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Notations  

Discrete signal (of length 𝑁𝑁): 𝒇𝒇 = (𝑓𝑓0, 𝑓𝑓1, … , 𝑓𝑓𝑁𝑁−1) ∈ ℝ𝑁𝑁. The choice of 
indexing, starting with 0, is not the usual convention in mathematics texts, 
but we adopt it as it facilities the relation with computations. 

Usually 𝒇𝒇 is a sample of a function (or continuous signal) 𝜑𝜑 = 𝜑𝜑(𝑡𝑡): 

𝑓𝑓𝑗𝑗 = 𝜑𝜑(𝑡𝑡𝑗𝑗), 𝑡𝑡0 < 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑁𝑁−1.  

If not said otherwise, the 𝑡𝑡𝑗𝑗 are assumed to be equally spaced:  

𝑡𝑡𝑗𝑗 = 𝑡𝑡0 + 𝑗𝑗𝑗𝑗, 𝛿𝛿 > 0 a constant (sampling spacing).  

 
Energy. The norm squared, 

  |𝒇𝒇|2 = 𝑓𝑓02 + 𝑓𝑓12 + ⋯+ 𝑓𝑓𝑁𝑁−12 ,  

is also called the energy of the signal. Alternative notation: ℰ(𝒇𝒇). 

𝑡𝑡0 𝑡𝑡1 𝑡𝑡𝑁𝑁−1 

𝛿𝛿 𝑡𝑡0 + 3𝛿𝛿 

𝑡𝑡2 𝑡𝑡3 



3 
 

Trend and fluctuation signals 

 

The (first) trend signal 𝒂𝒂1(𝒇𝒇)  is defined by the formula 

  𝒂𝒂1(𝒇𝒇) = (𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑁𝑁/2−1),   

𝑎𝑎𝑗𝑗 = (𝑓𝑓2𝑗𝑗 + 𝑓𝑓2𝑗𝑗+1)/ √2   

 

The (first) fluctuation or difference signal 𝒅𝒅1(𝒇𝒇)  is defined by  

  𝒅𝒅1(𝒇𝒇) = (𝑑𝑑0,𝑑𝑑1, … ,𝑑𝑑𝑁𝑁/2−1),   

𝑑𝑑𝑗𝑗 = (𝑓𝑓2𝑗𝑗 − 𝑓𝑓2𝑗𝑗+1)/ √2  

 

  



4 
 

6. 1. The Haar transforms 

The first level Haar transform of 𝒇𝒇 is the signal defined by 

  𝐻𝐻1(𝒇𝒇) = 𝒂𝒂1(𝒇𝒇) | 𝒅𝒅1(𝒇𝒇).  

Remark (small fluctuations). If 𝒇𝒇 is a 
sampling of 𝜑𝜑, with a small sampling 
increment 𝛿𝛿, then 

  𝑓𝑓2𝑗𝑗+1 ≃ 𝑓𝑓2𝑗𝑗 + 𝜑𝜑′�𝑡𝑡2𝑗𝑗�𝛿𝛿,  

and hence 

  �𝑑𝑑𝑗𝑗� = 𝑂𝑂(𝛿𝛿). 

On the other hand, up to 𝑂𝑂(𝛿𝛿), 𝑎𝑎𝑗𝑗 ≃
√2𝑓𝑓2𝑗𝑗 ≃ √2𝑓𝑓2𝑗𝑗+1. In other words, the components of 𝒅𝒅1(𝒇𝒇) are small and 

the signal 𝒂𝒂1(𝒇𝒇) is like 𝒇𝒇 at even (or odd) times, scaled by √2. 

 

𝛿𝛿 

𝑂𝑂(𝛿𝛿) 𝑓𝑓2𝑗𝑗+1 
𝑓𝑓2𝑗𝑗 
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Proposition (inverse of the Haar transform). It is the map given by 

  �𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑁𝑁 2⁄ −1,𝑑𝑑0,𝑑𝑑1, … ,𝑑𝑑𝑁𝑁 2⁄ −1� ↦ (𝑓𝑓0,𝑓𝑓1, … , 𝑓𝑓𝑁𝑁−1), 

where 𝑓𝑓2𝑗𝑗 = 𝑎𝑎𝑗𝑗+𝑑𝑑𝑗𝑗
√2

, 𝑓𝑓2𝑗𝑗+1 = 𝑎𝑎𝑗𝑗−𝑑𝑑𝑗𝑗
√2

, 𝑗𝑗 = 0, … ,𝑁𝑁/2 − 1. 

