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Abstract. We construct a family of integrable volume-preserving maps in R3 with a two-dimensional hetero-
clinic connection of spherical shape between two fixed points of saddle-focus type. In other contexts,
such structures are called Hill’s spherical vortices or spheromaks. We study the splitting of the sepa-
ratrix under volume-preserving perturbations using a discrete version of the Melnikov method. First,
we establish several properties under general perturbations. For instance, we bound the topological
complexity of the primary heteroclinic set in terms of the degree of some polynomial perturbations.
We also give a sufficient condition for the splitting of the separatrix under some entire perturbations.
A broad range of polynomial perturbations verify this sufficient condition. Finally, we describe the
shape and bifurcations of the primary heteroclinic set for a specific perturbation.
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1. Introduction. A fundamental question in dynamical systems is the effect that small
perturbations of a dynamical system cause on its unperturbed invariant sets. The most studied
unperturbed invariant sets are tori and stable/unstable invariant manifolds of hyperbolic sets.
Usually, the unperturbed dynamical system is integrable and has separatrices; that is, its
stable and unstable invariant manifolds overlap. After a generic perturbation, the perturbed
stable and unstable invariant manifolds intersect transversely, which gives rise to the onset of
chaos, through the creation of Smale horseshoes. This phenomenon is known as the problem
of splitting of separatrices. A widely used technique for detecting such intersections is the
Melnikov method.

Our goal is to apply the Melnikov method to the splitting of separatrices in the discrete
volume-preserving framework. Similar questions have been considered before. However, we
believe this is the first time that detailed analytical results about the structure of the primary
heteroclinic set and its bifurcations are established for specific maps. This represents a step
forward with respect to previous works [23, 24], in which once a formula for the Melnikov func-
tion in terms of an infinite series is written down, the approach becomes mainly numerical,
because of the technical difficulties that obstruct the analytical one. Here, we have overcome
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some of these difficulties using basic tools: complex variable theory, quasi-elliptic functions,
homology, and several algebraic tricks. Nevertheless, we have not been able to find an explicit
expression of the Melnikov function in terms of elementary functions for any specific pertur-
bation. In contrast, such explicit expressions (in terms of elliptic functions) have been known
for almost twenty years in the discrete area-preserving setting [18, 13].

This study is interesting because volume-preserving maps are the simplest and most nat-
ural higher-dimensional versions of the much-studied class of area-preserving maps. The
infinite-dimensional group of volume-preserving diffeomorphisms on R3 is at the core of the
ambitious program to reformulate hydrodynamics [3]. Volume-preserving maps arise in a num-
ber of applications such as the study of the motion of Lagrangian tracers in incompressible
fluids or of the structure of magnetic field lines [19, 20, 33, 30]. Experimental methods have
only recently been developed that allow the visualization of particle trajectories in spatial
fluids [28, 32].

Given a system with a heteroclinic connection between two hyperbolic fixed points, the
Melnikov function computes the rate at which the distance between the manifolds changes
with a perturbation. After the introduction of the Melnikov method for periodic perturbations
of one-degree-of-freedom Hamiltonian systems, many different versions appeared, most of
them in continuous settings (flows). For instance, there are versions for three-dimensional
incompressible flows in [29, 6, 5].

There exist also discrete versions of this method, in which the Melnikov function is no
longer an integral, but an infinite sum whose domain is the unperturbed connection. The
first steps towards a discrete Melnikov theory were performed for area-preserving maps [17,
18, 13, 21], and next for symplectic maps [14], for twist maps [22], for general n-dimension
diffeomorphisms [9, 7, 25], and for spatial billiard maps [15]. Finally, volume-preserving
maps have been considered in [23, 24]. These papers deal with codimension-one heteroclinic
connections between fixed points of saddle-focus type and between hyperbolic invariant circles.
The current paper is a natural continuation and uses some of their ideas.

We shall construct a family of integrable volume-preserving maps f : R3 → R3 with a
two-dimensional heteroclinic connection between two fixed points. This family is derived from
another family of integrable planar maps introduced by McMillan [27]. The same construction
can be found in [23], but we have decided to study a completely new family to minimize the
overlap with previous works. Additionally, the new family has a purely rational character,
whereas the previous one contains trigonometric terms. In other words, our model can be
used to explore numerically phenomena that are connected to the splitting of separatrices. In
particular, numerical computations using a multiple-precision arithmetic are feasible.

The two-dimensional separatrix has a spherical shape, and the fixed points are its “north
pole” p+ and its “south pole” p−. Our integrable maps depend on two parameters: a charac-
teristic exponent h > 0 and a frequency ω ∈ T. These names refer to the fact that

spec[Df(p±)] =
{
e±2h, e∓h+iω, e∓h−iω

}
.

