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Prelude Fields Medal

Nomination (5 July 2022): For bringing the ideas of Hodge theory
to combinatorics, the proof of the Dowling–Wilson conjecture for
geometric lattices, the proof of the Heron-Rota-Welsh conjecture for
matroids, the development of the theory of Lorentzian polynomials,
and the proof of the strong Mason conjecture.

Fields Medal Lecture (6 July 2022): Combinatorics and Hodge
Theory, [1]. Paper in Proceedings: [2]. Laudatio: [3]. N
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Combinatorics
Background Results of J. Huh and colleagues
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Combinatorics History: The birth of modern graph theory

N
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Combinatorics History: The birth of the matroid

N
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Combinatorics Selected references

General

[4] Graham, Grötschel, Lovasz (1995): Handbook of Combinatorics (2
volumes, 44 papers). Graphs (5 papers), Matroids (3 papers), Methods (5
papers), Applications (7 papers).

[5] Kung, Rota, Yan (2009): Combinatorics: the Rota way.
Exponential identity (§4.1): exp(

∑∞
r=1

tr

r ) =
1

1−t (EI).

[6, 7] Stanley (1999 and 2012): Enumerative Combinatorics
(Vol 2 and Vol 1 (2nd ed)).

Matroids

Books: [8] (Welsh 1976) and [9] (Oxley 2011).

Summaries: [10] Welsh (1995), 46 pp, [11] Oxley (2003), 45 pp, [12]
Oxley (2021), 13 pp.
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Combinatorics Citing conventions for today’s topic

A number within double square brackets in the text, say [[36]], refers
to the reference item [36] in Huh’s ICM paper ([2] Huh (2022) in our
reference list). Such labels are linked to an online file, whenever
possible, and the correspondence with our reference list is indicated
in red if it is included in that list ([13] Grothendieck (1969) in the
case of [[36]]).
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Combinatorics Background notions I

Let a0, . . . , am be a sequence of non-negative real numbers. It is

Unimodal: if a0 ⩽ a1 ⩽ · · · ⩽ aj ⩾ aj+1 ⩾ · · · ⩾ am for some
j ∈ 0..m.

Staircase: Unimodal and symmetric. Example: The sequences of
Betti numbers b0, b2, . . . , b2n and b1, b3, . . . , b2n−1 of a Kähler
manifold are staircases. � A54

Log-concave: if a2j ⩾ aj−1aj+1 for all j ∈ 1..(m− 1). A log-concave
sequence of positive terms is unimodal. The symmetric sequence(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
is log-concave, hence also unimodal.

Ultra-log-concave: When aj/
(
m
j

)
, j ∈ 0..m, is log-concave.

Top-heavy: if aj ⩽ am−j for j ∈ 0..(m//2).
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Combinatorics Background notions II

For the ubiquity of these notions in algebra, combinatorics and
geometry, see the surveys [14] Stanley (1989) and [15] Brenti (2016).

For specific occurrencies in the theory of projective hypersurface
singularities, see [16] Huh (2012).

See also [17] Aluffi (2023) for further examples (and generalizations)
in intersection theory.
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Combinatorics Examples

Theorem (I. Newton). Let
∑n

j=0 bjx
j =

∑n
j=0

(
n
j

)
ajx

j be a real
polynomial with real roots. Then b0, b1, . . . , bn is ultra-log-concave
(⇔ a0, a1, . . . , an is log-concave). Moreover, if bj ⩾ 0, then
b0, b1, . . . , bn has no internal zeros.

[18] Stanley (2013) (Th. 5.12).

Intersection cohomology staircases. If X is an irreducible
complex projective variety of dimension n, Goresky and MacPherson
[19, 20] introduced the intersecction cohomology of X ,

IH∗(X ) = IH0(X )⊕ IH1(X )⊕ · · · ⊕ IH2n(X ).

Let βj = dim IH j(X ) (‘Betti’ numbers). Then the sequences
β0, β2, . . . , β2n and β1, β3, . . . , β2n−1 are staircases. For an overview
of the development of IH, see [21] Kleiman (2007).
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Combinatorics The Read-Hoggar conjecture

Given a graph G = (V ,E ), and a positive integer q, a proper coloring
of G with q colors is a map c : V → [q] such that c(a) ̸= c(b) when
ab ∈ E .

The number of proper colorings of G with q colors turns out to be a
polynomial in q (the chromatic polynomial of G ) of the form

χG (q) = anq
n − an−1q

n−1 + · · ·+ (−1)n−1a1q,

where n = |V | and aj ⩾ 0 for j = 1, . . . , n.

