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2.1. Uncertainty, entropy and information

Uncertainty is present in random experiments (or random variables), like
throwing a coin, or a die, or a pair of dice, or spinning a roulette, or betting
about the value of the € against the S tomorrow, and so on.

Is there a reasonable way to measure such uncertainty?

Notations. U = {a, a,, ..., a,, }, the set of possible outcomes of a random
(or stochastic) variable A. Setp; = P(aj) > 0, the probability of obtaining
a;. If X € U (these subsets are called events), p = P(X) = ZajEX p;is the

probability of X. Note that p > 0 unless X = @ (the impossible event). As
P(U)= py+py,+ -+ p, =1, Uisthe sure event.



Uncertainty of one event

We look for a measure H = H(X) of the uncertainty about the occurrence
of an event X, or of the information provided by its occurrence.

We will assume that H depends only on p, H = H(p), that H(p) is contin-
uous and that:

a) H is non-negative:
Hp)=20if0<p < 1.
b) H is additive for independent events:

H(pq) = H(p) + H(q).

Mathematical magic:

, —loga(p) =~
H necessarily has the form

H(p) = —klogp, k > 0 constant.
With the normalization H(1/2) = 1 (bit),
H(p) = —log,(p).
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Uncertainty or entropy of A
The uncertainty or entropy of the random experiment A, H = H(A), is the
average uncertainty, or expected uncertainty, of its outcomes:

H(A) = p1H(py) + -+ paH(pn) = — X pjlog,(p;).
H(y, ..., pn) = —2;D; logz(pj) : Shannon’s entropy formula.

logs(e) /e ~ 0.53

176
The figure shows the graph of the function —p log, (p). It has a maximum
atp = 1/e = 0.368. The value of the maximum is log,(e)/e = 0.53.



Remark. If the probabilities are given as a list of weights w;, so that
Pr = Wi/w,
then we can use the formula
H(pq,...,pn) = (— 2 Wi logz(wj) + Wlogz(w))/w.
It will also be denoted H(wy, ..., wy,).
The proof is a simple calculation:

H(pl' ""pn) — _Zj pj lng(pj)
W. W
=~ log: ()

w
= —(Zj W; (logz w; — log, W))/W

= (— X wjlogz(w;) + wlog,(w))/w.
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E.2.1. [Welsh-88, p. 3] Which race has greater uncertainty: a handicap in which
there are 7 runners, 3 having probability 1/6 and 4 having probability 1/8, or a
selling plate in which there are 8 runners with 2 horses having 1/4 probability of
winning and 6 horses having each 1/12 probability?

E.2.2. [Welsh-88, p. 11] Which has greater information: 10 letters or 26 decimal
digits?

E.2.3. Discuss the saying: A picture is worth a thousand words.



Example. Suppose we have a biased coin with

p(heads) = p, p(tails) =1 — p.
Then the entropy is

c(p)=H(p,1—p) =
—plog,(p) — (1 —p)log, (1 — p).

The figure shows the graph of c(p).

Notice that c(p) > 0 except for p =

0 and p =1, that it is symmetric

about p = 1/2 and that c(p) has a

maximum value, namely 1, at p =

1/2.

Thus, a fair coin (p = 1/2) has the e(p) = —plogs(p) — (1 — p) logs(1 — p)
maximum entropy (uncertainty), corresponding to 1 bit of information.
This agrees with our intuition that the outcome of throwing a biased coin
has less uncertainty than throwing a fair one.
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Example. The entropy of an experiment or random variable whose n out-
comes are equally likely is log, (n).

Indeed, the entropy in question is H(1/n,1/n,...,1/n), and by Shan-
1
n

) = n%lng(n) = log,(n).

In particular, if we throw a fair coin m times, then the entropy is m bits.

. 1
non’s formula this is equal to — Z’f;logz (

Since log, (n) increases when n increases, we see that a random variable
with n equally likely outcomes has less uncertainty than a random variable
with m > n equally likely outcomes. This agrees with our intuition that
the outcome of throwing a fair coin is less uncertain than the outcome in
throwing a fair die, and that this in turn is less uncertain than the result of
a (fair) roulette spin.