Thus, the fixed points are of saddle-focus type, the characteristic exponent measures the
hyperbolicity of the map, and the frequency quantifies the rotation speed of the trajectories
on the separatrix. There also exists a one-dimensional straight heteroclinic connection between
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Figure 1. In this figure we illustrate two possible intersections that appear as heteroclinic intersections of
the stable and unstable manifolds that we will be considering. On the left, we have an equatorial intersection.
On the right a vertical intersection.

the fixed points. The same configuration appears in fluid dynamics under the name of Hill’s
spherical vortex or bubble-type vortex breakdown [33] and as a model for the magnetic field
of stars. In a plasma physics context, the configuration is a confinement device that is called
spheromak [26]. From a more theoretical point of view, we note that the integrable normal
forms associated with families of volume-preserving flows with a Hopf-zero singularity have
the same structure in the phase space [10].

In general, volume-preserving perturbations split the separatrix, but the perturbed stable
and unstable manifolds still intersect along one-dimensional heteroclinic curves, which can be
vertical, equatorial, or bubble-type ones. (This terminology is borrowed from [23].) Vertical
curves are those heteroclinic intersections whose endpoints are both fixed points. Due to the
rotational dynamics of the unperturbed map, these curves look like spirals connecting both
poles when there is swirl ; that is, when ω �= 0. On the contrary, equatorial and bubble-type
curves are closed curves that do not approach the poles; in particular, they cannot appear
in autonomous flows. The difference between equatorial and bubble-type curves is that the
portions of the stable and unstable manifolds delimited by a bubble-type curve encircle a
contractible region in R3; that is, a “bubble.” See Remark 7 and Figure 1 for more details.

We shall describe the structure of the set of primary intersections under some perturba-
tions. Roughly speaking, primary intersections are the sets of points where the stable and
unstable manifolds “first” meet. In fact, primary intersections are the only intersections that
can be followed by the perturbation. In the limit as ε → 0, they appear as zeroes of the
Melnikov function. Therefore, nonprimary intersections are missed by standard Melnikov
methods. See [23] for details.

First, we bound the topological complexity of the primary heteroclinic set in terms of the
degree of volume-preserving polynomial perturbations of the form

fε = (Id + εκ) ◦ f, κ(x, y, z) = (0, α(x), β(x, y)).
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In particular, it turns out that the primary heteroclinic set contains at most 2n vertical curves
when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y]. Throughout this paper, we will use the notation
Rm[x] for the set of degree-m polynomials in x with real coefficients and Rm[x, y] for the set
of degree-m polynomials in x and y.

Next, we shall give a sufficient condition for the splitting of the separatrix under some
entire perturbations. A broad range of polynomial perturbations verify this condition, for
instance, those with κ(x, y, z) = (0, 0, β(x, y)) for some even polynomial β(x, y) of degree
4l + 2, provided that e4kωi �= −1 for k = 1, . . . , 2l + 1. In particular, nonresonant frequencies
guarantee the breakdown of the unperturbed structure, which is in sharp contrast with some
known principles in KAM (Kolmogorov–Arnold–Moser) theory.

Finally, we shall consider the perturbation with κ(x, y, z) = (0, x, 0). The primary hetero-
clinic set under this perturbation consists of four vertical curves for ω �= ±π/2, whereas some
heteroclinic bifurcations take place at ω = ±π/2. Unfortunately, we have found a complete
proof of these facts only for h ≥ h0 ≈ 2.28, but we conjecture, based on numerical experi-
ments, that this picture holds for any h > 0. The previous upper bound on the number of
vertical curves is optimal for this perturbation.

The proof of each analytical result is based on different tools. The bounds on the topolog-
ical complexity follow from basic homology theory. The splitting result is obtained through
the study of the complex singularities of the Melnikov function, an idea that goes back to
Ziglin [35]. The part about bifurcations relies strongly on the fact that the Melnikov function
can be expressed in terms of a quasi-elliptic function of order two. Additionally, each part
has its own algebraic tricks.

We complete this introduction with a note on the organization of the paper. In section 2,
we recall the Melnikov theory for volume-preserving maps. In section 3, we construct the
family of integrable volume-preserving maps. In section 4, we derive an explicit expression
for the Melnikov function associated with some volume-preserving perturbations. The next
sections are devoted to bounding the topological complexity of the primary heteroclinic set
and to establishing some sufficient conditions for the splitting. The study about the bifurca-
tions of the primary heteroclinic set under the sample perturbation is contained in section 7.
Some analytical details and numerical experiments are relegated to Appendices A and B,
respectively.

2. The Melnikov theory for volume-preserving maps. In this section we shall briefly
describe the Melnikov theory for volume-preserving maps developed in [23, 24, 25]. Let fε :
R3 → R3 be a family of smooth volume-preserving maps such that the unperturbed map f = f0

has two hyperbolic fixed points a and b whose stable and unstable invariant manifolds coincide,
giving rise to a two-dimensional saddle connection Σ = W u(a, f)\{a} = W s(b, f)\{b}, where
W u(a, f) and W s(b, f) denote the unstable invariant manifold of the point a and the stable
invariant manifold of the point b, respectively. Both fixed points persist and remain hyperbolic
for small ε. We want to study how the perturbed invariant manifoldsW u(aε, fε) and W s(bε, fε)
intersect.

