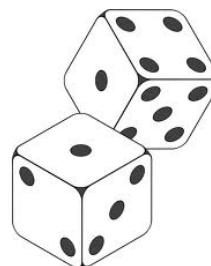


DIC15 / Review of basic probability theory

SXD 217, 219

Throwing a coin, or a die, or a pair of dice, or spinning a roulette, or betting about the value of the € against the \$ tomorrow, and so on, are *random experiments*.



In each case we may obtain any of a number of outcomes, but we cannot predict with certainty which of them will occur. Probability is the science that allows us to **quantify and reason** about these uncertainties.

Problem. Which of the two results would you prefer to bet on?

- Getting at least one 6 in four rolls of a die?
- Getting at least a double 6 in 24 rolls of two dice?

Problem. We have three coins. Two are fair and one is biased so that heads are twice as likely as tails. We pick a coin at random and flip it three times. Assuming that we get three heads, what is the likelihood that we have chosen the biased coin?

Notation

$U = \{a_1, a_2, \dots, a_n\}$, the set of possible outcomes of a random (or stochastic) **experiment** A .

Frequencies and probabilities

If we repeat A a very great number of times N and let f_j denote the number of times that we get the outcome a_j (we say f_j is the **frequency** of a_j), then $f_j/N \rightarrow p_j$, where p_1, \dots, p_n are **positive real numbers** such that

$$p_1 + \dots + p_n = 1 \text{ (note that } f_1 + \dots + f_n = N\text{).}$$

We say that p_j is the **probability** of the outcome a_j and write $P(a_j) = p_j$.

If $X \subseteq U$ (these subsets are called **events**), we set

$$p = P(X) = \sum_{a_j \in X} p_j$$

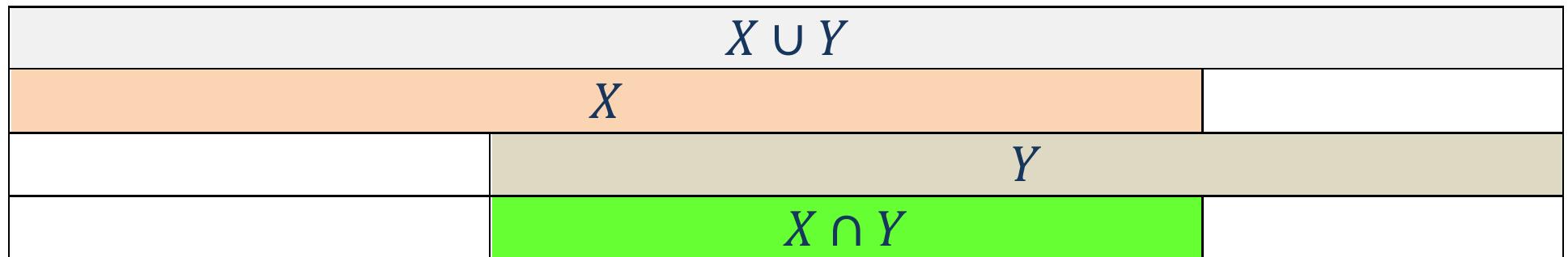
and say that p is the **probability** of X .

Main properties

- $p > 0$ unless $X = \emptyset$ (the *impossible event*).
- As $P(U) = p_1 + p_2 + \dots + p_n = 1$, U is the *sure event*.
- If $X, Y \subseteq U$ are events, then

$$P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$$

Indeed, in the sum $P(X) + P(Y)$ the outcomes in $X \cap Y$ are summed twice, and the formula follows from the definitions.



In particular we have $P(X \cup Y) = P(X) + P(Y)$ if and only if $X \cap Y = \emptyset$ (in this case we say that X and Y are *incompatible*).

- The *complement* of an event X is the event $\bar{X} = U - X$ (its outcomes are precisely the outcomes not in X). Thus $X \cap \bar{X} = \emptyset$ and $X \cup \bar{X} = U$. It follows that

$$P(\bar{X}) = 1 - P(X).$$

Important special case

If $p_1 = p_2 = \dots = p_n$ then

$$p_k = \frac{1}{n} \text{ for } k = 1, \dots, n$$

and

$$p(X) = \frac{m}{n}$$

where $m = \#X$ (the cardinal of X , or the *number of favorable cases*) and n is the *number of possible cases*.

Conditional probability

Let $X, Y \subseteq U$ be events and run the experiment a very large number of times N . Let $f_{xy} = f_{X \cap Y}$ be the frequency of the event $X \cap Y$. Let f_x and f_y be the frequencies of X and Y , respectively.

The quotient f_{xy}/f_x denotes the proportion of times that Y is observed when X is also observed. So $f_{xy}/f_x \rightarrow P(Y|X)$, where $P(Y|X)$ denotes the *probability of observing Y under the assumption that X has been observed (conditional probability)*. Since

$$f_x/N \cdot f_{xy}/f_x = f_{xy}/N,$$

we finally arrive at the fundamental formula of conditional probabilities:

$$P(X \cap Y) = P(X) \cdot P(Y|X) \quad \text{or} \quad P(Y|X) = P(X \cap Y)/P(X).$$

We also can write

$$P(X \cap Y) = P(Y) \cdot P(X|Y) \quad \text{or} \quad P(X|Y) = P(X \cap Y)/P(Y).$$

Independent events

When $f_{xy}/f_x = f_y/N$, we say that X and Y are *independent*, and so this condition is equivalent to say that

$$P(X \cap Y) = P(X) \cdot P(Y), \text{ or } P(Y) = P(X \cap Y)/P(X).$$

Notation. Often we write $P(X, Y)$ instead of $P(X \cap Y)$.