The Read-Hoggar conjecture (1968, 1974) says that a1, . . . , an is
log-concave.

It was proved by Huh in 2009 in his PhD research. The sequence is
also unimodal (this was Read’s conjecture).

This turns out to be a special case of the conjecture considered next.
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Combinatorics Heron-Rota-Welsh conjecture I

A matroid is a pair M = (E , I), where E is a finite set and I is a
family of subsets of E (called independent sets) that satisfy:
(i0) the empty subset is independent;
(i1) any subset of an independent set is independent; and
(i2) if X ,X ′ are independent and |X | > |X ′|, then there exists
x ∈ X − X ′ such that X ′ ∪ {x} is independent.

Thus a matroid is an abstraction of the notion of linearly independent
sets of a finite set of vectors in a K -vector space (such matroids are
said to be representable over the field K ).

It is also important to note that a graph gives rise to a matroid by
declaring a subset of edges independent if it contains no cycles.

For a matroid M = (E , I), the rank r(X ) of a subset X of E is
defined by r(X ) = max{|X ′| : X ′ ⊆ X ,X ′ ∈ I}.
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Combinatorics Heron-Rota-Welsh conjecture II

The characteristic polynomial of M , χM(q), is defined as

χM(q) =
∑
X⊆E

(−1)|X |qr(E)−r(X ) =

r(E)∑
j=0

(−1)jwjq
d−j ,

where the coefficients wj are called Whitney numbers (of the first
kind).

The characteristic polynomial generalizes the notion of chromatic
polynomial of a graph.

[9] Oxley (2911), p. 588.

The Heron-Rota-Welsh conjecture asserts that w0,w1, . . . ,wr(E) is
log-concave.

It was proved in [[1]]� [22] Adiprasito, Huh, Katz (2018).
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Combinatorics The Dowling-Wilson conjecture

Let L be a finite lattice, r : L → N its rank function,
Lk = {x ∈ L : r(x) = k}, and d = rank(L) (the rank of its
maximum element). L is said to be geometric if it is generated by L1

(the atoms of L) and r satisfies the submodular property, namely
r(x) + r(x ′) ⩾ r(x ∨ x ′) + r(x ∧ x ′) for all x , x ′ ∈ L.

The Dowling-Wilson top-heavy conjecture (1974) asserts that

|Lk | ⩽ |Ld−k | for all k ⩽ d/2. (∗)

It was proved in [[41]]� [23] Huh,Wang (2017) (see also [[12]]� [24]
Braden, Huh, Matherne, Proudfoot, Wang (2020) for further
enhancements).

Remark. The conjecture was phrased for the lattice L(M) of flats of
a matroid M = (E , I).1 But this is not a more general statement
than Eq. (∗), as the class of geometric lattices agrees with the class
of lattices of flats of matroids.

1A flat is a subset of E that is maximal for its rank.
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Combinatorics Mason’s conjecture

Let ik = ik(M) be the number of independent sets of cardinal k in a
finite matroid M = (E , I).

Mason’s ultra-strong conjecture says that the ik form an ultra
log-concave sequence, i.e.

i2k ⩾ (1 +
1

k
)(1 +

1

n − k
)ik−1ik+1, n = |E |.

This conjecture was proved in [[17]]� [25] Brändén, Huh (2020).

As explained in the footnote 2 of [2] Huh (2022), it was
independently proved in the series [[2]]�, [[3]]�, [[4]]� [26] Anari, Liu,
Gharan, Vinzant (2018).
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Weil’s conjectures
(When the discrete charmed algebraic geometry)
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Weil’s conjectures The Hasse-Weil Zeta function

X/Fq an variety over Fq, n = dim(X ), Nr = #X (Fqr ),
ZX (t) = exp(

∑∞
r=1 Nr

tr

r
) (the Hasse-Weil Zeta function of X ).

Nr =
1

(r−1)!
d r

dtr
log Z (t)|t=0.

Example. ZAn(t) = 1
1−qnt

. Indeed: Nr = qrn,

exp(
∑∞

r=1 Nr
tr

r
) = exp(

∑∞
r=1

(qnt)r

r
) = 1

1−qnt
(EI).

Example. If Y ⊂ X is open, ZX (t) = ZY (t)ZX−Y (t). Indeed:
Nr (X ) = Nr (Y ) + Nr (X − Y ).

