CDI15

3. Probability coding
303 SXD

3.1. Basic notions about source coding

3.2. Construction of prefix codes

3.3. The noiseless coding theorem

3.4. Optimal codes and the Huffman’s algorithm

Notes
References

3.1. Basic notions about source coding
Generalities

Let A = {a4, ..., a, } source alphabet, so that the source emits a stream of
symbols from A. At this stage we assume that the source is memoryless,
which means that if X; denotes the i-th symbol (so X; is a random variable
with values in A), then

pj = P(X; = a;)
is independent of i, and hence also independent of all other symbols in the
stream.

Let C be a coding alphabet of r symbols, as for example the binary alpha-
bet (r = 2). An encoding of A is a map

frA=>Ca; - f(a)
The elements of the list (¢ = {f(ay), ..., f(a,)} will be called the code-

words of the encoding f.

3

The f-encoding of a source message M = a; a;, - a;, € A" is the string
f(M) € C*(coded message) defined by

fM) = f(a;,)f(ai,) - fay) .

Thus we canregard f asamap f: A" = C”.

The encoding f is said to be uniquely decodable/decipherable (ud) if this
map is 1-to-1, which means that any string from C”* is at most the image of
one string from A"~.

Example. The encoding f:{x,y,z} = {0,1}" such that
f(x)=0,f(y) =10, f(z) =010

is not uniquely decodable, as 010 can be decoded as z and as xYy.

If no code word is a prefix of any other code word, we say that the encod-

ing (or the code) is prefix (or instantaneous). Such codes are uniquely de-
codable.N!

Example. The encoding x — 0, y — 01 in not prefix, but it is ud.N?

4

Henceforth, encoding will mean uniquely decodable encoding. As we have
seen, prefix encodings (and hence in particular block encodings, whose
words have all the same length) are encodings in this sense.

The code of and encoding f: A — C* is the set Cr of codewords {cy, ..., ¢},
Remark. Note that the ud property can be stated by saying that if

Ci cee

LG =G Gy

lk/
then k' = k and i; = i; for s = 1, ..., k. In other words, that the expres-

k

sion of an element of C* as concatenation of elements of C is unique.

Remark. The question of whether a subset C of C* has this property can
be decided by the Sardinas-Patterson algorithm (1953): It takes C as input
and outputs either that C has the property or an element of C* that has
two different expressions as concatenations of elements of C.

3.2. Construction of prefix codes

Suppose f:A — C” is an encoding. Let C; < C’/,j=1,..,1, be the set of
code words of length j, where [denotes the maximum lengths of code
words. Let n; = |Cj| (the number of elements of (;). If f is prefix, then we
have

ny +--+n, =nand

n <rt—nrt-t -

= N7 [*]
The first relation is clear, as C; U --- U (; is the set of code words and there
are n of these. As for the inequality, note that there are precisely njrl_j
elements in C! having an element of C; as prefix (we can add any [—j
symbols to any of the n; elements of ;). Excluding all these elements, we

-1 __

are left with a subset of C! with r* — nyr ... —n;_47 elements that

must contain C;, and so [*] is also clear.

Now it is interesting to see that the converse is also true.

6

Proposition. If n{,n,, ..., n; are non-negative integers that satisfy the con-
ditions [*], then there is a prefix encoding f: A — C” that has exactly n;

code words of length j forj =1, ..., L.
Proof. From [*], and the fact that the n; are non-negative, we get that
n; < rl —nrl™l— . — ni_qr (j=1..,1) [*;]
Notice that from 0 <1/ —nr/~t — ... — n;_1r we get [*;_,] (divide by r
and move n;_; to the left hand side).
We are going to construct subsets C; < c/(j=1,..,1), with
(a) |C]| = n;, and
(b) for j' <j, no element of Cj is a prefix of an element of (;
(j=2,..,1).

As C; € C we take any subset with |C;| = n4 (this is certainly possible be-
cause [*4] tells us that ny < r).

7

Suppose then that for some j > 1, j < [, we have constructed Cj, ..., (j_
with the properties (a) and (b). To add (; to the list, first note that for any
1 < j' <j there are precisely njrrj_j'elements in C/ that have an ele-
ment of C;/ as a prefix (we can add any j — j' symbols to any of the n;

|
elements of er). We are left with a subset §; © CJ with at least

) —nrd7l— = ni_qr
elements such that for j* < j no element of C;r is a prefix of any of the
elements of §;. Then it is enough to take as (; any subset of n; elements
of §;, which is possible because |Sj| = n; (by [*]).

Having the sets (; with the properties (a) and (b), it is easy to construct an

encoding f: A = C* with C; U --- U (} as set of code words, and this en-
coding is instantaneous.

