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2.1. Uncertainty, entropy and information  

Uncertainty is present in random experiments (or random variables), like 
throwing a coin, or a die, or a pair of dice, or spinning a roulette, or betting 
about the value of the € against the $ tomorrow, and so on.  

 
 
 
 

Is there a reasonable way to measure such uncertainty? 

Notations. 𝑈𝑈 = {𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛}, the set of possible outcomes of a random 
(or stochastic) variable 𝐴𝐴. Set 𝑝𝑝𝑗𝑗 = 𝑃𝑃�𝑎𝑎𝑗𝑗� > 0, the probability of obtaining 
𝑎𝑎𝑗𝑗.  If 𝑋𝑋 ⊆ 𝑈𝑈 (these subsets are called events), 𝑝𝑝 = 𝑃𝑃(𝑋𝑋) = ∑ 𝑝𝑝𝑗𝑗𝑎𝑎𝑗𝑗∈𝑋𝑋  is the 

probability of 𝑋𝑋. Note that 𝑝𝑝 > 0 unless 𝑋𝑋 = ∅ (the impossible event). As 
𝑃𝑃(𝑈𝑈) =  𝑝𝑝1 + 𝑝𝑝2 + ⋯+ 𝑝𝑝𝑛𝑛 = 1, 𝑈𝑈 is the sure event. 
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Uncertainty of one event 
 

We look for a measure 𝐻𝐻 = 𝐻𝐻(𝑋𝑋) of the uncertainty about the occurrence 
of an event 𝑋𝑋, or of the information provided by its occurrence.  
 

We will assume that 𝐻𝐻 depends only on 𝑝𝑝, 𝐻𝐻 = 𝐻𝐻(𝑝𝑝), that 𝐻𝐻(𝑝𝑝) is contin-
uous and that: 

a) 𝐻𝐻 is non-negative: 
𝐻𝐻(𝑝𝑝) ≥ 0 if 0 < 𝑝𝑝 ≤ 1. 

b) 𝐻𝐻 is additive for independent events:   
𝐻𝐻(𝑝𝑝𝑝𝑝) = 𝐻𝐻(𝑝𝑝) + 𝐻𝐻(𝑞𝑞).   

Mathematical magic:  
𝐻𝐻 necessarily has the form 
 𝐻𝐻(𝑝𝑝) = −𝑘𝑘 log 𝑝𝑝 , 𝑘𝑘 > 0 constant. 

With the normalization 𝐻𝐻(1 2⁄ ) = 1 (bit),  

 𝐻𝐻(𝑝𝑝) = − log2(𝑝𝑝). 
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Uncertainty or entropy of 𝐴𝐴 
The uncertainty or entropy of the random experiment 𝐴𝐴, 𝐻𝐻 = 𝐻𝐻(𝐴𝐴), is the 
average uncertainty, or expected uncertainty, of its outcomes: 

𝐻𝐻(𝐴𝐴) = 𝑝𝑝1𝐻𝐻(𝑝𝑝1) + ⋯+ 𝑝𝑝𝑛𝑛𝐻𝐻(𝑝𝑝𝑛𝑛) = −∑ 𝑝𝑝𝑗𝑗 log2�𝑝𝑝𝑗𝑗�𝑗𝑗 .  
𝐻𝐻(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛)  = −∑ 𝑝𝑝𝑗𝑗 log2�𝑝𝑝𝑗𝑗�𝑗𝑗  : Shannon’s entropy formula. 

 
 
 
 
 
 
 
 

The figure shows the graph of the function −𝑝𝑝 log2(𝑝𝑝). It has a maximum 
at 𝑝𝑝 = 1/𝑒𝑒 ≃ 0.368. The value of the maximum is log2(𝑒𝑒)/𝑒𝑒 ≃ 0.53.  
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Remark. If the probabilities are given as a list of weights 𝑤𝑤𝑖𝑖, so that  
𝑝𝑝𝑘𝑘 = 𝑤𝑤𝑘𝑘/𝑤𝑤, 

then we can use the formula 
 𝐻𝐻(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) = �−∑ 𝑤𝑤𝑗𝑗 log2�𝑤𝑤𝑗𝑗�𝑗𝑗 + 𝑤𝑤 log2(𝑤𝑤)�/𝑤𝑤. 
It will also be denoted 𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛). 
The proof is a simple calculation: 
  𝐻𝐻(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) = −∑ 𝑝𝑝𝑗𝑗 log2�𝑝𝑝𝑗𝑗�𝑗𝑗  

