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The problem

In this lecture, we consider the following family of planar standard-like maps

F (x, y) =

(
y,−x+

2µ0y

1 + y2
+ εV ′(y)

)
,

where V (y) =
∑
n≥1 Vny

2n is an even entire function.
Provided that µ0 + V1ε > 1, the origin O = (0, 0) is a hyperbolic fixed point with

Spec[ dF (O)] =
{

e±h
}

, and its characteristic exponent h > 0 is given by coshh = µ0 +V1ε.

For ε = 0, F is an integrable map (called McMillan map), whose stable and unstable
invariant curves to the origin coincide, giving rise to a separatrix. Thus, the map F can
be considered as a perturbation of the McMillan map, ε being the perturbation strength.

These two parameters, h > 0 and ε, will be considered the intrinsic parameters of the
map F under study.

Our goal is to show that for ε 6= 0 and for a general perturbation, the stable and
unstable invariant curves of the perturbed map intersect transversally along exactly two
primary homoclinic orbits in the first quadrant; in particular, the unperturbed separatrix
splits. The term primary means that the homoclinic orbits persist for all ε small enough.

The pieces of the perturbed invariant curves between two consecutive homoclinic points
enclose a region called lobe. Our measure of the splitting size will be the area of this
lobe. This lobe area is a homoclinic symplectic invariant, that is, it does not depend on
the symplectic coordinates used, and all the lobes have the same area. Lobe areas also
measure the flux along the homoclinic tangle, which is related to the study of transport.

Both parameters, h > 0 and ε, will be small “enough”, but the exact interpretation
of this sentence is crucial for understanding the different kinds of results to be presented.
Specifically, we are going to deal with the following situations:

1. The regular case: fixed h > 0, and ε→ 0.

2. The singular case: h→ 0+. In its turn this case subdivides in two sub-cases:

(a) The non-perturbative case: ε fixed and h→ 0+.

(b) The perturbative case: ε = O(hp) and h→ 0+, for some p > 0.

The analytical results here presented are expressed in terms of the Melnikov potential
of the problem, which gives explicit formulae for our map. This is the reason for our
choice of the perturbed McMillan map as a model, instead of more celebrated maps like
the Hénon map or the Taylor-Chirikov map. (See [6] for results concerning those maps.)

The name “singular” for the case h → 0+, is due to the fact that the lobe areas are
exponentially small in h. The measure of such small quantities requires a very careful
treatment, both from a numerical and an analytical point of view.



The model

The family of standard-like maps under study is given by

F (x, y) = (y,−x+ U ′(y)), U(y) = µ0 log(1 + y2) + εV (y), (1)

where V (y) =
∑
n≥1 Vny

2n is an even entire function. For

µ := µ0 + εV1 > 1,

the origin O = (0, 0) is a hyperbolic fixed point with Spec[ dF (O)] =
{

e±h
}

, where the
characteristic exponent h > 0 is determined by coshh = µ.

We will consider the characteristic exponent h and the perturbation strength ε as the
intrinsic parameters of our model. Accordingly, for every h > 0 and every real ε, we
rewrite the map (1) in the form

F (x, y) = (y,−x+ U ′(y)), U(y) = U0(y) + εU1(y),

U0(y) = µ log(1 + y2), U1(y) = V (y)− V1 log(1 + y2).
(2)

From now on, the subscript “0” will denote an unperturbed quantity, that is, ε = 0, and
the following notations will be used without further comment:

µ = coshh, γ = sinhh.

Setting ε = 0 in (2), we obtain the so-called McMillan map

F0(x, y) = (y,−x+ U ′0(y)) =

(
y,−x+

2µy

1 + y2

)
,

which is an integrable map, with a polynomial first integral given by

I0(x, y) = x2 − 2µxy + y2 + x2y2.

The phase space associated to F0 is rather simple, since it is foliated by the level curves
of the first integral I0, which are symmetric with respect to the origin. As µ > 1, the zero
level of I0 is a lemniscate, whose loops are separatrices to the origin. From now on, we will
concentrate on the separatrix Λ in the quadrant {x, y > 0}, which can be parameterized
by

z0(t) = (x0(t), y0(t)) = (ξ0(t− h/2), ξ0(t+ h/2)), ξ0(t) = γ sech t. (3)

This parameterization is called natural since F0(z0(t)) = z0(t + h), a fact that can be
checked simply by noting that ξ0(t) is a homoclinic solution of the difference equation

ξ0(t+ h) + ξ0(t− h) = U ′0(ξ0(t)).

