
CDI15
3. Probability coding
303 SXD

 3.1. Basic notions about source coding

3.2. Construction of prefix codes
 3.3. The noiseless coding theorem
 3.4. Optimal codes and the Huffman’s algorithm

 Notes
 References

2

3.1. Basic notions about source coding

Generalities

Let 𝒜𝒜 = {𝑎𝑎1, … , 𝑎𝑎𝑛𝑛} source alphabet, so that the source emits a stream of
symbols from 𝒜𝒜. At this stage we assume that the source is memoryless,
which means that if 𝑋𝑋𝑖𝑖 denotes the 𝑖𝑖-th symbol (so 𝑋𝑋𝑖𝑖 is a random variable
with values in 𝒜𝒜), then

𝑝𝑝𝑗𝑗 = 𝑃𝑃(𝑋𝑋𝑖𝑖 = 𝑎𝑎𝑗𝑗)
is independent of 𝑖𝑖, and hence also independent of all other symbols in the
stream.

Let 𝒞𝒞 be a coding alphabet of 𝑟𝑟 symbols, as for example the binary alpha-
bet (𝑟𝑟 = 2). An encoding of 𝒜𝒜 is a map
 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗, 𝑎𝑎𝑖𝑖 ↦ 𝑓𝑓(𝑎𝑎𝑖𝑖).
The elements of the list 𝐶𝐶𝑓𝑓 = {𝑓𝑓(𝑎𝑎1), … , 𝑓𝑓(𝑎𝑎𝑛𝑛)} will be called the code-
words of the encoding 𝑓𝑓.

3

The 𝑓𝑓-encoding of a source message 𝑀𝑀 = 𝑎𝑎𝑖𝑖1𝑎𝑎𝑖𝑖2 ⋯𝑎𝑎𝑖𝑖𝑘𝑘 ∈ 𝒜𝒜
∗ is the string

𝑓𝑓(𝑀𝑀) ∈ 𝒞𝒞∗(coded message) defined by
 𝑓𝑓(𝑀𝑀) = 𝑓𝑓�𝑎𝑎𝑖𝑖1�𝑓𝑓�𝑎𝑎𝑖𝑖2�⋯𝑓𝑓(𝑎𝑎𝑖𝑖𝑘𝑘) .
Thus we can regard 𝑓𝑓 as a map 𝑓𝑓:𝒜𝒜∗ → 𝒞𝒞∗.

The encoding 𝑓𝑓 is said to be uniquely decodable/decipherable (ud) if this
map is 1-to-1, which means that any string from 𝒞𝒞∗ is at most the image of
one string from 𝒜𝒜∗.

Example. The encoding 𝑓𝑓: {𝑥𝑥, 𝑦𝑦, 𝑧𝑧} → {0,1}∗ such that
 𝑓𝑓(𝑥𝑥) = 0, 𝑓𝑓(𝑦𝑦) = 10, 𝑓𝑓(𝑧𝑧) = 010
is not uniquely decodable, as 010 can be decoded as 𝑧𝑧 and as 𝑥𝑥𝑥𝑥.

If no code word is a prefix of any other code word, we say that the encod-
ing (or the code) is prefix (or instantaneous). Such codes are uniquely de-
codable.N1

Example. The encoding 𝑥𝑥 → 0, 𝑦𝑦 → 01 in not prefix, but it is ud.N2

4

Henceforth, encoding will mean uniquely decodable encoding. As we have
seen, prefix encodings (and hence in particular block encodings, whose
words have all the same length) are encodings in this sense.

The code of and encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ is the set 𝐶𝐶𝑓𝑓 of codewords {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛},
𝑐𝑐𝑗𝑗 = 𝑓𝑓(𝑎𝑎𝑗𝑗).

Remark. Note that the ud property can be stated by saying that if
𝑐𝑐𝑖𝑖1 ⋯ 𝑐𝑐𝑖𝑖𝑘𝑘 = 𝑐𝑐𝑖𝑖1′ ⋯ 𝑐𝑐𝑖𝑖𝑘𝑘′

′ ,

then 𝑘𝑘′ = 𝑘𝑘 and 𝑖𝑖𝑠𝑠′ = 𝑖𝑖𝑠𝑠 for 𝑠𝑠 = 1, … , 𝑘𝑘. In other words, that the expres-
sion of an element of 𝒞𝒞∗ as concatenation of elements of 𝐶𝐶 is unique.