Example. Suppose we have a bag with 12 marbles, 7 white and 5 red. We extract one marble and then another. Let X be the event that the first marble is red and Y the event that the second marble is white. If the first marble is returned to the bag after the observation, then X and Y are independent and $P(X \cap Y) = P(X) \cdot P(Y) = \frac{5}{12} \cdot \frac{7}{12} = \frac{35}{144}$. But if the first marble is not returned to the bag, then X and Y are not independent:

$$P(X \cap Y) = P(X)P(Y|X) = \frac{5}{12} \cdot \frac{7}{11} = \frac{35}{132}.$$

Interaction factor

Let $X, Y \subseteq U$ be two events. Then

$$P(X \cap Y) = \begin{cases} P(X) \cdot P(Y|X) \\ P(Y) \cdot P(X|Y) \end{cases}$$

This is equivalent to $\frac{P(X|Y)}{P(X)} = \frac{P(Y|X)}{P(Y)} = \frac{P(X \cap Y)}{P(X) \cdot P(Y)}$ (symmetric in X and Y).

We denote this value by $I(X, Y)$ and say that it expresses the *interaction factor* (or *reciprocal influence factor*) of X and Y .

Remark. $0 \leq P(Y|X) = \frac{P(X \cap Y)}{P(X)} \leq 1$. Its value is 0 iff $X \cap Y = \emptyset$ (when this

occurs, we say that X and Y are *incompatible*). Similarly, its value is 1 iff $X = X \cap Y$, which is equivalent to $X \subseteq Y$. As a result we have

$$0 \leq I(X, Y) \leq \min\left(\frac{1}{P(Y)}, \frac{1}{P(X)}\right),$$

with equality on the right iff $X \subseteq Y$ or $Y \subseteq X$.

- $I(X, Y) = 1$ iff X and Y are independent (*neutral degree of influence*).

Bayes' rule

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)} = \frac{P(Y) \cdot P(X|Y)}{P(X)} = P(Y) \cdot I(X, Y)$$

Interpretation. The probability $P(Y)$ represents the likelihood of the event Y before observing X (*prior probability*). After observing X , the updated likelihood (*posterior probability*) is measured by $P(Y|X)$. By Bayes' rule, this is the product of the *prior* $P(Y)$ times $I(X, Y)$, which therefore acts as the degree of *support* that X provides for (believing) Y .

Of course, we also have

$$P(X|Y) = P(X) \cdot I(X, Y).$$

Bayes' rule in practice. If Y_j are mutually exclusive events such that $\sum_j P(Y_j) = 1$, then

$$\sum_j P(X \cap Y_j) = P\left(\bigcup_j (X \cap Y_j)\right) = P\left(X \cap \left(\bigcup_j Y_j\right)\right) = P(X)$$

and from Bayes' rule

$$P(Y_j|X) = \frac{P(X \cap Y_j)}{P(X)} = \frac{P(Y_j) \cdot P(X|Y_j)}{P(X)}.$$

we see that

$$P(Y_j|X) \sim P(Y_j) \cdot P(X|Y_j).$$

So if we set $p_j = P(Y_j)$, $L_j = P(X|Y_j)$, $q_j = p_j L_j$ and $q = \sum_j q_j = P(X)$, then

$$P(Y_j|X) = q_j/q.$$

Example. We have three coins. Two are fair and one is biased so that heads are twice as likely than tails. We pick a coin at random and flip it three times. Assuming that we get three heads, what is the likelihood that we have chosen the biased coin?

Solution. We want to calculate $P(B|HHH)$. By Bayes' formula,

$$P(B|HHH) = \frac{P(B) \cdot P(HHH|B)}{P(HHH)}.$$

The value of the numerator is $\frac{1}{3} \left(\frac{2}{3}\right)^3 = \frac{8}{81}$. The probability in the denominator is equal to

$$\begin{aligned} P(HHH, B) + P(HHH, \bar{B}) &= P(B) \cdot P(HHH|B) + P(\bar{B}) \cdot P(HHH|\bar{B}) \\ &= 8/81 + (2/3)(1/8) = 59/324. \end{aligned}$$

Therefore $P(B|HHH) = 32/59 \simeq 0.5424$, while $P(B) \simeq 0.3333$.

Note that $I(HHH, B) = \left(\frac{2}{3}\right)^3 : \frac{59}{324} = \frac{96}{59} = 1.6271$, so the prior 0.33333 and the observation HHH leads to the posterior $1.6271 \times 0.33333 = 0.5424$.

Mean with respect to a distribution (weighted average)

Suppose that for each outcome a_j of A we obtain an associated quantity E_j (a prize, an amount of energy, a bet, ...). At the end of N runs of A , the total amount of this quantity will be

$$f_1 E_1 + f_2 E_2 + \cdots + f_n E_n.$$

Thus the *average amount per trial*, which we denote $\langle E \rangle$, is given by

$$\begin{aligned}\langle E \rangle &= (f_1 E_1 + f_2 E_2 + \cdots + f_n E_n)/N \\ &= \frac{f_1}{N} E_1 + \frac{f_2}{N} E_2 + \cdots + \frac{f_n}{N} E_n\end{aligned}$$

or, taking the limit,

$$\langle E \rangle = p_1 E_1 + \cdots + p_n E_n.$$

Note that if $p_1 = \cdots = p_n$ (so $p_k = 1/n$ for all k), then

$$\langle E \rangle = (E_1 + \cdots + E_n)/n \quad (\text{standard average}).$$