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Notations

Discrete signal (of length N): f = (fo, f1, ..., fa—1) € RN. The choice of
indexing, starting with 0, is not the usual convention in mathematics texts,
but we adopt it as it facilities the relation with computations.

Usually f is a sample of a function (or continuous signal) ¢ = ¢ (t):
f)‘ — (p(t]), to < tl < e < tN—l'
If not said otherwise, the t; are assumed to be equally spaced:

ti =ty +jo, 0 > 0 aconstant (sampling spacing).

Lo tq ty i3 tn—1
—--— —— — — e - —— —o--
) to + 36

Energy. The norm squared,

fI? =f¢+fC+ -+ fiq

is also called the energy of the signal. Alternative notation: E(f).



Trend and fluctuation signals

The (first) trend signal a*(f) is defined by the formula
al(f) = (ag,ay, ..., aN/2—1),

aj = (fo; + foj+1)/ V2

The (first) fluctuation or difference signal d*(f) is defined by
dl(f) = (do,dy, ..., dN/2—1),
di = (f2j — f2j+1)/ V2



6. 1. The Haar transforms

The first level Haar transform of f is the signal defined by

Hi(f) = a* (f) | d*(f).

Remark (small fluctuations). If f is a
. | R 0(s)
sampling of ¢, with a small sampling [
J
increment 9§, then

foj+1 = foj + ‘p,(t2j)5'
and hence

|d;| = 0(8).

On the other hand, up to 0(6), a; =
ﬁfzj = \/Efzjﬂ. In other words, the components of d1(f) are small and
the signal a® (f) is like f at even (or odd) times, scaled by /2.



Proposition (inverse of the Haar transform). It is the map given by

(ao: A, ., AN /2— 1, do, d, ---»dN/2—1) = (for fur o0 fn=1)s

a;+d; a; d
]\/—J,f2]+1 ]\/— ,j=0,..,N/2 - 1.

Example: Sampling ¢ (x) = 20x%(1 — x)*cos(12mx), N = 210, and its
Haar transform.

where f,; =

1/2 1/2

0 /\/\/\/\wl Oﬂ nf\v,\ SO
Rk |

—1/2 —1/2e u u

Left: @ sampled at N points. Right: Haar transform of the left sample.



Proposition. E(f) = E(H(f)).

Proof: A short computation.N?

In the example, E(f) = E(H(f)) = 31.83, while E(a’(f)) = 31.82
and E(d*(f)) = 0.01.

Remark (compaction of energy). E(f) = £(a'(f)) + £(d*(f)) and
E(d1(f)) tends to be small (see Remark on small fluctuations), in which

case 8(a1 (f)) amounts to a large percentage of E(f).

The Haar transform of level r, H,.(f), requires that N is divisible by 2"
and is defined recursively by

H,(f) = a”(Nd"(NId" (] -+ [d* (f), where

r 1 r—1 — (AT AT r T — a£;1+a2j+1
a'(f)=a (a (f)) —~ (ao» ai, ---'azv/z"—1)' YT
r—1

r—1
r _ r—1 _(qr gr r __Qzj —0zj4q
d (f) _ dl (a (f)) — (d(), dl! e dN/zr_]_); d]‘r - \/E .

So Hy(f) = Hy_1(a* ()| d* (). ">
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Examples: 2-level and 3-level Haar transforms of a sample of the function
defined on page 5.
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6. 2. Haar Wavelets
Let v§ = (1,0, ...,0), v{ = (0,1, ...,0), ..., vi_; = (0,0, ...,0,1), which are

called the O-level scaling signals. Hence v
1
f=fovo+ fivi + -+ fy—1VN-1,
and f; = f - v},
Introduce now what are called 1-level Haar scaling
signals J
1 _ 1 -0 0 :
Vj _E(V2]+v2]+1)’.]_O""’N/Z_l’ 1 .
v.
]
and the 1-level Haar wavelets
1 _ 1 .0 0 :
Wi = ﬁ(vzf —V3i41),J=0,...,N/2 -1
zj§y+2

.. 1 2j +1
Proposition. a; = f v ,di = f-wj.
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Remark. {vll,vzl,...,v,%,/z} and {wll,wzl,...,w,%,/z} are orthonormal

systems that are orthogonal to each other: le - w,% = 0 forall j, k.

