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Abstract. The billiard motion inside an ellipsoid Q ⊂ Rn+1 is completely integrable. Its phase space is a
symplectic manifold of dimension 2n, which is mostly foliated with Liouville tori of dimension n.
The motion on each Liouville torus becomes just a parallel translation with some frequency ω that
varies with the torus. Further, any billiard trajectory inside Q is tangent to n caustics Qλ1 , . . . , Qλn ,
so the caustic parameters λ = (λ1, . . . , λn) are integrals of the billiard map. The frequency map
λ �→ ω is a key tool for understanding the structure of periodic billiard trajectories. In principle, it is
well-defined only for nonsingular values of the caustic parameters. We present two conjectures, fully
supported by numerical experiments. We obtain, from one of the conjectures, some lower bounds
on the periods. These bounds depend only on the type of the n caustics. We describe the geometric
meaning, domain, and range of ω. The map ω can be continuously extended to singular values of the
caustic parameters, although it becomes “exponentially sharp” at some of them. Finally, we study
triaxial ellipsoids of R3. We numerically compute the bifurcation curves in the parameter space
on which the Liouville tori with a fixed frequency disappear. We determine which ellipsoids have
more periodic trajectories. We check that the previous lower bounds on the periods are optimal, by
displaying periodic trajectories with periods four, five, and six whose caustics have the right types.
We also give some new insights for ellipses of R2.
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1. Introduction. Birkhoff [7] introduced the problem of convex billiard tables more than
80 years ago as a way to describe the motion of a free particle inside a closed convex curve
such that it reflects at the boundary according to the law “angle of incidence equals angle of
reflection.” He also realized that this billiard motion can be modeled by an area preserving
map defined on an annulus. There exists a tight relation between the invariant curves of
this billiard map and the caustics of the billiard trajectories. Caustics are curves with the
property that a trajectory, once tangent to one, stays tangent after every reflection. Good
starting points in the literature of the billiard problem are [29, 40, 27]. We also refer the
reader to [28] for some nice figures of caustics.

When the billiard curve is an ellipse, any billiard trajectory has a caustic. The caustics
are the conics confocal to the original ellipse: confocal ellipses, confocal hyperbolas, and the
foci. The foci are the singular elements of the family of confocal conics. In this case, the
billiard map is integrable in the sense of Liouville, so the annulus is foliated by its invariant
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curves, the billiard map becomes just a rigid rotation on its regular invariant curves, and the
rotation number varies analytically with the curve.

The billiard dynamics inside an ellipse is known. We stress just three key results related
to the search of periodic trajectories. First, Poncelet showed that if a billiard trajectory is
periodic, then all the trajectories sharing its caustic conic are also periodic [34]. Second,
Cayley gave some algebraic conditions for determining the caustic conics whose trajectories
are periodic [9]. Third, the rotation number can be expressed as a quotient of elliptic integrals
[32, 41, 44]. We note that the search of periodic trajectories inside an ellipse can be reduced
to the search of rational rotation numbers.

A rather natural generalization of this problem is to consider the motion of the particle
inside an ellipsoid of Rn+1. Then the phase space is no longer an annulus, but a symplectic
manifold of dimension 2n. Many of the previous results have been extended to ellipsoids,
although those extensions are far from being trivial. For instance, any billiard trajectory
inside an ellipsoid has n caustics, which are quadrics confocal to the original ellipsoid. This
situation is fairly exceptional, since quadrics are the only smooth hypersurfaces of Rn+1, n ≥ 2,
that can have caustics [6]. Then the billiard map is still completely integrable in the sense
of Liouville, the caustics being a geometric manifestation of its integrability. In particular,
the phase space is mostly foliated with Liouville tori of dimension n. The motion on each
Liouville torus becomes just a parallel translation with some frequency that varies with the
torus. Some extensions of the Poncelet theorem can be found in [11, 12, 13, 36]. Several
generalized Cayley-like conditions were stated in [15, 16, 17, 18]. Finally, the frequency map
can be expressed in terms of hyperelliptic integrals; see [13, 35]. The setup of these last two
works is R3, but their formulae can be effortlessly extended to Rn+1.

From Jacobi and Darboux it is known that hyperelliptic functions play a role in the descrip-
tion of the billiard motion inside ellipsoids and the geodesic flow on ellipsoids. Nevertheless,
we skip the algebro-geometric approach (the interested reader is referred to [33, 30, 31, 2, 3])
in this paper, in order to emphasize the dynamical point of view. Here, we just mention
that the billiard dynamics inside an ellipsoid can be expressed in terms of some Riemann
theta-functions associated with a hyperelliptic curve, and so one can write down explicitly the
parameterizations of the invariant tori that foliate the phase space; see [42, 23].

Periodic orbits are the most distinctive special class of orbits. Therefore, the first task to
carry out in any dynamical system should be their study, and one of the simplest questions
about them is to look for minimal periods. In the framework of smooth convex billiards the
minimal period is always two. Nevertheless, since all the two-periodic billiard trajectories
inside ellipsoids are singular—in the sense that some of their caustics are singular elements
of the family of confocal quadrics—two questions arise. Which is the minimal period among
nonsingular billiard trajectories? Which ellipsoids display such trajectories?

In order to get a flavor of the kind of results obtained in this paper, let us consider the
three-dimensional problem. Let Q be the triaxial ellipsoid given by x2/a + y2/b + z2/c = 1,
with 0 < c < b < a. We assume that a = 1 without loss of generality. Any billiard trajectory
inside Q has as caustics two elements of the family of confocal quadrics given by

Qλ =

{
(x, y, z) ∈ R3 :

x2

a− λ
+

y2

b− λ
+

z2

c− λ
= 1

}
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

280 PABLO S. CASAS AND RAFAEL RAMÍREZ-ROS

We restrict our attention to nonsingular trajectories, that is, trajectories whose caustics are
ellipsoids, 0 < λ < c; one-sheet hyperboloids, c < λ < b; or two-sheet hyperboloids, b < λ < a.
The singular values λ ∈ {a, b, c} are discarded. It is known that there are only four types of
pairs of nonsingular caustics: EH1, H1H1, EH2, and H1H2. (The notation is self-explanatory.)
It is also known that any nonsingular periodic billiard trajectory inside Q has three so-called
winding numbers m0,m1,m2 ∈ N which describe how the trajectory folds in R3. For instance,
m0 is the period. The geometric meanings of m1 and m2 depend on the type of the pair
of caustics; see section 5. We note two key observations about winding numbers. First,
some of them must be even, namely, the ones that can be interpreted as the number of
crossings with some coordinate plane. Second, we conjecture that they are ordered as follows:
m2 < m1 < m0. This unexpected behavior is supported by extensive numerical experiments.
In fact, we believe that it holds in any dimension. The combination of both observations
crystallizes in the following lower bounds.

Theorem 1. If the previous conjecture on the winding numbers holds, any periodic billiard
trajectory inside a triaxial ellipsoid of R3 whose caustics are of type EH 1, H 1H 1, EH 2, and
H 1H 2 has period at least five, four, five, and six, respectively.

All the billiard trajectories of periods two and three are singular. The two-periodic ones
are contained in some coordinate axis, so they have two singular caustics. The three-periodic
ones are contained in some coordinate plane, so they have one singular caustic.

We shall prove in section 3 the generalization of these lower bounds to any dimension; see
Theorem 9. Samples of periodic trajectories with minimal periods are shown in Figure 13.
Hence, these lower bounds are optimal. Next, we look for ellipsoids with minimal periodic
trajectories. We recall that a = 1, so each ellipsoid Q is represented by a point in the triangle
P = {(b, c) ∈ R2 : 0 < c < b < 1}. Let P ∗

1 , P
∗
2 , P

∗
3 , and P ∗

4 be the four regions of P that
correspond to ellipsoids with minimal periodic trajectories of type EH1, H1H1, EH2, and
H1H2, respectively. They are shown in Figure 1, and their shapes are described below.

Numerical Result 1. Let r = 3−√
5

2 ≈ 0.382, b∗1 = b∗2 = 1, and b∗3 = b∗4 =
1
2 . Then

P ∗
j =

{
(b, c) ∈ P : b < b∗j , c < g∗j (b)

}
, 1 ≤ j ≤ 4,

for some continuous functions g∗j : [0, b∗j ] → R such that
(i) g∗1 is concave increasing in [0, 1], 0 < g∗1(b) < b for all b ∈ (0, 1), and g∗1(1) = r;
(ii) g∗2 is concave increasing in [0, 1], g∗1(b) < g∗2(b) < b for all b ∈ (0, 1), g∗2(1) =

1
2 ;

(iii) g∗3 is the identity in [0, r], concave decreasing in [r, 12 ], and g
∗
3(

1
2 ) = 0; and

(iv) g∗4 is increasing in [0, 13 ], concave decreasing in [13 ,
1
2 ], 3b/4 < g∗4(b) < b for all

b ∈ (0, 13), 0 < g∗4(b) < g∗3(b) for all b ∈ (13 ,
1
2), g

∗
4(

1
3 ) =

1
4 , and g

∗
4(

1
2) = 0.

The functions g∗j can be explicitly expressed by means of algebraic formulae. We shall
prove that g∗2(b) = b/(1 + b) in Proposition 18. We shall study the other three functions
in another paper [38], because the techniques change drastically. A generalized Cayley-like
condition is the main tool. For instance,

g∗4(b) =
{ (

1− b/2−√
b(1− 3b/4)

)
b/(1 − b)2 for 0 ≤ b ≤ 1/3,

(1− 2b)b/(1 − b)2 for 1/3 ≤ b ≤ 1/2.

This function g∗4 is not concave in the interval [0, 1/3].
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Figure 1. The four regions of ellipsoids with minimal periodic trajectories. Left: The yellow region (type
EH 1, period 5) is contained in the green one (type H 1H 1, period 4). Right: The blue region (type H 1H 2,
period 6) is contained in the magenta one (type EH 2, period 5).

We shall describe in section 5 the regions corresponding to ellipsoids that have periodic
trajectories with given winding numbers (or quasi-periodic trajectories with given frequencies)
for the four caustic types. Those general regions have the same shape as these “minimal”
regions. That is, they are below the graphs of some functions with properties similar to the
ones stated previously. Therefore, we discover a general principle: The more spheric is an
ellipsoid, the poorer are its four types of billiard dynamics. Here, spheric means (b, c) ≈ (1, 1).
We quantify this principle in Propositions 15 and 17.

The key step for the numerical computation of these regions is to explicitly extend the
frequency map for singular values of the caustic parameters. The extension is “exponentially
sharp” at some points, which implies another general principle. The billiard trajectories with
some almost singular caustic are ubiquitous. We shall enlighten this general principle in
section 5.7 by giving a quantitative sample, and we reinforce it with the minimal periodic
trajectories shown in Figure 13.

Finally, we want to mention that there exist many remarkable results about periodic
trajectories in other billiard and geodesic problems. For instance, several nice algebraic closed
geodesics on a triaxial ellipsoid can be seen in [24], and a Cayley-like condition for billiards on
quadrics was established in [1]. Some results stray from any integrable setup. For example,
some general lower bounds on the number of periodic billiard trajectories inside strictly convex
smooth hypersurfaces can be found in [4, 20, 21, 22]. The planar case was already solved by
Birkhoff [7]. Of course, these lower bounds are useless for integrable systems where the periodic
trajectories are organized in continuous families.

We complete this introduction with a note on the organization of the paper. In section 2 we
briefly review some well-known results about billiards inside ellipsoids in order to fix notation
that will be used throughout the rest of the paper. Next, the frequency map is introduced
and interpreted in section 3. This section, concerning ellipsoids of Rn+1, also contains two
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conjectures and the lower bounds on the periods. Billiards inside ellipses of R2 and inside
triaxial ellipsoids of R3 are thoroughly studied in sections 4 and 5, respectively. Billiards inside
nondegenerate ellipsoids of Rn+1 are revisited in section 6. Some technical lemmas have been
relegated to the appendices.

2. Preliminaries. In this section, details are scarce and technicalities are avoided. Experts
can simply browse this section. We will list several basic references for the more novice reader.

2.1. Confocal quadrics and elliptic billiards. The following results go back to Jacobi,
Chasles, Poncelet, and Darboux.

The starting point of our discussion is the n-dimensional nondegenerate ellipsoid

(1) Q =

{
x = (x1, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

x2i
ai

= 1

}
,

where a1, . . . , an+1 are some fixed real constants such that 0 < a1 < · · · < an+1. The
degenerate cases in which the ellipsoid has some symmetry of revolution are not considered
here. This ellipsoid is an element of the family of confocal quadrics given by

Qμ =

{
x = (x1, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

x2i
ai − μ

= 1

}
, μ ∈ R.

The meaning of Qμ is unclear in the singular cases μ ∈ {a1, . . . , an+1}. In fact, there are two
natural choices for the singular confocal quadric Qμ when μ = aj . The first choice is to define
it as the n-dimensional coordinate hyperplane,

Hj =
{
x = (x1, . . . , xn+1) ∈ Rn+1 : xj = 0

}
,

but it also makes sense to define it as the (n− 1)-dimensional focal quadric,

Fj =

{
x = (x1, . . . , xn+1) ∈ Rn+1 : xj = 0 and

∑
i �=j

x2i
ai − aj

= 1

}
,

which is contained in the hyperplaneHj . Both choices fit in the framework of elliptic billiards,
but we shall use the notation Qaj = Hj in this paper.

Theorem 2 (see [33, 29, 2, 40]). Given a fixed nondegenerate ellipsoid Q, a generic line
� ⊂ Rn+1 is tangent to exactly n distinct nonsingular confocal quadrics Qλ1 , . . . , Qλn such
that λ1 < λ2 < · · · < λn, λ1 ∈ (−∞, a1) ∪ (a1, a2), and λi ∈ (ai−1, ai) ∪ (ai, ai+1), for
i = 2, . . . , n.

Set a0 = 0. If a generic line � has a transverse intersection with the ellipsoid Q, then
λ1 > 0, so λ1 ∈ (a0, a1) ∪ (a1, a2). The value λ1 = 0 is attained just when � is tangent to Q.
A line is generic in the sense of the theorem if and only if it is neither tangent to a singular
confocal quadric1 nor contained in a nonsingular confocal quadric.

1By abuse of notation, it is said that a line is tangent to the singular confocal quadric Qaj when it is
contained in the coordinate hyperplane Hj or when it passes through the focal quadric Fj .
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If two lines obey the reflection law at a point x ∈ Q, then both lines are tangent to
the same confocal quadrics [40]. This shows a tight relation between elliptic billiards and
confocal quadrics: all lines of a billiard trajectory inside the ellipsoid Q are tangent to exactly
n confocal quadrics Qλ1 , . . . , Qλn , which are called caustics of the trajectory. We will say that
λ = (λ1, . . . , λn) ∈ Rn are the caustic parameters of the trajectory.

Definition 1. A billiard trajectory inside a nondegenerate ellipsoid of the Euclidean space
Rn+1 is nonsingular when it has n distinct nonsingular caustics, that is, when its caustic
parameter belongs to the nonsingular caustic space

(2) Λ =

{
(λ1, . . . , λn) ∈ Rn :

0 < λ1 < λ2 < · · · < λn
λi ∈ (ai−1, ai) ∪ (ai, ai+1) for 1 ≤ i ≤ n

}
.

We will deal only with nonsingular billiard trajectories along this paper. We denote the
2n open connected components of the nonsingular caustic space as follows:

Λσ =

{
(λ1, . . . , λn) ∈ Rn :

0 < λ1 < λ2 < · · · < λn
λi ∈ (ai+σi−1, ai+σi) for 1 ≤ i ≤ n

}
for σ = (σ1, . . . , σn) ∈ {0, 1}n. For instance, the first caustic Qλ1 is an ellipsoid if and only if
λ1 ∈ (a0, a1), that is, if and only if λ ∈ Λσ with σ1 = 0. We will draw the space Λ for ellipses
and triaxial ellipsoids of R3 in sections 4 and 5, respectively.

Theorem 3. If a nonsingular billiard trajectory closes after m0 bounces, all trajectories
sharing the same caustics close after m0 bounces.

Poncelet proved this theorem for conics [34]. Darboux generalized it to triaxial ellipsoids
of R3. Later on, this result was generalized to any dimension in [11, 12, 13, 36].

Theorem 4. The nonsingular billiard trajectories sharing the caustics Qλ1 , . . . , Qλn close
after m bounces—up to the action of the group of symmetries G = (Z/2Z)n+1 of Q—if and
only if m ≥ n+ 1 and

(3) rank

⎛⎜⎝ hm+1 · · · hn+2
...

...
h2m−1 · · · hn+m

⎞⎟⎠ < m− n,

where
√

(a1 − s) · · · (an+1 − s)(λ1 − s) · · · (λn − s) = h0 + h1s+ h2s
2 + · · · .