Remark. The question of whether a subset 𝐶𝐶 of 𝒞𝒞∗ has this property can
be decided by the Sardinas-Patterson algorithm (1953): It takes 𝐶𝐶 as input
and outputs either that 𝐶𝐶 has the property or an element of 𝒞𝒞∗ that has
two different expressions as concatenations of elements of 𝐶𝐶.

5

3.2. Construction of prefix codes

Suppose 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ is an encoding. Let 𝐶𝐶𝑗𝑗 ⊆ 𝒞𝒞𝑗𝑗, 𝑗𝑗 = 1, … , 𝑙𝑙, be the set of
code words of length 𝑗𝑗, where 𝑙𝑙 denotes the maximum lengths of code
words. Let 𝑛𝑛𝑗𝑗 = �𝐶𝐶𝑗𝑗� (the number of elements of 𝐶𝐶𝑗𝑗). If 𝑓𝑓 is prefix, then we
have

 𝑛𝑛1 + ⋯+ 𝑛𝑛𝑙𝑙 = 𝑛𝑛 and
 𝑛𝑛𝑙𝑙 ≤ 𝑟𝑟𝑙𝑙 − 𝑛𝑛1𝑟𝑟𝑙𝑙−1 − ⋯− 𝑛𝑛𝑙𝑙−1𝑟𝑟. [∗]

The first relation is clear, as 𝐶𝐶1 ∪ ⋯∪ 𝐶𝐶𝑙𝑙 is the set of code words and there
are 𝑛𝑛 of these. As for the inequality, note that there are precisely 𝑛𝑛𝑗𝑗𝑟𝑟𝑙𝑙−𝑗𝑗
elements in 𝒞𝒞𝑙𝑙 having an element of 𝐶𝐶𝑗𝑗 as prefix (we can add any 𝑙𝑙 − 𝑗𝑗
symbols to any of the 𝑛𝑛𝑗𝑗 elements of 𝐶𝐶𝑗𝑗). Excluding all these elements, we
are left with a subset of 𝒞𝒞𝑙𝑙 with 𝑟𝑟𝑙𝑙 − 𝑛𝑛1𝑟𝑟𝑙𝑙−1 − ⋯− 𝑛𝑛𝑙𝑙−1𝑟𝑟 elements that
must contain 𝐶𝐶𝑙𝑙, and so [∗] is also clear.

Now it is interesting to see that the converse is also true.

6

Proposition. If 𝑛𝑛1, 𝑛𝑛2, … , 𝑛𝑛𝑙𝑙 are non-negative integers that satisfy the con-
ditions [∗], then there is a prefix encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ that has exactly 𝑛𝑛𝑗𝑗
code words of length 𝑗𝑗 for 𝑗𝑗 = 1, … , 𝑙𝑙.
Proof. From [∗], and the fact that the 𝑛𝑛𝑗𝑗 are non-negative, we get that
 𝑛𝑛𝑗𝑗 ≤ 𝑟𝑟𝑗𝑗 − 𝑛𝑛1𝑟𝑟𝑗𝑗−1 − ⋯− 𝑛𝑛𝑗𝑗−1𝑟𝑟 (𝑗𝑗 = 𝑙𝑙, … ,1) [∗𝑗𝑗]

Notice that from 0 ≤ 𝑟𝑟𝑗𝑗 − 𝑛𝑛1𝑟𝑟𝑗𝑗−1 − ⋯− 𝑛𝑛𝑗𝑗−1𝑟𝑟 we get [∗𝑗𝑗−1] (divide by 𝑟𝑟
and move 𝑛𝑛𝑗𝑗−1 to the left hand side).

We are going to construct subsets 𝐶𝐶𝑗𝑗 ⊆ 𝒞𝒞𝑗𝑗 (𝑗𝑗 = 1, … , 𝑙𝑙), with

(a) �𝐶𝐶𝑗𝑗� = 𝑛𝑛𝑗𝑗, and

(b) for 𝑗𝑗′ < 𝑗𝑗, no element of 𝐶𝐶𝑗𝑗′ is a prefix of an element of 𝐶𝐶𝑗𝑗
 (𝑗𝑗 = 2, … , 𝑙𝑙).
As 𝐶𝐶1 ⊆ 𝒞𝒞 we take any subset with |𝐶𝐶1| = 𝑛𝑛1 (this is certainly possible be-
cause [∗1] tells us that 𝑛𝑛1 ≤ 𝑟𝑟).