Assuming that N is divisible by 2", r = 2, then the r-level Haar scaling
functions and wavelets are defined as

v == (3t Vi), j =0, /2T - 1,

1 — — .
wj =75 (V3 P—viih),i=0,..,N/2" — 1.
Proposition. We have the following formulas:

a]’f =f- v, d}" =f-wl, j=0,1,..,N/2" — 1.

Proof: Indeed, for the case r = 1, see the Proposition on page 7.

Forr > 1,
r_ 1 r—1 r—-1) _ 1 —1 1) — r
a; —\/—g(az]' + azji1) —\/_f(f’VEj +f Vi) =f v/, and

_ 1 -1 -1y _1 — -1 —
d} —\/_Q(agj _a5j+1) _\/_f(f'vgjl —f'V5j+11) —f'W]T-



10

Proposition. The vectors v}, j € N, = {0, ..., N/2" — 1}, can be computed

directly from the v; as follows. If ] is a subset of N,., let
V]O = Djej V]-O (1’s in the positions J, 0 otherwise).
Then

v = 27V oy
(27 1’s starting at 27/, scaled by 277/2).
In a similar way we have, forj € {1, ..., N/2" — 1},
W] = 2772 (Viyr orjiar-io1) = Viarjaart 27(ian)
(2771 1’s starting at 27 followed by 2771 (—=1)’s, all scaled by 277/2)
In particular it follows that

aj = Z"T/Z(fzrj + forjer + ot forjeor_q)

&) = 27 /2(fyry o for i) = 272 (farpye b farpear )



Examples of scaling and wavelet vectors:
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Notations. RN = (vg,v?, ..., vh_,) will be denoted V° and we set, for
any r such that N is divisible by 27,

VT =(vg, V1, e, Vysgr—q), W' = (WG, W, .., Wy or_q)
Clearly dim V" = dim W" = N/2". Furthermore,

POoSPLo ..oV and VL =P L W,
The inclusion of V" and W7 in V"1, and the fact that V" and W are

orthogonal, are direct consequences of the defining relations, namely

j \/—(V + V2]+1) W] \/—(V V2]+1)
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These expressions also show that vg, ..., Vy jpr_q, Wg, «.., Wy 54 form a

basis of V', for we also have

V;j_lz\/_lg(vjr ) V2]+1 \/—(V —W)



6. 3. Multiresolution analysis

First average and detail signals:

Al(f) = \/% (ao; Ao, A1,A1, -, AN /2-1) aN/Z—l)
= agVy + a;vi + -+ aN/2—1V1%I/2—1
=(f-vo)vg + (f -viIvi + -+ (f ' V1%//2—1)V1%//2—1
= Ty ()2

D'(f) = = (do,—do, d1, —dy, -, dnjo-1, —dnj2-1)
= doWy + dyWi + -+ dyjm Wy ag
= (f -wpwg + (f -w)wi + -+ (f ’ W1%//2—1)W1%//2—1
= Iy (f).

13



Proposition. f = A'(f) + D'(f)

Proof : Simple calculation. For example (see Remark on the Haar inverse),

= (ao +do) = 5 (fo + fu + fo — f1) = fo and

S —d) =5 (fo+fi=fo+fi)=fi.

In general, we define (while N is divisible by 2") the r-th average and
detail signals by

A" (f) =y (f)
= (f - vIVG + (f - VDV] + -+ (F - Vi or 1 )Viyjor s
= agvy +ajv] + -+ a,’(,/zr_lv]\",/zr_l,
D" (f) =y (f)
= (f -wgp)wy + (f -w)w] + -+ (f ’ W17\}/2T—1)W17\}/2T—1

—_— r r r r r r



Proposition (Multiresolution of f)

f=A"(F)+D" () + D" (f) + -+ D*(f) + D'(f).
Proof: It is enough to show that

AT(f)+ D (f) = A" *(f),

for then the expression results by induction. But this follows from the
definitions and the facts established so far:

A" (f) + D" (f) = lyr(f) + Hyr (f)
= Iyr-1(f) (because V7~1 =PT L Wr)N4
= A" (f).
Computations
A" (f) and D" (f) are computed by the functions
high filter(f,r), low filter(f,r).