The group G is formed by the 2n+1 reflections—involutive linear transformations—with
regard to coordinate subspaces. The phrase “a billiard trajectory closes after m bounces up
to the action of G” means that if (qk)k∈Z is the sequence of impact points of the trajectory,
then there exists a reflection g ∈ G such that qk+m = g(qk) for all k ∈ Z. Hence, billiard
trajectories that close after m bounces up to the action of the group G close after m0 = m or
m0 = 2m bounces, because qk+2m = g(qk+m) = g2(qk) = qk.

Cayley proved this theorem for conics [9]. Later on, this result was generalized to any
dimension by Dragović and Radnović in [15, 16].

2.2. Complete integrability of elliptic billiards. We recall some results obtained by Li-
ouville, Arnold, Moser, and Knörrer.
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A symplectic map f : M → M defined on a 2n-dimensional symplectic manifold is com-
pletely integrable if there exist some smooth f -invariant functions I1, . . . , In : M → R (the
integrals) that are in involution—that is, whose pairwise Poisson brackets vanish—and that
are functionally independent almost everywhere on the phase space M . In this context, the
map I = (I1, . . . , In) : M → Rn is called the momentum map. A point m ∈ M is a regular
point of the momentum map when the n-form dI1 ∧ · · · ∧ dIn does not vanish at m. A vector
λ ∈ Rn is a regular value of the momentum map when every point in the level set I−1(λ) is
regular, in which case the level set is a Lagrangian submanifold of M and we say that I−1(λ)
is a regular level set.

The following result is a discrete version of the Liouville–Arnold theorem.
Theorem 5 (see [43]). Any compact connected component of a regular level set I−1(λ) is

diffeomorphic to Tn, where T = R/Z. In appropriate coordinates the restrictions of the map
to this torus becomes a parallel translation θ �→ θ + ω. The map λ �→ ω is smooth at the
regular values of the momentum map.

Thus the phase space M is almost foliated by Lagrangian invariant tori, and the map on
each torus is simply a parallel translation. These tori are called Liouville tori, the shift ω is
the frequency of the torus, and the map λ �→ ω is the frequency map. The dynamics on a
Liouville torus with frequency ω is m0-periodic if and only if m0ω ∈ Zn. Liouville tori become
just invariant curves when n = 1, in which case the shift is usually called the rotation number
of the invariant curve, and denoted by ρ instead of ω.

Now, let Q be a (strictly) convex smooth hypersurface of Rn+1 diffeomorphic to the sphere
Sn, not necessarily an ellipsoid. The billiard motion inside Q can be modelled by means of a
symplectic diffeomorphism defined on the 2n-dimensional phase space

(4) M = {(q, p) ∈ Q× Sn : p is directed outward Q at q} .

We define the billiard map f : M → M , f(q, p) = (q′, p′), as follows. The new velocity p′

is the reflection of the old velocity p with respect to the tangent plane TqQ. That is, if we
decompose the old velocity as the sum of its tangent and normal components at the surface,
p = pt + pn with pt ∈ TqQ and pn ∈ NqQ, then p′ = pt − pn = p − 2pn. The new impact
point q′ is the intersection of the ray {q + μp′ : μ > 0} with the surface Q. This intersection
is unique and transverse by convexity.

Elliptic billiards fit within the frame of the Liouville–Arnold theorem.
Theorem 6 (see [33, 31, 42, 2]). The billiard map associated with the nondegenerate ellip-

soid (1) is completely integrable, and the caustic parameters λ1, . . . , λn are the integrals. The
set of regular values of the corresponding momentum map is given by (2).

3. The frequency map.

3.1. Definition and interpretation. The rotation number for the billiard inside an ellipse
is a quotient of elliptic integrals; see [32, 11]. Explicit formulae for the frequency map of
the billiard inside a triaxial ellipsoid of R3 can be found in [13, sect. III.C]. An equivalent
formula is given in [35, sect. 5]. Both formulae contain hyperelliptic integrals, and they can
be effortlessly generalized to any dimension. Since we want to avoid as many technicalities
as possible, we will not talk about Riemann surfaces, basis of holomorphic differential forms,
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basis of homology groups, period matrices, or other objects that arise in the theory of algebraic
curves.

The following notation is required to define the frequency map. Once we have fixed the
parameters a1, . . . , an+1 of the ellipsoid, and the caustic parameters λ1, . . . , λn, we set

T (s) =

2n+1∏
i=1

(ci − s), {c1, . . . , c2n+1} = {a1, . . . , an+1}
⋃

{λ1, . . . , λn}.

If λ ∈ Λ, then c1, . . . , c2n+1 are pairwise distinct and positive, so we can assume that

(5) c0 := 0 < c1 < · · · < c2n+1.

Hence, T (s) is positive in the n+ 1 open intervals (c2j , c2j+1), and the improper integrals

(6) Kij =

∫ c2j+1

c2j

sids√
T (s)

, i = 0, . . . , n− 1, j = 0, . . . , n,

are absolutely convergent, real, and positive. We also consider the n+ 1 column vectors

Kj = (K0j , . . . ,Kn−1,j)
t ∈ Rn.

It is known that vectors K1, . . . ,Kn are linearly independent; see [26, sect. III.3].
Definition 2. The frequency map ω : Λ → Rn of the billiard inside the nondegenerate

ellipsoid Q is the unique solution of the system of n linear equations

(7) K0 + 2

n∑
j=1

(−1)jωjKj = 0.

Remark 1. Sometimes it is useful to think that the frequency ω depends on the parameter
c = (c1, . . . , c2n+1) ∈ R2n+1

+ and not only on the caustic parameter λ = (λ1, . . . , λn) ∈ Λ. In
such situations, we will write ω = �(c). This map c �→ �(c) is homogeneous of degree zero
and analytic in the domain defined by inequalities (5). Homogeneity is deduced by performing
a change of scale in the integrals (6). Hence, we can assume without loss of generality that
c2n+1 = an+1 = 1. Analyticity follows from the fact that the integrands in (6) are analytic
with respect to the variable of integration in all the intervals of integration and with respect
to c, as long as condition (5) takes place.

This definition coincides with the formulae contained in [13, 35] for n = 2. It is motivated
by the characterization of periodic billiard trajectories contained in the next theorem. The
factor 2 has been added to simplify the interpretation of the components of the frequency
map, which are all positive, due to the factors (−1)j .

Theorem 7 (see [17, 18]). The nonsingular billiard trajectories inside the nondegenerate el-
lipsoid Q are periodic with exactly mj points at Qc2j and mj points at Qc2j+1 if and only if
m0K0 +

∑n
j=1(−1)jmjKj = 0.

The numbers m0,m1, . . . ,mn that appear in Theorem 7 are called winding numbers. The
nonsingular billiard trajectories with caustic parameter λ are periodic with winding numbers
m0,m1, . . . ,mn if and only if

(8) ωj(λ) =
mj

2m0
∈ Q+, j = 1, . . . , n.
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We note that m0 is the number of bounces in the ellipsoid Q = Qc0 , so it is the period.
Remark 2. The sequence of winding numbers of a nonsingular periodic billiard trajectory

contains information about how the trajectory folds in the space Rn+1. The following prop-
erties can be deduced from results contained in [17, sect. 4.1]. Here, “number of ” means
“number of times that any periodic billiard trajectory with those caustic parameters does
along one period.” The intervals (c2j , c2j+1) with j �= 0 can adopt exactly four different forms,
each one giving rise to its own geometric picture:

1. If (c2j , c2j+1) = (aj , λj+1), then mj is the number of crossings with Hj, so it is even,
and mj/2 is the number of oscillations around the hyperplane Hj .

2. If (c2j , c2j+1) = (λj , aj+1), then mj is the number of crossings with Hj+1, so it is even,
and mj/2 is the number of oscillations around the hyperplane Hj+1.

3. If (c2j , c2j+1) = (aj , aj+1), then mj is the number of (alternate) crossings with Hj and
Hj+1, so it is even, and mj/2 is the number of rotations that the trajectory performs when
projected onto the (xj , xj+1)-coordinate plane πj.

4. If (c2j , c2j+1) = (λj , λj+1), then mj is the number of (alternate) tangential touches
with Qλj

and Qλj+1
, so it can be even or odd, and it is the number of oscillations between

both caustics.
These four properties suggest to us the following definitions, which establish the geometric
meaning of the components of the frequency map. They change with the open connected
components of the nonsingular caustic space.

Definition 3. Let ω = (ω1, . . . , ωn) : Λ → Rn be the frequency map.
1. If (c2j , c2j+1) = (aj , λj+1), then ωj = mj/2m0 is the Hj-oscillation number.
2. If (c2j , c2j+1) = (λj, aj+1), then ωj = mj/2m0 is the Hj+1-oscillation number.
3. If (c2j , c2j+1) = (aj , aj+1), then ωj = mj/2m0 is the πj-rotation number.
4. If (c2j , c2j+1) = (λj , λj+1), then 2ωj = mj/m0 is the (Qλj

, Qλj+1
)-oscillation number.

Remark 3. It is important to notice that (only) when a m0-periodic billiard trajectory has
two caustics of the same type—that is, when some interval (c2j , c2j+1) falls into the fourth
case—is it possible that m0ω /∈ Zn, although then 2m0ω ∈ Zn. This is due to the factor 2
that we have added in the definition of the frequency map.

Finally, if Qλ1 is not an ellipsoid—that is, if λ1 > a1—then c1 = a1, and m0 is the number
of crossings with H1, so it is even. Therefore, the following corollary holds.

Corollary 8. Among all the nonsingular billiard trajectories inside a nondegenerate ellip-
soid, only those with an ellipsoid as caustic can have odd period.

3.2. Two conjectures. We believe that the following properties hold.
Conjecture 1. The frequency map is a local diffeomorphism; i.e.,

det

(
∂ωj

∂λi
(λ)

)
1≤i,j≤n

�= 0 ∀λ ∈ Λ.

This conjecture has several relevant consequences throughout the paper. Popov and
Topalov [35] have shown that the frequency map is almost everywhere nondegenerate when
Q is a triaxial ellipsoid of R3, although they consider only the components Λσ such that
σ1 = 0. The nondegeneracy of the frequency map is important because it is an essential
hypothesis—although we acknowledge that it can be replaced by some weaker Rüssmann-like
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nondegeneracy conditions [39, sect. 2]—in most KAM-like theorems, which are the standard
tool for proving the persistence of Liouville tori under small smooth perturbations of com-
pletely integrable maps. Therefore, if Conjecture 1 holds, we can conclude that most of the
Liouville tori of the billiard phase space persist under small smooth perturbations of the
ellipsoid. We shall present evidence for this conjecture in sections 4 and 5.

Conjecture 2. Winding numbers of nonsingular periodic billiard trajectories are ordered in
a strictly decreasing way. More concretely, 2 ≤ mn < · · · < m1 < m0 = period.

Inequality mn ≥ 2 is immediate, because c2n+1 = an+1, so mn is even. Inequalities
mj ≤ m0 for j ≥ 1 are also immediate, because the number of crossings with any fixed
hyperplane or the number of tangential touches with any fixed caustic can not exceed the
number of segments of the periodic billiard trajectory. The strict inequalities mj < m0 could
be also established (using the symmetries of the ellipsoid), but we skip the details, since such
a small improvement is not worth the effort.

If both conjectures hold, the components of the frequency map are also ordered in a strictly
decreasing way and lie in the range (0, 1/2); that is,

(9) 0 < ωn(λ) < · · · < ω1(λ) < 1/2 ∀λ ∈ Λ.

To prove this, we note that Conjecture 1 implies that ω(Λ) is open in Rn and ω−1(Qn) is
dense in Λ, whereas Conjecture 2 and relation (8) imply that the strict inequalities 0 < ωn <
· · · < ω1 < 1/2 hold for rational frequencies. Therefore, 0 ≤ ωn(λ) ≤ · · · ≤ ω1(λ) ≤ 1/2 for
any λ ∈ Λ, but these inequalities must be strict because ω(Λ) is open. We have numerically
checked that inequalities (9) hold for thousands of random choices of a1, . . . , an+1, λ1, . . . , λn
in “dimensions” n ≤ 5. The details of the experiments for n = 2 are presented in section 5.

3.3. Lower bounds on the periods. We know from Theorem 4 that the period m0 of
any nonsingular periodic billiard trajectory inside a nondegenerate ellipsoid Q ⊂ Rn+1 verifies
that m0 ≥ n + 1. This result can be improved in several ways using the ordering of the
winding numbers stated in Conjecture 2. For instance, the global lower bound m0 ≥ n + 2
follows directly. We present below more refined semiglobal lower bounds, holding each one on
a different open connected component of the nonsingular caustic space. They are obtained
by realizing that some winding numbers must be even, in agreement with the first items in
Remark 2. The lower bound associated with some connected component reaches the value
2n+ 2, which doubles the original lower bound given in Theorem 4.

Theorem 9. Given any σ = (σ1, . . . , σn) ∈ {0, 1}n, let Eσ ⊂ {0, 1, . . . , n} be such that (a)
0 ∈ Eσ ⇔ σ1 = 1, (b) j ∈ Eσ ⇔ (σj , σj+1) �= (1, 0), and (c) n ∈ Eσ.

(i) If m0, . . . ,mn are the winding numbers of a periodic trajectory with caustic parameter
in Λσ, then mj is even for all j ∈ Eσ.

(ii) If Conjecture 2 holds, any periodic billiard trajectory inside a nondegenerate ellipsoid
of Rn+1 whose caustic parameter is in Λσ has period at least

κ(σ) := min

{
m0 :

∃ 2 ≤ mn < · · · < m0 sequence of integers
such that mj is even for any j ∈ Eσ

}
.

(iii) Let 1 = (1, . . . , 1) ∈ {0, 1}n, ς = (. . . , 0, 1, 0, 1, 0) ∈ {0, 1}n, σ ∈ {0, 1}n. Then

n+ 2 = κ(ς) < κ(σ) < κ(1) = 2n+ 2 ∀ σ �= 1, ς.
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Proof. (i) We recall that mj must be even in the three first cases listed in Remark 2. This
is the key property. For instance, mn is always even because c2n+1 = an+1. If σ1 = 1, then
λ1 ∈ (a1, a2) and c1 = a1, so m0 is even. If mj is odd, then (c2j , c2j+1) = (λj , λj+1) and
λj, λj+1 ∈ (aj , aj+1), so (σj , σj+1) = (1, 0). Hence, we have seen that (σj , σj+1) �= (1, 0) ⇒ mj

is even.
(ii) This follows directly from the previous item and the definition of κ(σ).
(iii) First, we note that E1 = {0, . . . , n} and Eς = {. . . , n − 4, n − 2, n}. Therefore,

κ(1) = min {m0 : ∃ 2 ≤ mn < · · · < m0 sequence of even numbers} = 2n+ 2, and

κ(ς) = min

{
m0 :

∃ 2 ≤ mn < · · · < m0 sequence of
integers s.t. mn,mn−2, . . . are even

}
= n+ 2.

The minimum value of m0 among all integer sequences such that 2 ≤ mn < · · · < m0 is
attained at the sequence mj = n + 2 − j, 0 ≤ j ≤ n. Thus, κ(σ) ≥ n + 2 for all σ ∈ {0, 1}n,
and κ(σ) = n+ 2 ⇒ Eσ = Eς ⇒ σ = ς.

On the other hand, Eσ ⊂ Eσ′ ⇒ κ(σ) ≤ κ(σ′). Hence, κ(σ) ≤ κ(1) = 2n + 2 for all
σ ∈ {0, 1}n. Finally, κ(σ) = 2n+ 2 ⇒ Eσ = {0, . . . , n} ⇒ σj �= 0 for all j ⇒ σ = 1.

Remark 4. Let 0 = (0, . . . , 0) and ς̄ = (. . . , 1, 0, 1, 0, 1). Then E0 = {1, . . . , n} and Eς̄ =
{. . . , n− 5, n − 3, n − 1, n}, so κ(0) = 2n+ 1 and κ(ς̄) = n+ 3.

Remark 5. All these lower bounds can be explicitly computed when n = 2. In that case,

4 = κ(ς) < κ(0) = 5 = κ(ς̄) < κ(1) = 6,

where ς = (1, 0), 0 = (0, 0), ς̄ = (0, 1), and 1 = (1, 1). Therefore, Theorem 1 about triaxial
ellipsoids of R3 is just a particular case of Theorem 9. It suffices to realize that σ = 0, σ = ς,
σ = ς̄, and σ = 1 correspond to the cases EH1, H1H1, EH2, and H1H2, respectively.

Remark 6. The function κ : {0, 1}n → {n+ 2, . . . , 2n + 2} is surjective and has average

κ̄ := 2−n
∑

σ∈{0,1}n
κ(σ) =

3n

2
+ 2.

We skip the details; the proof is by induction over n. Thus, these semiglobal lower bounds
improve the global lower bound n+ 2 by, on average, almost 50%.