Example: Sampling 𝜑𝜑(𝑥𝑥) = 20𝑥𝑥2(1 − 𝑥𝑥)4cos(12𝜋𝜋𝜋𝜋), 𝑁𝑁 = 210, and its 
Haar transform. 

 

 

 

 

 

 

Left: 𝜑𝜑 sampled at 𝑁𝑁 points. Right: Haar transform of the left sample. 
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Proposition. 𝓔𝓔(𝒇𝒇) = 𝓔𝓔(𝑯𝑯1(𝒇𝒇)).  

Proof: A short computation.N1  

In the example, 𝓔𝓔(𝒇𝒇) = 𝓔𝓔�𝑯𝑯1(𝒇𝒇)� = 31.83, while 𝓔𝓔�𝒂𝒂1(𝒇𝒇)� = 31.82 
and 𝓔𝓔�𝒅𝒅1(𝒇𝒇)� = 0.01. 
Remark (compaction of energy). ℰ(𝒇𝒇) = ℰ�𝒂𝒂1(𝒇𝒇)� + ℰ(𝒅𝒅1(𝒇𝒇)) and 
ℰ(𝒅𝒅1(𝒇𝒇)) tends to be small (see Remark on small fluctuations), in which 
case ℰ�𝒂𝒂1(𝒇𝒇)� amounts to a large percentage of ℰ(𝒇𝒇). 

The Haar transform of level 𝑟𝑟, 𝑯𝑯𝑟𝑟(𝒇𝒇), requires that 𝑁𝑁 is divisible by 2𝑟𝑟 
and is defined recursively by  

 𝐻𝐻𝑟𝑟(𝒇𝒇) = 𝒂𝒂𝑟𝑟(𝒇𝒇)|𝒅𝒅𝑟𝑟(𝒇𝒇)|𝒅𝒅𝑟𝑟−1(𝒇𝒇)|⋯ |𝒅𝒅1(𝒇𝒇), where 

𝒂𝒂𝑟𝑟(𝒇𝒇) = 𝒂𝒂1 �𝒂𝒂𝒓𝒓−𝟏𝟏(𝒇𝒇)� ≡ �𝑎𝑎0
𝑟𝑟 ,𝑎𝑎1

𝑟𝑟 , … ,𝑎𝑎𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 �, 𝑎𝑎𝑗𝑗𝑟𝑟 =

𝑎𝑎2𝑗𝑗
𝑟𝑟−1+𝑎𝑎2𝑗𝑗+1

𝑟𝑟−1

 √2
  

𝒅𝒅𝑟𝑟(𝒇𝒇) = 𝒅𝒅1 �𝒂𝒂𝒓𝒓−𝟏𝟏(𝒇𝒇)� ≡ �𝑑𝑑0
𝑟𝑟 ,𝑑𝑑1

𝑟𝑟 , … ,𝑑𝑑𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 �, 𝑑𝑑𝑗𝑗𝑟𝑟 =

𝑎𝑎2𝑗𝑗
𝑟𝑟−1−𝑎𝑎2𝑗𝑗+1

𝑟𝑟−1

 √2
.   

So 𝐻𝐻𝑟𝑟(𝒇𝒇) = 𝐻𝐻𝑟𝑟−1�𝒂𝒂1(𝒇𝒇)�| 𝒅𝒅1(𝒇𝒇). N2 
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Examples: 2-level and 3-level Haar transforms of a sample of the function 
defined on page 5. 
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6. 2. Haar Wavelets  

Let 𝐯𝐯00 = (1,0, … ,0), 𝐯𝐯10 = (0,1, … ,0), …, 𝐯𝐯𝑁𝑁−10 = (0,0, … ,0,1), which are 
called the 0-level scaling signals. Hence 

  𝒇𝒇 = 𝑓𝑓0𝐯𝐯00 + 𝑓𝑓1𝐯𝐯10 + ⋯+ 𝑓𝑓𝑁𝑁−1𝐯𝐯𝑁𝑁−10 , 

and 𝑓𝑓𝑗𝑗 = 𝒇𝒇 · 𝐯𝐯𝑗𝑗0. 