Our goal is to describe the topology of the set of primary intersections Pε ⊂W u(aε, fε) ∩
W s(bε, fε). We also try to elucidate when the separatrix Σ splits under the perturbation; that
is, when there is no smooth family of saddle connections Σε ⊂ W u(aε, fε) ∩W s(bε, fε) such
that Σ0 = Σ.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEPARATRIX SPLITTING IN 3D VOLUME-PRESERVING MAPS 1531

We recall some concepts that are going to be used below. A point ξ of a manifold Σ is
a regular point of a smooth function M : Σ → R when the differential form dM does not
vanish at ξ, whereas r ∈ R is a regular value of M if every point in M−1(r) is a regular
point. A zero of M is called nondegenerate when it is a regular point. If r is a regular value
of M , then M−1(r) is a one-dimensional submanifold of Σ. On the contrary, M−1(r) can be
much more complicated if 0 is a singular value, although its subset of regular points is also
a one-dimensional submanifold of Σ. A diffeomorphism f is symmetric when there exists a
diffeomorphism S such that f ◦ S = S ◦ f , and then S is called a symmetry of the map f .
Analogously, f is reversible when there exists a diffeomorphism R such that f ◦R = R ◦ f−1,
and then R is called a reversor of the map f and we denote by FixR = {ξ ∈ R3 : R(ξ) = ξ}
the set of its fixed points. These fixed points are called symmetric in the literature.

We collect in the following theorem the basic Melnikov-like results about this setup. See
[23, 25].

Theorem 1. Under the previous assumptions, there exists a smooth function M : Σ → R,
called the Melnikov function, with the following properties:

(i) If ξ0 is a nondegenerate zero of M , then W u(aε, fε) and W s(bε, fε) intersect trans-
versely, for ε small enough, at a point ξε = ξ0 + O(ε) ∈ Pε.

(ii) If 0 is a regular value of M , then the set of primary intersections Pε is, for ε small
enough, a one-dimensional submanifold of R3 such that Pε = M−1(0) + O(ε).

(iii) M is invariant by the unperturbed map: M ◦ f = M .
(iv) If fε has a smooth family of

1. symmetries Sε : R3 → R3 such that S0(Σ) = Σ, then M ◦ S0 = M ;
2. reversors Rε : R3 → R3 such that R0(Σ) = Σ, then M ◦R0 = −M ;
3. saddle connections Σε ⊂W u(aε, fε) ∩W s(bε, fε) with Σ0 = Σ, then M ≡ 0.

The Melnikov function is constructed in such a way that it measures the distance between
the perturbed invariant manifolds W u(aε, fε) and W s(bε, fε) in first order. Because of this,
the zero-level set M−1(0) ⊂ Σ is strongly related to the primary intersection set Pε, and
any change in its topology gives rise to some heteroclinic bifurcation. Further, a sufficient
condition for the splitting of the separatrix is that the Melnikov function is not identically zero.

Symmetries, reversors, and symmetric heteroclinic points play an important role in the
study of (primary) heteroclinic intersections; see [16]. For instance, the set of primary inter-
sections is invariant by symmetries and reversors. Additionally, symmetric heteroclinic points
persist under reversible perturbations. Concretely, if fε is Rε-reversible and FixR0 is a smooth
curve that intersects transversely the saddle connection Σ at some point ξ0, then there exists
a unique point ξε = ξ0 + O(ε) ∈ Pε ∩ FixRε.

Remark 1. If fε is not Rε-reversible, but fε ◦ Rε − Rε ◦ f−1
ε = O(ε2) and R0(Σ) = Σ,

then M ◦R0 = −M . This has to do with the fact that the Melnikov function measures only
first-order behaviors. We present an explicit example of this situation in Proposition 4.

In order to apply this theory, we must compute the Melnikov function. This is easier when
the unperturbed map has a nondegenerate first integral I : R3 → R and fε = (Id + εκ) ◦ f
for some map κ : R3 → R3. Under these assumptions, it is proved in [23, Lemma 8] that the
Melnikov function is the absolutely convergent series

(1) M =
∑
k∈Z

〈∇I, κ〉 ◦ fk.
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This is the formula for Melnikov functions that we shall use in this paper.
We are interested only in perturbations that do not destroy the volume-preserving charac-

ter of the unperturbed map f . This question has a simple answer: fε = (Id+ εκ)◦f preserves
volume if and only if the differential of the perturbation κ is nilpotent everywhere; see [23,
Lemma 3]. This allows us to create simple examples of volume-preserving perturbations. For
instance, we could take κ(x, y, z) = (0, α(x), β(x, y)) or κ(x, y, z) = (γ(y, z), δ(z), 0) for any
smooth functions α, δ : R → R and β, γ : R2 → R.