             = −∑ 𝑤𝑤𝑗𝑗

𝑤𝑤
log2 �

𝑤𝑤𝑗𝑗

𝑤𝑤
�𝑗𝑗  

          = −�∑ 𝑤𝑤𝑗𝑗�log2 𝑤𝑤𝑗𝑗 − log2 𝑤𝑤�𝑗𝑗 �/𝑤𝑤 
          = �−∑ 𝑤𝑤𝑗𝑗 log2 𝑤𝑤𝑗𝑗𝑗𝑗 + ∑ 𝑤𝑤𝑗𝑗 log2 𝑤𝑤𝑗𝑗 �/𝑤𝑤 
          = �−∑ 𝑤𝑤𝑗𝑗 log2�𝑤𝑤𝑗𝑗�𝑗𝑗 + 𝑤𝑤 log2(𝑤𝑤)�/𝑤𝑤. 
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E.2.1. [Welsh-88, p. 3] Which race has greater uncertainty: a handicap in which 
there are 7 runners, 3 having probability 1/6 and 4 having probability 1/8, or a 
selling plate in which there are 8 runners with 2 horses having 1/4 probability of 
winning and 6 horses having each 1/12 probability? 
 
E.2.2. [Welsh-88, p. 11] Which has greater information: 10 letters or 26 decimal 
digits? 
 
E.2.3. Discuss the saying: A picture is worth a thousand words.  
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Example. Suppose we have a biased coin with  

   𝑝𝑝(heads) = 𝑝𝑝, 𝑝𝑝(tails) = 1 − 𝑝𝑝. 

Then the entropy is  

  𝑐𝑐(𝑝𝑝) = 𝐻𝐻(𝑝𝑝, 1 − 𝑝𝑝) =
−𝑝𝑝 log2(𝑝𝑝) − (1 − 𝑝𝑝) log2(1 − 𝑝𝑝). 

The figure shows the graph of 𝑐𝑐(𝑝𝑝). 
Notice that 𝑐𝑐(𝑝𝑝) > 0 except for 𝑝𝑝 =
0 and 𝑝𝑝 = 1, that it is symmetric 
about 𝑝𝑝 = 1/2 and that 𝑐𝑐(𝑝𝑝) has a 
maximum value, namely 1, at 𝑝𝑝 =
1/2.   
Thus, a fair coin (𝑝𝑝 = 1/2) has the 
maximum entropy (uncertainty), corresponding to 1 bit of information. 
This agrees with our intuition that the outcome of throwing a biased coin 
has less uncertainty than throwing a fair one.  
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Example. The entropy of an experiment or random variable whose 𝑛𝑛 out-
comes are equally likely is log2(𝑛𝑛).  
Indeed, the entropy in question is 𝐻𝐻(1 𝑛𝑛⁄ , 1 𝑛𝑛⁄ , … , 1 𝑛𝑛⁄ ), and by Shan-

non’s formula this is equal to −∑ 1
𝑛𝑛

log2 �
1
𝑛𝑛
�𝑛𝑛

1 = 𝑛𝑛 1
𝑛𝑛

log2(𝑛𝑛) = log2(𝑛𝑛). 

In particular, if we throw a fair coin 𝑚𝑚 times, then the entropy is 𝑚𝑚 bits. 

Since log2(𝑛𝑛) increases when 𝑛𝑛 increases, we see that a random variable 
with 𝑛𝑛 equally likely outcomes has less uncertainty than a random variable 
with 𝑚𝑚 > 𝑛𝑛 equally likely outcomes.  This agrees with our intuition that 
the outcome of throwing a fair coin is less uncertain than the outcome in 
throwing a fair die, and that this in turn is less uncertain than the result of 
a (fair) roulette spin. 

Remark. Since the uncertainty 𝐻𝐻(𝑝𝑝) is also the information amount gained 
by the occurrence of an event of probability 𝑝𝑝, the entropy 𝐻𝐻(𝐴𝐴) can be 
understood as the average information gained in a run of 𝐴𝐴. 
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2.2. Properties of the entropy function 
 

a) 𝐻𝐻(𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛) is a positive symmetrical function of 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛. 
b) 𝐻𝐻(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) ≤ log2(𝑛𝑛), and equality is satisfied if an only if 

    𝑝𝑝1 = 𝑝𝑝2 = ⋯ = 𝑝𝑝𝑛𝑛 = 1/𝑛𝑛. 