Remark. Since the uncertainty H(p) is also the information amount gained
by the occurrence of an event of probability p, the entropy H(A) can be
understood as the average information gained in a run of A.



2.2. Properties of the entropy function

a) H(py,py, ..., Py) is a positive symmetrical function of py, vy, ..., Dy,
b) H(pq, ..., pn) < log,(n), and equality is satisfied if an only if

p1=p2 =" =pp=1/n
This agrees with our intuition that a fair die carries more uncertainty than
a biased one. The proof is quite easy using that In(x) < x — 1 for all x,

with equality if and only if x = 1 (see the proof on next slide). Indeed, if
q1, ---» qn is any other distribution of probability (q; > 0, ). q; = 1), then

ln(qj/pj) < qj/pj — 1, with equality if an only if ¢; = pj;
Ypiln(q;/p;)) <X qi—Xpj=1—-1=0;

—XpjIn(p;) < —Xp;In(q));

H(py, .., pn) < — 2 D; logz(qj) [multiply line above by log,(e)];

H(py, ...,pn) <log,(n) [set q; = 1/n in previous line],
with equality if and only if p; = q; = 1/n for all j. And that is it!



i = nfs)

The tangent to y = In(x) at z = 1 has
equation y = x — 1. The derivative of
(x — 1) —In(z) is 1 — 1 /2 and so it is
negative por 0 < x < 1,0 forz = 1
and positive for x > 1. This implies
that In{z) < & — 1 ferz = 1.
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Remark (Gibbs lemma). In the above proof we have seen that the mini-
mum of —)p; log,(q;) when the q, ..., g, runs over all possible probabil-
ity distributions, with the distribution py, ..., p, fixed, is achieved for q; =
pj. In other words,

—X.p;log, (qj) = —2Dj logz(pj), with equality only for q; = p;.
c) Let B be another random variable with possible outcomes V =
{bq, ..., b.,} and probabilities q4, ..., g,,,. Then we have the composite or
joint random variable (A, B) whose trials consist in observing A and B to-
gether. The possible outcomes are the pairs (a;, by ). If we set

Djk = P(aj,bk) = P(A =a;\AB = bk) = ij(bk|aj), then
H(A,B) = — Xk Pjk log,(pjk)-
There is a relation of this entropy to the entropies H(A) and H(B):

H(A,B) < H(A) + H(B) [Upper bound on joint entropy]
with equality if and only if A and B are independent.



To prove this, first notice that ), pjx = p; and
2iPjk = qy (see table). Then

H(A) + H(B)

= —X;p;l0g,(p;) — L qi 1082 (qx)

—Zj 2k Pjk 1082(29]') — Xk Zj Pjk log,(qx)
— 2jk Pjk 1082 (Pjqxk)

> — Y ikDjklog,(pjx) [Gibbslemma, p. 10]
= H(A, B).
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by by, b,
P11 = Pik - Pim
Pj1 = DPjk Pjm
Pn1 - Pnk Pnm
q1 - 4k dm

P1

Pn

Equality occurs if and only if p;q, = pjx, which is precisely the condition

for A and B to be independent.

Remark. Given the table of probabilities pj; of a joint distribution, the

probabilities p; = Y. pjx and g = X.; pjx are usually said to be the mar-

ginal distributions of the joint distribution, by rows and columns, respec-

tively.
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Remark. We have, by the formula on conditional probabilities,

pjr =P(A=a; AB=b;)=P(A=a;)P(B =bi|A=a).
In this expression, P(A = aj) = pj. Asfor P(B = bk|A = aj), itis equal to
P(B = by) = qy if and only if the event {B = b, } is independent of the
event {A = a;}. Hence pj, = p;qy if and only if {B = by} is independent
of {A = a;}. Thus pj, = p;qy forall jand k & A and B are independent.
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2.3. Conditional entropy and information

The conditional entropy of a random variable B given an event X is defined
as the uncertainty of the random variable B|X:

H(BIX) = — 3y P(byc|X) 10g, (P (b | X)).
Remark. H(B|X) = H(B) if and only if B is independent of X.

