
CDI15
5. Other lossless procedures
303 SXD

4.1. Run-length encoding
4.2. Differencing
4.3. Move-to-front coding
4.4. Residual coding

2

4.1. Run-length encoding (RLE)

It is used in text and image compression procedures.

Idea. If 𝑥𝑥 appears 𝑛𝑛 consecutive times in the input stream (run length of
𝑛𝑛), encode those occurrences as {𝑛𝑛, 𝑥𝑥}, or just 𝑛𝑛𝑛𝑛 .

To distinguish, in the coded sequence, a character 𝑛𝑛 from the counter 𝑛𝑛
in 𝑛𝑛𝑛𝑛, instead of 𝑛𝑛𝑛𝑛 we will write ´𝑛𝑛𝑛𝑛, where ´ is an ‘escape’ character.

Example. RLE(bbaaabaabb)→´2b´3ab´2a´2b.

We note that a run length of 2 needs 3 characters. So it is better to apply
the ´𝑛𝑛𝑛𝑛 rule only when 𝑛𝑛 > 2. In this way we have

RLE(aaabbbbaabbbbaa)→´3a´4baa´4baa.

3

Remark. The compression ratio is not that impressive. For a message of
𝑁𝑁 characters, with 𝑟𝑟 runs of (average) length 𝑛𝑛 ≥ 3, it is

(𝑁𝑁 − 𝑟𝑟 · 𝑛𝑛 + 3 · 𝑛𝑛)/𝑁𝑁 = 1 − 𝑛𝑛 · (𝑟𝑟 − 3)/𝑁𝑁.
For example, if 𝑟𝑟 = 20 and 𝑛𝑛 = 13 in a message of length 𝑁𝑁 = 400, the
compression would be 0.5.
We see that the compression improves when 𝑛𝑛 or 𝑟𝑟 increase. For text this
seldom occurs (except maybe for some particular characters, like _), but
it may (and will) be of use in other contexts (monochrome images, for
example, and in particular in fax encodings).

Digram encoding. Consists in replacing commonly occurring pairs of char-
acters by a single character not used in the message.

the_fat_cat_sat_on_the_mat
th→x, e_→y, at→z

xyfz_cz_sz_on_xymz

This a compression of 18/26≃0.69

4

This can easily be modified in order to take into account substitutions of
longer substrings.

the_fat_cat_sat_on_the_mat
th→x, e_→y, at_→z

xyfzczszon_xymat
which amounts to a compression 16/26≃0.62

In computer programs, for example, we could substitute reserved words
by a single character c, or by ´c if there are more such reserved words
than characters available. This is usually referred to as pattern substitu-
tion.

5

4.2. Differencing

This method is also called relative encoding.

Suppose we have the sequence of integer values
23,21,23,25,23,25,23,21,23,23,25,23.

We can compress it starting with the first item followed by the differ-
ences of the remaining items with the first:
 23,-2,0,2,0,2,0,-2,0,0,2,0

If there were a large jump, as in
23,21,23,25,23,25,23,51,53,53,55,54

then we could encode as
23,-2,0,2,0,2,0,51,2,2,4,3

For this to work, the decoder will need a flag (1 bit) to know whether the
value it is decoding is an actual value or a difference. So the encoder will
sent a {0,j} if the current encoded item j is a value and {1,j} if it is a differ-

6

ence. The decoding will return j if the flag is 0 and j+v if it is a difference,
where v is the last decoded value.
Remark. The flag values can be sent in blocks. Suppose that the differ-
ences are bytes. Then the compressor can send, for example, 8 flag val-
ues (as a byte, say) just after sending 8 characters.

7

4.3. Move-to-front coding

Suppose we have the message
M={a,a,b,e,e,c,e,a,d,e,a,c}.

The alphabet here is A={a,b,c,d,e}. In this example, the
move-to-front scheme operates as is explained presently
(see the table).
Conventions

x current character; initially the first character of M.
k coded value of x;
A current state of the dictionary.

At the start, A is the alphabet ordered in some way (lexico-
graphically, say). A step of the encoding works as follows:

k is set to the number of characters in A preceding x;
x is moved to the front of A;
x is set to next character .