This agrees with our intuition that a fair die carries more uncertainty than 
a biased one. The proof is quite easy using that ln(𝑥𝑥) ≤ 𝑥𝑥 − 1 for all 𝑥𝑥, 
with equality if and only if 𝑥𝑥 = 1 (see the proof on next slide). Indeed, if 
𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 is any other distribution of probability (𝑞𝑞𝑗𝑗 > 0, ∑𝑞𝑞𝑗𝑗 = 1), then 

  ln�𝑞𝑞𝑗𝑗 𝑝𝑝𝑗𝑗⁄ � ≤ 𝑞𝑞𝑗𝑗 𝑝𝑝𝑗𝑗⁄ − 1, with equality if an only if 𝑞𝑞𝑗𝑗 = 𝑝𝑝𝑗𝑗; 

  ∑𝑝𝑝𝑗𝑗 ln�𝑞𝑞𝑗𝑗 𝑝𝑝𝑗𝑗⁄ � ≤ ∑𝑞𝑞𝑗𝑗 − ∑𝑝𝑝𝑗𝑗 = 1 − 1 = 0; 

  −∑𝑝𝑝𝑗𝑗 ln�𝑝𝑝𝑗𝑗� ≤ −∑𝑝𝑝𝑗𝑗 ln�𝑞𝑞𝑗𝑗�;    
  𝐻𝐻(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) ≤ −∑𝑝𝑝𝑗𝑗 log2�𝑞𝑞𝑗𝑗� [multiply line above by log2(𝑒𝑒)]; 
  𝐻𝐻(𝑝𝑝1, … ,𝑝𝑝𝑛𝑛) ≤ log2(𝑛𝑛) [set 𝑞𝑞𝑗𝑗 = 1/𝑛𝑛 in previous line],  

with   equality if and only if 𝑝𝑝𝑗𝑗 = 𝑞𝑞𝑗𝑗 = 1/𝑛𝑛 for all 𝑗𝑗. And that is it! 
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Remark (Gibbs lemma). In the above proof we have seen that the mini-
mum of −∑𝑝𝑝𝑗𝑗 log2(𝑞𝑞𝑗𝑗) when the 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛 runs over all possible probabil-
ity distributions, with the distribution 𝑝𝑝1, … , 𝑝𝑝𝑛𝑛 fixed, is achieved for 𝑞𝑞𝑗𝑗 =
𝑝𝑝𝑗𝑗. In other words, 

  −∑𝑝𝑝𝑗𝑗 log2�𝑞𝑞𝑗𝑗� ≥ −∑𝑝𝑝𝑗𝑗 log2�𝑝𝑝𝑗𝑗�, with equality only for 𝑞𝑞𝑗𝑗 = 𝑝𝑝𝑗𝑗. 

c) Let 𝐵𝐵 be another random variable with possible outcomes 𝑉𝑉 =
{𝑏𝑏1, … , 𝑏𝑏𝑚𝑚} and probabilities 𝑞𝑞1, … , 𝑞𝑞𝑚𝑚. Then we have the composite or 
joint random variable (𝐴𝐴,𝐵𝐵) whose trials consist in observing 𝐴𝐴 and 𝐵𝐵 to-
gether. The possible outcomes are the pairs (𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘). If we set  
𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑃𝑃�𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘� = 𝑃𝑃�𝐴𝐴 = 𝑎𝑎𝑗𝑗 ∧ 𝐵𝐵 = 𝑏𝑏𝑘𝑘� = 𝑝𝑝𝑗𝑗𝑃𝑃�𝑏𝑏𝑘𝑘|𝑎𝑎𝑗𝑗�, then 

𝐻𝐻(𝐴𝐴,𝐵𝐵) = −∑ 𝑝𝑝𝑗𝑗𝑗𝑗 log2(𝑝𝑝𝑗𝑗𝑗𝑗)𝑗𝑗𝑗𝑗 . 

There is a relation of this entropy to the entropies 𝐻𝐻(𝐴𝐴) and 𝐻𝐻(𝐵𝐵): 

   𝐻𝐻(𝐴𝐴,𝐵𝐵) ≤ 𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵)  [Upper bound on joint entropy] 
    with equality if and only if 𝐴𝐴 and 𝐵𝐵 are independent. 
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To prove this, first notice that ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑘𝑘 = 𝑝𝑝𝑗𝑗 and 
∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑞𝑞𝑘𝑘 (see table). Then 

𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵)  

= −∑ 𝑝𝑝𝑗𝑗 log2�𝑝𝑝𝑗𝑗�𝑗𝑗 − ∑ 𝑞𝑞𝑘𝑘 log2(𝑞𝑞𝑘𝑘)𝑘𝑘   

= −∑ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑘𝑘 log2�𝑝𝑝𝑗𝑗�𝑗𝑗 − ∑ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗 log2(𝑞𝑞𝑘𝑘)𝑘𝑘   

     = −∑ 𝑝𝑝𝑗𝑗𝑗𝑗 log2(𝑝𝑝𝑗𝑗𝑞𝑞𝑘𝑘)𝑗𝑗𝑗𝑗    

≥ −∑ 𝑝𝑝𝑗𝑗𝑘𝑘 log2(𝑝𝑝𝑗𝑗𝑗𝑗)𝑗𝑗𝑗𝑗   [Gibbs lemma, p. 10] 

= 𝐻𝐻(𝐴𝐴,𝐵𝐵). 