Introduce now what are called 1-level Haar scaling 
signals 

  𝐯𝐯𝑗𝑗1 = 1
√2

(𝐯𝐯2𝑗𝑗0 + 𝐯𝐯2𝑗𝑗+10 ), 𝑗𝑗 = 0, … ,𝑁𝑁/2 − 1, 

and the 1-level Haar wavelets 

  𝐰𝐰𝑗𝑗1 = 1
√2

(𝐯𝐯2𝑗𝑗0 − 𝐯𝐯2𝑗𝑗+10 ), 𝑗𝑗 = 0, … ,𝑁𝑁/2 − 1. 

 

Proposition.  𝑎𝑎𝑗𝑗 = 𝒇𝒇 · 𝐯𝐯𝑗𝑗1, 𝑑𝑑𝑗𝑗 = 𝒇𝒇 · 𝐰𝐰𝑗𝑗1.  

𝑣𝑣𝑗𝑗0 
1 

𝑗𝑗 

𝑣𝑣𝑗𝑗1 
1 

2𝑗𝑗 2𝑗𝑗 + 2 

2𝑗𝑗 + 1 
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Remark. {𝐯𝐯11, 𝐯𝐯21, … , 𝐯𝐯𝑁𝑁 2⁄
1 } and �𝐰𝐰1

1,𝐰𝐰2
1, … ,𝐰𝐰𝑁𝑁 2⁄

1 � are orthonormal 
systems that are orthogonal to each other: 𝐯𝐯𝑗𝑗1 · 𝐰𝐰𝑘𝑘

1 = 0 for all 𝑗𝑗, 𝑘𝑘.  

Assuming that 𝑁𝑁 is divisible by 2𝑟𝑟, 𝑟𝑟 ≥ 2, then the 𝑟𝑟-level Haar scaling 
functions and wavelets are defined as 

𝐯𝐯𝑗𝑗𝑟𝑟 = 1
√2

(𝐯𝐯2𝑗𝑗𝑟𝑟−1 + 𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 ),  𝑗𝑗 = 0, … ,𝑁𝑁/2𝑟𝑟 − 1, 

𝐰𝐰𝑗𝑗𝑟𝑟 = 1
√2

(𝐯𝐯2𝑗𝑗𝑟𝑟−1 − 𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 ), 𝑗𝑗 = 0, … ,𝑁𝑁/2𝑟𝑟 − 1. 

Proposition. We have the following formulas: 

  𝑎𝑎𝑗𝑗𝑟𝑟 = 𝒇𝒇 · 𝐯𝐯𝑗𝑗𝑟𝑟,   𝑑𝑑𝑗𝑗𝑟𝑟 = 𝒇𝒇 · 𝐰𝐰𝑗𝑗
𝑟𝑟,   𝑗𝑗 = 0, 1, … ,𝑁𝑁/2𝑟𝑟 − 1. 

Proof: Indeed, for the case 𝑟𝑟 = 1, see the Proposition on page 7.  

For 𝑟𝑟 > 1, 

𝑎𝑎𝑗𝑗𝑟𝑟 = 1
√𝟐𝟐
�𝑎𝑎2𝑗𝑗𝑟𝑟−1 + 𝑎𝑎2𝑗𝑗+1𝑟𝑟−1 � = 1

√𝟐𝟐
�𝒇𝒇 · 𝐯𝐯2𝑗𝑗

𝑟𝑟−1 + 𝒇𝒇 · 𝐯𝐯2𝑗𝑗+1
𝑟𝑟−1 � = 𝒇𝒇 · 𝐯𝐯𝑗𝑗𝑟𝑟, and 

  𝑑𝑑𝑗𝑗𝑟𝑟 = 1
√𝟐𝟐
�𝑎𝑎2𝑗𝑗𝑟𝑟−1 − 𝑎𝑎2𝑗𝑗+1𝑟𝑟−1 � = 1

√𝟐𝟐
�𝒇𝒇 · 𝐯𝐯2𝑗𝑗

𝑟𝑟−1 − 𝒇𝒇 · 𝐯𝐯2𝑗𝑗+1
𝑟𝑟−1 � = 𝒇𝒇 · 𝐰𝐰𝑗𝑗𝑟𝑟. 
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Proposition. The vectors 𝐯𝐯𝑗𝑗𝑟𝑟, 𝑗𝑗 ∈ 𝑁𝑁𝑟𝑟 = {0, … ,𝑁𝑁/2𝑟𝑟 − 1}, can be computed 
directly from the 𝐯𝐯𝑘𝑘0 as follows. If 𝐽𝐽 is a subset of 𝑁𝑁𝑟𝑟, let    

𝐯𝐯𝐽𝐽0 = ∑ 𝐯𝐯𝑗𝑗0𝑗𝑗∈𝐽𝐽   (1’s in the positions 𝐽𝐽, 0 otherwise). 