Example. ZPn(t) = 1
1−qnt

ZPn−1(t) =
∏n

j=0
1

1−qj t
.
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Weil’s conjectures Statements I

[27] Weil (1949) a0x
n0
0 + a1x

n1
1 + · · ·+ arx

nr
r = b N

Let X/Fq be a non-singular projective algebraic variety over Fq,
n = dim(X ), and Z = ZX (t).

W1 (Rationality). Z (t) = P1(t)···P2n−1(t)
P0(t)···P2n(t)

, where the Pj are polynomials

with integer coefficients with P0(t) = 1− t, P2n(t) = 1− qnt.

Example. For X = Pn, P2j = 1− qjt (j ∈ 0..n), P2j−1 = 1
(j ∈ 1..n).

W2 (Functional equation). ZX (1/(q
nt)) = ±qnE/2tEZX (t), where

E = E (X ) is the Euler characteristic of X .

Example. For X = Pn, the map t 7→ 1/qnt replaces the factor 1
1−qj t

(j ∈ 0..n) of Z (t) by 1
1−1/qn−j t

= −qn−jt 1
1−qn−j t

. Hence it replaces

Z (t) by (−1)n+1q(n+1)n/2tn+1 = (−1)n+1qnE/2tEZ (t), with
E = n + 1 = E (Pn) (in accord with the Chow ring
A∗(Pn) = Z[h]/(hn+1), h the hyperplane class).
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Weil’s conjectures Statements II

For j = 1, . . . , 2n − 1, let Pj(t) =
∏

k(1− αjkt), αjk ∈ C.

W3 (Riemann hypothesis). |αjk | = qj/2 (j = 1, . . . , 2n − 1, all k).
This means that with the change of variable t = q−s , the roots 1/αjk

of the Pj lie on the line re(s) = j/2. Note that for Pn, we have
1/α2j ,1 = qj .

W4 (Betti numbers). If X ′ is a non-singular projective variety defined
over a number field embedded in C (e.g. Q) and it has good
reduction mod p to X/Fp, then degPj = bj(C(X ′)).

[28] Hartshorne (1977), 449-458
[29] Chambert-Loir, Nicaise, Sebag (2018), p17.

[30] Molina, Sayols, Xambó (2017) (algorithm for Nr (C ), C curve)
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Weil’s conjectures Kählerian analogues

X/C smooth irreducible projective variety, Y ⊂ X a hyperplane
section, f : X → X an endomorphism.

Kählerian analogue of Weil’s Riemann hypothesis � A53

If f ∗(Y ) ∼alg qY for some positive integer q, then the modulus of
the eigenvalues of f ∗j : H j(X ,C) → H j(X ,C) are all equal to qj/2.

We see the analogy on replacing C by Fq and letting f be the
Frobenius endomorphism, which satisfies f ∗(Y ) ∼ qY .

[31] Serre (1960), Theorem 1.
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Weil’s conjectures → Grothendieck’s standard conjectures

[13] Grothendieck (1969)

[32] Kleiman (1968), [33] Kleiman (1994)

Weil’s conjectures are formal consequences of Grothendieck’s
standard conjectures on algebraic cycles. They are phrased in terms
of a “Weil cohomology” H∗(X ), for example the ℓ-adic étale
cohomology. They are inspired in Lefschetz theory � A56 and Hodge
theory � A52 .

Actually conjectures W1 and W2 could be proved using the
Grothendieck’s formalism, but not W3, which was proved by Pierre
Deligne� (1973). [28] Hartshorne (1977), 449-458.
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Weil’s conjectures Grothendieck’s standard conjectures

The standard conjectures, which remain conjectures in general, are
the main inspiration for the “Kähler package”.

The first conjecture is analogous to “Lefschetz’s structure theorem
on the cohomology of a smooth projective variety over the complex
field” (� A56 , � A57 ), and the second is a positivity statement
“generalizing Weil’s positivity theorem for abelian varieties; it is
formally analogous to the famous Hodge inequalities, and is in fact a
consequence of these in characteristic zero” (� A58 ).

For a thorough discussion, see [33] Kleiman (1994): “We discuss the
context in which the conjectures arose, [...] the way they explain the
Weil conjectures, [...] eight important forms of the Lefscbetz
standard conjecture, and finally the Hodge standard conjecture and
its implications.”
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Lorentzian polynomials
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Lorentzian polynomials Definition of Ldn

Let Hd
n be the space of real homogeneous polynomials of degree d in

n variables.

The set of Lorentzian polynomials Ldn is defined as follows.

The elements of L2n are specified by two conditions:
(a2) their coefficients are non-negative, and
(b2) their signature has at most one positive sign.