Equality occurs if and only if 𝑝𝑝𝑗𝑗𝑞𝑞𝑘𝑘 = 𝑝𝑝𝑗𝑗𝑗𝑗, which is precisely the condition 
for 𝐴𝐴 and 𝐵𝐵 to be independent.  

Remark. Given the table of probabilities 𝑝𝑝𝑗𝑗𝑗𝑗 of a joint distribution, the 
probabilities 𝑝𝑝𝑗𝑗 = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑘𝑘  and 𝑞𝑞𝑘𝑘 = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗  are usually said to be the mar-
ginal distributions of the joint distribution, by rows and columns, respec-
tively. 

𝑎𝑎𝑗𝑗    

𝑎𝑎1   

𝑎𝑎𝑛𝑛   

𝑏𝑏𝑘𝑘   𝑏𝑏1   𝑏𝑏𝑚𝑚   …   …   

…   …   𝑝𝑝11   𝑝𝑝1𝑘𝑘   𝑝𝑝1𝑚𝑚   

𝑝𝑝𝑗𝑗1   𝑝𝑝𝑗𝑗𝑗𝑗   𝑝𝑝𝑗𝑗𝑗𝑗   

𝑝𝑝𝑛𝑛1   𝑝𝑝𝑛𝑛𝑛𝑛    𝑝𝑝𝑛𝑛𝑛𝑛   

…   …   

…   …   

𝑞𝑞𝑘𝑘    𝑞𝑞1   𝑞𝑞𝑚𝑚   …   …   

⋮    

⋮    

⋮    

⋮    

⋮    

⋮    

⋮    

⋮    
𝑝𝑝𝑗𝑗    

𝑝𝑝1   

𝑝𝑝𝑛𝑛   

⋮    

⋮    

1    
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Remark. We have, by the formula on conditional probabilities,  
𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑃𝑃�𝐴𝐴 = 𝑎𝑎𝑗𝑗 ∧ 𝐵𝐵 = 𝑏𝑏𝑘𝑘� = 𝑃𝑃�𝐴𝐴 = 𝑎𝑎𝑗𝑗�𝑃𝑃(𝐵𝐵 = 𝑏𝑏𝑘𝑘|𝐴𝐴 = 𝑎𝑎𝑗𝑗). 

In this expression, 𝑃𝑃�𝐴𝐴 = 𝑎𝑎𝑗𝑗� = 𝑝𝑝𝑗𝑗. As for 𝑃𝑃�𝐵𝐵 = 𝑏𝑏𝑘𝑘�𝐴𝐴 = 𝑎𝑎𝑗𝑗�, it is equal to 
𝑃𝑃(𝐵𝐵 = 𝑏𝑏𝑘𝑘) = 𝑞𝑞𝑘𝑘 if and only if the event {𝐵𝐵 = 𝑏𝑏𝑘𝑘} is independent of the 
event {𝐴𝐴 = 𝑎𝑎𝑗𝑗}. Hence 𝑝𝑝𝑗𝑗𝑘𝑘 = 𝑝𝑝𝑗𝑗𝑞𝑞𝑘𝑘 if and only if {𝐵𝐵 = 𝑏𝑏𝑘𝑘} is independent 
of {𝐴𝐴 = 𝑎𝑎𝑗𝑗}. Thus 𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑝𝑝𝑗𝑗𝑞𝑞𝑘𝑘 for all 𝑗𝑗 and 𝑘𝑘 ⇔ 𝐴𝐴 and 𝐵𝐵 are independent. 
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2.3. Conditional entropy and information 
 

The conditional entropy of a random variable 𝐵𝐵 given an event 𝑋𝑋 is defined 
as the uncertainty of the random variable 𝐵𝐵|𝑋𝑋: 
  𝐻𝐻(𝐵𝐵|𝑋𝑋) = −∑ 𝑃𝑃(𝑏𝑏𝑘𝑘|𝑋𝑋) log2(𝑃𝑃(𝑏𝑏𝑘𝑘|𝑋𝑋))𝑚𝑚

𝑘𝑘=1 . 
Remark. 𝐻𝐻(𝐵𝐵|𝑋𝑋) = 𝐻𝐻(𝐵𝐵) if and only if 𝐵𝐵 is independent of 𝑋𝑋. 
 