3. The maps. In this section we shall construct, following a methodology developed
in [23], the perturbed volume-preserving maps fε that will be studied in the rest of the paper.
As a starting point, we shall describe the unperturbed maps f = f0 that form a family of
integrable volume-preserving maps with a two-dimensional heteroclinic connection between
a couple of hyperbolic fixed points. This integrable family is derived from another family of
integrable planar standard-like maps introduced by McMillan [27].

Let h > 0 be the parameter of the family of planar standard-like maps. Then we consider
the quantities c = cosh(h/2) and s = sinh(h/2), the rational transformation

(2) z �→ φ(z) =
cz + s

c+ sz
,

and the area-preserving map

(3) g(r, z) =
(
φ
(
r + φ−1(z)

)
− z, r + φ−1(z)

)
,

where φ−1(z) = (cz − s)/(c − sz) = −φ(−z) is the inverse transformation of (2). The phase
portrait of this map is sketched in Figure 2. Its main dynamical properties are described in
the next lemma.

Lemma 2. The area-preserving map (3) has the following properties:
(i) The points q± = (0,±1) are hyperbolic fixed points of g and

spec[Dg(q±)] =
{

eh, e−h
}
.

(ii) The function J(r, z) = (c2 − s2z2)r2 + 2cs(z2 − 1)r is a first integral, and the level
J−1(0) contains two heteroclinic connections between the hyperbolic fixed points.

(iii) These heteroclinic connections are Γ0 =
{
(r, z) ∈ R2 : r = 0, |z| < 1

}
and

Γ =
{

(r, z) ∈ R2 : r = φ(z) − φ−1(z) =
2cs(1 − z2)
c2 − s2z2

, |z| < 1
}
.

(iv) The diffeomorphism γ = (r, z) : R → Γ, z(t) = tanh(t/2), r(t) = z(t+ h) − z(t − h)
is a natural parametrization of the connection Γ; that is, g(γ(t)) = γ(t+ h).

(v) The map g is R-reversible and R(γ(t)) = γ(−t), where R(r, z) = (r,−z).
Proof. It is a direct computation, so it is more enlightening to explain how these formulae

are guessed. The canonical change of variables (r, z) �→ (z,w = r + φ−1(z)) transforms (3)
into the planar standard-like map

ḡ(z,w) = (w,ψ(w) − z), ψ(w) = φ(w) + φ−1(w) =
2w

c2 − s2w2
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Figure 2. The phase portrait of the area-preserving map (3) for h = 2. The solid squares denote the
hyperbolic fixed points q±. The thick lines denote the heteroclinic connections Γ0 and Γ. The arrows denote
the dynamics of the map on the connections.

introduced by McMillan, which has similar properties [27, p. 232]. For instance,

J̄(z,w) = s2(z2 − 1)(w2 − 1) − (z − w)2

is a known first integral of the McMillan map, and its zero-level set J̄−1(0) contains two
heteroclinic connections between the hyperbolic fixed points q̄− = (−1,−1) and q̄+ = (1, 1).
From the relation ψ(z) = φ(z) + φ−1(z), we get that

ḡk(z, φ±1(z)) =
(
φ±k(z), φ±(k+1)(z)

)
for all k ∈ Z. Thus, using that φ : (−1, 1) → (−1, 1) is a diffeomorphism such that
limk→±∞ φk(z) = ±1 for all z ∈ (−1, 1), we see that the heteroclinic connections are

Γ̄0 = {w = φ−1(z)}, Γ̄ = {w = φ(z)}.

The change (z,w) �→ (r = w − φ−1(z), z) transforms Γ̄0 into Γ0 = {r = 0} and Γ̄ into
Γ = {r = φ(z) − φ−1(z)}. Finally, the natural parametrization follows from the relations
φ(z(t)) = z(t+ h) and r(t) = φ(z(t)) − φ−1(z(t)) = z(t+ h) − z(t− h).

Next, we construct a volume-preserving map using the area-preserving map (3). The
methodology consists, roughly speaking, of “rotating” the right half-plane {r > 0} of Figure 2
around the vertical axis, using “canonical” cylindrical coordinates [23]. The map becomes fully
three-dimensional if we introduce any nontrivial dynamics in the cylindrical angular variable
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θ ∈ T := R/2πZ. For instance, a rigid rotation θ �→ Θ = θ + ω suffices. See also Remark 2.
The surface of revolution Σ obtained from the curve Γ is the two-dimensional heteroclinic
connection we were looking for.

The construction would be a little obscure if we directly used the Cartesian coordinates
(x, y, z). Hence, as an intermediate step, it is convenient to introduce the cylindrical angle
θ ∈ T and the cylindrical radius

√
2r > 0. That is, we will work with the canonical cylindrical

coordinates (r, θ, z) defined by the relations

(4) x =
√

2r cos θ, y =
√

2r sin θ, z = z.