Now, a natural question arises: Are these semiglobal lower bounds optimal? Optimal does
not mean that there exists a κ(σ)-periodic billiard trajectory whose caustic parameter is in
Λσ inside all nondegenerate ellipsoids, but just inside some of them. And we ask another
question: Which are the ellipsoids with such “minimal” periodic billiard trajectories? Both
questions become almost trivial for ellipses; see section 4.6. The case of triaxial ellipsoids of
R3 was numerically answered in the introduction. The general case remains open, but we
conjecture that all these semiglobal lower bounds are optimal.

4. Billiard inside an ellipse. In this section we describe the main properties of the fre-
quency map when n = 1, in which case it is called rotation number and denoted by ρ. Many of
these properties are old, but the observation that the rotation number is exponentially sharp
at the singular caustic parameter seems to be new. The known results can be found in the
monographs [29, 40] and the papers [32, 11, 41, 44].
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4.1. Confocal caustics. To simplify the exposition, we write the ellipse as

Q =

{
(x, y) ∈ R2 :

x2

a
+
y2

b
= 1

}
, a > b > 0,

where we could assume, without loss of generality, that a = 1; see Remark 1. Then any
nonsingular billiard trajectory inside Q is tangent to one confocal caustic of the form

Qλ =

{
(x, y) ∈ R2 :

x2

a− λ
+

y2

b− λ
= 1

}
,

where the caustic parameter λ belongs to the nonsingular caustic space2

(10) Λ = E ∪H, E = (0, b), H = (b, a).

We have chosen those names for the connected components of Λ because then Qλ is an ellipse
for λ ∈ E and a hyperbola for λ ∈ H.

4.2. Phase portrait. We now describe the billiard dynamics inside an ellipse. This de-
scription goes back to Birkhoff [7, sect. VIII.12], so it is rather old and we just list the results.
Concretely, we want to know how the phase space is foliated by Liouville tori (invariant curves
on which the motion becomes a rigid rotation) and separatrices (invariant curves on which
the motion tends to some hyperbolic periodic trajectories).

Let us put some global coordinates (ϕ, r) over the billiard phase space M defined in (4),
just for visualization purposes. First, following Birkhoff, we parameterize the impact points
on the ellipse by means of an angular coordinate ϕ ∈ T. We take, for instance, q = γ(ϕ) =
(a1/2 cosϕ, b1/2 sinϕ). Second, given an outward unitary velocity p ∈ S, we set r = 〈γ′(ϕ), p〉,
and so |r| < |γ′(ϕ)| = (a sin2 ϕ+ b cos2 ϕ)1/2. Then the correspondence (q, p) �→ (ϕ, r) allows
us to identify the phase space M with the annulus

(11) A =
{
(ϕ, r) ∈ T× R : r2 < a sin2 ϕ+ b cos2 ϕ

}
.

In these coordinates, the caustic parameter becomes λ(ϕ, r) = (a − b) sin2 ϕ + b − r2. The
partition of the annulus into invariant level curves of λ is shown in Figure 2.

Each regular level set contains two Liouville curves and represents the family of tangent
lines to a fixed nonsingular caustic Qλ. If Qλ is an ellipse, each Liouville curve has a one-
to-one projection onto the ϕ coordinate and corresponds to rotations around Qλ in opposite
directions, so they are invariant under f . If Qλ is a hyperbola, then each Liouville curve
corresponds to the impacts on one of the two pieces of the ellipse between the branches of
Qλ, so they are exchanged under f and invariant under f2.

The singular level set {(ϕ, r) ∈ A : λ(ϕ, r) = b} gives rise to the ∞-shaped curve

λ−1(b) =
{
(ϕ, r) ∈ A : r = ±(a− b)1/2 sinϕ

}
,

2When λ → b− (resp., λ → b+) the caustic Qλ flattens into the region of the x-axis enclosed by (resp.,
outside) the foci of the ellipse Q. When λ → a−, the caustic flattens into the whole y-axis.
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√
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√
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b
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a

π

Figure 2. Phase portrait of the billiard map in (ϕ, r) coordinates for a = 1 and b = 4/9. The dashed black
lines enclose the phase space (11). The black points are the hyperbolic two-periodic points corresponding to the
oscillation along the major axis of the ellipse. The black curves are the separatrices of these hyperbolic points.
The magenta points denote the elliptic two-periodic points corresponding to the oscillation along the minor axis
of the ellipse. The magenta curves are the invariant curves whose rotation number coincides with the frequency
of these elliptic points. The invariant curves with rotation numbers 1/6, 1/4, and 1/3 are depicted in blue,
green, and red, respectively. The red points label a three-periodic trajectory whose caustic is an ellipse. The
green points label a four-periodic trajectory whose caustic is a hyperbola.

which corresponds to the family of lines through the foci. This singular level set has rotation
number 1/2; see [27, p. 428]. The cross points on this singular level represent the two-periodic
trajectory along the major axis of the ellipse, and the eigenvalues of the differential of the
billiard map at those points are positive but different from 1: e±h with cosh2 h/2 = a/b and
h > 0. On the contrary, the two-periodic trajectory along the minor axis corresponds to
the centers of the regions inside the ∞-shaped curve, and the eigenvalues in that case are
conjugate complexes of modulus 1: e±2πθi with cos2 πθ = b/a and 0 < θ < 1/2. Therefore, the
major axis is a hyperbolic (unstable) two-periodic trajectory, and the minor axis is an elliptic
(stable) one. These are the only two-periodic motions. The basic results about the stability
of two-periodic billiard trajectories can be found in [29, 40].

4.3. Extension and range of the rotation number. Let ρ(λ) be the rotation number of the
billiard trajectories inside the ellipse Q sharing the nonsingular caustic Qλ. From Definition 2
we get that the function ρ : E ∪H → R is given by the quotients of elliptic integrals

(12) ρ(λ) = ρ(λ; b, a) =

∫min(b,λ)
0

ds√
(λ−s)(b−s)(a−s)

2
∫ a
max(b,λ)

ds√
(λ−s)(b−s)(a−s)

=

∫ μ
χ

dt√
t(t−1)(t−χ)

2
∫ 1
0

dt√
t(t−1)(t−χ)

,

where the parameters 1 < χ < μ are given by χ = (a−m)/(a−m) and μ = a/(a−m), with
m = min(b, λ) and m = max(b, λ). The second equality follows from the change of variables
t = (a−s)/(a−m). The second quotient already appears in [13]. Other equivalent quotients of
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Figure 3. The rotation function ρ(λ) of the ellipse for a = 1 and b = 4/9. Colors are taken from Figure 2.
The parameters λ0

± quickly approach b as ρ0 tends to 1/2.

elliptic integrals were given in [32, 44]. We have drawn the rotation function ρ(λ) in Figure 3;
compare with [44, Fig. 2].

Proposition 10. The rotation function ρ : E ∪H → R has the following properties:
(i) It is analytic in Λ = E ∪H.
(ii) It can be continuously extended to the closed interval Λ̄ = Λ ∪ ∂Λ = [0, a] with

ρ(0) = 0, ρ(b) = 1/2, ρ(a) = �,

where the limit value 0 < � < 1/2 is defined by sin2 π� = b/a.
(iii) Let κG and κS be the positive constants given by

κG =

(√
ab

∫ a

b

ds√
s(s− b)(a− s)

)−1

, cosh2 κS =
a

b
.

The asymptotic behavior of ρ(λ) at the singular parameters λ ∈ ∂Λ = {0, b, a} is then
1. ρ(λ) = κGλ1/2 +O(λ3/2) as λ→ 0+;
2. ρ(λ) = 1/2 + κS/ log |b− λ|+O(1/ log2 |b− λ|) as λ→ b; and
3. ρ(λ) = �+O(a− λ) as λ→ a−.

(iv) Given any ρ0 ∈ (�, 1/2), let λ0− be the biggest parameter in E such that ρ(λ0−) = ρ0,
and let λ0+ be the smallest parameter in H such that ρ(λ0+) = ρ0. Both parameters become
exponentially close to the singular caustic parameter b when ρ0 tends to 1/2. In fact,

λ0± = b± 16(a − b)e−κS/(1/2−ρ0) +O
(
e−2κS/(1/2−ρ0)

)
, ρ0 → (1/2)−.

Proof. (i) follows from Remark 1. The rest of the proof is postponed to section A.2.
Remark 7. If Conjecture 1 holds, then ρ′(λ) is positive in E and negative in H, so ρ(λ)

maps diffeomorphically E onto (0, 1/2) and H onto (�, 1/2). In particular, the parameters λ0−
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and λ0+ are unique. The conjecture remains unproven, but we shall see in Proposition 11 that
ρ(λ) is increasing in E, which suffices to check the uniqueness of λ0−.

Remark 8. The limit rotation number � is related to the conjugate complex eigenvalues
e±2πθi of the elliptic two-periodic orbit. Concretely, θ+ � = 1/2. Additionally, � tends to zero
when the ellipse flattens, and tends to one half when the ellipse becomes circular. That is,
limb/a→0+ � = 0 and limb/a→1− � = 1/2.

Definition 4. The continuous extension ρ : [0, a] → R is called the (extended) rotation
function of the ellipse Q.

4.4. Geometric meaning of the rotation number. Let us assume that the billiard tra-
jectories sharing some nonsingular caustic Qλ are m0-periodic, so that they describe polygons
with m0 sides inscribed in the ellipse Q. Then, according to Theorem 7, (8), and Corollary 8,
it turns out that ρ(λ) = m1/2m0 for some integers 2 ≤ m1 < m0 such that m1 is always even
whereas m0 can be odd only when Qλ is an ellipse. Further, from the geometric interpretation
of the frequency map presented in section 3, we know that (a) if Qλ is an ellipse, the polygons
are enclosed between Q and Qλ and make m1/2 turns around the origin; and (b) if Qλ is a
hyperbola, they are contained in the region delimited by Q and the branches of Qλ and cross
the minor axis of the ellipse m1 times.

These interpretations can be extended to nonperiodic trajectories. Concretely,

ρ(λ) =

{
limk→+∞ nk/k if λ ∈ E,
1
2 limk→+∞ lk/k if λ ∈ H,

where nk (resp., lk) is the number of turns around the origin (resp., crossings of the minor
axis) of the first k segments of a given billiard trajectory with caustic Qλ.

Proposition 11. The rotation function ρ(λ) is increasing in E.
Proof. Let γ : T → Q be a fixed parameterization of the ellipse Q. Then the billiard

dynamics inside Q associated with any caustic Qλ, λ ∈ E, induces a circle diffeomorphism
fλ : T → T of rotation number ρ(λ). Let 0 < λ1 < λ2 < b. The billiard trajectories sharing
the small caustic Qλ2 rotate faster than those sharing the big caustic Qλ1 , so Fλ1 < Fλ2 for
any two compatible lifts Fλj

of the circle diffeomorphisms fλj
. Then ρ(λ1) ≤ ρ(λ2); see [27,

Prop. 11.1.8]. So, ρ(λ) is nondecreasing and, by analyticity, increasing.
We have not proved that ρ(λ) is decreasing in H because it is not easy to construct an

ordered family of circle diffeomorphisms for caustic hyperbolas.

4.5. Bifurcations in parameter space. We want to determine all the ellipses Q = {x2/a+
y2/b = 1}, 0 < b < a, that have billiard trajectories with a prescribed rotation number
ρ0 ∈ (0, 1/2) and with a prescribed type of caustics (ellipses or hyperbolas). We recall that the
rotation function ρ(λ) diffeomorphically maps E onto (0, 1/2) and H onto (�, 1/2). Therefore,
ρ0 ∈ ρ(E) for all ellipses Q, whereas

(13) ρ0 ∈ ρ(H) ⇔ � < ρ0 ⇔ sin2 π� < sin2 πρ0 ⇔ b < a sin2 πρ0.

This shows that flat ellipses have more periodic trajectories than rounded ones. There exist
similar results for triaxial ellipsoids of R3. See, for instance, Propositions 15 and 17.
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Figure 4. Examples of symmetric nonsingular billiard trajectories with minimal periods for a = 1 and
b = 4/9. Left: Period three; the caustic is an ellipse. Right: Period four; the caustic is a hyperbola. The
continuous lines are reserved for the trajectories that correspond to the periodic orbits depicted in Figure 2.

4.6. Examples of periodic trajectories with minimal periods. The billiard map asso-
ciated with an ellipse has no fixed points, its only two-periodic points correspond to the
oscillations along the major or minor axis, and only the trajectories with an ellipse as caustic
can have odd period. Therefore, the periodic trajectories with an ellipse as caustic have period
at least three, whereas those with a hyperbola as caustic have period at least four. These
lower bounds are optimal; see Figure 4. To be more precise, we set

(14) λ∗E =
3ab

a+ b+ 2
√
a2 − ba+ b2

, λ∗H =
ab

a− b
.

We note that λ∗E ∈ E for all 0 < b < a, and λ∗H ∈ H for all 0 < b < a/2. The trajectories
with caustic Qλ∗

E
are three-periodic; the ones with caustic Qλ∗

H
are four-periodic. The proof is

an elementary exercise in Euclidean geometry—we leave it to the reader. Finally, we deduce
from the geometric interpretation of the rotation number given before that ρ(λ∗E) = 1/3 and
ρ(λ∗H) = 1/4. This second identity explains the restriction b < a/2; see (13).

5. Billiard inside a triaxial ellipsoid of R3. The previous section sets the basis of this
one. Roughly speaking, we want to follow the same steps—extension of the frequency map
and description of its range—in order to find the same results—bifurcations in the parameter
space and minimal periodic trajectories. However, the study of ellipsoids is harder, which
has two unavoidable consequences. First, statements and proofs of the analytical results are
more cumbersome. Second, some results remain unproven, so we shall present numerical
experiments and semianalytical arguments as support.

5.1. Confocal caustics. The caustics of a billiard inside a triaxial ellipsoid are described
in several places. The representation of the caustic space shown in Figure 5 can also be found
in [31, 45, 19].

We write the triaxial ellipsoid as

Q =

{
(x, y, z) ∈ R3 :

x2

a
+
y2

b
+
z2

c
= 1

}
, a > b > c > 0.
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Figure 5. The nonsingular caustic space Λ = (E×H1)∪ (E×H2)∪ (H1 ⊗H1)∪ (H1 ×H2) with its border
∂Λ = G ∪ R ∪ S ∪ Λ0.
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Figure 6. The triangular parameter space P .

We could assume, again without loss of generality, that a = 1. Then the parameter space of
triaxial ellipsoids in R3 can be represented as the triangle

(15) P =
{
(b, c) ∈ R2 : 0 < c < b < 1

}
,

whose edges represent ellipsoids with a symmetry of revolution (oblate and prolate ones) or
flat ellipsoids, as illustrated in Figure 6. We shall write the statements of the main results for
arbitrary values of a, but we shall take a = 1 in the pictures.

From Theorem 2, we know that any nonsingular billiard trajectory inside the ellipsoid Q
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is tangent to two distinct nonsingular caustics of the confocal family

Qλ =

{
(x, y, z) ∈ R3 :

x2

a− λ
+

y2

b− λ
+

z2

c− λ
= 1

}
.

The caustic Qλ is an ellipsoid for λ ∈ E, a one-sheet hyperboloid when λ ∈ H1, and a two-sheet
hyperboloid if λ ∈ H2, where

E = (0, c), H1 = (c, b), H2 = (b, a).

In order to have a clearer picture of how these caustics change, let us explain the situation
when λ approaches the singular values c, b, or a. First, when λ → c− (resp., λ → c+), the
caustic Qλ flattens into the region of the coordinate plane πz = {z = 0} enclosed by (resp.,
outside) the focal ellipse

(16) Qz
c =

{
(x, y, 0) ∈ R3 :

x2

a− c
+

y2

b− c
= 1

}
.

Second, when λ→ b− (resp., λ→ b+), the caustic Qλ flattens into the region of the coordinate
plane πy = {y = 0} between (resp., outside) the branches of the focal hyperbola

Qy
b =

{
(x, 0, z) ∈ R3 :

x2

a− b
− z2

b− c
= 1

}
.

Third, the caustic flattens into the whole coordinate plane πx = {x = 0} when λ→ a−.
We recall that not all combinations of caustics can exist. For instance, both caustics

cannot be ellipsoids. The four possible combinations are denoted by EH1, H1H1, EH2, and
H1H2. Hence, the caustic parameter λ = (λ1, λ2) belongs to the nonsingular caustic space

(17) Λ = (E ×H1) ∪ (H1 ⊗H1) ∪ (E ×H2) ∪ (H1 ×H2),

where H1 ⊗H1 = {λ ∈ H1 ×H1 : λ1 < λ2}. For instance, λ ∈ E ×H1 for trajectories of type
EH1, which means that Qλ1 is an ellipsoid and Qλ2 is a one-sheet hyperboloid.