If 𝐴𝐴 is another random variable, the conditional entropy of 𝐵𝐵 given 𝐴𝐴 is 
defined by 
  𝐻𝐻(𝐵𝐵|𝐴𝐴) = ∑ 𝑝𝑝𝑗𝑗𝐻𝐻(𝐵𝐵|𝑎𝑎𝑗𝑗)𝑗𝑗 . 
This can be thought as the uncertainty about 𝐵𝐵 that remains after having 
observed 𝐴𝐴, averaged with the probabilities 𝑝𝑝𝑗𝑗 of 𝐴𝐴. 
In more detail, 

   𝐻𝐻(𝐵𝐵|𝐴𝐴) = −∑ 𝑝𝑝𝑗𝑗 ∑ 𝑃𝑃�𝑏𝑏𝑘𝑘�𝑎𝑎𝑗𝑗� log2 �𝑃𝑃�𝑏𝑏𝑘𝑘�𝑎𝑎𝑗𝑗��𝑘𝑘𝑗𝑗  

Remark. Since 𝐻𝐻�𝐵𝐵�𝑎𝑎𝑗𝑗� = 𝐻𝐻(𝐵𝐵) if and only if 𝐵𝐵 is independent of 𝑎𝑎𝑗𝑗, 
𝐻𝐻(𝐵𝐵|𝐴𝐴) = 𝐻𝐻(𝐵𝐵) if and only if 𝐵𝐵 is independent of 𝐴𝐴. 
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E.2.4. Show that 𝐻𝐻(𝐴𝐴|𝐴𝐴) = 0. 

E.2.5. [Welsh-88, p. 9] For any random variable 𝐴𝐴 show that 𝐻𝐻(𝐴𝐴2|𝐴𝐴) = 0 and 
give an example for which 𝐻𝐻(𝐴𝐴|𝐴𝐴2) ≠ 0.  
 
Example. Let 𝐴𝐴 and 𝐵𝐵 stand for the input and output bit, respectively, of a 
binary symmetric channel with cross-over probability 𝑝𝑝. Then (see the Ex-
ample on p. 6) 
  𝐻𝐻(𝐵𝐵|𝐴𝐴) = 𝑐𝑐(𝑝𝑝). 
Indeed, by definition we have  

𝐻𝐻(𝐵𝐵|𝐴𝐴) = 𝑃𝑃𝐴𝐴(0)𝐻𝐻(𝐵𝐵|0) + 𝑃𝑃𝐴𝐴(1)𝐻𝐻(𝐵𝐵|1). 
Now it is enough to notice that 

𝑃𝑃𝐴𝐴(0) = 𝑃𝑃𝐴𝐴(1) = 1/2,  
𝐻𝐻(𝐵𝐵|0) = −𝑃𝑃𝐵𝐵(0|0) log2 𝑃𝑃(0|0) − 𝑃𝑃𝐵𝐵(1|0) log2 𝑃𝑃(1|0) = 𝑐𝑐(𝑝𝑝),  
𝐻𝐻(𝐵𝐵|1) = −𝑃𝑃𝐵𝐵(0|1) log2 𝑃𝑃(0|1) − 𝑃𝑃𝐵𝐵(1|1) log2 𝑃𝑃(1|1) = 𝑐𝑐(𝑝𝑝).  
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Fundamental formula 
  𝐻𝐻(𝐴𝐴,𝐵𝐵) = 𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵|𝐴𝐴). 

Proof. 𝐻𝐻(𝐴𝐴,𝐵𝐵) = −∑ 𝑃𝑃�𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘� log2 �𝑃𝑃�𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘��𝑗𝑗𝑗𝑗  

   = −∑ 𝑝𝑝𝑗𝑗𝑃𝑃(𝑏𝑏𝑘𝑘|𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 ) log2�𝑝𝑝𝑗𝑗𝑃𝑃(𝑏𝑏𝑘𝑘|𝑎𝑎𝑗𝑗)� 

   = −∑ 𝑝𝑝𝑗𝑗𝑃𝑃(𝑏𝑏𝑘𝑘|𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 ) log2�𝑝𝑝𝑗𝑗� − ∑ 𝑝𝑝𝑗𝑗𝑃𝑃�𝑏𝑏𝑘𝑘�𝑎𝑎𝑗𝑗� log2 �𝑃𝑃�𝑏𝑏𝑘𝑘�𝑎𝑎𝑗𝑗��𝑗𝑗𝑗𝑗  