7

Suppose then that for some 𝑗𝑗 > 1, 𝑗𝑗 ≤ 𝑙𝑙, we have constructed 𝐶𝐶1, … , 𝐶𝐶𝑗𝑗−1
with the properties (a) and (b). To add 𝐶𝐶𝑗𝑗 to the list, first note that for any

1 ≤ 𝑗𝑗′ < 𝑗𝑗 there are precisely 𝑛𝑛𝑗𝑗′𝑟𝑟𝑗𝑗−𝑗𝑗
′elements in 𝒞𝒞𝑗𝑗 that have an ele-

ment of 𝐶𝐶𝑗𝑗′ as a prefix (we can add any 𝑗𝑗 − 𝑗𝑗′ symbols to any of the 𝑛𝑛𝑗𝑗′
elements of 𝐶𝐶𝑗𝑗′). We are left with a subset 𝑆𝑆𝑗𝑗 ⊆ 𝒞𝒞𝑗𝑗 with at least

 𝑟𝑟𝑗𝑗 − 𝑛𝑛1𝑟𝑟𝑗𝑗−1 − ⋯− 𝑛𝑛𝑗𝑗−1𝑟𝑟

elements such that for 𝑗𝑗′ < 𝑗𝑗 no element of 𝐶𝐶𝑗𝑗′ is a prefix of any of the
elements of 𝑆𝑆𝑗𝑗. Then it is enough to take as 𝐶𝐶𝑗𝑗 any subset of 𝑛𝑛𝑗𝑗 elements
of 𝑆𝑆𝑗𝑗, which is possible because �𝑆𝑆𝑗𝑗� ≥ 𝑛𝑛𝑗𝑗 (by [∗𝑗𝑗]).

Having the sets 𝐶𝐶𝑗𝑗 with the properties (a) and (b), it is easy to construct an
encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ with 𝐶𝐶1 ∪ ⋯∪ 𝐶𝐶𝑙𝑙 as set of code words, and this en-
coding is instantaneous.

E.3.1. Show that the inequality [∗𝑗𝑗] is strict except maybe for 𝑗𝑗 = 𝑙𝑙.

8

Remark. The preceding considerations are often stated as follows:
There exists a prefix encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ with word lengths 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛 iff

 1
𝑟𝑟𝑙𝑙1

+ ⋯+ 1
𝑟𝑟𝑙𝑙𝑛𝑛

≤ 1 (Kraft′s inequality).

Note that this inequality is equivalent, setting 𝑙𝑙 = max(𝑙𝑙𝑗𝑗), to

𝑟𝑟𝑙𝑙 ≥ 𝑟𝑟𝑙𝑙−𝑙𝑙1 + ⋯+ 𝑟𝑟𝑙𝑙−𝑙𝑙𝑛𝑛.

Since on the right hand side there are 𝑛𝑛𝑗𝑗 terms of the form 𝑟𝑟𝑙𝑙−𝑗𝑗, the last
inequality can be written as

 𝑟𝑟𝑙𝑙 ≥ 𝑛𝑛1𝑟𝑟𝑙𝑙−1 + ⋯+ 𝑛𝑛𝑙𝑙−1𝑟𝑟 + 𝑛𝑛𝑙𝑙,

which is equivalent to [∗].

Remark (Kraft-MacMillan inequality). If we have an encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗
with word lengths 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛, then Kraft’s inequality is still satisfied (McMil-
lan theoremN3) and hence there is a prefix encoding with the same word
lengths (Moral: with prefix encodings we can do as much as with ud’s).

9

3.3. The noiseless coding theorem

Given and encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗, let 𝑙𝑙𝑖𝑖 = |𝑓𝑓(𝑎𝑎𝑖𝑖)| (the length of 𝑓𝑓(𝑎𝑎𝑖𝑖)), the
mean length, denoted ℓ = ℓ𝑓𝑓, is defined as

 ℓ = 𝑝𝑝1𝑙𝑙1 + ⋯+ 𝑝𝑝𝑛𝑛𝑙𝑙𝑛𝑛.

Theorem (Shannon). Let 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ be an encoding (so ud). Then ℓ ≥
𝐻𝐻/ log2(𝑟𝑟), where 𝐻𝐻 = −∑ 𝑝𝑝𝑗𝑗 log2(𝑝𝑝𝑗𝑗)𝑗𝑗 is the entropy of the source.
Moreover, there exists a encoding with ℓ < 1 + 𝐻𝐻/ log2(𝑟𝑟).