The term canonical means that dx ∧ dy ∧ dz = dr ∧ dθ ∧ dz. Consider the map (r, θ, z) �→
(R,Θ, Z), given by

(5) Θ = θ + ω, (R,Z) = g(r, z),

where g is the area-preserving map (3). This map preserves volume, since

dX ∧ dY ∧ dZ = −dR ∧ dZ ∧ dΘ = −dr ∧ dz ∧ dθ = dx ∧ dy ∧ dz.

Let

ρ(r, z) =

{ √
(φ(r + φ−1(z)) − z)/r, r �= 0,√

φ′(φ−1(z)), r = 0.

This function ρ(r, z) is analytic at r = 0 for |z| < c/s. Using coordinates (4) in the map
defined by (5), we get that, in Cartesian coordinates, the map that we want is

(6)

⎛
⎝ X

Y
Z

⎞
⎠ = f

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ cosω − sinω 0

sinω cosω 0
0 0 1

⎞
⎠
⎛
⎝ ρ(r, z)x

ρ(r, z)y
r + φ−1(z)

⎞
⎠ ,

where r = (x2 + y2)/2. We check, using formulation (6), that the map is well defined and
analytic on {(0, 0, z) ∈ R3 : |z| < c/s}. This was not immediately clear from (4), since the
change to cylindrical coordinates is singular at r = 0.

The map (6) is our unperturbed volume-preserving model. It depends on the character-
istic exponent h > 0 and the frequency ω ∈ T. The characteristic exponent measures the
hyperbolicity of the problem. In particular, numerical computations or analytical studies
about separatrix splittings for small values of h will be hard, due to their exponential small-
ness. For instance, we have only been able to prove a conjecture presented in section 7 for
h ≥ log 16 − log(

√
113 − 9) ≈ 2.282.

The main dynamical properties of the integrable volume-preserving map (6) are described
in the following lemma.

Lemma 3. The volume-preserving map (6) has the following properties:
(i) The points p± = (0, 0,±1) are hyperbolic fixed points of f such that

spec[Df(p±)] =
{
e±2h, e∓h+iω, e∓h−iω

}
.
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(ii) The function I(x, y, z) = J((x2 +y2)/2, z) is a first integral of f , and the level I−1(0)
contains two heteroclinic connections between the hyperbolic fixed points.

(iii) The heteroclinic connections are Σ0 =
{
(0, 0, z) ∈ R3 : |z| < 1

}
and

Σ =
{

(x, y, z) ∈ R3 : x2 + y2 =
4cs(1 − z2)
c2 − s2z2

, |z| < 1
}
.

(iv) The diffeomorphism σ : T × R → Σ, σ(θ, t) = (x(θ, t), y(θ, t), z(t)), given by

(7)

z(t) = tanh(t/2),
r(t) = z(t+ h) − z(t− h),

x(θ, t) =
√

2r(t) cos θ,
y(θ, t) =

√
2r(t) sin θ,

⎫⎪⎪⎬
⎪⎪⎭

is a natural parametrization of Σ; that is, f(σ(θ, t)) = σ(θ + ω, t+ h).
(v) The map f has the linear symmetry S(x, y, z) = (−x,−y, z) and the involutive linear

reversors R(x, y, z) = (x,−y,−z) and T (x, y, z) = (−x, y,−z). Additionally, S(σ(θ, t)) =
σ(θ + π, t), R(σ(θ, t)) = σ(−θ,−t), and T (σ(θ, t)) = σ(π − θ,−t).

Proof. In the cylindrical coordinates (r, θ, z), the map f acts in the way described in (5).
Therefore, these properties follow directly from the properties of the map g described in
Lemma 2 and the fact that the involutions θ �→ −θ and θ �→ π − θ are reversors of the rigid
rotations θ �→ θ + ω.

Remark 2. We could have assumed that the frequency is not constant, but that it depends
on the first integral: ω = ω(I). In that case, since the expression of the Melnikov function
only needs the values of the dynamics on the saddle connection Σ, only the value ω0 = ω(0)
appears in the Melnikov computations.

The fixed sets of the reversors R and T are smooth curves. In fact, FixR is the x-axis and
FixT is the y-axis. Additionally, each fixed set intersects the saddle connection transversely
at a couple of opposite points, namely,

Σ ∩ FixR = {ξ+, ξ−}, Σ ∩ FixT = {ζ+, ζ−},

where ξ± = (±η, 0, 0), ζ± = (0,±η, 0), and η = 2
√
s/c. Further, ξ+ = σ(0, 0), ξ− = σ(π, 0),

ζ+ = σ(π/2, 0), and ζ− = σ(3π/2, 0). The question about when these symmetric heteroclinic
points persist is answered in the following proposition.