A x k
abcde a 0
 a 0
 b 1
bacde e 4
ebacd e 0
 c 3
cebad e 1
ecbad a 3
aecbd d 4
daecb e 2
edacb a 3
cedab c 0
cedab

8

So the coded message, according to the table, is
{0,0,1,4,0,3,1,3,4,2,3,0}.

Remark. The original M has 12·8=96 bits. How many bits do we
need to represent the encoding?
According to the frequencies of the characters in the message, we
could use the source
 S={{4,a},{1,b},{2,c},{1,d},{4,e}}
to assign an entropy of 2.085 to the alphabet. Thus the expected
number of bits would be 25.2. For comparison: if we do a Huffman
encoding of A, then it turns out that we can represent the encoding
with 30 bits.

x k
a 0
a 0
b 1
e 4
e 4
c 2
e 4
a 0
d 3
e 4
a 0
c 2

9

4.4. Residual coding

This is a sort of generalization of Differencing (Section 4.2). The model
there was that the data would present small variations around a constant
value. In the same way, we could give a rule that generates values that
are small variations of the real data. Then the rule is called the model and
the differences between the data and the model values are called residu-
als.
Example. The list of integers

{41,43,46,52,62,71,82,98,115,131}
be encoded as by providing the model 𝑓𝑓: 𝑛𝑛 → 𝑛𝑛2 − 𝑛𝑛 + 41 and the re-
siduals
 {0,0,-1,-1,1,0,-1,1,2,0},
as the first 10 values of 𝑓𝑓 are
 {41,43,47,53,61,71,83,97,113,131}.

Remark. The values supplied by 𝑓𝑓 are prime for 𝑛𝑛 in 1..40.

10

JPEG-LS

We will discuss this algorithm (JPEG lossless) for gray scale images. For
color images it works by compressing in a similar way each of the three
color planes.

A gray scale uncompressed digital image is a matrix whose entries corre-
spond to the grey level of the pixels. If we use 256 levels of gray, then an
uncompressed image amounts to 𝑚𝑚 × 𝑛𝑛 bytes.

The algorithm successively looks at the rows from top to bottom, and in
in each row it scans the pixels from left to right (this order is called raster
order). At each pixel, it tries to predict its value on the basis of (some)
previously seen pixels (pixels to the left of the current row or pixels in
previous rows) and this prediction leads to a residual with respect to the
actual value. These residuals is what is used for the compression.

The whole idea lies in the fact that in most images each pixel is highly
correlated with the nearby pixels.

11

In the case of JPEG LS, only 4 other pixels are used
for the prediction of a pixel 𝑥𝑥: those denoted w, l,
n and r on the figure .

The first step in the prediction is to compute a
guess 𝑥𝑥� for the value of 𝑥𝑥:

𝑥𝑥� = �
 max(𝑤𝑤,𝑛𝑛) if max(𝑛𝑛,𝑤𝑤) ≤ 𝑙𝑙

min(𝑤𝑤,𝑛𝑛) if min(𝑛𝑛,𝑤𝑤) ≥ 𝑙𝑙
𝑛𝑛 + 𝑤𝑤 − 𝑙𝑙 otherwise

 l

 w

 n r

 x

12

In a second step the above prediction is refined. Here is
the outline of how it goes. The following differences
(gradients) are computed

 𝑑𝑑1 = 𝑟𝑟 − 𝑛𝑛, 𝑑𝑑2 = 𝑛𝑛 − 𝑙𝑙, 𝑑𝑑3 = 𝑙𝑙 − 𝑤𝑤.

With these, a context vector 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3], 𝑑𝑑𝑖𝑖 ↦ 𝑞𝑞𝑖𝑖, is computed by as-
signing to each 𝑑𝑑𝑖𝑖 a value in{−4,−3,−2,−1,0,1,2,3,4} according to the
interval in which it lies in the following scheme (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3 are positive
numbers, which in principle can be chosen by the user):

More formally, the intervals are
(−∞,−𝑡𝑡3), [−𝑡𝑡3, 𝑡𝑡2), [−𝑡𝑡2, 𝑡𝑡1), [−𝑡𝑡1, 𝑡𝑡0), [0], (−0, 𝑡𝑡1], (𝑡𝑡1, 𝑡𝑡2], (𝑡𝑡2, 𝑡𝑡3], (𝑡𝑡3,∞)

and the corresponding values are −4,−3,−2,−1,0,1,2,3,4 , respectively.

