CDI15

5. Other lossless procedures
303 SXD

4.1. Run-length encoding
4.2. Differencing

4.3. Move-to-front coding
4.4. Residual coding

4.1. Run-length encoding (RLE)
It is used in text and image compression procedures.

Idea. If x appears n consecutive times in the input stream (run length of
n), encode those occurrences as {n, x}, or just nx .

To distinguish, in the coded sequence, a character n from the counter n
in nx, instead of nx we will write ‘'nx, where " is an ‘escape’ character.

Example. RLE(bbaaabaabb)—>"2b"3ab’2a"2b.

We note that a run length of 2 needs 3 characters. So it is better to apply
the 'nx rule only when n > 2. In this way we have

RLE(aaabbbbaabbbbaa)->"3a’4baa’4baa.

3

Remark. The compression ratio is not that impressive. For a message of

N characters, with 7 runs of (average) lengthn = 3, it is
(N-r-n+3-n)/N=1-—n-(r—-3)/N.

For example, if r = 20 and n = 13 in a message of length N = 400, the

compression would be 0.5.

We see that the compression improves when n or r increase. For text this

seldom occurs (except maybe for some particular characters, like), but

it may (and will) be of use in other contexts (monochrome images, for

example, and in particular in fax encodings).

Digram encoding. Consists in replacing commonly occurring pairs of char-
acters by a single character not used in the message.
the fat cat sat on_the mat
th->x, e >y, at—>z
xyfz_cz sz _on_xymz

This a compression of 18/26=0.69

4

This can easily be modified in order to take into account substitutions of
longer substrings.
the fat cat sat on_the mat
th->x, e_—>y, at >z
xyfzczszon_xymat
which amounts to a compression 16/26=0.62

In computer programs, for example, we could substitute reserved words
by a single character c, or by ‘c if there are more such reserved words
than characters available. This is usually referred to as pattern substitu-
tion.

4.2. Differencing
This method is also called relative encoding.

Suppose we have the sequence of integer values
23,21,23,25,23,25,23,21,23,23,25,23.

We can compress it starting with the first item followed by the differ-
ences of the remaining items with the first:
23,-2,0,2,0,2,0,-2,0,0,2,0

If there were a large jump, as in
23,21,23,25,23,25,23,51,53,53,55,54

then we could encode as
23,-2,0,2,0,2,0,51,2,2,4,3

For this to work, the decoder will need a flag (1 bit) to know whether the
value it is decoding is an actual value or a difference. So the encoder will
sent a {0,j} if the current encoded item j is a value and {1,j} if it is a differ-

6

ence. The decoding will return j if the flag is 0 and j+v if it is a difference,
where v is the last decoded value.

Remark. The flag values can be sent in blocks. Suppose that the differ-
ences are bytes. Then the compressor can send, for example, 8 flag val-
ues (as a byte, say) just after sending 8 characters.

4.3. Move-to-front coding

A

abcde

bacde

ebacd

cebad

ecbad

aechd

daecb

edacb

cedab

O MDY O M0 T LY v X

O WN P WEFR WO PR OO X

cedab

Suppose we have the message
M={a,a,b,e,e,c,e,a,d,e,a,c}.

The alphabet here is A={a,b,c,d,e}. In this example, the
move-to-front scheme operates as is explained presently
(see the table).
Conventions

X current character; initially the first character of M.

k coded value of x;

A current state of the dictionary.

At the start, A is the alphabet ordered in some way (lexico-
graphically, say). A step of the encoding works as follows:

k is set to the number of characters in A preceding x;

X is moved to the front of A;

X is set to next character.

So the coded message, according to the table, is
{0,0,1,4,0,3,1,3,4,2,3,0}.

Remark. The original M has 12:8=96 bits. How many bits do we

need to represent the encoding?

According to the frequencies of the characters in the message, we

could use the source

S={14,a},{1,b},12,c},{1,d},{4,e}}

to assign an entropy of 2.085 to the alphabet. Thus the expected

number of bits would be 25.2. For comparison: if we do a Huffman

encoding of A, then it turns out that we can represent the encoding

with 30 bits.

O O 0|V DO ||| L v X
N OPWOIARNIPIPERLROOIRX

4.4. Residual coding

This is a sort of generalization of Differencing (Section 4.2). The model
there was that the data would present small variations around a constant
value. In the same way, we could give a rule that generates values that
are small variations of the real data. Then the rule is called the model and
the differences between the data and the model values are called residu-
als.
Example. The list of integers

{41,43,46,52,62,71,82,98,115,131}
be encoded as by providing the model f:n - n? —n + 41 and the re-
siduals

{0,0,-1,-1,1,0,-1,1,2,0},
as the first 10 values of f are

{41,43,47,53,61,71,83,97,113,131}.

Remark. The values supplied by f are prime for n in 1..40.