Proof. Set 𝑆𝑆 = 1
𝑟𝑟𝑙𝑙1

+ ⋯+ 1
𝑟𝑟𝑙𝑙𝑛𝑛

 and 𝑞𝑞𝑗𝑗 = 1

𝑆𝑆𝑟𝑟𝑙𝑙𝑗𝑗
. Then 𝑆𝑆 ≤ 1, by the Kraft-Mac-

millan inequality, and 𝑞𝑞1 + ⋯+ 𝑞𝑞𝑛𝑛 = 1. By Gibbs lemma,

 𝐻𝐻 = −∑ 𝑝𝑝𝑗𝑗 log2�𝑝𝑝𝑗𝑗�𝑗𝑗 ≤ −∑ 𝑝𝑝𝑗𝑗 log2(𝑞𝑞𝑗𝑗)𝑗𝑗 .

Since log2(𝑞𝑞𝑗𝑗) = −𝑙𝑙𝑗𝑗 log2(𝑟𝑟) − log2(𝑆𝑆), and log2(𝑆𝑆) ≤ 0, we obtain

 𝐻𝐻 ≤ ℓ log2(𝑟𝑟) + log2(𝑆𝑆) ≤ ℓ log2(𝑟𝑟).

Note: The equality 𝐻𝐻 = ℓ log2(𝑟𝑟) happens iff 𝑆𝑆 = 1 and 𝑝𝑝𝑗𝑗 = 1/𝑟𝑟𝑙𝑙𝑗𝑗.

10

To prove the second part, let 𝑙𝑙𝑗𝑗 be the least integer such that 𝑟𝑟𝑙𝑙𝑗𝑗 ≥ 1/𝑝𝑝𝑗𝑗.
Then 𝑝𝑝𝑗𝑗 ≥ 𝑟𝑟−𝑙𝑙𝑗𝑗 and ∑ 𝑟𝑟−𝑙𝑙𝑗𝑗𝑗𝑗 ≤ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗 = 1. Thus the 𝑙𝑙𝑗𝑗 satisfy the Kraft-
McMillan inequality and hence there is a prefix (sic) encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗
with code lengths 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛. But 𝑙𝑙𝑗𝑗 < 1 − log2�𝑝𝑝𝑗𝑗� / log2(𝑟𝑟), by E.2.2, and
hence ℓ = ∑ 𝑝𝑝𝑗𝑗𝑙𝑙𝑗𝑗𝑗𝑗 < 1 + 𝐻𝐻/log2(𝑟𝑟).

E.3.2. Show that the least integer such that 𝑟𝑟𝑙𝑙𝑗𝑗 ≥ 1/𝑝𝑝𝑗𝑗 is
�− log2�𝑝𝑝𝑗𝑗� / log2(𝑟𝑟)�.

In particular, 𝑙𝑙𝑗𝑗 < 1 − log2�𝑝𝑝𝑗𝑗� / log2(𝑟𝑟).

E.3.3. Use the Kraft-McMillan inequality to show that the set
 𝐶𝐶 = {0, 01, 11, 101}
is not a code and find a binary string that can be decomposed in two dif-
ferent ways as a concatenation of elements of 𝐶𝐶.

11

3.4. Optimal encodings and the Huffman’s algorithm

An encoding 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ is said to be optimal, or compact, if ℓ has the min-
imum possible value. In the search for such encodings, we know that it is
enough to look for prefix encodings. Moreover, ℓ must satisfy the con-
straints given by Shannon’s source coding theorem:

 𝐻𝐻 log2(𝑟𝑟)⁄ ≤ ℓ < 1 + 𝐻𝐻/ log2(𝑟𝑟).

Optimal prefix binary encodings 𝑓𝑓:𝒜𝒜 → {0,1}∗ (Huffman encodings) were
constructed by Huffman in 1952. The purpose of this section is to describe
in detail his procedure.

We will explain first how the algorithm works in two examples. Given the
source symbols (𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) and their probabilities (𝑝𝑝1, … , 𝑝𝑝𝑛𝑛), we will
build a binary tree of depth 𝑛𝑛 − 1 and having 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 as leaves. The left
(right) edges are labeled 0 (1). The encoding of a symbol is done by reading
the labels found in going from the root to the symbol leaf.