5.2. The extension of the frequency map. To begin with, we extend the frequency map
ω : Λ → R2 to the borders of the four components of the caustic space (17), in the same way
that the rotation number was extended to the endpoints of the two caustic intervals (10). The
extension depends strongly on the “piece” of the border under consideration. Hence, we need
some notation for such pieces.

The set Λ is the union of three open rectangles and one open isosceles rectangular triangle.
In total, Λ has eleven edges and eight vertexes. We consider the partitions

∂Λ = Λ0 ∪ Λ1, Λ1 = G ∪R ∪ S,

where Λ1 is the set of edges, Λ0 is the set of vertexes, and S, G, and R are the sets formed
by the four inner edges, the two left edges, and the remaining five edges, respectively. See
Figure 5. We shall see that the frequency map is quite singular (in fact, exponentially sharp)
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at the four edges in S, quite regular at the five edges in R, and somehow related to the geodesic
flow on the ellipsoid Q at the two edges in G. That motivates the notation.

Next, we shall check that the frequency map of the triaxial ellipsoid Q can be continuously
extended to the borders of the caustic space in such a way that its values on the edges and
vertexes can be expressed in terms of exactly six functions of one variable that “glue” well.
Three of them are the extended rotation functions associated with the three ellipses obtained
by sectioning Q with the coordinate planes πx, πy, and πz. That is, they are the functions
ρx : [0, b] → R, ρy : [0, a] → R, and ρz : [0, a] → R defined as

ρx(λ) = ρ(λ; c, b), ρy(λ) = ρ(λ; c, a), ρz(λ) = ρ(λ; b, a),

using the notation in (12). The other three functions are defined in terms of the former
ones as follows. Let m = min(λ, c) and m = max(λ, c). Let Tx(s) = (λ − s)(c − s)(b − s),
Ty(s) = (c−s)(λ−s)(a−s), and Tz(s) = (m−s)(b−s)(a−s). Then we consider the functions
νx : [0, b] → R, νy : [b, a] → R, and νz : [0, b] → R defined by the identities∫ m

0

ds

(a− s)
√
Tx(s)

− 2ρx(λ)

∫ b

m

ds

(a− s)
√
Tx(s)

+
2πνx(λ)√−Tx(a)

= 0,∫ c

0

ds

(b− s)
√
Ty(s)

+ 2ρy(λ)

∫ a

λ

ds

(s− b)
√
Ty(s)

− 2πνy(λ)√−Ty(b)
= 0,∫ m

0

ds

(m− s)
√
Tz(s)

+ 2ρz(m)

∫ a

b

ds

(s−m)
√
Tz(s)

− 2πνz(λ)√−Tz(m)
= 0.

Lemma 12. The functions νx, νy, and νz have the following properties:
(i) They are analytic in E ∪H1, H2, and E ∪H1, respectively.
(ii) They can be continuously extended to [0, b], [b, a], and [0, b], respectively.
(iii) Their asymptotic behavior at the endpoints λ ∈ ∂E ∪ ∂H1 ∪ ∂H2 = {0, c, b, a} is

1. νx(λ) = O(λ1/2) as λ→ 0+;
2. νz(λ) = O(λ1/2) as λ→ 0+;
3. νx(λ) = ρz(a) + O (1/ log |c− λ|) as λ→ c;
4. νz(λ) = 1/2 + O (|λ− c|1/2) as λ→ c;
5. νx(λ) = ρy(a) + O(b− λ) as λ→ b−;
6. νz(λ) = ρz(c) + O ((b− λ)1/2) as λ→ b−;
7. νy(λ) = ρz(c) + O((λ− b)1/2) as λ→ b+; and
8. νy(λ) = ρx(b) + O(a− λ) as λ→ a−.

Proof. We know that the function ρx(λ) = ρ(λ; c, b) is analytic in λ, c, and b, as long
as 0 < c < b and λ ∈ E ∪ H1. Further, the integrand (a − s)−1(Tx(s))

−1/2 is analytic with
respect to the variable of integration s in the intervals of integration (0,m) and (m, b), and
with respect to the parameters λ, c, b, and a, as long as 0 < c < b < a and λ ∈ E∪H1. Hence,
the function νx(λ) = νx(λ; c, b, a) is analytic in its four variables as long as 0 < c < b < a and
λ ∈ E ∪H1. The analyticity of νy and νz follows from similar arguments.

The study of the asymptotic behavior of the functions νx, νy, and νz has been deferred to
Appendices A.9, A.10, and A.11, respectively.

Remark 9. We have numerically observed that νx and νz are increasing in E and decreasing
in H1, whereas νy is increasing in H2, but we have not been able to prove it.
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Theorem 13. The frequency map ω : Λ → R2 has the following properties:
(i) It is analytic in Λ.
(ii) It can be continuously extended to the border ∂Λ, and the extension has the form

given as follows:
1. ω(0, λ2) = (0, 0), for c ≤ λ2 ≤ b;
2. ω(λ1, b) = (ρy(λ1), ρy(λ1)), for 0 ≤ λ1 ≤ b;
3. ω(c, λ2) = (1/2, ρz(λ2)), for c ≤ λ2 ≤ a;
4. ω(λ1, a) = (ρx(λ1), νx(λ1)), for 0 ≤ λ1 ≤ b;
5. ω(b, λ2) = (νy(λ2), ρy(λ2)), for b ≤ λ2 ≤ a;
6. ω(λ1, c) = (νz(λ1), ρz(λ1)), for 0 ≤ λ1 ≤ c; and
7. ω(λ1, λ1) = (νz(λ1), ρz(c)), for c ≤ λ1 ≤ b.

(iii) Its asymptotic behavior at the eleven edges in Λ1 = G ∪ S ∪R is as follows:

1. ω(λ1, λ2) = κG(λ2)λ
1/2
1 +O(λ

3/2
1 ) as λ1 → 0+;

2. ω(λ1, λ2)− ω(c, λ2) � κS(c, λ2)/ log |c− λ1| as λ1 → c;
3. ω(λ1, λ2)− ω(λ1, b) � κS(λ1, b)/ log |b− λ2| as λ2 → b; and
4. ω(λ)− ω(λR) = O(λ− λR) as λ→ λR ∈ R

for some analytic functions κG : H1 ∪H2 → R2
+ and κS : S → R2.

(iv) Its asymptotic behavior at the eight vertexes in Λ0 is as follows:

1. ω(λ1, λ2) = O(λ
1/2
1 ) as (λ1, λ2) → (0+, c+);

2. ω(λ1, λ2) = O(λ
1/2
1 ) as (λ1, λ2) → (0+, b);

3. ω(λ1, λ2) = O(λ
1/2
1 ) as (λ1, λ2) → (0+, a−);

4. ω(λ1, λ2) = (1/2, ρz(c)) + O(1/ log |c− λ1|, λ2 − c) as (λ1, λ2) → (c, c+);
5. ω(λ1, λ2) = (1/2, 1/2) + O(1/ log |c− λ1|, 1/ log |b− λ2|) as (λ1, λ2) → (c, b);
6. ω(λ1, λ2) = (1/2, ρz(a)) + O(1/ log |c− λ1|, a− λ2) as (λ1, λ2) → (c, a−);
7. ω(λ1, λ2) = (ρy(b), ρy(b)) + O(b− λ1, 1/ log |b− λ2|) as (λ1, λ2) → (b−, b); and
8. ω(λ1, λ2) = (ρx(b), ρy(a)) + O(b− λ1, a− λ2) as (λ1, λ2) → (b−, a−).

Proof. Once we have fixed the parameters a > b > c > 0 of the ellipsoid and the pair of
caustic parameters λ1 and λ2, we set

{c1, . . . , c5} = {a, b, c} ∪ {λ1, λ2}, c0 := 0 < c1 < · · · < c5.

Four configurations are possible; see Figure 7. We said in Remark 1 that the frequency is
analytic in c1, . . . , c5, provided that 0 < c1 < · · · < c5. In particular, this implies that the
frequency is analytic in the caustic parameter, provided that it belongs to Λ.

The frequency map is expressed in terms of six hyperelliptic integrals over the intervals
(0, c1), (c2, c3), and (c4, c5)—represented in thick lines in Figure 7; see Definition 2. We face its
asymptotic behavior at the border ∂Λ = Λ0 ∪Λ1, which requires the study of the asymptotic
behavior of the six hyperelliptic integrals when some interval defined by the ordered sequence
0 < c1 < · · · < c5 collapses to a point. Therefore, there are exactly five simple collapses. The
collapse of the first interval is called the geodesic flow limit, c1 → 0+; the collapse of the second
or fourth intervals is called singular, c2 − c1 → 0+ or c4 − c3 → 0+; and the collapse of the
third or fifth intervals is called regular, c3 − c2 → 0+ or c5 − c4 → 0+. Thus, regular collapses
imply that the interval of integration of a couple of hyperelliptic integrals collapses to a point,
whereas singular collapses imply the connection of two consecutive intervals of integration.
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EH1: � � � �

0 c b a

c0 c2 c4 c5
� �

λ1 λ2

c1 c3

H1H1: � � � �

0 c b a

c0 c1 c4 c5
� �

λ1λ2

c2 c3

EH2: � � � �

0 c b a

c0 c2 c3 c5
� �

λ1 λ2

c1 c4

H1H2: � � � �

0 c b a

c0 c1 c3 c5
� �

λ1 λ2

c2 c4

Figure 7. The four possible configurations of the ordered sequence 0 < c1 < · · · < c5. Thick lines denote
intervals of integration. Each one of the displayed configurations illustrates some collapse: geodesic flow limit
(and type EH 1), simple regular collapse (and type H 1H 1), double singular collapse (and type EH 2), and double
regular collapse (and type H 1H 2).

See Figure 7. It is immediate to check that this terminology agrees with the partition Λ1 =
G∪R∪ S, whereas double collapses—that is, two simultaneous simple collapses—correspond
to the eight vertexes in Λ0.

The asymptotic behavior of the frequency map at the eleven edges in Λ1 = G ∪ R ∪ S is
deduced from several results described in Appendix A. In short, some technical lemmas are
listed in Appendix A.1, some notation is introduced in Appendix A.3, the geodesic flow limit
is studied in Appendix A.4, simple regular collapses are analyzed in Appendix A.5, and simple
singular collapses are computed in Appendix A.6. For instance, one can trace the definition
of the functions νx, νy, and νz to (23). The reader is encouraged to consult the appendix;
here, we just note that Appendix A deals with the general high-dimensional setup, since the
computations do not become substantially more involved when the dimension is increased.

The computations regarding the vertexes have also been relegated to Appendix A, al-
though for the sake of brevity we have written out only the computations for two vertexes:
vertex λ = (c, b) in Appendix A.8—which corresponds to the unique double singular collapse—
and vertex λ = (b, a) in Appendix A.7—which corresponds to the unique double regular col-
lapse. The study of the remaining six vertexes does not require additional ideas. For instance,
the three vertexes related to the geodesic flow limit can be simultaneously dealt with simply
by using Lemma 22, which ensures that the hyperelliptic integrals over (c0, c1) = (0, λ1) are

O(λ
1/2
1 ) as λ1 → 0+.
Finally, we realize that the extended frequency map ω : Λ̄ → R2 is continuous because the

extensions “glue” well at the eight vertexes; see Lemma 12. For instance, let us consider the
vertex (b, b). We obtain from the three statements of Theorem 13 regarding this vertex that

ω(b, b) = (ρy(b), ρy(b)) = (νy(b), ρy(b)) = (νz(b), ρz(c)),

which is consistent: νy(b) = νz(b) = ρz(c) = ρ(c; b, a) = ρ(b; c, a) = ρy(b).
Definition 5. The continuous extension ω : Λ̄ → R2 is called the (extended) frequency map

of the ellipsoid Q.
The origin of the terminology “geodesic flow limit” can be explained as follows. The

phase space of the geodesic flow on an triaxial ellipsoid Q ⊂ R3 was completely described by
Knörrer [30]. Any nonsingular geodesic on Q oscillates between two symmetric curvature lines
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obtained by intersecting Q with some hyperboloid Qλ, λ ∈ H1 ∪H2. The rotation number of
those oscillations is the quotient

ρG(λ) =

∫ min(b,λ)
c

sds√
TG(s)∫ a

max(b,λ)
sds√
TG(s)

, TG(s) = −s(λ− s)(c− s)(b− s)(a− s);

see [19, sect. 4.1]. This rotation number ρG(λ) can be continuously extended to the closed
interval [c, a] with ρG(b) = 1. On the other hand, the geodesic flow on the ellipsoid Q with
caustic lines Q ∩ Qλ2 can be obtained as a limit of the billiard dynamics inside Q when its
first caustic Qλ1 approaches Q, that is, when λ1 → 0+, so that (λ1, λ2) → G. Therefore, it is
natural to look for a relation between the function κG = (κG1 , κ

G
2 ) : H1 ∪H2 → R2

+ and the
rotation number ρG : H1 ∪H2 → R+.

Lemma 14. ρG = κG2 /κ
G
1 , so ω2(λ1, λ2)/ω1(λ1, λ2) = ρG(λ2) + O(λ1) as λ1 → 0+.

Proof. In Appendix A.4 we will check that κG is the unique solution of the linear system

2

(
KG

01 −KG
02

KG
11 −KG

12

)(
κG1
κG2

)
=

(
KG

00

0

)
,

where KG
ij =

∫ c2j+1

c2j
(TG(s))−1/2sids, KG

00 = 2(abcλ)−1/2, and {c2, c3, c4, c5} = {a, b, c, λ} with

c2 < c3 < c4 < c5. Therefore, since λ ∈ H1 ∪ H2, it turns out that c2 = c, c3 = min(b, λ),
c4 = max(b, λ), and c5 = a. Finally, κG2 /κ

G
1 = KG

11/K
G
12 = ρG.

5.3. On the Jacobian of the frequency map. We present the numerical experiments on
Conjecture 1. We have computed the Jacobian of the frequency map

J : Λ → R, J(λ) := det

(
∂ωj

∂λi
(λ)

)
i,j=1,2

for several ellipsoids, in order to check that it never vanishes. Its visualization close to the four
inner edges labelled with the letter S in Figure 5 has a technical difficulty. To understand this
fact, one can look at the graph of the rotation number ρ(λ) shown in Figure 3. The derivative
ρ′(λ) explodes at λ = b, which would make its visual representation difficult. The problem is
worse in the spatial case, because the frequency map has the same kind of “inverse logarithm”
singularity at the four inner edges instead of at a single point.

We overcome the visualization problem by representing the normalized Jacobian:

J∗ : Λ → [0, 1], J∗(λ) = (1− exp(−|J(λ)|))1/4.

The exponential function is intended to cancel the exponentially sharp behavior of the Ja-
cobian at the inner edges. The exponent 1/4 has been chosen by trial and error to obtain
more informative plots. The normalized Jacobian ranges over the interval [0, 1]. We note that
J∗ = 0 ⇔ J = 0 and J∗ = 1 ⇔ |J | = ∞. The results are shown in Figure 8. In the upper left
corner, we have displayed the parameter space P , introduced in (15) and sketched in Figure 6.
We study the eight ellipsoids that correspond to the eight points in P labelled from 1 to 8.
In particular, we have chosen at least one sample of each “kind” of ellipsoid: 1. standard, 2.
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Figure 8. The normalized Jacobian J∗ : Λ → [0, 1] of the frequency map for eight different ellipsoids.

almost spheric, 3. standard, 4. almost prolate, 5. almost oblate, 6. close to a segment, 7. close
to a flat solid ellipse, and 8. close to a flat circle. The color palette is a classical one: cold
colors represent low values, hot colors represent high values. The neighborhood of the inner
edges is always a “hot” region; that is, the Jacobian is always big on that region. In contrast,
the Jacobian tends to zero close to the hypotenuse of the H1 ⊗H1 region. This can be seen
from a symmetry reasoning. Furthermore, the Jacobian never vanishes, not even in the cases
7 and 8, which correspond to almost flat ellipsoids.

5.4. The range of the frequency map. We recall that if the two conjectures stated in
section 3.2 hold, then the components of the frequency map are ordered as stated in (9). Thus,
the range of the frequency map should be a subset of the frequency space

Ω =
{
(ω1, ω2) ∈ R2 : 0 < ω2 < ω1 < 1/2

}
.
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Figure 9. The extended frequency map ω : Λ̄ → Ω̄ on the edges of the caustic space for a = 1, b = 0.58,
and c = 0.46. Left: Caustic space. Right: Frequency space.