If A is another random variable, the conditional entropy of B given A is
defined by

H(B|A) = X jp;jH(B|a;).
This can be thought as the uncertainty about B that remains after having
observed A, averaged with the probabilities p; of A.

In more detail,

H(BIA) = — X, p; i P(bila;) log, (P(bila))
Remark. Since H(B|aj) = H(B) if and only if B is independent of a;,
H(B|A) = H(B) if and only if B is independent of A.
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E.2.4. Show that H(A|A) = 0.

E.2.5. [Welsh-88, p. 9] For any random variable 4 show that H(4%|4) = 0 and
give an example for which H(4|4%) # 0.

Example. Let A and B stand for the input and output bit, respectively, of a
binary symmetric channel with cross-over probability p. Then (see the Ex-
ample on p. 6)
H(B|A) = c(p).
Indeed, by definition we have
H(B|A) = P,(0)H(B|0) + P,(1)H(B|1).
Now it is enough to notice that
P,(0) = P,(1) = 1/2,
H(B|0) = —P5(0]0) log, P(0]0) — P5(1]0) log, P(1]0) = c(p),
H(B[1) = —P5(0]1) log, P(0|1) — Pg(1]|1)log, P(1[1) = c(p).
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Fundamental formula
H(A,B) = H(A) + H(B|A).
Proof. H(A,B) = — Xk P(aj, bk) log, (P(aj, bk))
= — Y ik P;jP(brla) log,(p;P(bkla))
= — X 0P (bilap) logz(p;) — e p;P(bic|ay) log; (P (bi|ay))
= H(A) + H(B|A).
Here we have used that the log of a product is the sum of the logs and that
2 P(bla;) = 1.
Corollary. H(B|A) < H(B), with equality if and only if B is independent
of A.
Indeed, the fundamental formula and the upper bound on the joint en-
tropy tell us that H(A) + H(B|A) < H(A) + H(B), which is equivalent to
H(B|A) < H(B), with equality holds if and only if B is independent of A.
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Conditional information

The information about B conveyed/provided by A, I(B|A), is defined by
I(B|A) = H(B) — H(B|A).

Since H(B|A) is the uncertainty about B given A, I(B|A) is the part of

H(B) accounted for by observing A. Note that I(B|A) = 0 iff B is inde-

pendent of A. On the other hand, I(A|A) = H(A), as H(A|A) = 0 (E.2.1).

Example. Let A and B stand for the input and 1o
output bit, respectively, of a binary symmet-

0.8
ric channel with cross-over probability p.

Then I(B|A) =1 —c(p) = C(p) is the ca-
pacity of the channel (amount of infor- oa
mation available at the receiving end for
each bit sent). Indeed, H(B) = 1 and we
have seen (Example on page 14) that 0.0

H(B|A) = c(p). C(p) =1+p log, (p) +(1—p)log, (1—p)



Corollary. I(B|A) = I(A|B).
Indeed, I(B|A) = H(B) — H(B|A) = H(B) — (H(4,B) — H(A)), or
I(B|A) = H(A) + H(B) — H(A, B)

= H(B) + H(A) — H(B, A)
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= I(4|B).
H(A,B) = H(B, A)
H(4) H(B|A)
H(A|B) H(B)
H(A|B) I(B|A) = I(A|B) H(B|A)
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There is another expression about I(B|A) = I(A|B) thatis more illuminat-
ing about its significance. To this end, recall that given two events X and Y
we have the relation (Bayes’ rule)

P(Y|X) = P(Y) - I(X,Y), with [(X,Y) = —2)_ _ PEIY)

P(X)P(Y)  P(X)

If we take log,, we get

—log, P(Y) — (—log, P(Y|X)) = log, I(X,Y) . [*]
In this relation, —log, P(Y) = H(Y) is the uncertainty about Y and
—log, P(Y|X) = H(Y|X) is the uncertainty about Y assuming we have
observed X. Thus the left hand side of [*], namely H(Y) — H(Y|X), is, as
we have seen, the information about Y provided by the observation of X.
Thus we see that the term i(X,Y) =log, I(X,Y) measures the infor-
mation about Y supplied by the observation of X (it is positive, negative or
zero according to whether I(X,Y) > 1, < 1or=1):

H(Y)— H(Y|X) = i(X,Y) or H(Y) = H(Y|X) +i(X,Y),
which is an additive form of Bayes’ rule.
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Now we can state and prove the alternative expression for I(B|A):

I(B|A) = Xjkpjri(aj, by).
In other words, the information about B provided by observing A is the
weighted average of the informations i(a;, by).