12

Example I (cf. Welsh-1988, p. 22-23). We take the
alphabet {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒}, with probabilities
{0.50, 0.20, 0.15, 0.10, 0.05}. In this case, Huff-
man’s algorithm constructs the tree shown in the
figure and hence it outputs the encoding

 𝑎𝑎 → 0, 𝑏𝑏 → 11, 𝑐𝑐 → 100,
 𝑑𝑑 → 1010, 𝑒𝑒 → 1011.

We start with the two leaves with smallest proba-
bility (𝑑𝑑 and 𝑒𝑒), with the highest to the left. We add
a node, labeled 0.15 = 0.10 + 0.05, having 𝑑𝑑 and
𝑒𝑒 as children. Now the smallest probabilities are 𝑝𝑝(𝑐𝑐) = 0.15 and the node
0.15 just constructed, and to them we attach a new node, 0.30. We keep
𝑐𝑐 to the left because it was known earlier. Then we proceed with 0.30 >
0.20 = 𝑝𝑝(𝑏𝑏), hence 𝑏𝑏 is placed to the right, and finally we end with the
node 1.00 (the root).

Huffman: Example I

13

Example II (cf. Blelloch-2010, p. 15-16).
We take again the alphabet {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒},
with probabilities {0.2, 0.4, 0.2, 0.1, 0.1}.
In this case, Huffman’s algorithm con-
structs the tree shown in the figure and
hence it outputs the encoding

 𝑎𝑎 → 10, 𝑏𝑏 → 00, 𝑐𝑐 → 11,
 𝑑𝑑 → 010, 𝑒𝑒 → 011.

The smallest probabilities are 𝑝𝑝(𝑑𝑑) =
𝑝𝑝(𝑒𝑒) = 0.1. We proceed with them as in the previous example, yielding
the node 0.2 that ties with 𝑎𝑎 and 𝑐𝑐. Since these were known before, we
create the node 0.4, that ties with 𝑏𝑏. Now we combine 0.4 = 𝑝𝑝(𝑏𝑏), known
before, with the 0.2, which is now the smallest value, yielding the node
0.6.

Huffman: Example II

14

Remark. If we do not obey the precedence rules explained in the exam-
ples, we still get an optimal prefix code. With the precedence rules, it turns
out that the lengths of the code words have the lowest possible variance.N4

Algorithm (Huffman). Input: the symbol probabilities. Output: a binary tree
with nodes labeled with numbers in the range (0,1] and edges labeled with
0 or 1.

Description. Start. Consider each symbol as a depth 0 tree labeled with its
probability.
Repeat. Do until a single tree remains (which will happen in < 𝑛𝑛 steps):

- select two trees with the lowest weight roots (say 𝑤𝑤 and 𝑤𝑤′).
- combine the two trees into a single tree by adding a new root with

weight 𝑤𝑤 + 𝑤𝑤′, and making the two trees its children.

For a proof of the correctness of the algorithm, including the strengthening
explained in the note, see Blelloch-2010.

15

Example III (cf. [MacKay-2003])

Data for monogram English
𝐿𝐿𝑗𝑗 = log2(1/𝑝𝑝𝑗𝑗)

𝑎𝑎𝑗𝑗 𝑝𝑝𝑗𝑗 𝐿𝐿𝑗𝑗 𝑙𝑙𝑗𝑗 𝑓𝑓(𝑎𝑎𝑗𝑗) 𝑎𝑎𝑗𝑗 𝑝𝑝𝑗𝑗 𝐿𝐿𝑗𝑗 𝑙𝑙𝑗𝑗 𝑓𝑓(𝑎𝑎𝑗𝑗)
a 0.0575 4.1 4 0000 o 0.0689 3.9 4 1011
b 0.0128 6.3 6 001000 p 0.0192 5.7 6 111001
c 0.0263 5.2 5 00101 q 0.0008 10.3 9 110100001
d 0.0285 5.1 5 10000 r 0.0508 4.3 5 11011
e 0.0913 3.5 4 1100 s 0.0567 4.1 4 0011
f 0.0173 5.9 6 111000 t 0.0706 3.8 4 1111
g 0.0133 6.2 6 001001 u 0.0334 4.9 5 10101
h 0.0313 5.0 5 10001 v 0.0069 7.2 8 11010001
i 0.0599 4.1 4 1001 w 0.0119 6.4 7 1101001
j 0.0006 10.7 10 1101000000 x 0.0073 7.1 7 1010001
k 0.0084 6.9 7 1010000 y 0.0164 5.9 6 101001
l 0.0335 4.9 5 11101 z 0.0007 10.4 10 1101000001

m 0.0235 5.4 6 110101 _ 0.1928 2.4 2 01
n 0.0596 4.1 4 0001

16

Remark. The entropy of monogram English is 𝐻𝐻 = 4.1094, while the aver-
age codeword length is 4.1462 ≥ 𝐻𝐻.