   = 𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵|𝐴𝐴). 
Here we have used that the log of a product is the sum of the logs and that 
∑ 𝑃𝑃(𝑏𝑏𝑘𝑘|𝑎𝑎𝑗𝑗)𝑘𝑘 = 1. 
Corollary.  𝐻𝐻(𝐵𝐵|𝐴𝐴) ≤ 𝐻𝐻(𝐵𝐵), with equality if and only if 𝐵𝐵 is independent 
of 𝐴𝐴. 
Indeed, the fundamental formula and the upper bound on the joint en-
tropy tell us that 𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵|𝐴𝐴) ≤ 𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵), which is equivalent to 
𝐻𝐻(𝐵𝐵|𝐴𝐴) ≤ 𝐻𝐻(𝐵𝐵), with equality holds if and only if 𝐵𝐵 is independent of 𝐴𝐴. 
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Conditional information 
The information about 𝐵𝐵 conveyed/provided by 𝐴𝐴, 𝐼𝐼(𝐵𝐵|𝐴𝐴), is defined by 
  𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐻𝐻(𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝐴𝐴). 
Since 𝐻𝐻(𝐵𝐵|𝐴𝐴) is the uncertainty about 𝐵𝐵 given 𝐴𝐴, 𝐼𝐼(𝐵𝐵|𝐴𝐴) is the part of 
𝐻𝐻(𝐵𝐵) accounted for by observing 𝐴𝐴. Note that 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 0 iff 𝐵𝐵 is inde-
pendent of 𝐴𝐴. On the other hand, 𝐼𝐼(𝐴𝐴|𝐴𝐴) = 𝐻𝐻(𝐴𝐴), as 𝐻𝐻(𝐴𝐴|𝐴𝐴) = 0 (E.2.1). 

Example. Let 𝐴𝐴 and 𝐵𝐵 stand for the input and 
output bit, respectively, of a binary symmet-
ric channel with cross-over probability 𝑝𝑝. 

Then 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 1 − 𝑐𝑐(𝑝𝑝) = 𝐶𝐶(𝑝𝑝) is the ca-
pacity of the channel (amount of infor-
mation available at the receiving end for 
each bit sent). Indeed, 𝐻𝐻(𝐵𝐵) = 1 and we 
have seen (Example on page 14) that  

𝐻𝐻(𝐵𝐵|𝐴𝐴) = 𝑐𝑐(𝑝𝑝).  
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Corollary.  𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐼𝐼(𝐴𝐴|𝐵𝐵). 
Indeed, 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐻𝐻(𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝐴𝐴) = 𝐻𝐻(𝐵𝐵) − (𝐻𝐻(𝐴𝐴,𝐵𝐵) − 𝐻𝐻(𝐴𝐴)), or 
  𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐻𝐻(𝐴𝐴) + 𝐻𝐻(𝐵𝐵) − 𝐻𝐻(𝐴𝐴,𝐵𝐵) 
     = 𝐻𝐻(𝐵𝐵) + 𝐻𝐻(𝐴𝐴) − 𝐻𝐻(𝐵𝐵,𝐴𝐴) 
     = 𝐼𝐼(𝐴𝐴|𝐵𝐵). 

 
  

𝐻𝐻(𝐴𝐴,𝐵𝐵) = 𝐻𝐻(𝐵𝐵,𝐴𝐴) 
𝐻𝐻(𝐴𝐴) 𝐻𝐻(𝐵𝐵|𝐴𝐴) 

𝐻𝐻(𝐴𝐴|𝐵𝐵) 𝐻𝐻(𝐵𝐵) 
 

𝐻𝐻(𝐴𝐴|𝐵𝐵) 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐼𝐼(𝐴𝐴|𝐵𝐵) 𝐻𝐻(𝐵𝐵|𝐴𝐴) 
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There is another expression about 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐼𝐼(𝐴𝐴|𝐵𝐵) that is more illuminat-
ing about its significance. To this end, recall that given two events 𝑋𝑋 and 𝑌𝑌 
we have the relation (Bayes’ rule) 

  𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝑃𝑃(𝑌𝑌) · 𝐼𝐼(𝑋𝑋,𝑌𝑌), with 𝐼𝐼(𝑋𝑋,𝑌𝑌) = 𝑃𝑃(𝑋𝑋,𝑌𝑌)
𝑃𝑃(𝑋𝑋)𝑃𝑃(𝑌𝑌)

= 𝑃𝑃(𝑋𝑋|𝑌𝑌)
𝑃𝑃(𝑋𝑋)

 . 