We visualize in Figure 9 how each edge of the caustic space is mapped onto the frequency
space. All the depicted curves have been numerically computed from exact formulae given in
Theorem 13. We have represented the caustic space Λ in the left panel, and the frequency
space Ω in the right panel. Each colored segment in the caustic space is mapped onto the
curve of the same color in the frequency space. The black segment in Λ—which represents the
geodesic flow limit—is mapped onto the origin O = (0, 0). The point (c, b) is mapped onto
A = (1/2, 1/2). The images of the magenta and blue segments are folded at this point A.
Henceforth, [AB] stands for the segment with endpoints A and B, and �[ABC] stands for
the interior of the triangle with vertexes A, B, C. We see that ω(E × H1) is enclosed by
the magenta segment [OA], the blue segment [AB1], and a red smooth curve from B1 to O;
ω(H1 ⊗ H1) = �[AB1C1]; ω(E × H2) is enclosed by the magenta segment [OA], the blue
segment [AB2], and a cyan smooth curve from B2 to O; and ω(H1 ×H2) is enclosed by the
magenta segment [C1A], the blue segment [AB2], a brown smooth curve from B2 to D, and a
green smooth curve from D to C1.

The points A, B1, B2, C1, and D can be explicitly expressed in terms of the parameters
of the ellipsoid Q. Let 0 < �x, �y, �z, �∗ < 1/2 be the quantities defined by

(18) sin2 π�x = c/b, sin2 π�y = c/a, sin2 π�z = b/a, �∗ = ρ(c; b, a),

where ρ(λ; b, a) is the rotation number (12). From the formulae contained in Theorem 13, we
get that A = (1/2, 1/2), B1 = (1/2, �∗), B2 = (1/2, �z), C1 = (�∗, �∗), and D = (�x, �y). We
note that D ∈ Ω, since �y < �x. In fact, �y < �z and �y < �∗ < �x, although we do not have
a rigorous proof of the inequalities involving �∗. The four quantities defined in (18) can be
interpreted in terms of the restriction of the billiard dynamics to suitable planar sections of
the original ellipsoid. For instance, �∗ is the rotation number of the trajectories contained in
the section by the plane πz whose caustic is the focal ellipse (16).

We now give some numerical estimates on the size and the shape of the four ranges.
Numerical Result 2. Let 0 < �x, �y, �z, �∗ < 1/2 be the quantities defined in (18). Let
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� = max(�∗, �z). Let O = (0, 0), A = (1/2, 1/2), B1 = (1/2, �∗), B2 = (1/2, �z), B = (1/2, �),
C1 = (�∗, �∗), C2 = (�z, �z), C = (�, �), and D = (�x, �y). Then we have the following:

(i) �[ABjCj] � ω(E ×Hj) � �[ABjO] for j = 1, 2;
(ii) ω(H1 ⊗H1) = �[AB1C1]; and
(iii) �[ABC] � ω(H1 ×H2) � ω(E ×H2) ∩ {(ω1, ω2) ∈ Ω : ω1 > �∗, ω2 > �y}.
Next, we investigate some practical consequences of these estimates. To begin with, let

us present four simple criteria for deciding whether the ellipsoid has billiard trajectories of
frequency ω0 = (ω0

1, ω
0
2) ∈ Ω and of caustic type EH1, H1H1, EH2, or H1H2. Compare with

the criterion for the existence of billiard trajectories inside an ellipse with rotation number
ρ0 ∈ (0, 1/2) and a caustic hyperbola given in (13).

Proposition 15. If Numerical Result 2 holds, the following criteria can be applied:
(i) If ω0

2 > ρ(c; b, a), ω0 ∈ ω(E ×H1). If ω0
2/2ω

0
1 ≤ ρ(c; b, a), ω0 /∈ ω(E ×H1).

(ii) ω0 ∈ ω(H1 ⊗H1) if and only if ω0
2 > ρ(c; b, a).

(iii) If b < a sin2 πω0
2, ω

0 ∈ ω(E ×H2). If b ≥ a sin2(πω0
2/2ω

0
1), ω

0 /∈ ω(E ×H2).
(iv) If ω0

2 > ρ(c; b, a) and b < a sin2 πω0
2, then ω0 ∈ ω(H1 × H2). If ω0

1 ≤ ρ(c; b, a) or
c ≥ a sin2 πω0

2 or b ≥ a sin2(πω0
2/2ω

0
1), then ω

0 /∈ ω(H1 ×H2).
Hence, there exist billiard trajectories of the four caustic types when ω0

2 is big enough: ω0
2 >

ρ(c; b, a) and sin2 πω0
2 > b/a. In contrast, there do not exist any such trajectories when ω0

2/ω
0
1

is small enough: ω0
2/ω

0
1 ≤ 2ρ(c; b, a) and sin2(πω0

2/2ω
0
1) ≤ b/a.

Proof. Criteria (i) and (iii) follow from �[ABjCj] ⊂ ω(E × Hj) ⊂ �[ABjO], j = 1, 2.
(ii) follows from the identity ω(H1 ⊗H1) = �[AB1C1]. Finally, (iv) follows from Numerical
Result 2(iii).

We can also understand how the range of the frequency map depends on the shape of the
ellipsoid. It suffices to see how the quantities �x, �y, �z, and �∗ depend on the parameters
0 < c < b < a. On the one hand, if the ellipsoid flattens—that is, if c decreases, but a and b
remain fixed—then �∗ decreases, so ω(E ×H1) and ω(H1 ⊗H1) expand. Indeed, both ranges
tend to cover the whole space Ω for flat ellipsoids, c→ 0+, whereas they collapse to the empty
set for prolate ellipsoids, c → b−. On the other hand, if the ellipsoid becomes more oblate—
that is, if b increases, but a and c remain fixed—then �z increases, so ω(E ×H2) contracts.
Indeed, ω(E×H2) tends to cover Ω for “segments,” b→ 0+, but collapses to the empty set for
oblate ellipsoids, b→ a−. The behavior of ω(H1×H2) is more complicated, because its vertex
D = (�x, �y) can be at any point of the frequency space Ω; see (18). Anyway, if the ellipsoid
becomes spheric—that is, c and b approach a—then �z and �∗ tend to one half, so Bj tends
to A, and the four ranges collapse to the empty set. This means that the more spheric is an
ellipsoid, the poorer are its four types of nonsingular billiard dynamics. Some of the criteria
stated in Propositions 15 and 17 quantify this general principle.

The ranges of the frequency map for eight different ellipsoids are shown in Figure 10. In the
upper left picture, we have again marked the ellipsoids as points in the parameter space (15).
The image sets ω(E ×H1), ω(H1 ⊗H1), ω(E ×H2), and ω(H1 ×H2) are depicted in yellow,
green, magenta, and blue, respectively. The transparency allows us to visualize all four sets
simultaneously. We can check all their properties as stated in Numerical Result 2, together
with those regarding their dependence on the shape of the ellipsoids. Blue dots correspond to
rational frequencies with small common denominators.

In the previous paragraphs the range of the frequency map has been described by mixing
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Figure 10. Ranges of the frequency map for eight different ellipsoids.

analytic formulae and numerical computations, but some properties can be justified. The
following proposition is an example.

Proposition 16. If Conjecture 1 holds, then ω(H1 ⊗ H1) = �[AB1C1] � ω(E × H1), and
ω : H1 ⊗H1 → �[AB1C1] is a global diffeomorphism. Further, ω0 ∈ ω(H1 ⊗H1) if and only
if ω0

2 > �∗ := ρ(c; b, a). Finally, limc→0�[AB1C1] = Ω and limc→b�[AB1C1] = ∅.
Proof. If U = H1 ⊗H1, then X = ∂U is the triangle with vertexes Ã = (c, b), B̃1 = (c, c),

C̃1 = (b, b). Using the formulae for the extended frequency map established in Theorem 13,
we get that ω([ÃB̃1]) = [AB1], ω([B̃1C̃1]) = [B1C1], and ω([C̃1Ã]) = [C1A]. Thus, Y = ω(X)
is the triangle with vertexes A, B1, C1. In particular, X and Y are Jordan curves, so the
frequency map ω : U → R2 verifies the hypotheses of Lemma 27 in Appendix B. Hence,
ω(U) = �[AB1C1] and ω : U → ω(U) is a global diffeomorphism.

In order to prove the strict inclusion �[AB1C1] � ω(E ×H1), it suffices to see that the
red curve from O to B1 in Figure 9(right) is strictly below the yellow segment [B1C1]. This
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Table 1
Geometric meaning of the winding numbers and the frequency vector when Q ⊂ R3.

Type m1 m2 ω1 ω2

EH1 Crossings of πz Half-turns around az z-oscillation z-rotation
EH2 Half-turns around ax Crossings of πx x-rotation x-oscillation
H1H1 Touches of Qλj Half-turns around az (H1-oscillation)/2 z-rotation
H1H2 Crossings of πy Crossings of πx y-oscillation x-oscillation

is equivalent to proving the inequality

ρz(λ1) < ρz(c) ∀λ1 ∈ (0, c),

due to the formulae for the extended frequency map contained in Theorem 13. This inequality
was proved in Proposition 11. Finally, we note that limc→0+ �∗ = 0 and limc→b− �∗ = 1/2; see
the second item of Proposition 10.

5.5. Geometric meaning of the frequency map. Letm0,m1,m2 be the winding numbers
of a periodic billiard trajectory of type EH1. Then m0 is the period. Furthermore, according
to Remark 2, m1 and m2/2 are the number of times along one period that the trajectory
crosses the coordinate plane πz = {z = 0} and the number of times along one period that it
rotates around the coordinate axis az = {x = y = 0}, respectively. Therefore, the components
of the frequency map have the following geometric meaning: ω1 = m1/2m0 is the number of
oscillations around πz per period, whereas ω2 = m2/2m0 is the number of rotations around az
per period. Thus, it is quite natural to say that ω1 is the z-oscillation number and ω2 is the
z-rotation number of the trajectory.

As in the planar case, these interpretations are extended to quasi-periodic trajectories. If
λ = (λ1, λ2) ∈ E ×H1, then Qλ1 is an ellipsoid, Qλ2 is a one-sheet hyperboloid, and

ω(λ) = lim
k→+∞

(nk, lk)/k,

where nk (resp., lk) is the number of oscillations around πz (resp., number of rotations around
az) of the first k segments of any given trajectory with caustics Qλ1 and Qλ2 .

The billiard trajectories of other types can be analyzed by following similar arguments.
The results are listed in Table 1 and can be checked by visual inspection; see Figure 13.

Finally, we stress a point already noted in Remark 3. If the trajectory is of type H1H1—
that is, if both caustics are one-sheet hyperboloids—then the winding number m1 is the
number of (alternate) tangential touches with the caustics, so ω1 = m1/2m0 is half the number
of oscillations between the one-sheet hyperboloids per period. In that situation, we call 2ω1

the H 1-oscillation number of the trajectory. In particular, it can happen that m0ω /∈ Z2. For
instance, if the winding numbers are m0 = 4, m1 = 3, and m2 = 2, the period is four, but
ω = (3/8, 1/4).

5.6. Bifurcations in parameter space. We want to determine the ellipsoids that have
billiard trajectories with a prescribed frequency and with a prescribed caustic type. We recall
that each ellipsoid is represented by a point in P = {(b, c) ∈ R2 : 0 < c < b < 1}, because
a = 1. Let P 0

1 , P
0
2 , P

0
3 , and P

0
4 be the four regions of P that correspond to ellipsoids with
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billiard trajectories of frequency ω0 and caustic type EH1, H1H1, EH2, and H1H2, respectively.
Their shapes are described below.

Numerical Result 3. Once we have fixed any frequency vector ω0 = (ω0
1 , ω

0
2) ∈ Ω, let b01 =

b02 = 1, b03 = b04 = sin2(πω0
2/2ω

0
1), c

0
1 = c03 = β04 = sin2 πω0

2/ sin
2 πω0

1, and c
0
2 = c04 = sin2 πω0

2.
Then

P 0
j =

{
(b, c) ∈ P : b < b0j , c < g0j (b)

}
, 1 ≤ j ≤ 4,

for some continuous functions g0j : [0, b0j ] → R such that

(i) g01 is concave increasing in [0, 1], 0 < g01(b) < b for all b ∈ (0, 1), and g01(1) = c01;
(ii) g02 is concave increasing in [0, 1], 0 < g02(b) < g01(b) for all b ∈ (0, 1), and g02(1) = c02;
(iii) g03 is the identity in [0, c03], concave decreasing in [c03, b

0
3], and g

0
3(b

0
3) = 0; and

(iv) g04 is increasing in [0, β04 ], concave decreasing in [β04 , b
0
4], c

0
4b/β

0
4 < g04(b) < b for all

b ∈ (0, β04 ), 0 < g04(b) < g03(b) for all b ∈ (β04 , b
0
4), g

0
4(β

0
4) = c04, and g

0
4(b

0
4) = 0.

Remark 10. Numerical Result 1 follows from Numerical Result 3 just by choosing suitable
rational frequency vectors: ω0 = (2/5, 1/5) in the cases EH1 and EH2, ω0 = (3/8, 1/4) in
the case H1H1, and ω0 = (1/3, 1/6) in the case H1H2. We stress that inequality g∗1 < g∗2
in Numerical Result 1 and inequality g02 < g01 in Numerical Result 3 are not contradictory,
because the first one refers to two different frequency vectors: (2/5, 1/5) and (3/8, 1/4).

Remark 11. We have numerically checked that g04 is not concave in [0, β04 ].
Remark 12. Inclusions P 0

2 ⊂ P 0
1 and P 0

4 ⊂ P 0
3—and so, inequalities g02(b) < g01(b) and

g04(b) < g03(b)—are in direct agreement with inclusions ω(H1 ⊗H1) ⊂ ω(E ×H1) and ω(H1 ×
H2) ⊂ ω(E ×H2) mentioned in Numerical Result 2.

Some bifurcation curves corresponding to the graphs of the functions g0j : [0, b0j ] → R are
presented in Figure 11. At the top of this figure we consider the eight rational frequencies
with the smallest denominators. The inclusions P 0

2 ⊂ P 0
1 and P 0

4 ⊂ P 0
3 can be easily visual-

ized, since all dashed curves are below their continuous pairs. At the bottom, we depict the
bifurcation curves associated with the rational frequencies marked with blue dots in Figure 10.
We needed multiple precision arithmetic to compute the bifurcation curves close to some of
the endpoints, since the involved root-finding problems become quite singular at them. The
programs were written using the PARI system [5].

Next, we describe four more criteria for deciding whether an ellipsoid has billiard trajec-
tories of a given frequency. They are similar to the four established in Proposition 15.

Proposition 17. If Numerical Result 3 holds, the following criteria can be applied:
(i) If c < c01b, then ω

0 ∈ ω(E ×H1). If c ≥ c01a, then ω
0 /∈ ω(E ×H1).

(ii) If c < c02b, then ω
0 ∈ ω(H1 ⊗H1). If c ≥ c02a, then ω

0 /∈ ω(H1 ⊗H1).
(iii) If (b03 − c03)c < c03(b

0
3a− b), then ω0 ∈ ω(E ×H2). If b ≥ b03a, ω

0 /∈ ω(E ×H2).
(iv) If β04c < min (c04b, β

0
4b

0
4a+ (c04 − b04)b), then ω

0 ∈ ω(H1 ×H2). If b ≥ b04a or c ≥ c04a,
then ω0 /∈ ω(H1 ×H2).

Proof. From Numerical Result 3, we get that T 0
j := �[OΓ0

jΔ
0
j ] ⊂ P 0

j , where O = (0, 0),

Γ0
1 = Γ0

2 = (1, 0), Γ0
3 = (b03, 0), Γ0

4 = (b04, 0), Δ0
1 = (1, c01), Δ0

2 = (1, c02), Δ0
3 = (c03, c

0
3),

and Δ0
4 = (β04 , c

0
4). It is straightforward to check that a point (b, c) ∈ P belongs to the

triangles T 0
1 , T

0
2 , T

0
3 , and T 0

4 if and only if c < c01b, c < c02b, (b
0
3 − c03)c < c03(b

0
3 − b), and

β04c < min (c04b, β
0
4b

0
4 + (c04 − b04)b), respectively. This proves the first part of each criterion

for a = 1. To prove the general case, it suffices to take into account that its formulae are
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Figure 11. Some bifurcation curves in the parameter space P .

homogeneous in the parameters a, b, c.
The second parts follow from similar arguments. For instance, P 0

j ∩ {c ≥ c0j} = ∅ for

j = 1, 2, since g0j (b) are increasing in [0, 1] and g0j (1) = c0j .
Remark 13. Proposition 15 was obtained by fixing the ellipsoid and looking at the fre-

quency space. In contrast, Proposition 17 was derived by fixing the frequency vector and
looking at the parameter space. Of course, both approaches are equivalent, but their crite-
ria are slightly different. The second ones are computationally simpler, because they do not
involve any elliptic integral.