For degrees d > 2 the set Ldn is defined recursively by the following
conditions:
(ad) ∂j f ∈ Ld−1

n for all j ∈ [n], and
(bd) the set of (exponents of) monomials of f is the set of lattice
points of an integral generalized permutohedron (that is, a polytope
whose edges’ directions have the form ej − ek , with e1, . . . , en the
standard basis of Rn; for a reference on these objects, see [34] Doker
(2011)).
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Lorentzian polynomials Definition of L̊dn

One of the crucial results in [[17]]� [25] Brändén, Huh (2020) is that

Ldn is the closure of L̊dn , a set defined by the conditions:
(å2) their coefficients are positive real numbers,
(b̊2) their signature has exactly one positive sign, and, for d > 2,
(åd) ∂j f ∈ L̊d−1

n for all j ∈ [n].

Theorem 2.28 of the same paper proves that the compact set
PLdn ⊂ PHd

n is contractible, with contractible interior PL̊dn , and
conjectured that it is homeomorphic to a closed Euclidean ball
(proved by Brändén [[16]]� [35] Brändén (2021)).
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Lorentzian polynomials Definition of L̊dn

Detail of slide number 13 of Huh’s lecture at the ICM-22. Note the

statement on the boundary sphere.
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Lorentzian polynomials Definition of L̊dn

Example. If C = C1, . . . ,Cn are convex bodies in Rd ,
volC : Rn

⩾0 → R, w 7→ 1
d!
vol(w1C1 + ·+ wnCn) is a Lorentzian

polynomial [2] Huh (2022), Example 6.

Example. Let D = D1, . . . ,Dn be nef Cartier divisors on
d-dimensional irreducible projective variety X over an algebraically
closed field. Consider the polynomial function

volD : Rn
⩾0 → R, w 7→ 1

d!
deg(w1D1 + ·+ wnDn)

d .

If X admits a resolution of singularties Y and the Hodge-Riemann
relations hold in degree ⩽ 1 for the ring of algebraic cycles A(Y ),
then volD(w) is Lorentzian [2] Huh (2022), Example 7.

S. Xambó (IMTech & BSC) Discrete charms of Kähler Geometry 12/6/2023 29 / 76



The Kähler package
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The Kähler package Ingredients

As presented by Huh, the scheme has three ingredients and three
postulates (dubbed the Kähler package by Huh, for “Kähler first
emphasized the importance of the respective objects in topology and
geometry”).

For the Kähler geometry background that inspires these definitions,
see see the Appendix on Manifolds ...

Ingredients

(1) A graded real vector space A =
⊕d

j=0 A
j ;

(2) A convex cone K of graded linear maps L : A⋆ → A⋆+1; and
(3) A symmetric bilinear pairing P : A⋆ × Ad−⋆ → R.
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The Kähler package Postulates

Postulates

For any j ⩽ d/2,

Poincaré Duality: P : Aj → (Ad−j)∗ is an isomorphism;

Hard Lefschetz Propery: For any L ∈ K , Ld−2j : Aj → Ad−j is an
isomorphism;

Hodge-Riemann Relations: The pairing

Aj × Aj → R, (x , y) 7→ (−1)jP(x , Ld−2jy),

is positive definite on the kernel of Ld−2j+1

(primitive part of Aj , to borrow the name from Lefschetz theory).
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The Kähler package Examples

In the examples known so far, A = A(X ) depends on the objects X of
some species.

X a smooth projective variety, A(X ) a cohomology ring (ℓ-adic, for
instance). The package agrees essentially with Grothendieck’s
standard conjectures.

X is a convex polytope and A(X ) its combinatorial cohomology
[[45]]� [36] Karu (2004).

X a matroid and A(X ) can be its:
(i) Chow ring [[1]]� [22] Adiprasito, Huh, Katz (2018);
(ii) Conormal Chow ring [[6]]� [37] Ardilla, Denham, Huh (2002); or
(iii) Intersection cohomology [[12]]�, [24] Braden, Huh, Matherne,
Proudfoot, Wang (2020).

X is an element of a Coxeter group and A(X ) its Soergel bimodule
[[26]]�, [38] Elias, Williamson (2014). Other references: [39], [40].
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The Kähler package Strategy

The general strategy was summarized in slide number 14 of [1] Huh
(2022), while pointing out [[40]]� [41] Huh, Matherne, Meszaros,
Stdizier (2022) and [[27]]� [42] Eur, Huh (2020) for examples and
conjectures for various X :

(1) Given X , search for interesting multivariate generating functions
from it;

(2) Do we see any generalized permutohedra?