15



16

The image on the left of next page shows the graphs of A°(f) and

D/(f),j =1,..,10, where f is the signal of the Example on page 5. By
what we have seen so far, the sum of these signals,

AlO _I_Z] 1OD]

agrees with f.

That high filter(f,r) and low filter(f,r) compute A" (f) and
D" (f) is a straightforward observation based on the definitions and the
actual coding of these functions.

On the right of next page we include images of the A" (f), forr =1, ... 9.
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6.4 Compression/decompression

We can regard the level r trend vector a” as a (lossy) compression of f (the
compression factor is 1/2") and the (iterative) function D4trend(f,r)
provides and efficient means to compute it. The vector A" (f) is then the
decompression of a” and one way to compute it is to use the formula
Z] v , Which presupposes knowing the matrix V|[r] of the level r scaling

vectors V] .

Fast decompression. Provided by the formula on top of page 13, and its

generalization to any level. We are going to see how this works in general
(Haar and Daubechies wavelets) at the end of T7.
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Notes
N1 (p. 6). We have:

2 (ij + f2j+1
a; = 7

2
— fyir 1
d]-z _ <f2] \/%CZJ 1> _ E(fzzj +f22j+1 — 2f2jf2j+1)

and hence ajz + djz = fzzj + f22j+1. Summing forj =0, ...,N/2 — 1, the
left hand side yields E(H;(f)) and the right hand side E(f).

i 1 2 2
— z(fzj + f2j+1 + 2f2jf2j+1)»

N2 (p. 6). H, also preserves energy: 8(Hr(f)) = E(f). This follows

immediately from the recursion definition: from
E(H-(f)) = EHr_1 (@' (NI () = E(Hr—1(a'(f))) + E(A ()
and induction we get E(H,.(f)) = £(a*(f)) + E(d*(f)) = £(f).
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N3 (p. 13). If V € RY is a linear subspace, x A
and x € RY, there is a unique vector x’ € / X — x'

V such that x — x' is orthogonal to V. This %&

V

!

vector x is called the orthogonal M, (x) = x'

projection of x to V and is denoted Il (x).

This vector can be calculated quite easily if we know an orthonormal basis
uy, ..., U, of V. Indeed, in this case we have

x =((x-upuy + -+ (X up)uy,
for the right hand side clearly belongs to VV and x — x' is orthogonal to all
the u; (for x' - u; = x - u; because of the relations u; - u; = §;; that hold
for an orthonormal system).
The same argument can be adapted to show the uniqueness of x'.

Remark. The computation of x' can also be carried out if we know any
basis vy, ..., v, of V. In this case it is enough to impose that a vector

X' =t;vy+ -+ t,vy EV
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satisfies the conditions x’ Vi =XV forj =1, ..., k. But these

conditions are equivalent to the system of linear equations
(V1 . Vj)t1 + .-+ (Vk : Vj)tk = X Vj, ] = 1, ,k

in the unknowns t4, ..., t;. The solution of this system, which is unique,
gives then the orthogonal projection of x to V.

N4 (p. 15). In general, if V and W are linear subspaces of R, and V 1L W,
then Iy, (f) = Iy (f) + [y, (f). Indeed, the relations

f— (Hv(f) + HW(f)) = (f - Hv(f)) — Iy, (f)
— (f - Hw(f)) — Iy (f)

show that the left-hand side is orthogonal to V (because f — II;,(f) and
[1y,(f) are orthogonal to V) and orthogonal to W (similar reason).
Therefore it is orthogonal to V + W and hence I, (f) + I}, (f) is the
orthogonal projectionof f onV + W.