10

JPEG-LS

We will discuss this algorithm (JPEG lossless) for gray scale images. For
color images it works by compressing in a similar way each of the three
color planes.

A gray scale uncompressed digital image is a matrix whose entries corre-
spond to the grey level of the pixels. If we use 256 levels of gray, then an
uncompressed image amounts to m X n bytes.

The algorithm successively looks at the rows from top to bottom, and in
in each row it scans the pixels from left to right (this order is called raster
order). At each pixel, it tries to predict its value on the basis of (some)
previously seen pixels (pixels to the left of the current row or pixels in
previous rows) and this prediction leads to a residual with respect to the
actual value. These residuals is what is used for the compression.

The whole idea lies in the fact that in most images each pixel is highly
correlated with the nearby pixels.

In the case of JPEG LS, only 4 other pixels are used
for the prediction of a pixel x: those denoted w, |,

n and r on the figure .

The first step in the prediction is to compute a
guess X for the value of x:

max(w,n) if max(n,w) <1
X =14 min(w,n) if min(n,w) > 1
n+ w — [otherwise

11

12

In a second step the above prediction is refined. Here is d, di

the outline of how it goes. The following differences ‘ '

(gradients) are computed

di=r—m,dr,=n—1[,d3=1—w.
With these, a context vector ¢ = [q4,q»,q3], d; = q;, is computed by as-
signing to each d; a value in{—4,—-3,—-2,—1,0,1,2,3,4} according to the
interval in which it lies in the following scheme (¢, t,, t3 are positive
numbers, which in principle can be chosen by the user):

s I 7 B 51

—4 -3 -2 -1

More formally, the intervals are
(—OO, —t3), [_t3' tZ)r [_tZ; tl)r [_tlr tO)t [0]1 (_Or t1]; (tlr tZ]I (tZJ t3]1 (t3' OO)

and the corresponding values are —4,—-3,—-2,—1,0,1,2,3,4 , respectively.

13

Thus the number of possible contexts is 93 = 729. These are reduced to
365 with the following rule:

If g is non-zero and its first non-zero component is negative,
then do g » —q and retain this change in a variable SIGN
(—1 if a change has been effected, +1 otherwise).

The 365 contexts are further enumerated in the range 0..364 (the stand-
ard does not specify in which order) and the value is multiplied by SIGN.
The result, added to the first step prediction, is the refined prediction.

In a final step the residual d (the difference between the refined predic-

tion and the actual value) is normalized so that it lies in the range
_M M
2772
where M is the number of grey levels (M = 256, for example):
0 ifd=20
d+ M if d < M/2
d—M if d>M/2

14

Remark. The residuals, which we expect to be small (this is the whole
business about any prediction), are further encoded by means of (adap-
tively selected codes based on) Golomb codes. This adds to the compres-
sion capacity of the algorithm.

The following table and images have been taken from [Sayood-2006]. Im-
ages are 256x256, and grey levels are in the range 0..255. So each un-
compressed image is 162 X 16% = 216 = 65536 bytes.

Image |Old JPEG* |JPEG-LS | CALIC*
Sena 31,055 27,339 26,433
Sensin 32,429 30,344 29,213
Earth 32,137 26,088 |25,280
Omaha 48,818 50,765 48,249

* See below.

15

Old JPEG [Wallace-1973]. For lossless still compression, it provides eight
different predictive schemes from which the user can select. The first
scheme makes no prediction, so there is no more to say. The other 7 are

as follows:
1X=n; 2.X = w;
~ ~ 1 n 3 |/
3.x=L4x=w+n-—1I 2 (W] | X
X X

5..Xx=w+Mmn—-0)/2=w+d,/2;
6X=n+WwW-0/2=n—-d3/2; 7.X=Ww+n)/2.

CALIC: Context Adaptive Lossless Image Compression [Memon-Wu-1994]

Uses contexts and prediction. Works in two modes: grey-scale and bi-
level. It is much more complex than JPEG-LS, but still compresses (as seen
in the table above) a bit more than JPEG-LS does.

16

[Wu-Memon-1996] X. Wu and N.D. Memon. CALIC—A context based adaptive
lossless image coding scheme. |IEEE Transactions on Communications, May 1996.

[Memon-Wu-1997] N.D. Memon and X. Wu. Recent developments in context-
based predictive techniques for lossless image compression. The Computer Jour-
nal, Vol. 40:127-136, 1997. [LOCO-I, from Low Complexity].

[Wallace-1991] G.K. Wallace. The JPEG still picture compression standard. Com-
munications of the ACM, 34:31-44, April 1991.

Note. JPEG-LS is based on the LOCO-I algorithm (LOw COmplexity LOss-
less COmpression for Images). Its official standard number is ISO-14495-
1/ITU-T.87.

Good writing is the art of lossy text compression

(Strung and White)