(3) Do we see any Lorentzian polynomials?

(4) Can we guess A(X ), K (X ), P(X )?
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The Kähler package On the proof of the Dowling-Wilson conjecture

Let us end by describing how the Dowling–Wilson conjecture was
solved, after [1] Huh22-lecture.

Given a geometric lattice L of rank d , consider the set B of its bases,
that is, subsets of size d of E = L1 (the set of atoms) whose join has
rank d . Then B is the set of lattice points of an integral generalized
permutohedron, and the basis generating function g =

∑
ν∈B w

ν is a
Lorentzian polynomial.

1

2 3

4

1

2 3

4

g = w1w2w3 + w1w2w4 + w1w3w4 + w2w3w4 g = w1w2w3 + w1w2w4 + w2w3w4
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The Kähler package On the proof of the Dowling-Wilson conjecture

Now define H(L) = {f : L → Q} =
⊕

F∈L QδF and make it a
graded Q-algebra (the Möbius algebra of L) with the multiplication
determined by

δF · δF ′ =

{
δF∨F ′ if r(F ∨ F ′) = r(F ) + r(F ′)

0 otherwise.

The basis generating function of L is 1
d!
(
∑

j∈E wjδj)
d . This suggests

taking:

A(L) = H(L);

K (L), the set of multiplications by positive linear combinations of
the δj ; and

P(L), multiplication in H(L) composed with Hd(L) ≃ Q.

But H(L) already fails to satisfy Poincaré duality, for
dimHj(L) = |Lj | and in general |Lj | ≠ |Ld−j |.
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The Kähler package On the proof of the Dowling-Wilson conjecture

As shown in [[12]]� [24] Braden, Huh, Matherne, Proudfoot, Wang
(2020), the rescue from this failure came from the intersection
cohomology of L, IH(L), which is an indecomposable graded
H(L)-module endowed with a map P : IH(L) → IH(L)∗[−d ] that
satisfies the following properties for every j ⩽ d/2 and every
L ∈ K (L):

Poincaré duality P : IHj(L) → IHd−j(L)∗ is an isomorphism;
Hard Lefschetz Ld−2j : IHj(L) → IHd−j(L) is an isomorphism; and
Hodge-Riemann relations: The pairing IHj(L)× IHj(L) → Q,
(x , y) 7→ (−1)jP(x , Ld−2jy) is positive definite on the kernel of
Ld−2j+1. In addition, IH0(L) generates a submodule isomorphic to
H(L).

The construction relies on the resolution of singularities of algebraic
varieties, and in particular on [43] Concini, Procesi (1995) ‘wonderful
models’ (see [44] Concini, Procesi (2010), a wonderful book).
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The Kähler package On the proof of the Dowling-Wilson conjecture

Since the composition of Hj(L) ↪→ IHj(L) with the Hard-Lefschetz
isomorphism IHj(L) ≃ IHd−j(L) is injective, it follows that
Ld−2j : Hj(L) → Hd−j(L) composed with Hd−j → IHd−j(L) is
injective (see diagram below) and consequently
Ld−2j : Hj(L) → Hd−j(L) is injective, which proves that
|Lj | ⩽ |Ld−j |.

Hj(L) ↪→ IHj(L)

Ln−2j ↓ ↓ Ln−2j

Hd−j(L) → IHd−j(L)
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Outlook
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Outlook

July 1, 2022 to June 30, 2023, The Fields Institute

Matroids - Combinatorics, Algebra and Geometry Seminar

http://www.fields.utoronto.ca/activities/22-23/matroids-seminar

“Matroids are abstractions of (in)dependence structures in mathematics. There

were several open conjectures concerning sequences of combinatorial invariants of

matroids. Recently, June Huh along with his collaborators resolved these

conjectures ... This spurred a lot of activity in the area. In this seminar series, we

will exhibit these developments. We aim at mainstreaming the algebraic

geometry of matroids into a mathematical research landscape.”

Connections with mirror symmetry? ([45] (cox-katz-1999))

Connections with Enumerative geometry?
([46] (katz-2006), [47] (okounkov-2018))

Standard conjectures!!
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Notes
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Notes P.4

Birth: Stanford, 1983. Grew up in South Korea.