Although the description of the regions P 0
j has a strong numerical component, some results

can be proved. The following proposition is an example.
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Proposition 18. Let ω0 = (ω0
1, ω

0
2) be a fixed frequency vector. If Conjecture 1 holds, then

P 0
2 ⊂ P 0

1 , P
0
2 depends only on ω0

2, and P
0
2 =

{
(b, c) ∈ P : 0 < b < 1, c < g02(b)

}
for some

increasing analytic function g02 : (0, 1) → R such that 0 < g02(b) < b for all b ∈ (0, 1). Further,
limb→1− g

0
2(b) = sin2 πω0

2. Finally,

g02(b) =

{
3b/

(
1 + b+ 2

√
1− b+ b2

)
for ω0

2 = 1/3,

b/(1 + b) for ω0
2 = 1/4.

Proof. If Conjecture 1 holds, then ω(H1 ⊗H1) = �(AB1C1) ⊂ ω(E ×H1); see Proposi-
tion 16. Therefore, P 0

2 ⊂ P 0
1 , because

(b, c) ∈ P 0
2 ⇒ ω0 ∈ ω(H1 ⊗H1) ⊂ ω(E ×H1) ⇒ (b, c) ∈ P 0

1 .

On the other hand, since A = (1/2, 1/2), B1 = (1/2, �∗), and C1 = (�∗, �∗), we deduce that

(b, c) ∈ P 0
2 ⇔ ω0 ∈ ω(H1 ⊗H1) = �(AB1C1) ⇔ ω0

2 > �∗ := ρ(c; b, a).

We know that the rotation function ρ(λ) = ρ(λ; b, a) is increasing in (0, b), ρ(0) = 0, and
ρ(b) = 1/2. Hence, the function g02 : (0, 1) → R, 0 < g02(b) < b, is implicitly defined by

(19) ρ(g02(b); b, a) = ω0
2,

where ω0
2 ∈ (0, 1/2) and a = 1 are fixed parameters. Analyticity of g02 follows from the implicit

function theorem, since Conjecture 1 also implies that ∂1ρ(λ; b, a) �= 0 for all λ ∈ (0, b)∪ (b, a).
Indeed, this derivative is positive in (0, b) and negative in (b, a), because ρ(·; b, a) is increasing
in (0, b) and decreasing in (b, a). Additionally, we know that ∂2ρ(λ; b, a) = ∂1ρ(b;λ, a) from
the symmetry ρ(λ; b, a) = ρ(b;λ, a); see (12). Hence, by differentiating (19) with respect to b
and setting c = g02(b) ∈ (0, b), we get that(

g02
)′
(b) = −∂2ρ(c; b, a)/∂1ρ(c; b, a) = −∂1ρ(b; c, a)/∂1ρ(c; b, a) > 0.

Using Proposition 10, we know that limb→a− sin2 πρ(c; b, a) = limb→a− sin2 πρ(b; c, a) = c/a.
Thus, we deduce limb→1− g

0
2(b) = sin2 πω0

2, since a = 1.
Finally, we must find the values c ∈ (0, b) such that ρ(c; b, a) is equal to 1/3 or 1/4. That

is, we must find the values of c ∈ (0, b) such that the billiard trajectories inside the ellipse
{x2/a+ y2/b = 1} with caustic {x2/(a− c) + y2/(b− c) = 1} have period three or four. This
is an old result that goes back to Cayley [9]. For instance, c = ab/(a+ b) in the four-periodic
case. The value for the three-periodic case was given in (14).

The fact that P 0
2 depends only on ω0

2 can be visualized in the upper left panel of Figure 11.
The two dashed curves with ω0

2 = 1/8 coincide, as well as the two with ω0
2 = 1/7.

5.7. On the ubiquity of almost singular trajectories. In Figure 12 we have superposed
the edges and borders (drawn in light colors) already displayed in Figure 9 and some new
segments and curves (drawn in heavy colors). In the caustic space, these new segments are
close to the original edges. To be precise, the distance between the segments and the edges
is equal to c/100 = 4.6 · 10−3. Nevertheless, the images of the black, magenta, and blue
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Figure 12. The extended frequency map ω : Λ̄ → Ω̄ close to the edges of the caustic space for a = 1,
b = 0.58, and c = 0.46. (Compare with Figure 9.)

segments are far from their corresponding borders in the frequency space. This phenomenon
seems stronger on the magenta and blue borders. It has to do with the fact that, as stated in
Theorem 13, the frequency map has an inverse logarithm singularity at the blue and magenta
edges of the caustic space. Therefore, one must be exponentially close to them just to be close
to their images. On the other hand, the frequency map has a square root singularity at the
black edges of the caustic space. Thus, one must be quadratically close to them just to be
close to the origin in the frequency space.

We deduce from this phenomenon that billiard trajectories with some almost singular
caustic are ubiquitous. Let us describe a quantitative sample of this principle using Figure 12.
Let T be the triangle delimited by the yellow, blue and magenta thin segments that are
close to the edges of H1 ⊗ H1. It turns out that the area of ω(H1 ⊗ H1) is approximately
16 times the area of ω(T ). Hence, if we look for billiard trajectories of type H1H1 inside Q
with a random frequency in ω(H1 ⊗ H1), their caustic parameter λ = (λ1, λ2) shall verify
min(|λ1 − c|, |λ2 − b|) < 4.6 · 10−3 with a probability approximately equal to 94%. It suffices
to note that 15/16 = 0.9375.

5.8. Examples of periodic trajectories with minimal periods. We have numerically com-
puted some symmetric periodic trajectories to check that the lower bounds stated in Theo-
rem 1 are optimal; see Figure 13. All these trajectories are almost singular. Concretely,
c− λ1 � 5 · 10−4 in the case EH2; λ1 − c � 2 · 10−2 in the case H1H2; c− λ1 � 2 · 10−2 and
λ2 − c � 10−2 in the case EH1; and λ1 − c � 10−2 in the case H1H1. Of course, we did not
look for almost singular trajectories, but we got them anyway.

Considering the values given in Figure 13, and bearing in mind Table 1, we have that
(m1,m2) = (4, 2) for the EH2 trajectory, so it performs two turns around the coordinate axis
ax and crosses the coordinate plane πx twice. As well, (m1,m2) = (4, 2) for the EH1 trajectory,
meaning four crossings with πz and just one turn around az. Again, we have (m1,m2) = (4, 2)
for the H1H2 trajectory, meaning four crossings with πy and two crossings with πx. Finally,
(m1,m2) = (3, 2) for the H1H1 trajectory, which corresponds to three tangential touches with
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Figure 13. Examples of symmetric nonsingular billiard trajectories with minimal periods. Lines in red
represent the particle’s trajectory. Lines in green and yellow correspond to the intersections of the original
ellipsoid with the caustic one-sheet and two-sheet hyperboloids, respectively. In the cases EH 1 and EH 2, the
caustic ellipsoid is also depicted.

each of the caustics and a single turn around az. Each of those geometric interpretations has
been verified on the corresponding trajectory.

6. Billiard inside a nondegenerate ellipsoid of Rn+1. We describe briefly the high-
dimensional version of some of the analytical results already shown in the spatial case. We
denote again the nondegenerate ellipsoid as in (1) and the nonsingular caustic space as in (2).

By analogy with the spatial case, we consider three disjoint partitions:

∂Λ =
n−1⋃
k=0

Λk, Λn−1 = G ∪R ∪ S, S =
n⋃

j=1

Sj .

With regard to the first partition, Λk is the k-dimensional border of Λ. That is, Λ0 is the
set of vertexes, Λ1 is the set of edges, Λ2 is the set of faces, and so on. The second partition
mimics the distinction among geodesic flow limits, simple regular collapses, and simple singular
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collapses already seen in the previous section. For instance, G = {λ ∈ Λn−1 : λ1 = 0}. The
asymptotic behavior of the frequency map in each one of these three situations is expected to
be dramatically different; see the theorem below. The last partition labels the component of
the caustic parameter that becomes singular: Sj = {λ ∈ Λn−1 : λj = aj}. Further, given any
caustic parameter λ ∈ Λ, we shall denote by λSj ∈ Sj the caustic parameter obtained from λ
by substituting its jth component with aj . Finally, we introduce the (n− 1)-dimensional set

G∗ = {(λ2, . . . , λn) ∈ Rn−1 : (0, λ2, . . . , λn) ∈ G},
which turns out to be the nonsingular caustic space for the geodesic flow on the ellipsoid. We
note that S1 = {c} × (H1 ∪H2), S2 = (E ∪H1) × {b}, and G∗ = H1 ∪H2 with the notation
used in the previous section for triaxial ellipsoids of R3.

Theorem 19. The frequency map ω : Λ → Rn has the following properties:
(i) It is analytic in Λ.
(ii) It can be continuously extended to ∂Λ, the extended map being as follows:

1. It vanishes at Ḡ.
2. One of its components can be explicitly written as a function of the rest at R̄.
3. Its first component is equal to 1/2 at S̄1.
4. Its lth component is equal to the (l − 1)th component at S̄l for 2 ≤ l ≤ n.
5. Its “free” components are an (n− 1)-dimensional frequency of the billiard inside

the section of the original ellipsoid by a suitable coordinate hyperplane at R̄ ∪ S̄.
Furthermore, the restriction of the continuous extended map to any of the k-dimensional
connected components of Λk, 1 ≤ k ≤ n− 1, is analytic.

(iii) Its asymptotic behavior at Λn−1 = G ∪ S ∪R is

1. ω(λ) = κG(λ2, . . . , λn)λ
1/2
1 +O(λ

3/2
1 ) as λ1 → 0+;

2. ω(λ)− ω(λSj ) � κS(λSj )/ log |aj − λj | as λj → aj; and
3. ω(λ)− ω(λR) = O(λ− λR) as λ→ λR ∈ R

for some analytic functions κG : G∗ → Rn
+ and κS : S → Rn.

Proof. The proof follows from the same arguments and computations used in the spatial
case. The arguments are not repeated. The computations with hyperelliptic integrals have
been relegated to Appendix A.

We recall that, once we have fixed the parameters a1, . . . , an+1 of the ellipsoid and the
caustic parameters λ1, . . . , λn, we write the 2n+ 1 positive numbers

{c1, . . . , c2n+1} = {a1, . . . , an+1} ∪ {λ1, . . . , λn}
in an ordered way: c0 := 0 < c1 < · · · < c2n+1. Then the frequency ω(λ) is defined in terms
of some hyperelliptic integrals over the intervals (c2j , c2j+1). If two consecutive elements of
{c0, . . . , c2n+1} collide, then ω(λ) is, a priori, not well defined. Thus, it is natural to ask: How
does ω(λ) behave at these collisions?

In the previous theorem we have solved this question at the set Λn−1 = G∪R ∪ S, which
covers just the geodesic flow limit, c1 → 0+; the n simple regular collapses, c2l+1, c2l → c∗ for
some l; and the n simple singular collapses, c2l−1, c2l → c∗ for some l. But there are many
more (multiple) collapses, from double ones to total ones. Double collapses correspond to the
set Λn−2. Total collapses have multiplicity n, so they correspond to set of vertexes Λ0.
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We believe that it does not make sense to describe the asymptotic behavior of the frequency
map at all the collapses, since the behavior in each case must be the expected one. In order
to convince the reader of the validity of this claim, we end the paper with a couple of extreme
cases.

As a first example, let us consider the vertex λ̂ = (a1, . . . , an) ∈ Λ0. This represents
the unique total singular collapse, because it is the unique common vertex of the 2n open
connected components of the caustic space:⋂

σ∈{0,1}n
Λ̄σ = {λ̂} =

n⋂
j=1

S̄j.

Using that the point λ̂ belongs to all the closures S̄j, from Theorem 19 we get that ω(λ̂) =
(1/2, . . . , 1/2). Which is the asymptotic behavior of ω at this vertex? In Appendix A.8 it is
proved that

ω(λ) = ω(λ̂) + O(1/ log |a1 − λ1|, . . . , 1/ log |an − λn|
)
, λ→ λ̂.

This behavior is singular in the n caustic coordinates, as expected.
In contrast, the vertex λ̃ = (a2, . . . , an+1) ∈ Λ0 represents the unique total regular collapse,

so we predict a regular behavior in the n caustic coordinates. In Appendix A.7 we show that
ω(λ̃) = (ω̃1, . . . , ω̃n), where the limit frequencies 0 < ω̃j < 1/2 are defined as sin2 πω̃j =
a1/aj+1, and the asymptotic behavior is

ω(λ) = ω(λ̃) + O(λ̃− λ), λ→ λ̃−.

Once more, the frequency map has the expected behavior.

7. Conclusion and further questions. We have studied periodic trajectories of billiards
inside nondegenerate ellipsoids of Rn+1. First, we trivially extended the definition of the
frequency map ω to any dimension, presented two conjectures about ω based on numerical
computations, and deduced from the second conjecture some lower bounds on the periods.
Next, we proved that ω can be continuously extended to any singular value of the caustic
parameters, although it is exponentially sharp at the “inner” singular caustic parameters.
Finally, we focused on ellipses and triaxial ellipsoids, where we found examples of trajectories
whose periods coincide with the previous lower bounds. We also computed several bifurcation
curves. Despite these results, many unsolved questions remain. We note just four.

The most obvious challenge is to tackle any of the conjectures, although it does not look
easy. We have already devoted some effort to this without success. We believe that the proof
of any of these conjectures requires either a deep use of algebraic geometry or to rewrite the
frequency map as the gradient of a “Hamiltonian”; see [46, sect. 4].

Another interesting question is to describe completely the phase space of billiards inside
ellipsoids in Rn+1 for n ≥ 2. A rich hierarchy of invariant objects appears in these billiards:
Liouville maximal tori, low-dimensional tori, normally hyperbolic manifolds whose stable and
unstable manifolds are doubled, etc. For instance, the stable and unstable invariant manifolds
of the two-periodic hyperbolic trajectory corresponding to an oscillation along the major axis
of the ellipsoid were fully described in [14].
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Third, we plan to give a complete classification of the symmetric periodic trajectories
inside generic ellipsoids [10]. To present the problem, let us consider the symmetric periodic
trajectories inside an ellipse displayed in Figure 4. On the one hand, the three-periodic
trajectory drawn in a continuous red line has an impact point on (and is symmetric with
respect to) the x-axis. On the other hand, the four-periodic trajectory drawn in a dashed green
line has a couple of segments passing through (and is symmetric with respect to) the origin.
It is immediate to realize that there exists neither a trajectory with a hyperbola as caustic
as the first one nor a trajectory with an ellipse as caustic as the second one. The problem
consists of describing all possible kinds of symmetric periodic trajectories once the type of
the n caustics for ellipsoids in Rn+1 is fixed. Once these trajectories were well understood,
we could study their persistence under small symmetric perturbations of the ellipsoid and the
break-up of the Liouville tori on which they live. Similar results have already been found
in other billiard frameworks: homoclinic trajectories inside ellipsoids of Rn+1 with a unique
major axis [8] and periodic trajectories inside circumferences of the plane [37].

Finally, we look for simple formulae to express the caustic parameters λ1, . . . , λn that
give rise to periodic trajectories of small periods in terms of the parameters a1, . . . , an+1 of
the ellipsoid. As a byproduct of those formulae, one can find algebraic expressions for the
functions g∗j (b) that appear in Numerical Result 1. This is a work in progress [38].

Appendix A. Computations with hyperelliptic integrals.

A.1. Technical lemmas.
Lemma 20. Let fε ∈ C0([α, β]) be a family of functions such that fε = f0 + O(ε) in the

C0-topology. Then

Iε =

∫ β

α

fε(s)ds√
(s − α)(β − s)

=

∫ β

α

f0(s)ds√
(s− α)(β − s)

+ O(ε).

Proof. |Iε−I0| ≤ |fε−f0|C0([α,β])

∫ β
α ((s−α)(β−s))−1/2ds = π|fε−f0|C0([α,β]) = O(ε).

Lemma 21. Let f ∈ C1([m,M ]) with m < α < β < M and ε = β − α. Then∫ β

α

f(s)ds√
(s− α)(β − s)

= πf(α) + O(ε) = πf(β) + O(ε), ε→ 0+.

Proof. Using the mean value theorem for integrals, we get that there exists some s0 ∈ [α, β]

such that the integral is equal to f(s0)
∫ β
α ((s− α)(β − s))−1/2ds = πf(s0).

Lemma 22. Let f ∈ C1([0,M ]) with 0 < ε < M . Then

Iε =

∫ ε

0

f(s)ds√
ε− s

= 2f(0)ε1/2 +O(ε3/2), ε→ 0+.

Proof. Iε =
[−2

√
ε− sf(s)

]s=ε

s=0
+ 2

∫ ε
0

√
ε− sf ′(s)ds = 2f(0)ε1/2 +O(ε3/2).