A natural parameterization is unique except for a translation in the independent vari-
able. To determine it, it is worth looking at the reversors of the map.

Indeed, the involution R+
0 (x, y) := (y, x) is a reversor of the McMillan map F0, that is,

F−1
0 = R+

0 F0R
+
0 . The separatrix Λ is R+

0 -symmetric, i.e., R+
0 Λ = Λ, and intersects trans-

versely the fixed set C+
0 := {z : R+

0 z = z} of R+
0 in one point z+

0 . The parameterization (3)
of Λ has been chosen to satisfy z0(0) = z+

0 .



Moreover, the involution R−0 := F0R
+ is another reversor of F0. The separatrix Λ

is also R−0 -symmetric and intersects transversely the fixed set C−0 of R−0 in one point
z−0 , and it turns out that z0(h/2) = z−0 . The associated orbits O+

0 := {z0(nh) : n ∈ Z},
O−0 := {z0(h/2+nh) : n ∈ Z}, are called symmetric homoclinic orbits, since R±0 O±0 = O±0 .

For ε 6= 0, the phase portrait of the exact map (2) looks more intricate. The origin is
a hyperbolic fixed point with the same characteristic exponent h, since the perturbation
εU ′1(y) = O(y3) does not not contain linear terms at the origin. We denote by Wu,s its
unstable and stable invariant curves with respect to F . Since the map (2) is odd, the
invariant curves are symmetric with respect to the origin, so that we concentrate only on
the positive quadrant {x, y > 0}.

By the form of the perturbation, R+ := R+
0 is also a reversor of F , as well as the

involution R− := FR+, which is given by R−(x, y) = (x,−y + U ′(x)). Their fixed sets
C± = {z : R±z = z} are important because R±Wu = Ws. Consequently, any point in
the intersection C± ∩Wu is a homoclinic point, and gives rise to a symmetric homoclinic
orbit.

Since the separatrix Λ intersects transversely the unperturbed curve C±0 at the point
z±0 , there exists a point z± = z±0 + O(ε) ∈ C± ∩ Wu and, therefore, there exist at least
two symmetric homoclinic orbits on the quadrant {x, y > 0}, for |ε| small enough. They
are called primary since they exist for arbitrary small |ε|.

The Melnikov theory

We now recall some perturbative results [1, 2] to detect the existence of transverse primary
homoclinic orbits for exact maps. For simplicity, we will assume that all the objects are
smooth and we shall restrict the discussion to maps on the plane with the usual symplectic
structure: the area.

Given the symplectic form ω = dx∧ dy on the plane R2, a map F : R2 → R
2 is called

exact if there exists some function S : R2 → R such that F ∗(y dx) − y dx = dS. The
function S is called the generating function of F and, except for an additive constant, it
is uniquely determined.

Let F0 : R2 → R
2 be an integrable exact diffeomorphism with a separatrix Λ to a

hyperbolic fixed point z∞. Next, consider a family of exact diffeomorphisms Fε = F0 +
εF1+O(ε2), as a general perturbation of the situation above, and let Sε = S0+εS1+O(ε2)
be the generating function of Fε.

We introduce the Melnikov potential of the problem as the smooth real-valued function

L : Λ→ R, L(z) =
∑
n∈Z

Ŝ1(zn), zn = F0
n(z), z ∈ Λ, (4)

where Ŝ1 : R2 → R is defined by Ŝ1 = S1 − y dx(F0)[F1]. (In components, writing
F0 = (X0, Y0), F1 = (X1, Y1), Ŝ1 is simply given by Ŝ1 = S1 − Y0X1.) In order to get an
absolutely convergent series (4), Ŝ1 is determined by imposing Ŝ1(z∞) = 0.