Master’s degree: Seoul National University 2002-09
(mentored by Heisuke Hironaka�)

PhD: University of Michigan 2014 (Mircea Mustat, ă�)

Institute of Advanced Study, Stanford University,
Princeton University

From Jordana Cepelewicz� article� in the Quantamagazine of
July 5th, 2022: “his ability to wander through mathematical
landscapes and find just the right objects ... that he then uses to get
the seemingly disparate fields of geometry and combinatorics to talk
to each other in new and exciting ways. Starting in graduate school,
he has solved several major problems in combinatorics, forging a
circuitous route by way of other branches of math to get to the heart
of each proof.” P
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Notes P.6

Hassler Whitney was an American mathematician.

He was one of the founders of singularity theory.

He did foundational work in manifolds, embeddings, immersions,
characteristic classes, and geometric integration theory.

P
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Notes P.7

[10] (Welsh 1995: Matroids: fundamental concepts), in Vol. 1 of the
Handbook of Combinatorics:

“As the word suggests, Whitney conceived a matroid as an abstract
generalisation of a matrix, and much of the language of the theory is
based on that of linear algebra. However, Whitney’s approach was also
motivated by his work in graph theory and as a result some of the matroid
terminology has a distinct graphical flavour.

Apart from [several] isolated papers [up to 1949] ... the subject lay
virtually dormant until the late fifties when William Thomas Tutte�

(1958,1959), published his fundamental papers on matroids and graphs
and Rado (1957) studied the representability problem for matroids. Since
then interest in matroids and their application in combinatorial theory has
accelerated rapidly. Indeed it was realized that matroids have important
applications in the field of combinatorial optimization and also that they
unify and simplify apparently diverse areas of pure combinatorics”
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Notes P.7

From WP: “During the Second World War, he made a brilliant and

fundamental advance in cryptanalysis of the Lorenz cipher, a major Nazi

German cipher system which was used for top-secret communications

within the Wehrmacht High Command.” P
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Notes P.20

“This will contain nothing new, except perhaps in the mode of
presentation of the final results, which will lead to the statement of
some conjectures concerning the numbers of solutions of equations
over finite fields, and their relation to the topological properties of
the varieties defined by the corresponding equations over the field of
complex numbers” (page 498).

“This, and other examples which we cannot discuss here, seem to
lend some support to the following conjectural statements, which are
known to be true for curves, but which I have not so far been able to
prove for varieties of higher dimension” (page 507). P

S. Xambó (IMTech & BSC) Discrete charms of Kähler Geometry 12/6/2023 47 / 76



Appendix on manifolds
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Appendix on Manifolds Cohomology

Manifolds X are assumed to be compact and connected.
n = dim(X ).

A∗(X ) =
⊕n

k=0 A
k(X ): graded algebra of C∞ forms.

C ∗(X ) =
⊕n

k=0 C
k(X ): graded subalgebra of closed forms.

E ∗(X ) =
⊕n

k=0 E
k(X ): graded C ∗-ideal of exact forms.

H∗
dR(X ) = C ∗(X )/E ∗(X ) (de Rham cohomology).

H∗(X ) =
⊕n

k=0 Hk(X ) and H∗(X ) =
⊕n

k=0 H
k(X ).

Hk(X )× Hk
dR(X ) → R, ([z ], [φ]) 7→

∫
z
φ.

Hk
dR(X ) ≃ Hk(X )∗ ≃ Hk(X ).

(
H∗

dR(X ),∧
)
≃

(
H∗(X ),N

)
.

Betti numbers: bk(X ) = dimHk(X ).

χ(X ) =
∑

k(−1)kbk(X ).

H∗
dR(X ,C), H∗(X ,C), H∗(X ,C).
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Appendix on Manifolds Poincaré duality

Poincaré duality. If X is an oriented n-manifold, the Poincaré map
P : Hk(X ) → Hn−k(X )∗ = Hn−k(X ), (Pα)(β) = α · β (intersection
product) is an isomorphism.

Via the isomorphism Hn−k
dR (X ) ≃ Hn−k(X ), we see that given a cycle

z ∈ Zk(X ) there exists a closed (n − k)-form φ such that
[z ] · [z ′] =

∫
z ′
φ for any (n − k)-cycle z ′. Abusing notation, let φz

denote any φ satisfying that integral relation.

Cohomology class of z : cl(z) = [φz ] ∈ Hn−k .

In terms of the de Rham cohomology, the pairing
C k(X )× C n−k(X ) → C n(X ), (α, α′) 7→ α ∧ α′, induces a pairing
Hk

dR(X )× Hn−k
dR (X ) → Hn

dR(X ) ≃ R which is a duality.