Then  

𝐯𝐯𝑗𝑗𝑟𝑟 = 2−𝑟𝑟 2⁄ 𝐯𝐯[2𝑟𝑟𝑗𝑗,2𝑟𝑟(𝑗𝑗+1))
0   

(2𝑟𝑟 1’s starting at 2𝑟𝑟𝑗𝑗, scaled by 2−𝑟𝑟 2⁄ ). 

In a similar way we have, for 𝑗𝑗 ∈ {1, … ,𝑁𝑁/2𝑟𝑟 − 1},  

𝐰𝐰𝑗𝑗𝑟𝑟 = 2−𝑟𝑟 2⁄ (𝐯𝐯[2𝑟𝑟𝑗𝑗, 2𝑟𝑟𝑗𝑗+2𝑟𝑟−1−1)
0 − 𝐯𝐯[2𝑟𝑟𝑗𝑗+2𝑟𝑟−1, 2𝑟𝑟(𝑗𝑗+1))

0 )  

(2𝑟𝑟−1 1’s starting at 2𝑟𝑟𝑗𝑗 followed by 2𝑟𝑟−1 (−1)’s, all scaled by 2−𝑟𝑟 2⁄ ) 

In particular it follows that 

      𝑎𝑎𝑗𝑗𝑟𝑟 = 2−𝑟𝑟 2⁄ (𝑓𝑓2𝑟𝑟𝑗𝑗 + 𝑓𝑓2𝑟𝑟𝑗𝑗+1 + ⋯+ 𝑓𝑓2𝑟𝑟𝑗𝑗+2𝑟𝑟−1)  

      𝑑𝑑𝑗𝑗𝑟𝑟 = 2−𝑟𝑟 2⁄ �𝑓𝑓2𝑟𝑟𝑗𝑗 + ⋯+ 𝑓𝑓2𝑟𝑟𝑗𝑗+2𝑟𝑟−1−1� − 2−𝑟𝑟 2⁄ �𝑓𝑓2𝑟𝑟𝑗𝑗+2𝑟𝑟−1 + ⋯+ 𝑓𝑓2𝑟𝑟𝑗𝑗+2𝑟𝑟−1)�  
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Examples of scaling and wavelet vectors: 

 

 

 

 

 

𝑣𝑣𝑗𝑗0 

𝑣𝑣𝑘𝑘1 
𝑣𝑣𝑙𝑙2 

𝑤𝑤𝑗𝑗1 
𝑤𝑤𝑘𝑘2 
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Notations. ℝ𝑁𝑁 = 〈𝐯𝐯𝟎𝟎0, 𝐯𝐯10, … , 𝐯𝐯𝑁𝑁−10 〉 will be denoted 𝒱𝒱0 and we set, for 
any 𝑟𝑟 such that 𝑁𝑁 is divisible by 2𝑟𝑟, 

  𝒱𝒱𝑟𝑟 = 〈𝐯𝐯0𝑟𝑟 , 𝐯𝐯1𝑟𝑟 , … , 𝐯𝐯𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 〉,  𝒲𝒲𝑟𝑟 = 〈𝐰𝐰0

𝑟𝑟 ,𝐰𝐰1
𝑟𝑟 , … ,𝐰𝐰𝑁𝑁/2𝑟𝑟−1

𝑟𝑟 〉 

Clearly dim𝒱𝒱𝑟𝑟 = dim𝒲𝒲𝑟𝑟 = 𝑁𝑁/2𝑟𝑟. Furthermore, 

  𝒱𝒱0 ⊃ 𝒱𝒱1 ⊃ ⋯ ⊃ 𝒱𝒱𝑟𝑟  and   𝒱𝒱𝑟𝑟−1 = 𝒱𝒱𝑟𝑟 ⊥ 𝒲𝒲𝑟𝑟. 