E.3.1. Show that the inequality [*;] is strict except maybe for j = L.

Remark. The preceding considerations are often stated as follows:
There exists a prefix encoding f: A — C* with word lengths (4, ..., [, iff

ottt g =1 (Kraft's inequality).
Note that this inequality is equivalent, setting [= max({[;), to
rt>ri-bh 4o rlthn,

Since on the right hand side there are n; terms of the form r'=J, the last

inequality can be written as
rt>nrt "+ o+ v+ n,
which is equivalent to [*].

Remark (Kraft-MacMillan inequality). If we have an encoding f: A = C*
with word lengths [4, ..., [,;, then Kraft’s inequality is still satisfied (McMil-
lan theorem™3) and hence there is a prefix encoding with the same word
lengths (Moral: with prefix encodings we can do as much as with ud’s).

3.3. The noiseless coding theorem

Given and encoding f: A — C*, let l; = |f(a;)| (the length of f(a;)), the
mean length, denoted £ = ¥y, is defined as

£ =pl, + -+ ppl,.

Theorem (Shannon). Let f:cA — C™ be an encoding (so ud). Then £ >
H/log,(r), where H = —),;pjlog,(p;) is the entropy of the source.

Moreover, there exists a encoding with ¥ <1+ H/log,(r).

Proof. Set § = — -+ + and qj = S—] Then S < 1, by the Kraft-Mac-

millan mequallty, and qq + -+ g, = 1. By Gibbs lemma,
H=—%;pjlogz(p;) < —X;p;loga(q)):

Since log,(q;) = —ljlog,(r) —log,(S), and log,(S) < 0, we obtain
H < ?log,(r) + log,(S) < £log,(r).

Note: The equality H = ¥ log,(r) happensiff§ = 1and p; = 1/rY.

10

To prove the second part, let [; be the least integer such that rb > 1/p;.
Then p; = r~4 and er_lj < Z]- pj = 1. Thus the [; satisfy the Kraft-
McMillan inequality and hence there is a prefix (sic) encoding f: A - C*
with code lengths [4, ..., [;. Butl; <1 —log, (pj) /log,(r), by E.2.2, and
hence £ =) ip;l; <1+ H/log,(r).

E.3.2. Show that the least integer such that r% > 1/pjis
|—loga(p;) /loga(r)].
In particular, [; <1 — logz(pj) /log, (7).

E.3.3. Use the Kraft-McMiillan inequality to show that the set

¢c ={0,01,11,101}
is not a code and find a binary string that can be decomposed in two dif-
ferent ways as a concatenation of elements of C.

11
3.4. Optimal encodings and the Huffman’s algorithm

An encoding f: A — C™ is said to be optimal, or compact, if £ has the min-
imum possible value. In the search for such encodings, we know that it is
enough to look for prefix encodings. Moreover, £ must satisfy the con-
straints given by Shannon’s source coding theorem:

H/log,(r) < ¥ <1+ H/log,(r).

Optimal prefix binary encodings f: A — {0,1}* (Huffman encodings) were
constructed by Huffman in 1952. The purpose of this section is to describe
in detail his procedure.

We will explain first how the algorithm works in two examples. Given the
source symbols (a4, ...,a,) and their probabilities (p4, ...,p,), we will
build a binary tree of depthn — 1 and having a4, ..., a,, as leaves. The left
(right) edges are labeled 0 (1). The encoding of a symbol is done by reading
the labels found in going from the root to the symbol leaf.

Example I (cf. Welsh-1988, p. 22-23). We take the
alphabet {a,b,c,d,e}, with probabilities
{0.50,0.20,0.15,0.10,0.05}. In this case, Huff-
man’s algorithm constructs the tree shown in the
figure and hence it outputs the encoding

a—>0,b—-11,c - 100,
d—> 1010,e - 1011.

We start with the two leaves with smallest proba-
bility (d and e), with the highest to the left. We add
a node, labeled 0.15 = 0.10 + 0.05, having d and

12

d e
0.10 0.05
0 1
C
0.15 0.15
0\ /—‘L b
0.30 0.20

Huffman: Example |

e as children. Now the smallest probabilities are p(c¢) = 0.15 and the node
0.15 just constructed, and to them we attach a new node, 0.30. We keep

¢ to the left because it was known earlier. Then we proceed with 0.30 >
0.20 = p(b), hence b is placed to the right, and finally we end with the

node 1.00 (the root).