The differential of L is a geometrical object which gives the O(ε)-distance between the
perturbed invariant curves Wu,s. More precisely, let (t, e) be some cotangent coordinates
adapted to Λ—that is, in these coordinates the separatrix Λ is given locally by {e = 0}
and the symplectic form ω reads as dt ∧ de—and let {e = Eu,s(t)} be a part of Wu,s.
(Let us recall that cotangent coordinates can be defined in neighborhoods of Lagrangian
sub-manifolds.) Then, in [2] it is shown that

Eu(t)− Es(t) = εL′(t) + O(ε2),



and that the construction above does not depend on the cotangent coordinates used.
The following theorem is a straightforward corollary of this geometric construction.

Theorem 1 Under the above notations and hypotheses, the non-degenerate critical points
of L are associated to perturbed transverse homoclinic orbits. Moreover, when all the
critical points of L are non-degenerate, all the primary homoclinic orbits arising from
Λ are found in this way. Finally, if z and z′ are consecutive (in the internal order of
the separatrix) non-degenerate critical points of L, their associated perturbed homoclinic
orbits determine a lobe with area

A = ε[L(z)− L(z′)] + O(ε2).

The regular case

We are now ready to apply the theory above to our model. Along this section, the
characteristic exponent h > 0 will be considered fixed, and then ε→ 0.

It is worth noting that the knowledge of the natural parameterization (3) of the un-
perturbed separatrix Λ will be the crucial point to compute explicitly the Melnikov po-
tential (4).

The map F = F0 +εF1 +O(ε2) given in (2) is exact with generating function S(x, y) =
−xy+U0(y)+εU1(y). Writing its expression in components F0 = (X0, Y0), F1 = (X1, Y1),
it turns out that X1 = 0, and consequently Ŝ1(x, y) = S1(x, y) = U1(y).

The parameterization (3) allows us to write the Melnikov potential (4) of our problem
as

L(t) := L(z0(t)) =
∑
n∈Z

U1(y0(t+ hn)) =
∑
n∈Z

[f(t+ hn)− g(t+ hn)],

where f(t) := V (ξ0(t+ h/2)) and g(t) := V1 log (1 + ξ0(t+ h/2)2).
We are now confronted to the computation of L(t). Let

∑
n∈Z vn(h)τ 2n be the Laurent

expansion around τ = 0 of the function τ 7→ f(−h/2 + π i/2− ihτ), and

Θ0(h) := 8π
∑
n≥1

(2π)2n−1

(2n− 1)!
v−n(h) = 8πV̂ (2π) + O(h2), (5)

where V̂ (ξ) :=
∑
n≥1 Vnξ

2n−1/(2n− 1)! is the so-called Borel transform of V (y). If V (y) is
a polynomial, Θ0(h) can be explicitly computed in a finite number of steps. For instance,

Θ0(h) =

{
8π2γ2h−2 for V ′(y) = y
8
3
π2γ4h−2[1 + π2h−2] for V ′(y) = y3 .

It turns out that Θ0(h) is an even entire function such that

L(t) = constant + e−π
2/h cos(2πt/h)

[
−Θ0(h)/2 + O(e−2π2/h)

]
. (6)

We refer to [3] for the details.
From the formula (5), it is clear that if V̂ (2π) 6= 0 and h is small enough, the set of

critical points of the Melnikov potential (6) is hZ/2. All of them are non-degenerate, and
parameterize the two unperturbed, symmetric, primary homoclinic orbits O±0 . Now, the
following result is a corollary of theorem 1.



Theorem 2 Assume that V̂ (2π) 6= 0. Then, for any small enough (but fixed) character-
istic exponent h > 0, there exists a positive constant ε∗ = ε∗(h) such that the map (2)
has exactly two transverse, symmetric, primary homoclinic orbits O± in the quadrant
{x, y > 0}, for 0 < |ε| < ε∗. These orbits determine a lobe with area A = εAMel + O(ε2),
where the first order in ε approximation AMel is given by

AMel = L(h/2)− L(0) = e−π
2/h
[
Θ0(h) + O(e−2π2/h)

]
.

We note that εAMel is the dominant term for the Melnikov formula of the lobe area
A only if |ε| < ε∗(h) = o(exp(−π2/h)). Otherwise, in the case ε = O(hp), the Melnikov
theory as described is not useful, since it only gives the very coarse estimate A = O(h2p),
and not the desired exponentially small asymptotic behavior.