The inclusion of 𝒱𝒱𝑟𝑟 and 𝒲𝒲𝑟𝑟  in 𝒱𝒱𝑟𝑟−1, and the fact that 𝒱𝒱𝑟𝑟 and 𝒲𝒲𝑟𝑟  are 
orthogonal, are direct consequences of the defining relations, namely 

  𝐯𝐯𝑗𝑗𝑟𝑟 = 1
√2

(𝐯𝐯2𝑗𝑗𝑟𝑟−1 + 𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 ),  𝐰𝐰𝑗𝑗𝑟𝑟 = 1
√2

(𝐯𝐯2𝑗𝑗𝑟𝑟−1 − 𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 ). 

These expressions also show that 𝐯𝐯0𝑟𝑟 , … , 𝐯𝐯𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 , 𝐰𝐰0

𝑟𝑟 , … ,𝐰𝐰𝑁𝑁/2𝑟𝑟−1
𝑟𝑟  form a 

basis of 𝒱𝒱𝑟𝑟, for we also have 

  𝐯𝐯2𝑗𝑗𝑟𝑟−1 = 1
√2
�𝐯𝐯𝑗𝑗𝑟𝑟 + 𝐰𝐰𝑗𝑗𝑟𝑟�,   𝐯𝐯2𝑗𝑗+1𝑟𝑟−1 = 1

√2
�𝐯𝐯𝑗𝑗𝑟𝑟 − 𝐰𝐰𝑗𝑗𝑟𝑟�. 
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6. 3. Multiresolution analysis 

First average and detail signals:  

 𝑨𝑨1(𝒇𝒇) = 1
√2
�𝑎𝑎0, 𝑎𝑎0,𝑎𝑎1,𝑎𝑎1, … ,𝑎𝑎𝑁𝑁 2⁄ −1,𝑎𝑎𝑁𝑁/2−1� 

        = 𝑎𝑎0𝐯𝐯01 + 𝑎𝑎1𝐯𝐯11 + ⋯+ 𝑎𝑎𝑁𝑁/2−1𝐯𝐯𝑁𝑁/2−1
1  

        = (𝒇𝒇 · 𝐯𝐯01)𝐯𝐯01 + (𝒇𝒇 · 𝐯𝐯11)𝐯𝐯11 + ⋯+ �𝒇𝒇 · 𝐯𝐯𝑁𝑁/2−1
1 �𝐯𝐯𝑁𝑁/2−1

1  

        = Π𝒱𝒱1(𝒇𝒇).N3 

 𝑫𝑫1(𝒇𝒇) = 1
√2
�𝑑𝑑0,−𝑑𝑑0,𝑑𝑑1,−𝑑𝑑1, … ,𝑑𝑑𝑁𝑁 2⁄ −1,−𝑑𝑑𝑁𝑁/2−1� 

        = 𝑑𝑑0𝐰𝐰0
1 + 𝑑𝑑1𝐰𝐰1

1 + ⋯+ 𝑑𝑑𝑁𝑁/2−1𝐰𝐰𝑁𝑁/2−1
1  

        = (𝒇𝒇 · 𝐰𝐰0
1)𝐰𝐰0

1 + (𝒇𝒇 · 𝐰𝐰1
1)𝐰𝐰1

1 + ⋯+ �𝒇𝒇 · 𝐰𝐰𝑁𝑁/2−1
1 �𝐰𝐰𝑁𝑁/2−1

1  

        = Π𝒲𝒲1(𝒇𝒇). 

  



14 
 

Proposition. 𝒇𝒇 = 𝑨𝑨1(𝒇𝒇) + 𝑫𝑫1(𝒇𝒇) 

Proof : Simple calculation. For example (see Remark on the Haar inverse),  
1
√2

(𝑎𝑎0 + 𝑑𝑑0) = 1
2

(𝑓𝑓0 + 𝑓𝑓1 + 𝑓𝑓0 − 𝑓𝑓1) = 𝑓𝑓0 and 

1
√2

(𝑎𝑎0 − 𝑑𝑑0) = 1
2

(𝑓𝑓0 + 𝑓𝑓1 − 𝑓𝑓0 + 𝑓𝑓1) = 𝑓𝑓1 . 

