +--- +D*(f) + DX(f).
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Notes

N1 (p. 8). Since a sample of a function ¢ with small difference ¢ is locally ap-
proximately linear, their 1% level Daubechies fluctuation is approximately zero.
We can quantify this a bit more as follows. For [ = 0,1,2,3,

faj+1 = ‘P(t2j+l) = CP(th + l5) = fo; + CP'(th)w +0(6%)
Consequently

Aafzj — A3fzj41 + A2f2j42 — A1 f2j43

=fhjlay —as +ay —a;) + (p’(tzj)5(0a4 —laz + 2a, — 3a,) + 0(6%)

- 0(52).

We have used the relations [4] and [5] on page 2.
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N2 (p. 10). The proof follows readily by induction:

r r—1 r—1 r—1 r—1
aj =10y + Ax05;41 T A30pj45 + X105j43

]

-1 -1 -1 -1
= a1(f ' ng ) + az(f ' V£j+1) + “B(f ' V£j+2) T “4(f ' V£j+3
_ r—1 r—1 r—1 r—1
=f (“1V2j T AVyj 1 T A3Vyin T AyVyy3
=f-vj.

The proof of the relation di = f - w; is similar.

N3 (p. 10). The proof is by induction again. For r = 1, see the proposition on
page 9. Forr > 1, we have:

E(a’|dT|d"™ - |d?|d)
= E(a’|d") + E(d"7Y| -+ |d?|dY)
=&(D, (@™ V) + £ - |d?|dY)
=&(a™™) + £ -+ |d?|dY)
= &(a™Hd™7H - |d?|dY) = E(f).
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2"—1

N4 (p. 14). For the first part, the key pointis that if a = Z?,:/o ajvf € V" then

r—1

HU(ay, ..., an/pr—1) are the components of a with respect to the basis v~ of

VP71 (remember that V" < V" 1). To see this, it is enough to expand the vj” in
terms of the vi =" (v/ = X; hy V31, with wraparound for the index 2j + k) and

rearrange the expression:

r_ — —
a—ZZ ‘a :ZjZkajth;j-l-lk:Zleajhl—Zler g

which shows that the [-th componentof a € V" 1is b, = Y.jajh_y;. If we now

introduce the vector u = (a,,0,a4,0, ...,a,7_1,0), we have
bl = Z] uzjhl_zj = Z] ujhl—j = H(uo, ...,U,N/Zr—l_l)l,
and this proves the claim.

N/2 r
d]W] €

W, then GU(dy, ..., dy/27-1) are the components of d with respect to the ba-

The second part is proved similarly. The key point is that if d = Z

Sis v,’g'l of V"~1. And this is proved much in the same way, inasmuch as wf =

Dk gkvgj'fk. And then we only need to apply r — 1 times the operator HU.