Proposition 4. Let S, R, and T be the symmetry and the reversors introduced in Lemma 3.
Let ξ± and ζ± be the symmetric heteroclinic points of the map (6) on the x-axis and y-
axis, respectively. Let Pε be the set of primary heteroclinic intersections of the perturbed map
fε = pε ◦ f , where pε = Id + εκ and κ(x, y, z) = (0, α(x), β(x, y)).

(i) If α(x) is odd and β(x, y) is even, then fε is S-symmetric and S(Pε) = Pε.
(ii) If β(x, y) is even in y, then fε ◦ Rε − Rε ◦ f−1

ε = O(ε2), where Rε = pε ◦ R. If, in
addition, α(0) = 0 and β(0, α(x)) = 0, then fε is Rε-reversible, Rε(Pε) = Pε, and there exist
points ξ±ε = ξ± + O(ε) ∈ Pε ∩ FixRε.

(iii) If α(x) is odd and β(x, y) is even in x, then fε◦Tε−Tε◦f−1
ε = O(ε2), where Tε = pε◦T .

If, in addition, α(0) = 0 and β(0, α(x)) = 0, then fε is Tε-reversible, Tε(Pε) = Pε, and there
exist points ζ±ε = ζ± + O(ε) ∈ Pε ∩ Fix Tε.
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Proof. (i) If α(x) is odd and β(x, y) is even, then κ ◦ S = S ◦ κ and

pε ◦ S = (Id + εκ) ◦ S = S + εS ◦ κ = S ◦ (Id + εκ) = S ◦ pε.

Therefore, fε ◦ S = pε ◦ f ◦ S = pε ◦ S ◦ f = S ◦ pε ◦ f = S ◦ fε.
(ii) If β(x, y) is even in y, then κ ◦ R = −R ◦ κ. Further, p−1

ε = Id − εκ + O(ε2).
Therefore, Rε = (Id + εκ) ◦R = R − εR ◦ κ = R ◦ (Id − εκ) = R ◦ p−1

ε + O(ε2) and fε ◦Rε =
pε ◦ f ◦R ◦ p−1

ε + O(ε2) = pε ◦R ◦ f−1 ◦ p−1
ε + O(ε2) = Rε ◦ f−1

ε + O(ε2).
If α(0) = 0 and β(0, α(x)) = 0, then κ2(x, y, z) = (0, α(0), β(0, α(x))) = 0 and p−1

ε =
Id − εκ, so all the O(ε2) terms above vanish.

(iii) If α(x) is odd and β(x, y) is even in x, then κ ◦ T = −T ◦ κ, so it suffices to replace
R with T in the previous item.

When Rε and Tε are true reversors, their fixed sets are

FixRε = {(x, y, z) ∈ R3 : y = εα(x)/2, z = εβ(x, εα(x)/2)/2},
Fix Tε = {(x, y, z) ∈ R3 : x = 0, z = εβ(0, y)/2},

which are O(ε)-close to the x-axis and y-axis. (We have used that α(0) = 0.)

4. The Melnikov function. Next, we want to derive an explicit expression for the Mel-
nikov function associated with the volume-preserving perturbations

(8) fε = (Id + εκ) ◦ f, κ(x, y, z) = (0, α(x), β(x, y)).

Other perturbations can also be studied. We do not aspire to be exhaustive.
If α(0) = β(0, 0) = 0, then fε(0, 0, z) = f(0, 0, z), and the one-dimensional heteroclinic

connection Σ0 is preserved under the perturbation (8). There is no similar persistence result
for the two-dimensional heteroclinic connection Σ.

The first integral given in Lemma 3 is I(x, y, z) = J(r, z), where r = (x2 + y2)/2 and
J(r, z) = (c2 − s2z2)r2 + 2cs(z2 − 1)r. Additionally, r = 2cs(1− z2)/(c2 − s2z2) on the saddle
connection Σ. Finally, if the perturbation has the form (8), then the Melnikov function (1)
can be written as

(9) M : Σ → R, M(x, y, z) =
∑
k∈Z

m(xk, yk, zk),

where (xk, yk, zk) = fk(x, y, z) and

m(x, y, z) = 〈∇I(x, y, z), κ(x, y, z)〉
= ∂yI(x, y, z)α(x) + ∂zI(x, y, z)β(x, y)
= y∂rJ(r, z)α(x) + ∂zJ(r, z)β(x, y)

= 2csy(1 − z2)α(x) + 2szr(2c− sr)β(x, y).