Theorem. If z ∈ Zk(X ) and z ′ ∈ Zn−k(X ), then
[z ] · [z ′] =

∫
X
φz ∧ φz ′ , or φz ∧ φz ′ = φz·z ′ , or

cl(z · z ′) = cl(z) ∧ cl(z ′).

S. Xambó (IMTech & BSC) Discrete charms of Kähler Geometry 12/6/2023 51 / 76



Riemannian manifolds Harmonic forms and the Hodge theorem

Let (X , g) be an oriented riemannian manifold. Then g can be
extended to a symmetric bilinear map g : Ak(X )× Ak(X ) → A0(X )
and Ak(X ) inherits the symmetric bilinear form (α, β) =

∫
X
g(α, β)v

(v the volume form). From linear algebra we know that there is a
unique linear isomorphism ∗ : Ak(X ) → An−k(X ) (Hodge ∗-operator)
such that α ∧ ∗β = g(α, β)v, hence (α, β) =

∫
X
α ∧ ∗β. It satisfies

(1) ∗∗ = (−1)k(n−k); and (2) α ∧ ∗α = 0 ⇔ g(α, α) = 0 ⇔ α = 0.

Then the Laplacian is defined by ∆ = ∆d = dδ + δd , where
δ : Ak(X ) → Ak−1(X ) is the adjoint of d : Ak−1(X ) → Ak(X ). Set
Hk

∆(X ) = {α ∈ Ak(X ) |∆(α) = 0} (harmonic k-forms).

Theorem (Hodge). The natural map Hk
∆(X ) → Hk

dR(X ) is an
isomorphism. Moreover, these isomorphisms provide a graded algebra
isomorphim

(
H∗

∆(X ),∧
)
≃

(
H∗

dR(X ),∧
)
, hence also a graded algebra

isomorphism
(
H∗

∆(X ),∧
)
≃

(
H∗(X ),N

)
.
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Kähler manifolds Definitions

On a complex manifold X of (complex) dimension n, we have a
decomposition Ak(X ,C) =

⊕
p+q=k A

p,q(X ,C). The forms in
Ap,q(X ,C) are said to be of type (p, q).

A Kähler manifold is a complex manifold equipped with a Hermitian
metric (Kähler metric) whose imaginary part ω, which is a 2-form of
type (1, 1), is closed. This 2-form is called the Kähler form of the
Kähler metric.

Submanifolds of a Kähler manifold are Kähler.

A Kähler manifold is in particular a riemannian manifold of dimension
2n and it turns out that the (p, q) components of an harmonic
k-form are harmonic. This and the Hodge theorem imply a Hodge
decomposition of cohomology: Hk(X ,C) =

⊕
p+q=k H

p,q(X ,C)
(k = 0, 1, . . . , 2n). Thus

(
H∗(X ,C),∧

)
is a bigraded algebra.

Note H
p,q

(X ) = Hq,p. Hodge numbers: hp,q = dimC H
p,q(X ,C).
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Kähler manifolds Definitions

h0,0

h1,0 h0,1

h2,0
h1,1 h0,2

h0,3
h1,2h2,1h3,0

h3,1

h3,2 h2,3

h3,3

h2,2 h1,3

Hodge diamond

hq,p = hp,q

Hq,p = Hp,q

⇒

Symmetry about vertical bisector

hn−p,n−q = hp,q

Hn−p,n−q = ∗Hp,q

⇒

Symmetry about center of diamond

Betti numbers

bk =
∑

p+q=k h
p,q

⇒ odd Betti numbers are even

h0,0 = hn,n = 1

Symmetry about horizontal bisector
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Kähler manifolds Complex projective varieties

The restriction to S2n+1 of the Fubini-Study hermitian metric
ds2 =

∑n
j=0 dzj ⊗ dz̄j on Cn+1 is invariant by the action of S1 and

hence it induces a hermitian metric on S2n+1/S1 = Pn(C). Setting
zj = xj + iyj , the imaginary part of ds2 is ω =

∑
j dxj ∧ dyj . This form

has type (1, 1) and is closed. Therefore it induces a Kähler structure
ω on Pn(C). The class [ω] ∈ H1,1(X ,C) ⊂ H2(X ,C) coincides with
the cohomology class cl(Y ) of a hyperplane section Y of X .

Complex submanifolds of the complex projective space are Kähler,
and they are projective subvarieties by Chow’s theorem.