The proof of the formula is a simple computation:
I(B|A) = H(B) —H(B|A)
= — Y qr 1082 qx + X ;0j X P(by|a;) log, (P(bk|aj))
= — Yk X Dji 1082 Gk + X X pjic 10g2(pji/p;))

=Y i pj loga(pjx/p;ax)
= 2k Pjki(a;, by).

Note that since i(a;, by) = i(by, a;), this yields another proof of the rela-
tion I(B|A) = I(A|B).

E.2.6. Deduce the formulaI(B|A) = 1 — c(p) established in the Example on page
15 using the formula on top of this page.
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2.4. Readings

Comparing energy and information
The universality and importance of the concept of information could be com-
pared only with that of energy. It is interesting to compare these two (cf.
Rényi, 1960a). One is tempted to say that the great inventions of civilization
serve either to transform, store and transmit energy (fire, mechanisms like
wheels, use of water and wind energy, for instance, for sailing or in mills,
steam engines, use of electric, later nuclear energies, rockets, etc.) or they
serve to transform, store and transmit information (speech, writing, drum-
and fire-signals, printing, telegraph, photograph, telephone, radio, phono-
graph, film, television, computers, etc.). The analogy goes further. It took a
long time (until the middle of the nineteenth century) for the abstract con-
cept of energy to be developed, i.e. for it to be recognized that mechanical
energy, heat, chemical energy, electricity, atomic energy, and so on, are dif-
ferent forms of the same substance and that they can be compared, meas-
ured with a common measure. What, in fact, remains from the concept of
energy, if we disregard its forms of apparition, is its quantity, [its] measure,
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which was introduced some 125 years ago. In connection with the concept
of information, this essentially happened a century later, with the works of
Shannon (1948a,b). [There is even a “principle of conservation of infor-
mation”-like that of energy; see Katona and Tusnady (1967) and Csiszar et al.
(1969).] Again, if we disregard the different contents (meanings) of infor-
mation, what remains is its quantity, [its] measure.

[Aczel-Daroczy-75], p. 1-2.

For the relation between Shannon’s formula and the thermodynamic en-
tropy, see the Appendix.
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Appendix (adapted from Section 11.2 of S. Haykin’s Neural Networks and
Learning Machines (3™ edition), Pearson, 2009).

Let {i} be a set of indices for the internal states of a system composed of a
large number of particles. Let E; denote the energy of the system in the
state i. If we can assume that the system is in thermal equilibrium with its
surrounding environment, then the probability that the system is in state

L is given by the so-called Gibbs distribution:

1 _g.
pi=-e E;/KT

where Z is a constant independent of all states, T is the absolute temper-
ature (in kelvins) and k = kg = 1.38 x 107 %3joules/kelvin is Boltz-
mann’s constant. Note that ), p; = 1 implies that

Z =Y, e Ei/KT (this expression is called the partition function).



25

From the expression giving p; and the properties of the exponential func-
tion, we see that p; increases when E; decreases, so low energy states are
more probable than high energy states (for a given T)).
Note also that

logp; +logZ = —E; /KT or

kT logp; + kT logZ = —E;.
If we multiply the last relation by p; and sum over i, we get

—TS + kT logZ = —(E),
where S = —k );; p; log p; (Gibbs entropy) and (E') = ),; p;E; (average en-
ergy). Thus we can conclude that

(E) =TS+ F,or F=(E)—TS, [*]
where F = —kT log Z is the so called free energy (Helmholtz). But [*] is
the classical thermodynamical relation defining entropy (S), so we can con-
clude that the classical entropy is equal to the Gibbs entropy, which itself
is proportional to Shannon’s entropy. This explains the deep reason for
why Shannon chose the word entropy to name the quantity );; p; log p;.