On the other hand, the natural parametrization σ = (x, y, z) : T × R → Σ given in (7)
provides a diffeomorphism between the saddle connection Σ and the cylinder T × R, so that
objects defined over Σ can be considered as depending on an angular variable θ ∈ T and a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEPARATRIX SPLITTING IN 3D VOLUME-PRESERVING MAPS 1537

hyperbolic variable t ∈ R. Henceforth, we will abuse the notation by not giving these objects
new names. Thus, the Melnikov function (9) becomes

(10) M : T × R → R, M(θ, t) =
∑
k∈Z

m(θ + kω, t+ kh),

where

m(θ, t) = λ(t)y(θ, t)α(x(θ, t)) + μ(t)β(x(θ, t), y(θ, t))
= ρ(t)λ(t)α

(
ρ(t) cos θ

)
sin θ + μ(t)β

(
ρ(t) cos θ, ρ(t) sin θ

)(11)

and

r(t) = z(t+ h) − z(t− h) =
2cs

cosh ((t+ h)/2) cosh ((t− h)/2)
,

ρ(t) =
√

2r(t),

λ(t) = 2cs
(
1 − z(t)2

)
= 4csz′(t) =

2cs
cosh2(t/2)

,

μ(t) = 2sz(t)r(t) (2c− sr(t)) = −4csr′(t).

(12)

The rest of the paper deals with the computation and description of the zero-level set

Z = M−1(0) = {(θ, t) ∈ T × R : M(θ, t) = 0}

for several simple perturbations (8). In order to make that easier, we recall that the Melnikov
function is invariant by the unperturbed map. In the current context, this implies that the
Melnikov function M satisfies

(13) M(θ + ω, t+ h) = M(θ, t) = M(θ + 2π, t),

and therefore the zero-set Z is (2π, 0) and (ω, h)-periodic. That is, if (θ∗, t∗) ∈ Z, then
(θ∗ + ω, t∗ + h) ∈ Z and (θ∗ + 2π, t∗) ∈ Z.

A tilde will always denote the projection of a periodic object to the quotient torus,

(14) τ̃(ω, h) = τ̃ := (T × R)/(ω, h)Z = R2/((2π, 0)Z + (ω, h)Z),

which is diffeomorphic to the quotient of the saddle connection by the unperturbed map. The
study of the projected set Z̃ = M̃−1(0) ⊂ τ̃ is easier, because τ̃ is compact.

The torus is represented in Figure 3 as the rectangle [0, 2π] × [0, h] with the appropriate
identifications. We have not chosen the parallelogram shown in thin lines in that figure as the
representation of the torus because its shape changes in ω, hindering posterior comparisons
and the study of bifurcations that take place in ω.

Remark 3. Sometimes we will restrict ourselves to the case ω = 0, which is called no-swirl
in fluid dynamics. This is the simplest one, because then the quotient torus is a product:
τ̃(0, h) = (R/2πZ) × (R/hZ), and the variable t is defined modulo h. Although the unper-
turbed map has just a two-dimensional dynamics for ω = 0, it is still an interesting case—the
perturbation will create a real three-dimensional dynamics.
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•̃
ξ+ = (2π, 0)
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•ζ̃+

•ξ̃− •ζ̃− ◦ξ̃+

•
ξ̃+ = (ω, h)

•
ζ̃+

•
ξ̃−

•
ζ̃−

◦
ξ̃+ = (2π + ω, h)

Figure 3. A rectangular representation of the torus τ̃ and the symmetric points described in Lemma 5 for
ω = π/3. Opposite sides of the rectangle are identified, although the identification of the horizontal ones is
shifted by an amount equal to ω.

Let us check that Z̃ contains at least eight symmetric points and has some useful symme-
tries and more periodicities when the perturbation preserves the symmetry and reversors of
the unperturbed map. The symmetric points are shown in Figure 3.

Lemma 5. Let Z̃ be the projection onto the torus (14) of the zero-level set of the Melnikov
function (10).

(i) If α(x) is odd and β(x, y) is even, then Z̃ is (π, 0)-periodic: Z̃ = Z̃ + (π, 0).
(ii) If α(x) is even and β(x, y) is odd, then Z̃ is (π, 0)-periodic: Z̃ = Z̃ + (π, 0).
(iii) If β(x, y) is even in y, then Z̃ contains (and is symmetric with regard to) the points

ξ̃+ = (0, 0), ξ̃− = (π, 0), ξ̃+ = (ω/2, h/2), and ξ̃− = (π + ω/2, h/2).
(iv) If α(x) is odd and β(x, y) is even in x, then Z̃ contains (and is symmetric with

regard to) the points ζ̃+ = (π/2, 0), ζ̃− = (3π/2, 0), ζ̃+ = (π/2 + ω/2, h/2), and ζ̃− =
(3π/2 + ω/2, h/2).

Proof. We could write a geometric proof based on the geometric properties established in
Proposition 4, but instead, we give a shorter analytic proof.

We consider the Melnikov function M as a function defined on the plane R2 with periods
(2π, 0) and (ω, h). Assume that M is odd with regard to a point (θ0, t0) ∈ R2. Then M−1(0)
contains (and is symmetric with regard to) the point (θ0, t0). But M−1(0) also contains (and
is symmetric with regard to) the points (θ0 +p, t0 + q) for any semiperiod (p, q) of M , because

M(θ0 + p, t0 + q) = −M(θ0 − p, t0 − q) = −M(θ0 + p, t0 + q).