Kodaira’s theorem. A compact complex manifold admits a
holomorphic embedding into complex projective space [and hence is a
smooth algebraic variety] if and only if it admits a Kähler metric
whose Kähler form is a rational class (i.e, belongs to the image of
H2(X ,Q) → H2(X ,C)).
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Kähler manifolds Lefschetz’ theorems

Let h = [ω] ∈ H2(X ,C) (the cohomology class of the Kähler form).

L : Hk(X ,C) → Hk+2(X ,C), α 7→ h ∧ α. In the Hodge diamond, L
moves each node one vertical step up.

Hard Lefschetz Theorem
(1) L is injective, and hence bk ⩽ bk+2 and hk−i ,i ⩽ hk−i+1,i+1, for
k < n. By Poincaré duality, bn−k ⩽ bn−k−2 and
hn−i ,n−k+i ⩽ hn−i−1,n−k+i−1 for n > k .

The Hodge numbers on a vertical line of the Hodge diamond are
non-decreasing in the bottom half and non-increasing in the top half;
and the even or odd Betti numbers have the same property. All these
sequences are symmetrical, and hence are staircases.

Note that L : Hn−1(X ,C) → Hn+1(X ,C) is a isomorphism, as it is
injective and both spaces have the same dimension. This is a special
case of next statement.
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Kähler manifolds Lefschetz’ theorems

(2) Lj : Hn−j(X ) → Hn+j(X ) is an isomorphism for all j ⩾ 0.

If Hp,q is a Hodge component of Hn−j(X ), so p + q = n − j , then Lj

maps it isomorphically to Hp+j ,q+j = Hn−q,n−p. We get again that
the Hodge diamond is symmetric about the horizontal diagonal,
which can also be accounted for by composing the symmetry about
the center of the diamond (induced by ∗) and the symmetry about
the vertical line (induced by the conjugation).

For k ⩽ n, the primitive subspace of Hk(X ) is defined as the kernel
of Ln−k+1 : Hk(X ) → H2n−k+2, and is denoted by Hk

0 (X ).

Lefschetz Decomposition Theorem (Let qk = ⌊k/2⌋ = k//2)

Hk(X ,C) =
⊕

j⩾(k−n)+ L
jHk−2j

0 (X ). Hk
0 (X ) = Hk(X ), k = 0, 1.

For k ⩽ n, Hk = Hk
0 ⊕ LHk−2

0 ⊕ · · · ⊕ LqkHk−2qk
0 = Hk

0 ⊕ LHk−2.

For k = n + k ′, 1 ⩽ k ′ ⩽ n, Hk = Lk
′
Hk−2k ′

0 ⊕ · · · ⊕ LqkHk−2qk
0 .
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Kähler manifolds The Hodge-Riemann bilinear relations

Hodge-Riemann pairing

Q : Hk(X ,C)× Hk(X ,C) → C,
Q(α, α′) = (−1)k//2

∫
X
α ∧ α′ ∧ ωn−k .

Theorem
The Hodge decomposition Hk(X ,C) =

⊕
p+q=k H

p,q(X ) satisfies:

(1) Q(Hp,q,Hp′,q′) = 0 if (p′, q′) ̸= (q, p), and
(2) ip−qQ(α, ᾱ) > 0 for 0 ̸= α ∈ Hp,q

0 (X ).
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Kähler manifolds Hodge conjecture

Let X is a Kähler manifold and Z a submanifold of codimention k .

Then cl(Z ) ∈ H2k(X ,Q) ∩ Hk,k(X ) = Hk,k(X ,Q).

The same is true if Z ∈ Zk
Q, the group of rational linear combinations

of submanifolds of codimension k (rational cycles of codimension k).

The Hodge conjecture states that if X is a smooth projective variety
(or a Kähler manifold of integral type), then cl : Zk

Q → Hk,k(X ,Q) is
surjective.
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S. Xambó (IMTech & BSC) Discrete charms of Kähler Geometry 12/6/2023 71 / 76



References XIII

[42] C. Eur and J. Huh, “Logarithmic concavity for morphisms of
matroids,” Advances in Mathematics, vol. 367, p. 107094, 2020.

https://arxiv.org/pdf/1906.00481.pdf.

[43] C. De Concini and C. Procesi, “Wonderful models of subspace
arrangements,” Selecta Mathematica, vol. 1, pp. 459–494, 1995.

[44] C. De Concini and C. Procesi, Topics in hyperplane arrangements,
polytopes and box-splines.

Universitext, Springer Science & Business Media, 2010.

[45] D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry,
vol. 68 of Mathematical Surveys and Monographs.

American Mathematical Society, 1999.
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