Lemma 23. Let f ∈ C1([α, β]). Set ξ =
∫ β
α (s − α)−3/2(f(s)− f(α))ds, η = f(α) log(4β −

4α) +
∫ β
α (s−α)−1(f(s)− f(α))ds, ψ =

∫ β
α (β− s)−3/2(f(s)− f(β))ds, and μ = f(β) log(4β −
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4α) +
∫ β
α (β − s)−1(f(s)− f(β))ds. Then∫ β

α

f(s)ds√
(s+ ε− α)(s − α)

= −f(α) log ε+ η +O(ε log ε), ε→ 0+,∫ β

α

f(s)ds

(s+ ε− α)
√
s− α

= πf(α)ε−1/2 + ξ +O(ε1/2), ε→ 0+,∫ β

α

f(s)ds√
(β + ε− s)(β − s)

= −f(β) log ε+ μ+O(ε log ε), ε→ 0+,∫ β

α

f(s)ds

(β + ε− s)
√
β − s

= πf(β)ε−1/2 + ψ +O(ε1/2), ε→ 0+.

The first (resp., last) two estimates also hold when f has a singularity at s = β (resp., at
s = α), provided f ∈ L1([α, β]).

Proof. We split the first integral as Iε = η̃+ Îε− Ĩε, where η̃ =
∫ β
α (s−α)−1(f(s)−f(α))ds

is a constant, and

Îε =

∫ β

α

f(α)ds√
(s+ ε− α)(s − α)

, Ĩε =

∫ β

α

f(s)− f(α)

s− α

(
1−

√
s− α

s+ ε− α

)
ds.

By performing the change x2 = s− α in the integral Îε, we get that

Îε = 2

∫ √
β−α

0

f(α)dx√
x2 + ε

= 2f(α)
[
log

(
x+

√
x2 + ε

)]x=√
β−α

x=0
= −f(α) log ε+ η̂ +O(ε),

where η̂ = f(α) log(4β− 4α) is another constant. Thus, to get the first formula with constant
η = η̂ + η̃ it suffices to see that Ĩε = O(ε log ε).

Once we have fixed some γ ∈ (α, β), we decompose the integral Ĩε as the sum J̃ε + K̃ε,

where J̃ε =
∫ γ
α f̃(s)rε(s)ds, K̃ε =

∫ β
γ f̃(s)rε(s)ds, and

f̃(s) =
f(s)− f(α)

s− α
, rε(s) = 1−

√
s− α

s+ ε− α
.

First, we consider the interval [α, γ]. Then |f̃ |∞ = max{|f̃(s)| : α ≤ s ≤ γ} <∞, and rε(s) is
positive in [α, γ]. Set δ = γ − α. Using again the change x2 = s− α, we see that

|f̃ |−1
∞ |J̃ε| ≤

∫ γ

α
rε(s)ds = δ −

∫ γ

α

√
s− α

s+ ε− α
ds = δ − 2

∫ √
δ

0

x2dx√
x2 + ε

= δ −
[
x
√
x2 + ε+ ε log

(
x+

√
x2 + ε

)]x=√
δ

x=0
= − ε

2
log ε+O(ε).

Concerning the other interval, we note that rε(s) is positive and decreasing in [γ, β]. Hence,

max{|rε(s)| : γ ≤ s ≤ β} = rε(γ), and so |K̃ε| ≤ rε(γ)
∫ β
γ |f̃(s)|ds = O(ε). This ends the proof

of the first formula.
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We split the second integral as Lε = ξ + L̂ε − L̃ε, where ξ is the constant given in the
statement of the lemma, and

L̂ε =

∫ β

α

f(α)ds

(s+ ε− α)
√
s− α

, L̃ε =

∫ β

α

f(s)− f(α)

(s− α)3/2

(
1− s− α

s+ ε− α

)
ds.

By performing the change x = s− α in the integral L̂ε, we get that

L̂ε =

∫ β−α

0

f(α)dx

(x+ ε)
√
x
= 2f(α)ε−1/2

[
atan

(x
ε

)1/2]x=β−α

x=0

= πf(α)ε−1/2 +O(ε1/2).

Thus, to get the second formula it suffices to see that L̃ε = O(ε1/2), which follows from
computations similar to the ones above.

The last formulae are obtained by performing the change of variables s−α = β− t in the
earlier ones.

Corollary 24. Let f ∈ C1([m,M ]) with m < α− < α+ < β− < β+ < M , and

I = I(α−, α+, β−, β+) =
∫ β−

α+

f(s)ds√
(s− α−)(s − α+)(β− − s)(β+ − s)

.

Let α∗ and β∗ be two reals such that m < α∗ < β∗ < M . Let ε = (ε1, ε2) ∈ R2
+ with

ε1 = α+ − α− and ε2 = β+ − β−. Then there exists a constant ζ ∈ R such that

I = −f(α∗)(1 + O(ε2)) log ε1 + f(β∗)(1 + O(ε1)) log ε2
β∗ − α∗

+ ζ +O(ε1 log ε1, ε2 log ε2)

as α± → α∗ and β± → β∗, so that ε = (ε1, ε2) → (0+, 0+).
Proof. The corollary follows by applying the first and third estimates of Lemma 23 to the

integrals
∫ γ
α+

and
∫ β−
γ for some point γ ∈ (α+, β−), although before we must fix the lower

limit of the first integral with the change x− α∗ = s− α+, and the upper limit of the second
integral with the change x− β∗ = s− β−.

Lemma 25. Let Kεωε = τε be a family of square linear systems defined for ε > 0.
(i) If the limits K = limε→0+ Kε and τ = limε→0+ τε exist and K is nonsingular, then

ωε = ω +O(|Kε −K|, |τε − τ |), ε→ 0+,

where ω = K−1τ is the unique solution of the nonsingular limit system Kω = τ .
(ii) If, in addition, the matrix Kε and the vector τε are differentiable at ε = 0, then the

solution ωε also is differentiable at ε = 0. To be more precise, if

Kε = K+ εL+ o(ε), τε = τ + εζ + o(ε), ε→ 0+,

for some square matrix L and some vector ζ, then

ωε = ω + εκ+ o(ε), ε → 0+,

where ω = K−1τ and κ = K−1(ζ − Lω).
Proof. Both results follow directly from classical error bounds in numerical linear algebra.

See, for instance, [25, sect. 2.7].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE FREQUENCY MAP FOR BILLIARDS INSIDE ELLIPSOIDS 315

A.2. Properties of the rotation number. Let us write the rotation number as the quotient
ρ(λ) = Δ(λ)/2K(λ), where

Δ(λ) =

∫ min(b,λ)

0

ds√
T (s)

, K(λ) =

∫ a

max(b,λ)

ds√
T (s)

,

and T (s) = (λ− s)(b− s)(a− s).
The study of the limit λ → 0+ is easy. From Lemma 22 we get the estimate Δ(λ) =

2(ab)−1/2λ1/2 +O(λ3/2) as λ→ 0+, whereas from Lemma 20 we get that

K(λ) =

∫ a

b

ds√
s(s− b)(a− s)

+ O(λ), λ→ 0+.

By combining both estimates, we get that ρ(λ) = κGλ1/2 +O(λ3/2), so limλ→0+ ρ(λ) = 0.
Next, we consider λ→ b−. After some computations based on Lemma 23, we get

K(b− ε) = −c−1/2 log ε+ η +O(ε log ε), ε→ 0+,

Δ(b− ε) = −c−1/2 log ε+ μ+O(ε log ε), ε→ 0+,

where c = a− b, η = η̂ + η̃, μ = μ̂+ μ̃, with η̂ = c−1/2 log 4c, μ̂ = c−1/2 log 4b, and

η̃ =

∫ a

b

(
1√
a− s

− 1√
a− b

)
ds

s− b
=

2√
c

∫ √
c

0

dx

x+
√
c
=

log 4√
c
,

μ̃ =

∫ b

0

(
1√
a− s

− 1√
a− b

)
ds

b− s
= − 2√

c

∫ √
a

√
c

dx

x+
√
c
=

1√
c
log

4c

(
√
a+

√
c)2

.

We have used the change x2 = a − s in both integrals. Let η∗ = c1/2η = log 16c and
μ∗ = c1/2μ = log 16bc(a1/2 + c1/2)−2. Then we have the estimate

(20) 2ρ(b− ε) =
Δ(b− ε)

K(b− ε)
=

1− c1/2μ log−1 ε+O(ε)

1− c1/2η log−1 ε+O(ε)
=

1− μ∗ log−1 ε

1− η∗ log−1 ε
+O(ε)

as ε→ 0+. So, κS = (η∗ − μ∗)/2 = log
(
(a/b)1/2 + (c/b)1/2

)
= log

(
d+ (d2 − 1)1/2

)
= acosh d,

where d = (a/b)1/2. This implies that cosh2 κS = a/b. Further, estimate (20) is the key to
proving that the caustic parameter λ0− is exponentially close to b. Once we have fixed ρ0 � 1/2,
let λ0− ∈ E be the unique caustic parameter such that ρ(λ0−) = ρ0, 0 < ε = b − λ0− � 1, and
δ = log−1 ε. By finding δ−1 = log ε in estimate (20), we get

log ε =
1

δ
= η∗ +

μ∗ − η∗
1− 2ρ0

+O(ε).

Using that κS = (η∗ − μ∗)/2 and η∗ = log 16c, we check that λ0− = b− ε, with

ε = e1/δ = eη∗−2κS/(1−2ρ0)+O(ε) = 16ce−κS/(1/2−ρ0) +O
(
e−2κS/(1/2−ρ0)

)
as ρ0 → (1/2)−. The limit λ→ b+ is completely analogous; we omit the computations.
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With respect to the limit λ→ a−, we note that T (s) = (b−s)(a−s)2+O(a−λ) uniformly
in the interval [0, b]. Hence,

Δ(λ) =

∫ b

0

ds

(a− s)
√
b− s

+O(a− λ) =
2√
a− b

atan

√
b

a− b
+O(a− λ), λ→ a−.

Furthermore, from Lemma 21 we get the estimate K(λ) = π(a− b)−1/2+O(a−λ) as λ→ a−.
Therefore, ρ(λ) = � + O(a − λ) as λ → a−, where the limit value � ∈ (0, 1/2) is defined by
tan2 π� = b/(a− b). That is, sin2 π� = b/a.

A.3. Another characterization of the frequency. We associate a “frequency vector” ω =
�(c) ∈ Rn with any c = (c1, . . . , c2n+1) ∈ R2n+1 such that c0 := 0 < c1 < · · · < c2n+1 in the
way described next. First, we consider the following:

• the polynomial T (s) =
∏2n+1

i=1 (ci−s) ∈ R2n+1[s], which is positive in the n+1 intervals
of the form (c2j , c2j+1),

• the n+ 1 linear functionals P (s) �→ Kj [P (s)] =
∫ c2j+1

c2j
(T (s))−1/2P (s)ds,

• the n+ 1 column vectors Kj = (Kj [1],Kj [s], . . . ,Kj [s
n−1])t ∈ Rn,

• the n× n nonsingular matrix K = (−K1, . . . , (−1)nKn), and
• the linear functionals P (s) �→ K[P (s);ω] = K0[P (s)] + 2

∑n
j=1(−1)jωjKj [P (s)] for

ω ∈ Rn.
The hypothesis c1 > 0 is not essential for getting a nonsingular matrix K, but it suffices to
assume the strict inequalities c1 < · · · < c2n+1; see [26, sect. III.3].

Lemma 26. There exists an unique ω ∈ Rn such that

(21) K[P (s);ω] = 0 ∀P (s) ∈ Rn−1[s]

or, equivalently, such that K0 + 2Kω = 0, which is the matricial form of the linear system
given in (7).

Proof. By taking the basis {1, s, . . . , sn−1} of Rn−1[s], we see that condition (21) is equiv-
alent to the linear system K0 + 2Kω = 0.

Therefore, condition (21) is an equivalent characterization of the frequency. From now on,
ω = �(c) stands for the frequency computed through the previous steps.

A.4. Geodesic flow limit: c1 → 0+. Let KG
0 = (KG

00, 0, . . . , 0) ∈ Rn with KG
00 =

2(
∏n

i=2 ci)
−1/2, and TG(s) = −s∏2n+1

i=2 (ci − s). Let KG be the n × n nonsingular matrix
associated with the vector cG = (0, c2, . . . , c2n+1). Let κ

G ∈ Rn be the unique solution of the
linear system KG

0 + 2KGκG = 0. Then

(22) ω = κGc
1/2
1 +O(c

3/2
1 ), c1 → 0+.

The proof is short. First, we note that T = TG + O(c1) uniformly in [0, c2n+1]. Thus,
using Lemma 20, we get that K = KG + O(c1) as c1 → 0+. And, using Lemma 22, we see

that K0 = KG
0 c

1/2
1 + O(c

3/2
1 ) as c1 → 0+. Therefore, the linear systems KG

0 + 2KGκG = 0

and c
−1/2
1 K0 + 2K(c

−1/2
1 ω) = 0 are O(c1)-close, K

G being nonsingular, so (22) follows from
Lemma 25(i).
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A.5. Simple regular collapse: c2l+1, c2l → c∗ for some l = 1, . . . , n. Set cR =
(c1, . . . , c2l−1, c2l+2, . . . , c2n+1) ∈ R2n−1. Let TR(s) =

∏
i �=2l,2l+1(ci − s) be the polynomial

associated with cR. Let KR
j and KR be the functionals associated with cR. Let ωR =

(ωR
1 , . . . , ω

R
n ) ∈ Rn, where ωR

�=l := (ωR
1 , . . . , ω

R
l−1, ω

R
l+1, . . . , ω

R
n ) = �(cR) ∈ Rn−1 is the fre-

quency associated with cR, and where ωR
l ∈ R is determined by

(23)

∫ c1

0

ds

|c∗ − s|
√
TR(s)

+ 2
∑
j �=l

∫ c2j+1

c2j

(−1)jωR
j ds

|c∗ − s|
√
TR(s)

+
(−1)l2πωR

l√
−TR(c∗)

= 0.

Let ε = c2l+1 − c2l. Then

(24) ω = ωR +O(ε), c2l+1, c2l → c∗.

In order to prove this claim, we first observe that characterization (21) is equivalent to
the system of n linear equations

(25)

{ K[(c∗ − s)si;ω] = 0 for i = 0, . . . , n− 2,
K[1;ω] = 0,

because {1, c∗ − s, . . . , (c∗ − s)sn−2} is a basis of Rn−1[s]. Now, using Lemmas 20 and 21, we
deduce the estimates

Kj[(c
∗ − s)si] =

∫ c2j+1

c2j

(c∗ − s)sids

|c∗ − s|
√
T S(s) + O(ε)

=

⎧⎪⎨⎪⎩
KR

j [s
i] + O(ε) if j < l,

O(ε) if j = l,

−KR
j−1[s

i] + O(ε) if j > l

and

Kj [1] =

⎧⎨⎩ π
(−TR(c∗)

)−1/2
+O(ε) if j = l,∫ c2j+1

c2j
ds

|c∗−s|
√

TR(s)
+O(ε) otherwise.

Therefore, the linear system (25) is O(ε)-close to the nonsingular linear system{ KR[si;ωR
�=l] = 0 for i = 0, . . . , n− 2,

condition (23),

and the asymptotic formula (24) follows from Lemma 25(i).

A.6. Simple singular collapse: c2l−1, c2l → c∗ for some l = 1, . . . , n. Set cS =
(c1, . . . , c2l−2, c2l+1, . . . , c2n+1) ∈ R2n−1. Let T S(s) =

∏
i �=2l−1,2l(ci−s) be the polynomial asso-

ciated with cS . Let KS
j and KS be the functionals associated with cS . Let ωS = (ωS

1 , . . . , ω
S
n ) ∈

Rn, where ωS
�=l := (ωS

1 , . . . , ω
S
l−1, ω

S
l+1, . . . , ω

S
n ) = �(cS) ∈ Rn−1 and

ωS
l =

{
1/2 if l = 1,
ωS
l−1 otherwise.

Let ε = c2l − c2l−1 > 0 and δ = |log ε|−1 > 0. Then there exists κS ∈ Rn such that

(26) ω = ωS + δκS + o(δ), c2l−1, c2l → c∗.
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To prove this claim, we set d =
√
T S(c∗) > 0. We know that characterization (21) is equivalent

to the system of n linear equations

(27)

{ K[δd;ω] = 0,
K[(c∗ − s)si;ω] = 0 for i = 0, . . . , n− 2,

because {δd, c∗ − s, . . . , (c∗ − s)sn−2} is a basis of Rn−1[s]. Now, using Lemmas 20 and 23,
we deduce the following asymptotic estimates. On the one hand, there exist some constants
ζ0, ζ1, . . . , ζn ∈ R such that

Kj [δd] = δdKj [1] =

{
1 + ζjδ +O(ε) if j = l − 1, l,
ζjδ +O(εδ) otherwise.

On the other hand,

Kj [(c
∗ − s)si] =

∫ c2j+1

c2j

(c∗ − s)sids

|c∗ − s|
√
T S(s) + O(ε)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

KS
j [s

i] + O(ε) if j < l − 1,∫ c∗
c2l−2

sids√
TS(s)

+O(ε) if j = l − 1,

− ∫ c2l+1

c∗
sids√
TS(s)

+O(ε) if j = l,

−KS
j−1[s

i] + O(ε) if j > l.