The singular non-perturbative case

The limit h→ 0+ in (2) is highly singular, since all the interesting dynamics is contained
in a O(h) neighborhood of the origin, which becomes a parabolic point of the map for
h = 0. To see clearly this behavior, we perform the following linear change of variables:

z = Cw, C = h

(
λ−1/2 λ1/2

λ1/2 λ−1/2

)
, z = (x, y), w = (u, v),

that is, we diagonalize the linear part of (2) at the origin and we scale by a factor h.
Then, C−1(F (Cw)) = w + hX0(w) + O(h2), where

X0(u, v) =
(
u− η(u+ v)3,−v + η(u+ v)3

)
, η = 1− (V1 + 2V2)ε, (7)

is a Hamiltonian vector field, with associated Hamiltonian

H0(u, v) = uv − η(u+ v)4/4. (8)

This shows clearly that C−1FC is O(h)-close to the identity, and that, after the change
of variables z = Cw, the map (2) asymptotes to the Hamiltonian flow associated to the
vector field (7) when h→ 0+. When such situation takes place, it is known that the map
has homoclinic points to its (weakly) hyperbolic fixed point for h→ 0+, if and only if the
limit Hamiltonian flow has a homoclinic orbit to its hyperbolic equilibrium point.

From the expression (8), we see that the zero level {H0(u, v) = 0} contains homoclinic
connections to the origin if and only if η > 0, i.e., if and only if

(V1 + 2V2)ε < 1. (9)

Assuming η > 0, the homoclinic orbit of the Hamiltonian (8) is given by

w0(t) = η−1/2

(
cosh t− sinh t

2 cosh2 t
,
cosh t+ sinh t

2 cosh2 t

)
,

which is analytic on the strip {t ∈ C : |=t| < d := π/2}. In this situation, it is also well-
known [5] that the splitting size is O(exp(−β/h)), for all β < 2πd = π2. We summarize
this result in the following theorem.

Theorem 3 For any real ε verifying (9), and any β ∈ (0, π2), there exists a constant
N = N(ε, β) ≥ 0 such that the area of the lobe between the invariant curves of the
map (2) satisfies:

|A| ≤ N e−β/h (ε fixed, h→ 0+).



The singular perturbative case

The previous theorem gives only an upper bound for the lobe area and not an asymptotic
one (the constant N(ε, β) can blow up when β → π2). On the other hand, it does not
exclude the case A = 0, that is, it cannot detect effective splitting of separatrices. In the
perturbative case ε = O(hp), for p > 6, the following result gives an asymptotic expression
for the lobe area in terms of the Melnikov potential, and establishes transversal splitting
of separatrices.

Theorem 4 Assume that ε = O(hp), p > 6. Then, if V̂ (2π) 6= 0, there exists h∗ > 0
such that the map (2) has exactly two transverse, symmetric, primary homoclinic orbits
in the first quadrant, for all 0 < h < h∗. Moreover, they enclose a lobe with area

A = ε e−π
2/h
[
8πV̂ (2π) + O(h2)

]
(h→ 0+).

If V̂ (2π) = 0, there may exist more primary homoclinic orbits, but the area of any lobe
is O(εh2 e−π

2/h).

The proof of this theorem is contained in [3, 4]. It is based on the study of the
perturbed invariant curves of the maps (1) for complex values of the discret time t, as
close as possible to the singularities of the unperturbed natural parameterization z0(t)
given in (3). This approach was suggested by V.I. Lazutkin several years ago, for the case
of the Taylor-Chirikov map.

To the best of our knowledge, this theorem is the first analytical result about asymp-
totics for singular separatrix splitting for a map with a complete and rigorous proof.

A numerical study for singular cases can be found in [4]. The numerical results suggest
that the lobe area A is given by

A = ε e−π
2/h
[
Θε(h) + O(e−2π2/h)

]
(ε fixed, h→ 0+),

where Θε(h) is an even Gevrey-1 function such that the radius of convergence of its Borel
transform is 2π2, and Θε(h) = Θ0(h) + O(ε), uniformly in h ∈ [0, 1].

We finish this lecture by remarking that the numerical computation of the lobe areas
for singular cases requires the use of an expensive multiple-precision arithmetic and to
expand the invariant curves Wu,s up to an optimal order, which is very large, see [4].
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