𝑑𝑑1 𝑑𝑑2

𝑑𝑑3

−𝑡𝑡3 −𝑡𝑡2 −𝑡𝑡1 𝑡𝑡3 𝑡𝑡2 𝑡𝑡1 0

−4 3 −3 −2 −1 4 2 1 0

13

Thus the number of possible contexts is 93 = 729. These are reduced to
365 with the following rule:

If 𝑞𝑞 is non-zero and its first non-zero component is negative,
then do 𝑞𝑞 ↦ −𝑞𝑞 and retain this change in a variable SIGN
(−1 if a change has been effected, +1 otherwise).

The 365 contexts are further enumerated in the range 0..364 (the stand-
ard does not specify in which order) and the value is multiplied by SIGN.
The result, added to the first step prediction, is the refined prediction.

In a final step the residual 𝑑𝑑 (the difference between the refined predic-
tion and the actual value) is normalized so that it lies in the range

 −𝑀𝑀
2

. .𝑀𝑀
2

where 𝑀𝑀 is the number of grey levels (𝑀𝑀 = 256, for example):

 �
0 if 𝑑𝑑 = 0

 𝑑𝑑 + 𝑀𝑀 if 𝑑𝑑 < 𝑀𝑀/2
 𝑑𝑑 −𝑀𝑀 if 𝑑𝑑 > 𝑀𝑀/2

14

Remark. The residuals, which we expect to be small (this is the whole
business about any prediction), are further encoded by means of (adap-
tively selected codes based on) Golomb codes. This adds to the compres-
sion capacity of the algorithm.

The following table and images have been taken from [Sayood-2006]. Im-
ages are 256x256, and grey levels are in the range 0..255. So each un-
compressed image is 162 × 162 = 216 = 65536 bytes.

* See below.

Image Old JPEG* JPEG-LS CALIC*
Sena 31,055 27,339 26,433
Sensin 32,429 30,344 29,213
Earth 32,137 26,088 25,280
Omaha 48,818 50,765 48,249

15

Old JPEG [Wallace-1973]. For lossless still compression, it provides eight
different predictive schemes from which the user can select. The first
scheme makes no prediction, so there is no more to say. The other 7 are
as follows:

1 𝑥𝑥� = 𝑛𝑛; 2. 𝑥𝑥� = 𝑤𝑤;

3. 𝑥𝑥� = 𝑙𝑙; 4. 𝑥𝑥� = 𝑤𝑤 + 𝑛𝑛 − 𝑙𝑙;

5. 𝑥𝑥� = 𝑤𝑤 + (𝑛𝑛 − 𝑙𝑙) 2⁄ = 𝑤𝑤 + 𝑑𝑑2/2;

6 𝑥𝑥� = 𝑛𝑛 + (𝑤𝑤 − 𝑙𝑙) 2⁄ = 𝑛𝑛 − 𝑑𝑑3/2; 7. 𝑥𝑥� = (𝑤𝑤 + 𝑛𝑛)/2.

CALIC: Context Adaptive Lossless Image Compression [Memon-Wu-1994]

Uses contexts and prediction. Works in two modes: grey-scale and bi-
level. It is much more complex than JPEG-LS, but still compresses (as seen
in the table above) a bit more than JPEG-LS does.

1 n

x 2 x w

3
x

l

16

[Wu-Memon-1996] X. Wu and N.D. Memon. CALIC—A context based adaptive
lossless image coding scheme. IEEE Transactions on Communications, May 1996.

[Memon-Wu-1997] N.D. Memon and X. Wu. Recent developments in context-
based predictive techniques for lossless image compression. The Computer Jour-
nal, Vol. 40:127-136, 1997. [LOCO-I, from Low Complexity].

[Wallace-1991] G.K. Wallace. The JPEG still picture compression standard. Com-
munications of the ACM, 34:31-44, April 1991.

Note. JPEG-LS is based on the LOCO-I algorithm (LOw COmplexity LOss-
less COmpression for Images). Its official standard number is ISO-14495-
1/ITU-T.87.

Good writing is the art of lossy text compression

(Strung and White)