If we take log2, we get 
  − log2 𝑃𝑃(𝑌𝑌) − (− log2 𝑃𝑃(𝑌𝑌|𝑋𝑋)) = log2 𝐼𝐼(𝑋𝑋,𝑌𝑌) .     [∗] 
In this relation, − log2 𝑃𝑃(𝑌𝑌) = 𝐻𝐻(𝑌𝑌) is the uncertainty about 𝑌𝑌 and 
− log2 𝑃𝑃(𝑌𝑌|𝑋𝑋) = 𝐻𝐻(𝑌𝑌|𝑋𝑋) is the uncertainty about 𝑌𝑌 assuming we have 
observed 𝑋𝑋. Thus the left hand side of [∗], namely 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋), is, as 
we have seen, the information about 𝑌𝑌 provided by the observation of 𝑋𝑋. 
Thus we see that the term 𝑖𝑖(𝑋𝑋,𝑌𝑌) = log2 𝐼𝐼(𝑋𝑋,𝑌𝑌) measures the infor-
mation about 𝑌𝑌 supplied by the observation of 𝑋𝑋 (it is positive, negative or 
zero according to whether 𝐼𝐼(𝑋𝑋,𝑌𝑌) > 1, < 1 or = 1): 
  𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋) = 𝑖𝑖(𝑋𝑋,𝑌𝑌)  or  𝐻𝐻(𝑌𝑌) = 𝐻𝐻(𝑌𝑌|𝑋𝑋) + 𝑖𝑖(𝑋𝑋,𝑌𝑌) , 
which is an additive form of Bayes’ rule. 
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Now we can state and prove the alternative expression for 𝐼𝐼(𝐵𝐵|𝐴𝐴): 
  𝐼𝐼(𝐵𝐵|𝐴𝐴) = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑖𝑖(𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘)𝑗𝑗𝑗𝑗 . 
In other words, the information about 𝐵𝐵 provided by observing 𝐴𝐴 is the 
weighted average of the informations 𝑖𝑖(𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘). 
The proof of the formula is a simple computation: 

    𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐻𝐻(𝐵𝐵) − 𝐻𝐻(𝐵𝐵|𝐴𝐴)  

    = −∑ 𝑞𝑞𝑘𝑘 log2 𝑞𝑞𝑘𝑘𝑘𝑘 + ∑ 𝑝𝑝𝑗𝑗 ∑ 𝑃𝑃�𝑏𝑏𝑘𝑘�𝑎𝑎𝑗𝑗� log2 �𝑃𝑃�𝑏𝑏𝑘𝑘�𝑎𝑎𝑗𝑗��𝑘𝑘𝑗𝑗  

    = −∑ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑘𝑘 log2 𝑞𝑞𝑘𝑘 + ∑ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗 log2�𝑝𝑝𝑗𝑗𝑗𝑗/𝑝𝑝𝑗𝑗� 
    = ∑ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑘𝑘𝑗𝑗 log2�𝑝𝑝𝑗𝑗𝑗𝑗/𝑝𝑝𝑗𝑗𝑞𝑞𝑘𝑘� 
    = ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑖𝑖(𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘)𝑗𝑗𝑗𝑗 . 
 
Note that since 𝑖𝑖(𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑘𝑘) = 𝑖𝑖(𝑏𝑏𝑘𝑘,𝑎𝑎𝑗𝑗), this yields another proof of  the rela-
tion 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 𝐼𝐼(𝐴𝐴|𝐵𝐵). 
E.2.6. Deduce the formula 𝐼𝐼(𝐵𝐵|𝐴𝐴) = 1 − 𝑐𝑐(𝑝𝑝) established in the Example on page 
15 using the formula on top of this page. 
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2.4. Readings 
Comparing energy and information  

The universality and importance of the concept of information could be com-
pared only with that of energy. It is interesting to compare these two (cf. 
Rényi, 1960a). One is tempted to say that the great inventions of civilization 
serve either to transform, store and transmit energy (fire, mechanisms like 
wheels, use of water and wind energy, for instance, for sailing or in mills, 
steam engines, use of electric, later nuclear energies, rockets, etc.) or they 
serve to transform, store and transmit information (speech, writing, drum- 
and fire-signals, printing, telegraph, photograph, telephone, radio, phono-
graph, film, television, computers, etc.). The analogy goes further. It took a 
long time (until the middle of the nineteenth century) for the abstract con-
cept of energy to be developed, i.e. for it to be recognized that mechanical 
energy, heat, chemical energy, electricity, atomic energy, and so on, are dif-
ferent forms of the same substance and that they can be compared, meas-
ured with a common measure. What, in fact, remains from the concept of 
energy, if we disregard its forms of apparition, is its quantity, [its] measure, 
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which was introduced some 125 years ago. In connection with the concept 
of information, this essentially happened a century later, with the works of 
Shannon (1948a,b). [There is even a “principle of conservation of infor-
mation”-like that of energy; see Katona and Tusnády (1967) and Csiszar et al. 
(1969).] Again, if we disregard the different contents (meanings) of infor-
mation, what remains is its quantity, [its] measure.  
          [Aczel-Daroczy-75], p. 1-2. 