13

Example Il (cf. Blelloch-2010, p. 15-16). d p
We take again the alphabet {a, b, c, d, e},

with probabilities {0.2,0.4,0.2,0.1,0.1}. b 0\ 1 c

In this case, Huffman’s algorithm con- 0.4 0.2

1
A

0 1
structs the tree shown in the figure and 0.6

o\
/0
hence it outputs the encoding \
1

a— 10,b - 00,c - 11, 1.00
d - 010,e —» 011. Huffman: Example I

The smallest probabilities are p(d) =

p(e) = 0.1. We proceed with them as in the previous example, yielding
the node 0.2 that ties with a and c. Since these were known before, we
create the node 0.4, that ties with b. Now we combine 0.4 = p(b), known

before, with the 0.2, which is now the smallest value, yielding the node
0.6.

14

Remark. If we do not obey the precedence rules explained in the exam-
ples, we still get an optimal prefix code. With the precedence rules, it turns
out that the lengths of the code words have the lowest possible variance.N

Algorithm (Huffman). Input: the symbol probabilities. Output: a binary tree
with nodes labeled with numbers in the range (0,1] and edges labeled with
0 or 1.

Description. Start. Consider each symbol as a depth O tree labeled with its
probability.
Repeat. Do until a single tree remains (which will happen in < n steps):
- select two trees with the lowest weight roots (say w and w').
- combine the two trees into a single tree by adding a new root with
weight w + w’, and making the two trees its children.

For a proof of the correctness of the algorithm, including the strengthening
explained in the note, see Blelloch-2010.

Example Il (cf. [MacKay-2003])

Data for monogram English
Li = 1082(1/Pj)

ai| p; | Li |l f(a) aj, pj | Ll f(a)
a |0.0575| 4.1| 4 |0000 0 |0.0689| 3.9| 4 1011
b |0.0128| 6.3| 6 001000 p |0.0192] 5.7| 6 111001
¢ [0.0263| 5.2| 5 |00101 g |0.0008(10.3| 9 |110100001
d |0.0285| 5.1| 5 | 10000 r 10.0508| 4.3/ 5 (11011
e |0.0913| 3.5| 4 |1100 s 10.0567| 4.1| 4 |0011
f 10.0173| 5.9/ 6 /111000 t |0.0706| 3.8] 4 |1111
g |0.0133| 6.2| 6 |001001 u |0.0334| 4.9|5 10101
h [0.0313| 5.0| 5 |10001 v |0.0069| 7.2| 8 |11010001
i 10.0599| 4.1| 4 |1001 w|0.0119| 6.4| 7 |1101001
j 10.0006|10.710|1101000000| | x |0.0073| 7.1| 7 |1010001
k 10.0084| 6.9| 7 | 1010000 vy |0.0164| 5.9| 6 101001
| 10.0335| 4.9/ 511101 z 10.0007|10.4|10|1101000001
m|0.0235| 5.4| 6 |110101 ~10.1928| 2.4] 2 |01
n |0.0596| 4.1 4 |0001

16

Huffman code for monogram English

Remark. The entropy of monogram English is H = 4.1094, while the aver-
age codeword length is 4.1462 = H.

17

Notes
N1 (p. 3). Iff(ail)f(aiz) ---f(al-k) = f(aii)f(aié) ---f(ai;c), then either f(a;,)

is a prefix off(aii) or f(aii) is a prefix off(al-l) or f(al-l) = f(al-i). If the code
is instantaneous, only the last possibility can occur, and so a;, = a;:. Now the

claim follows easily by induction.

N2 (p. 3). Work backwards from the end of a given binary string. If it ends with O,
this 0 is uniquely decoded as x and we can proceed by induction. If it ends with 1
and the previous bit is O, the last two bits are uniquely decoded as y, and we can
again proceed by induction. If the last two bits are 11, then the binary string is
not decodable.

N3 (p. 8). Let f: A = C” be an encoding with word lengths [;, ..., [,,. Then we

can write, for any positive integer m,

(i_|_..._|_ %)m=ﬂ+v_§+...+w_‘m
rin roor

18

where v; = 0 is the number of ways in which j can be decomposed into a sum of

m integers from the set {l,, ..., [,,}. If the code is ud, then we clearly must have
v; <1/, and hence

1 1 \™M
(T+'°'+ T) < Im, or
Trt1 r'n

1 1
T+ e 4 TS ll/msl/m’
il r'n

and letting m go to oo we get Kraft’s inequality.

2
N4 (p. 14). The variance of the code-lengths is 0 = };; pj(lj — f) . Remember
that £ =).; p;l;. In the example, o is equal to 1.7895.

References

[Blelloch-2010] Guy E. Blelloch: Introduction to data compression.
http://www.cs.cmu.edu/~guyb/realworld/compression.pdf.

[MacKay-2003] David J.C. MacKay: Information theory, inference and learning algo-
rithms. Cambridge university press, 2003. xii + 628p.

http://www.cs.cmu.edu/%7Eguyb/realworld/compression.pdf