a
c

r d b

f

s

e

_

z

t

x w

u

n

l h
y p

j

v

o

m

k

g

q

i

Huffman code for monogram English

17

Notes

N1 (p. 3). If 𝑓𝑓�𝑎𝑎𝑖𝑖1�𝑓𝑓�𝑎𝑎𝑖𝑖2�⋯𝑓𝑓�𝑎𝑎𝑖𝑖𝑘𝑘� = 𝑓𝑓�𝑎𝑎𝑖𝑖1′ �𝑓𝑓�𝑎𝑎𝑖𝑖2′ �⋯𝑓𝑓(𝑎𝑎𝑖𝑖𝑘𝑘′), then either 𝑓𝑓(𝑎𝑎𝑖𝑖1)

is a prefix of 𝑓𝑓�𝑎𝑎𝑖𝑖1′ � or 𝑓𝑓�𝑎𝑎𝑖𝑖1′ � is a prefix of 𝑓𝑓�𝑎𝑎𝑖𝑖1� or 𝑓𝑓�𝑎𝑎𝑖𝑖1� = 𝑓𝑓�𝑎𝑎𝑖𝑖1′ �. If the code
is instantaneous, only the last possibility can occur, and so 𝑎𝑎𝑖𝑖1 = 𝑎𝑎𝑖𝑖1′ . Now the

claim follows easily by induction.

N2 (p. 3). Work backwards from the end of a given binary string. If it ends with 0,
this 0 is uniquely decoded as 𝑥𝑥 and we can proceed by induction. If it ends with 1
and the previous bit is 0, the last two bits are uniquely decoded as 𝑦𝑦, and we can
again proceed by induction. If the last two bits are 11, then the binary string is
not decodable.

N3 (p. 8). Let 𝑓𝑓:𝒜𝒜 → 𝒞𝒞∗ be an encoding with word lengths 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛. Then we
can write, for any positive integer 𝑚𝑚,

 � 1
𝑟𝑟𝑙𝑙1

+ ⋯+ 1
𝑟𝑟𝑙𝑙𝑛𝑛
�
𝑚𝑚

= 𝜈𝜈1
𝑟𝑟

+ 𝜈𝜈2
𝑟𝑟2

+ ⋯+ 𝜈𝜈𝑙𝑙𝑙𝑙
𝑟𝑟𝑙𝑙𝑙𝑙

 ,

18

where 𝜈𝜈𝑗𝑗 ≥ 0 is the number of ways in which 𝑗𝑗 can be decomposed into a sum of
𝑚𝑚 integers from the set {𝑙𝑙1, … , 𝑙𝑙𝑛𝑛}. If the code is ud, then we clearly must have
𝜈𝜈𝑗𝑗 ≤ 𝑟𝑟𝑗𝑗, and hence

 � 1
𝑟𝑟𝑙𝑙1

+ ⋯+ 1
𝑟𝑟𝑙𝑙𝑛𝑛
�
𝑚𝑚
≤ 𝑙𝑙𝑙𝑙, or

1
𝑟𝑟𝑙𝑙1

+ ⋯+ 1
𝑟𝑟𝑙𝑙𝑛𝑛

≤ 𝑙𝑙1 𝑚𝑚⁄ 𝑠𝑠1/𝑚𝑚,

and letting 𝑚𝑚 go to ∞ we get Kraft’s inequality.

N4 (p. 14). The variance of the code-lengths is 𝜎𝜎 = ∑ 𝑝𝑝𝑗𝑗�𝑙𝑙𝑗𝑗 − ℓ�2𝑗𝑗 . Remember
that ℓ = ∑ 𝑝𝑝𝑗𝑗𝑙𝑙𝑗𝑗𝑗𝑗 . In the example, 𝜎𝜎 is equal to 1.7895.

References
[Blelloch-2010] Guy E. Blelloch: Introduction to data compression.
 http://www.cs.cmu.edu/~guyb/realworld/compression.pdf.

[MacKay-2003] David J.C. MacKay: Information theory, inference and learning algo-
rithms. Cambridge university press, 2003. xii + 628p.

http://www.cs.cmu.edu/%7Eguyb/realworld/compression.pdf