 
For the relation between Shannon’s formula and the thermodynamic en-
tropy, see the Appendix. 
 
 
  



23 
 

2.5. References 
[Aczel-Daroczy-1975] J. Aczél, 2. Daróczy: On measures of information and their 
characterizations. Academic Press, 1975. 

[Welsh-1988] Dominic Welsh: Codes and cryptography. Oxford Sci.Publ., 1988. 

[Poynton-2003] Charles Poynton: Digital Video and HDTV. Algorithms and Inter-
faces. Morgan Kaufmann Publishers, An imprint of Elsevier. xlii+794p. 

[Sayood-2006] Khalid Sayood: Introduction to data compression (3rd edition). 
Morgan Kaufmann, An imprint of Elsevier, 2006. xxii+680p. 
  



24 
 

Appendix (adapted from Section 11.2 of S. Haykin’s Neural Networks and 
Learning Machines (3rd edition), Pearson, 2009).  
 
Let {𝑖𝑖} be a set of indices for the internal states of a system composed of a 
large number of particles. Let 𝐸𝐸𝑖𝑖  denote the energy of the system in the 
state 𝑖𝑖. If we can assume that the system is in thermal equilibrium with its 
surrounding environment, then the probability that the system is in state 
𝑖𝑖 is given by the so-called Gibbs distribution: 

𝑝𝑝𝑖𝑖 = 1
𝑍𝑍
𝑒𝑒−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘  

where 𝑍𝑍 is a constant independent of all states, 𝑇𝑇 is the absolute temper-
ature (in kelvins) and  𝑘𝑘 = 𝑘𝑘B = 1.38 × 10−23joules/kelvin is Boltz-
mann’s constant. Note that ∑𝑝𝑝𝑖𝑖 = 1 implies that 
   𝑍𝑍 = ∑ 𝑒𝑒−𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘𝑖𝑖  (this expression is called the partition function). 
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From the expression giving 𝑝𝑝𝑖𝑖 and the properties of the exponential func-
tion, we see that 𝑝𝑝𝑖𝑖 increases when 𝐸𝐸𝑖𝑖  decreases, so low energy states are 
more probable than high energy states (for a given 𝑇𝑇). 
Note also that 

log 𝑝𝑝𝑖𝑖 + log𝑍𝑍 = −𝐸𝐸𝑖𝑖/𝑘𝑘𝑘𝑘 or 
𝑘𝑘𝑘𝑘 log 𝑝𝑝𝑖𝑖 + 𝑘𝑘𝑘𝑘 log𝑍𝑍 = −𝐸𝐸𝑖𝑖. 

If we multiply the last relation by 𝑝𝑝𝑖𝑖 and sum over 𝑖𝑖, we get 
  −𝑇𝑇𝑇𝑇 + 𝑘𝑘𝑘𝑘 log𝑍𝑍 = −〈𝐸𝐸〉, 
where 𝑆𝑆 = −𝑘𝑘∑ 𝑝𝑝𝑖𝑖 log 𝑝𝑝𝑖𝑖𝑖𝑖  (Gibbs entropy) and 〈𝐸𝐸〉 = ∑ 𝑝𝑝𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖  (average en-
ergy). Thus we can conclude that 
   〈𝐸𝐸〉 = 𝑇𝑇𝑇𝑇 + 𝐹𝐹, or  𝐹𝐹 = 〈𝐸𝐸〉 − 𝑇𝑇𝑇𝑇,         [∗] 
where 𝐹𝐹 = −𝑘𝑘𝑘𝑘 log𝑍𝑍 is the so called free energy (Helmholtz). But [∗] is 
the classical thermodynamical relation defining entropy (𝑆𝑆), so we can con-
clude that the classical entropy is equal to the Gibbs entropy, which itself 
is proportional to Shannon’s entropy. This explains the deep reason for 
why Shannon chose the word entropy to name the quantity ∑ 𝑝𝑝𝑖𝑖 log 𝑝𝑝𝑖𝑖𝑖𝑖 . 