In particular, Kl−1[(c
∗ − s)si]−Kl[(c

∗ − s)si] =
∫ c2l+1

c2l−2

sids√
TS(s)

+O(ε) = KS
l−1[s

i] + O(ε).

We assume now that l �= 1. (The case l = 1 is studied later on.) Since ε � δ, the linear
system (27) is O(δ)-close to the nonsingular linear system{

2(−1)l−1(ωS
l−1 − ωS

l ) = 0,

KS [si;ωS
�=l] = 2(−1)l(ωS

l − ωS
l−1)

∫ c2l+1

c∗
sids√
TS(s)

for i = 0, . . . , n− 2,

which in its turn is equivalent to the linear system

(28)

{
ωS
l = ωS

l−1,

KS [si;ωS
�=l] = 0 for i = 0, . . . , n− 2,

whose unique solution is ωS
�=l = �(cS) and ωS

l = ωS
l−1.

Thus, the asymptotic formula ω = ωS +O(δ) follows from the first item in Lemma 25. In
fact, this result can be improved using the second item in Lemma 25. It suffices to note that
the linear system (27) is not only O(δ)-equivalent to (28), but also differentiable at δ = 0.
Hence, (26) holds for some vector κS that could be explicitly computed in terms of the limit
system and the constants ζ0, . . . , ζn.

If l = 1, the linear system (27) is O(δ)-equivalent to the nonsingular linear system{
ωS
1 = 1/2,

KS [si;ωS
�=1] = 0 for i = 0, . . . , n− 2,

and the proof ends with just the same arguments as for l �= 1. We omit the details.
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A.7. Total regular collapse: c2l+1, c2l → c∗l for all l = 1, . . . , n. Let us study the
case of n simultaneous collapses, all of them regular. That is, once we have fixed a vector
c∗ = (c∗1, . . . , c∗n) ∈ Rn such that 0 < c1 < c∗1 < · · · < c∗n, we study the asymptotic behavior of
the frequency ω = �(c) when c2l+1, c2l → c∗l for all l = 1, . . . , n. Let ω̃ = (ω̃1, . . . , ω̃n) ∈ Rn

be the vector whose components verify that 0 < ω̃l < 1/2 and sin2 πω̃l = c1/c
∗
l . Let ε =

(ε1, . . . , εn) ∈ Rn
+ with εl = c2l+1 − c2l. Then

(29) ω = ω̃ +O(ε), ε→ (0+, . . . , 0+).

Let Ql =
√
c∗l − c1

∏
i �=l |c∗i − c∗l | > 0. Let {P1(s), . . . , Pn(s)} be the basis of Rn−1[s]

univocally determined by the interpolating conditions

Pl(c
∗
j ) =

{
Ql if j = l,
0 otherwise.

That is, Pl(s) = (−1)l−1
√
c∗l − c1

∏
i �=l(c

∗
i − s). Using Lemma 21, we get the estimates

K0[Pl(s)] =

∫ c1

0

(
(−1)l−1

√
c∗l − c1

(c∗l − s)
√
c1 − s

+O(ε)

)
ds = 2(−1)l−1 atan

√
c1

c∗l − c1
+O(ε),

Kl[Pl(s)] = π +O(ε), and Kj [Pl(s)] = O(ε) for j �= 0, l. Thus, the n× n linear system

K[Pl(s);ω] = 0 for l = 1, . . . , n

is O(ε)-close to the nonsingular decoupled linear system

2(−1)l−1

(
atan

√
c1

c∗l − c1
− πω̃l

)
= 0 for l = 1, . . . , n,

whose unique solution is given by tan2 πω̃l = c1/(c
∗
l − c1), and so, by sin2 πω̃l = c1/c

∗
l . Hence,

the asymptotic formula (29) follows from the first item in Lemma 25.

A.8. Total singular collapse: c2l−1, c2l → c∗l for all l = 1, . . . , n. Let us study the
case of n simultaneous singular collapses. Let ω̂ = (1/2, . . . , 1/2) ∈ Rn, ε = (ε1, . . . , εn) ∈ Rn

+,
and δ = (δ1, . . . , δn) ∈ Rn

+, where εl = c2l − c2l−1 and δl = | log εl|−1. Then

(30) ω = ω̂ +O(δ), ε→ (0+, . . . , 0+).

Remark 14. By repeatedly applying the result on simple singular collapses, we see that

lim
εn→0+

(
· · · lim

ε2→0+

(
lim

ε1→0+
ω
))

= ω̂.

In fact, these repeated limits can be taken in any order. Nevertheless, this result is weaker
than estimate (30), so we need a formal proof of the estimate.

We consider the constants Ql =
√
c2n+1 − c∗l

∏
i �=l |c∗i − c∗l |. Let {P1(s), . . . , Pn(s)} be the

basis of Rn−1[s] univocally determined by

Pl(c
∗
j ) =

{
Ql if j = l,
0 otherwise.
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Now, using Corollary 24, we get that there exist some constants ζjl ∈ R such that

Kj [δlPl(s)] = δlKj [Pl(s)] =

{
1 + ζllδl + o(δ) if j = l,
ζjlδl + o(δ) otherwise,

where 0 ≤ j ≤ n and 1 ≤ l ≤ n. Therefore, the n× n linear system

δlK[Pl(s);ω] = 0 for l = 1, . . . , n

is O(δ)-close to the nonsingular linear system{
1− 2ω̂1 = 0,

2(−1)l−1(ω̂l−1 − ω̂l) = 0 for l = 2, . . . , n,

whose unique solution is ω̂ = (1/2, . . . , 1/2). Thus, the asymptotic formula (30) follows from
Lemma 25(i).

Remark 15. The vectorial estimate (30) can be refined in several ways. For instance, one
can get the componentwise estimates ω1 = 1/2 + O(δ1) and ωl = ωl−1 + O(δl) for l > 1. In
particular, ωl = 1/2+O(δ1, . . . , δl). Even more, there exists a n×n constant lower triangular
matrix L such that

ω = ω̂ + Lδ + o(δ), ε→ (0+, . . . , 0+).

We omit the proof, since we do not need this result and the computations are cumbersome.

A.9. Asymptotic behavior of the function νx. The function νx : (0, c)∪(c, b) → R verifies
that I(λ)+J(λ)ρx(λ)+K(λ)νx(λ) = 0, where the coefficients I, J,K : (0, c)∪ (c, b) → R were
given by

I(λ) =

∫ m

0

ds

(a− s)
√
Tx(s)

, J(λ) = −2

∫ b

m

ds

(a− s)
√
Tx(s)

, K(λ) =
2π√−Tx(a)

,

with Tx(s) = (λ−s)(c−s)(b−s),m = min(λ, c), andm = max(λ, c). Here, ρx(λ) = ρ(λ; c, b) is
the rotation function of the ellipse obtained by sectioning the ellipsoid Q with the coordinate
plane {x = 0}. The asymptotic properties of rotation functions of billiards inside ellipses were
established in Proposition 10.

First, let us consider the case ε := λ→ 0+. Using Lemmas 20 and 22, we get the following:
• I(ε) = I0ε

1/2 +O(ε3/2), where I0 = 2a−1(bc)−1/2;

• J(ε) = J0 +O(ε), where J0 = −2
∫ b
c (a− s)−1(s(s − c)(b − s))−1/2ds;

• K(ε) = K0 +O(ε), where K0 = 2π(a(a − c)(a− b))−1/2;
• ρx(ε) = κGε1/2 +O(ε3/2), where κG = κG(b, c) can be found in Proposition 10;
• νx(ε) = −(I0 + J0κ

G)K−1
0 ε1/2 + O(ε3/2) = O(ε1/2). It is possible to check that

(I0 + J0κ
G)K−1

0 < 0, but we do not need it.
Next, let us consider the case ε := b− λ→ 0+. We begin by computing the integral

r(β, α) :=

∫ β

0

ds

(α− s)
√
β − s

=
2√
α− β

atan
√
β/(α − β)
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for any 0 < β < α. Then it is immediate to check that∫ β

0

ds

(α+ − s)(α− − s)
√
β − s

=
r(β, α−)− r(β, α+)

α+ − α−

for any 0 < β < α− < α+. We also need the formula r(β, α) = 2π(α − β)−1/2�(β, α),
where �(β, α) := limγ→α− ρ(γ;β, α) is one of the limits of the rotation number described in
Proposition 10. Using these formulae, jointly with Lemmas 20 and 21, we see the following:

• I(b− ε) = I∗ +O(ε), I∗ = 2π(a− b)−1 ((b− c)−1/2�(c, b) − (a− c)−1/2�(c, a));
• J(b− ε) = J∗ +O(ε), where J∗ = −2π(a− b)−1(b− c)−1/2;
• K(b− ε) = K∗ +O(ε), where K∗ = 2π(a− b)−1(a− c)−1/2;
• ρx(b− ε) = ρx(b) + O(ε) = ρ(b; c, b) + O(ε) = �(c, b) + O(ε); and
• νx(b− ε) = �(c, a) + O(ε) = ρ(a; c, a) + O(ε) = ρy(a) + O(ε).

The estimates in the limit ε := m−m→ 0+, which means λ→ c, are
• I(c± ε) = −(a− c)−1(b− c)−1/2 log ε+ μ+ O(ε log ε), where μ is a constant that can

be exactly computed from Lemma 23;
• J(c± ε) = −(a− c)−1(b− c)−1/2 log ε+ η + O(ε log ε), where η is a constant that can

be exactly computed from Lemma 23;
• K(c± ε) = 2π(a− c)−1(a− b)−1/2 +O(ε);
• ρx(c±ε) = 1/2+κS log−1 ε+O(log−2 ε), where κS = κS(c, b) = acosh(b/c)1/2 according

to Proposition 10; and
• νx(c ± ε) = (a − b)1/2 ((a − c)(η − μ) − 2(b − c)−1/2κS) /2π + O(log−1 ε). After some

tedious but simple computations, one gets that νx(c) = �(b, a) = ρ(a; b, a) = ρz(a).

A.10. Asymptotic behavior of the function νy. The function νy : (b, a) → R verifies that
I(λ) + J(λ)ρy(λ) +K(λ)νy(λ) = 0, where the coefficients I, J,K : (b, a) → R were given by

I(λ) =

∫ c

0

ds

(b− s)
√
Ty(s)

, J(λ) = 2

∫ a

λ

ds

(s− b)
√
Ty(s)

, K(λ) = − 2π√−Ty(b)
,

with Ty(s) = (c − s)(λ − s)(a − s). Here, ρy(λ) = ρ(λ; c, a) is the rotation function of the
ellipse obtained by sectioning the ellipsoid Q with the coordinate plane {y = 0}.

We begin with the limit ε := λ− b→ 0+. Using Lemmas 20 and 23, we see the following:
• I(b+ ε) = I0 +O(ε), where I0 =

∫ c
0 (b− s)−3/2(c− s)−1/2(a− s)−1/2ds;

• J(b+ ε) = 2π(a− b)−1/2(b− c)−1/2ε−1/2 +O(1);
• K(b+ ε) = −2π(a− b)−1/2(b− c)−1/2ε−1/2;
• ρy(b+ ε) = ρy(b) + O(ε); and
• νy(b+ ε) = ρz(c) + O(ε1/2), since ρy(b) = ρ(b; c, a) = ρ(c; b, a) = ρz(c).

Next, let us consider the case ε := a−λ→ 0+, which is similar to the limit limε→0+ νx(b−ε)
studied in the previous subsection, so we need the same simple integrals. Using them, jointly
with Lemmas 20 and 21, we get the following:

• I(a− ε) = I∗ +O(ε), I∗ = 2π(a− b)−1 ((b− c)−1/2�(c, b) − (a− c)−1/2�(c, a));
• J(a− ε) = J∗ +O(ε), where J∗ = 2π(a − b)−1(a− c)−1/2;
• K(a− ε) = K∗ +O(ε), where K∗ = −2π(a− b)−1(b− c)−1/2;
• ρy(a− ε) = �(c, a) + O(ε); and
• νy(a− ε) = �(c, b) + O(ε) = ρ(b; c, b) + O(ε) = ρx(b) + O(ε).
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A.11. Asymptotic behavior of the function νz. The function νz : (0, c) ∪ (c, b) → R

verifies that

(31) I(λ) + J(λ)ρz(m) +K(λ)νz(λ) = 0,

where the coefficients I, J,K : (0, c) ∪ (c, b) → R were given by

I(λ) =

∫ m

0

ds

(m− s)
√
Tz(s)

, J(λ) = 2

∫ a

b

ds

(s−m)
√
Tz(s)

, K(λ) = − 2π√−Tz(m)
,

with Tz(s) = (m−s)(b−s)(a−s), m = min(λ, c), and m = max(λ, c). Here, ρz(λ) = ρ(λ; b, a)
is the rotation function of the ellipse obtained by sectioning the ellipsoid Q with the coordinate
plane {z = 0}.

Let us consider the case ε := λ→ 0+. Using Lemmas 20 and 22, we see the following:
• I(ε) = I0ε

1/2 +O(ε3/2), where I0 = 2c−1(ab)−1/2;
• J(ε) = J0 +O(ε), where J0 = 2

∫ a
b (s− c)−1(s(s− b)(a− s))−1/2ds;

• K(ε) = K0 +O(ε), where K0 = −2π(c(b − c)(a− c))−1/2;
• ρz(m) = ρz(min(ε, c)) = ρz(ε) = κGε1/2 + O(ε3/2), where the constant κG = κG(b, a)

can be found in Proposition 10; and
• νz(ε) = −(I0 + J0κ

G)K−1
0 ε1/2 +O(ε3/2) = O(ε1/2), with (I0 + J0κ

G)K−1
0 < 0.

The estimates in the limit ε := m−m→ 0+, which means λ→ c, are
• I(c± ε) = π(a− c)−1/2(b− c)−1/2ε−1/2 +O(1) (see Lemma 23);
• J(c± ε) = O(1);
• K(c± ε) = −2π(a− c)−1/2(b− c)−1/2ε−1/2 +O(ε1/2);
• ρz(m) = ρz(min(c± ε, c)) = ρz(c) + O(ε), since ρz(λ) is analytic at λ = c; and
• νz(c± ε) = 1/2 + O(ε1/2).

Next, we consider the case ε := b− λ→ 0+. Using Lemmas 20 and 21, we get
• I(b− ε) = O(1);
• J(b− ε) = J∗ε−1/2 +O(1), where J∗ = 2π(a− b)−1/2(b− c)−1/2;
• K(b− ε) = K∗ε−1/2 +O(ε1/2), where K∗ = −2π(a− b)−1/2(b− c)−1/2;
• ρz(m) = ρz(min(b− ε, c)) = ρz(c); and
• νz(b− ε) = ρz(c) + O(ε1/2).

Appendix B. A topological lemma. We recall that the complement of any Jordan curve
X in the plane R2 has two distinct connected components. One of them is bounded and
simply connected (the interior, denoted by BX), and the other is unbounded (the exterior,
denoted by UX).

Lemma 27. Let X and Y be two Jordan curves of R2. If f : BX → R2 is a bounded local
homeomorphism that has a continuous extension to the boundary X such that f(X) ⊂ Y , then
f : BX → BY is a global homeomorphism.

Proof. We note that W = f(BX) is a nonempty open bounded subset of R2 such that

∂W = ∂f(BX) ⊂ f(∂BX) = f(X) ⊂ Y.

Next, we are going to prove that W = BY . Using that ∂W ⊂ Y , we deduce that the
intersection W ∩BY (resp., W ∩UY ) is open and closed in BY (resp., in UY ), so it is either the
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empty set or the whole interior (resp., exterior). Therefore, we deduce that 1. W ∩ UY = ∅,
because W is bounded; 2. W ∩ Y = ∅, because W is open; and 3. W ∩ BY = BY , because W
is open and nonempty. That is, f(BX) =W = BY .

Once we know that f : BX → BY is a surjective local homeomorphism, we deduce from
covering space theory that it is a global homeomorphism. It suffices to realize that BX is
connected and open and BY is simply connected.

In particular, if f : BX → R2 is smooth or analytic, then its inverse is also smooth or
analytic. This means that if f is a local diffeomorphism whose image is bounded and that
has a continuous extension to the boundary X such that f(X) ⊂ Y , then f : BX → BY is a
global diffeomorphism.
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[8] S. Bolotin, A. Delshams, and R. Raḿırez-Ros, Persistence of homoclinic orbits for billiards and

twist maps, Nonlinearity, 17 (2004), pp. 1153–1177.
[9] A. Cayley, Developments on the porism of the in-and-circumscribed polygon, Philos. Mag., 7 (1854), pp.

339–345.
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