In general, we define (while 𝑁𝑁 is divisible by 2𝑟𝑟) the 𝑟𝑟-th average and 
detail signals by 

  𝑨𝑨𝑟𝑟(𝒇𝒇) = Π𝒱𝒱𝑟𝑟(𝒇𝒇) 

         = (𝒇𝒇 · 𝐯𝐯0𝑟𝑟)𝐯𝐯0𝑟𝑟 + (𝒇𝒇 · 𝐯𝐯1𝑟𝑟)𝐯𝐯1𝑟𝑟 + ⋯+ �𝒇𝒇 · 𝐯𝐯𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 �𝐯𝐯𝑁𝑁/2𝑟𝑟−1

𝑟𝑟  

         = 𝑎𝑎0𝑟𝑟𝐯𝐯0𝑟𝑟 + 𝑎𝑎1𝑟𝑟𝐯𝐯1𝑟𝑟 + ⋯+ 𝑎𝑎𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 𝐯𝐯𝑁𝑁/2𝑟𝑟−1

𝑟𝑟 , 

  𝑫𝑫𝑟𝑟(𝒇𝒇) = Π𝒲𝒲𝑟𝑟(𝒇𝒇) 

         = (𝒇𝒇 · 𝐰𝐰0
𝑟𝑟)𝐰𝐰0

𝑟𝑟 + (𝒇𝒇 · 𝐰𝐰1
𝑟𝑟)𝐰𝐰1

𝑟𝑟 + ⋯+ �𝒇𝒇 · 𝐰𝐰𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 �𝐰𝐰𝑁𝑁/2𝑟𝑟−1

𝑟𝑟  

         = 𝑑𝑑0𝑟𝑟𝐰𝐰0
𝑟𝑟 + 𝑑𝑑1𝑟𝑟𝐰𝐰1

𝑟𝑟 + ⋯+ 𝑑𝑑𝑁𝑁/2𝑟𝑟−1
𝑟𝑟 𝐰𝐰𝑁𝑁/2𝑟𝑟−1

𝑟𝑟 . 
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Proposition (Multiresolution of 𝒇𝒇) 

  𝒇𝒇 = 𝑨𝑨𝑟𝑟(𝒇𝒇) + 𝑫𝑫𝑟𝑟(𝒇𝒇) + 𝑫𝑫𝑟𝑟−1(𝒇𝒇) + ⋯+ 𝑫𝑫2(𝒇𝒇) + 𝑫𝑫1(𝒇𝒇). 

Proof: It is enough to show that  

  𝑨𝑨𝑟𝑟(𝒇𝒇) + 𝑫𝑫𝑟𝑟(𝒇𝒇) = 𝑨𝑨𝑟𝑟−1(𝒇𝒇), 

for then the expression results by induction. But this follows from the 
definitions and the facts established so far: 

  𝑨𝑨𝑟𝑟(𝒇𝒇) + 𝑫𝑫𝑟𝑟(𝒇𝒇) = Π𝒱𝒱𝑟𝑟(𝒇𝒇) + Π𝒲𝒲𝑟𝑟(𝒇𝒇) 

         = Π𝒱𝒱𝑟𝑟−1(𝒇𝒇)  (because 𝒱𝒱𝑟𝑟−1 = 𝒱𝒱𝑟𝑟 ⊥ 𝒲𝒲𝑟𝑟) N4 

         = 𝑨𝑨𝑟𝑟−1(𝒇𝒇).  

Computations 

𝑨𝑨𝑟𝑟(𝒇𝒇) and 𝑫𝑫𝑟𝑟(𝒇𝒇) are computed by the functions 

 high_filter(f,r), low_filter(f,r). 
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The image on the left of next page shows the graphs of 𝑨𝑨10(𝒇𝒇) and 
𝑫𝑫𝑗𝑗(𝒇𝒇), 𝑗𝑗 = 1, … ,10, where 𝒇𝒇 is the signal of the Example on page 5. By 
what we have seen so far, the sum of these signals, 

 𝑨𝑨10 + ∑ 𝑫𝑫𝑗𝑗𝑗𝑗=10
𝑗𝑗=1 , 

agrees with 𝒇𝒇.  
That high_filter(f,r) and low_filter(f,r) compute 𝑨𝑨𝑟𝑟(𝒇𝒇) and 
𝑫𝑫𝑟𝑟(𝒇𝒇) is a straightforward observation based on the definitions and the 
actual coding of these functions.  
 
On the right of next page we include images of the 𝑨𝑨𝑟𝑟(𝒇𝒇), for 𝑟𝑟 = 1, … ,9. 
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𝑫𝑫10 
𝑨𝑨10 

𝑫𝑫9 

𝑫𝑫8 

𝑫𝑫7 

𝑫𝑫6 

𝑫𝑫5 

𝑫𝑫4 

𝑫𝑫3 

𝑫𝑫2 

𝑫𝑫1 

𝑨𝑨9 

𝑨𝑨8 

𝑨𝑨7 

𝑨𝑨6 

𝑨𝑨5 

𝑨𝑨4 

𝑨𝑨3 

𝑨𝑨2 

𝑨𝑨1 

𝑨𝑨0 = 𝑓𝑓 
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6.4 Compression/decompression 

We can regard the level 𝑟𝑟 trend vector 𝒂𝒂𝑟𝑟 as a (lossy) compression of 𝒇𝒇 (the 
compression factor is 1/2𝑟𝑟) and the (iterative) function D4trend(f,r) 
provides and efficient means to compute it. The vector 𝐴𝐴𝑟𝑟(𝒇𝒇) is then the 
decompression of 𝒂𝒂𝑟𝑟 and one way to compute it is to use the formula 
∑ 𝑎𝑎𝑗𝑗𝑟𝑟𝑗𝑗 𝐯𝐯𝑗𝑗𝑟𝑟, which presupposes knowing the matrix 𝑉𝑉[𝑟𝑟] of the level 𝑟𝑟 scaling 
vectors 𝐯𝐯𝑗𝑗𝑟𝑟.  

Fast decompression. Provided by the formula on top of page 13, and its 
generalization to any level. We are going to see how this works in general 
(Haar and Daubechies wavelets) at the end of T7.  
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Notes 
N1 (p. 6). We have: 

𝑎𝑎𝑗𝑗2 = �
𝑓𝑓2𝑗𝑗 + 𝑓𝑓2𝑗𝑗+1

√2
�
2

=
1
2
�𝑓𝑓2𝑗𝑗2 + 𝑓𝑓2𝑗𝑗+12 + 2𝑓𝑓2𝑗𝑗𝑓𝑓2𝑗𝑗+1�, 

𝑑𝑑𝑗𝑗2 = �
𝑓𝑓2𝑗𝑗 − 𝑓𝑓2𝑗𝑗+1

√2
�
2

=
1
2

(𝑓𝑓2𝑗𝑗2 + 𝑓𝑓2𝑗𝑗+12 − 2𝑓𝑓2𝑗𝑗𝑓𝑓2𝑗𝑗+1) 

and hence 𝑎𝑎𝑗𝑗2 + 𝑑𝑑𝑗𝑗2 = 𝑓𝑓2𝑗𝑗2 + 𝑓𝑓2𝑗𝑗+12 . Summing for 𝑗𝑗 = 0, … ,𝑁𝑁/2 − 1, the 
left hand side yields ℰ(𝐻𝐻1(𝒇𝒇)) and the right hand side ℰ(𝒇𝒇). 
 
N2 (p. 6). 𝐻𝐻𝑟𝑟 also preserves energy: ℰ�𝐻𝐻𝑟𝑟(𝒇𝒇)� = ℰ(𝒇𝒇). This follows 
immediately from the recursion definition: from  
ℰ�𝐻𝐻𝑟𝑟(𝑓𝑓)� = ℰ(𝐻𝐻𝑟𝑟−1(𝒂𝒂1(𝒇𝒇))|𝒅𝒅1(𝒇𝒇)) = ℰ�𝐻𝐻𝑟𝑟−1(𝒂𝒂1(𝒇𝒇))� + ℰ(𝒅𝒅1(𝒇𝒇)) 

and induction we get ℰ�𝐻𝐻𝑟𝑟(𝒇𝒇)� = ℰ(𝒂𝒂1(𝒇𝒇)) + ℰ(𝒅𝒅1(𝒇𝒇)) = ℰ(𝒇𝒇). 
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N3 (p. 13). If 𝑉𝑉 ⊆ ℝ𝑁𝑁 is a linear subspace, 
and 𝒙𝒙 ∈ ℝ𝑁𝑁, there is a unique vector 𝒙𝒙′ ∈
𝑉𝑉 such that 𝒙𝒙 − 𝒙𝒙′ is orthogonal to 𝑉𝑉. This 
vector 𝒙𝒙′ is called the orthogonal 
projection of 𝒙𝒙 to 𝑉𝑉 and is denoted Π𝑉𝑉(𝒙𝒙). 
This vector can be calculated quite easily if we know an orthonormal basis 
𝐮𝐮1, … ,𝐮𝐮𝑘𝑘 of 𝑉𝑉. Indeed, in this case we have 
  𝒙𝒙′ = (𝒙𝒙 · 𝐮𝐮1)𝐮𝐮1 + ⋯+ (𝒙𝒙 · 𝐮𝐮𝑘𝑘)𝐮𝐮𝑘𝑘, 
for the right hand side clearly belongs to 𝑉𝑉 and 𝒙𝒙 − 𝒙𝒙′ is orthogonal to all 
the 𝐮𝐮𝑗𝑗 (for 𝒙𝒙′ · 𝐮𝐮𝑗𝑗 = 𝒙𝒙 · 𝐮𝐮𝑗𝑗 because of the relations 𝐮𝐮𝑖𝑖 · 𝐮𝐮𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖 that hold 
for an orthonormal system). 
The same argument can be adapted to show the uniqueness of 𝒙𝒙′. 
Remark. The computation of 𝒙𝒙′ can also be carried out if we know any 
basis 𝐯𝐯1, … , 𝐯𝐯𝑘𝑘 of 𝑉𝑉. In this case it is enough to impose that a vector  

𝒙𝒙′ = 𝑡𝑡1𝐯𝐯1 + ⋯+ 𝑡𝑡𝑘𝑘𝐯𝐯𝑘𝑘 ∈ 𝑉𝑉  

𝒙𝒙 

Π𝑉𝑉(𝒙𝒙) = 𝒙𝒙′ 
𝑉𝑉 

𝒙𝒙 − 𝒙𝒙′ 
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satisfies the conditions 𝒙𝒙′ · 𝐯𝐯𝑗𝑗 = 𝒙𝒙 · 𝐯𝐯𝑗𝑗  for 𝑗𝑗 = 1, … ,𝑘𝑘. But these 
conditions are equivalent to the system of linear equations 

  �𝐯𝐯1 · 𝐯𝐯𝑗𝑗�𝑡𝑡1 + ⋯+ �𝐯𝐯𝑘𝑘 · 𝐯𝐯𝑗𝑗�𝑡𝑡𝑘𝑘 = 𝒙𝒙 · 𝐯𝐯𝑗𝑗,  𝑗𝑗 = 1, … ,𝑘𝑘 

in the unknowns 𝑡𝑡1, … , 𝑡𝑡𝑘𝑘. The solution of this system, which is unique, 
gives then the orthogonal projection of 𝒙𝒙 to 𝑉𝑉. 

N4 (p. 15). In general, if 𝑉𝑉 and 𝑊𝑊 are linear subspaces of 𝐑𝐑𝑛𝑛, and 𝑉𝑉 ⊥ 𝑊𝑊, 
then Π𝑉𝑉+𝑊𝑊(𝑓𝑓) = Π𝑉𝑉(𝑓𝑓) + Π𝑊𝑊(𝑓𝑓).  Indeed, the relations 

  𝑓𝑓 − �Π𝑉𝑉(𝑓𝑓) + Π𝑊𝑊(𝑓𝑓)� = �𝑓𝑓 − Π𝑉𝑉(𝑓𝑓)� − Π𝑊𝑊(𝑓𝑓) 

           = �𝑓𝑓 − Π𝑊𝑊(𝑓𝑓)� − Π𝑉𝑉(𝑓𝑓) 

show that the left-hand side is orthogonal to 𝑉𝑉 (because 𝑓𝑓 − Π𝑉𝑉(𝑓𝑓) and 
Π𝑊𝑊(𝑓𝑓) are orthogonal to 𝑉𝑉) and orthogonal to 𝑊𝑊 (similar reason). 
Therefore it is orthogonal to 𝑉𝑉 + 𝑊𝑊 and hence Π𝑉𝑉(𝑓𝑓) + Π𝑊𝑊(𝑓𝑓) is the 
orthogonal projection of 𝑓𝑓 on 𝑉𝑉 + 𝑊𝑊. 