The functions r(t), ρ(t), and λ(t) given in (12) are even, whereas μ(t) is odd. Let m be the
function defined in (11). Hence, the lemma is a consequence of the following observations:

(i) if α(x) is odd and β(x, y) is even, then m(θ, t) is π-periodic in θ;
(ii) if α(x) is even and β(x, y) is odd, then m(θ, t) is π-antiperiodic in θ;
(iii) if beta(x, y) is even in y, then m(θ, t) is odd with regard to (0, 0); and
(iv) if α(x) is odd and β(x, y) is even in x, m(θ, t) is odd with regard to (π/2, 0).

In this way, we conclude that the Melnikov function (10) verifies the conclusions of the
lemma.
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Remark 4. One can obtain more symmetries or periodicities under more restrictive hy-
potheses. For instance, using basic trigonometric properties, one checks that Z is (π/2, 0)-
periodic when κ(x, y, z) = (0, x, 0) or when κ(x, y, z) = (0, 0, β(x, y)) for some β(x, y) such
that β(x, y) = β(−y, x) or β(x, y) = −β(−y, x).

Remark 5. It turns out that Z̃ �= ∅, even if the volume-preserving perturbation (8) has no
symmetries. This has to do with the existence of an area form η̃ over the torus τ̃ such that
the integral of the two-form M̃η̃ vanishes. Therefore, the Melnikov function has to be zero at
some points. This idea was used in [24]. We skip the details.

5. Bounds on the complexity of the primary heteroclinic set. First, we shall establish
an upper bound on the cardinality of the horizontal sections of the zero-level set Z under
polynomial perturbations of the form (8). These horizontal sections are defined as

Zt0 = {θ ∈ T : M(θ, t0) = 0} = {θ ∈ T : (θ, t0) ∈ Z}, t0 ∈ R.

Proposition 6. If α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y] for some integer n ≥ 1, then either
Zt0 = T or #Zt0 ≤ 2n.

Proof. The function m(θ, t) given in (11) has the following simple forms under monomial
perturbations. If α(x) = xi−1 and β(x, y) = 0, then m(θ, t) = (2r(t))i/2λ(t) cosi−1 θ sin θ,
whereas if α(x) = 0 and β(x, y) = xiyj, then m(θ, t) = (2r(t))(i+j)/2μ(t) cosi θ sinj θ. There-
fore, the Fourier expansion of m(θ, t) when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y] has only
the central 2n + 1 harmonics. That is, m(θ, t) =

∑
|j|≤nmj(t)eijθ for some coefficients mj(t).

Thus the Fourier expansion of the Melnikov function (10) has the same form, since

M(θ, t) =
∑
k∈Z

m(θ + kω, t+ kh)

=
∑
|j|≤n

∑
k∈Z

mj(t+ kh)eij(θ+kω)

=
∑
|j|≤n

Mj(t)eijθ,

where Mj(t) =
∑

k∈Z
eijkωmj(t + kh). To end the proof, it suffices to note that any nonzero

trigonometric polynomial like Mt0(θ) := M(θ, t0) =
∑

|j|≤nMj(t0)eijθ has at most 2n different
roots in T.

If ω = 0, there exists a similar bound for the cardinal of the vertical sections. This new
bound is obtained by using some elementary facts of the theory of elliptic functions. We
recall that a function is elliptic when it is meromorphic in the whole complex plane and has
two complex periods that are independent over the reals. The order of a nonconstant elliptic
function is the number of its poles (or zeroes), counted with multiplicity, that lie in a cell. A
cell of an elliptic function with periods p1 and p2 is a parallelogram with vertexes s, s + p1,
s+ p1 + p2, and s+ p2 such that its sides do not contain either zeroes or poles. For a general
background on elliptic functions, we refer to [34].

We realized in Remark 3 that the Melnikov function M(θ, t) is h-periodic in the vertical
coordinate t when the frequency ω is zero. In that case, the vertical sections of the projected
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zero-level set Z̃ = M̃−1(0) ⊂ τ̃ defined as

Z̃θ0 = {t ∈ R/hZ : M̃(θ0, t) = 0} = {t ∈ R/hZ : (θ0, t) ∈ Z̃}

are subsets of the quotient space R/hZ.
Proposition 7. Assume that the perturbation (8) is polynomial and ω = 0. Let Z̃θ0 be any

vertical section which does not cover the whole set R/hZ. Let l, n ∈ N.
(i) If α(x) ∈ R2l−1[x] is odd and β(x, y) = 0, then #Z̃θ0 ≤ l.
(ii) If α(x) = 0 and β(x, y) ∈ R2n[x, y] is even, then #Z̃θ0 ≤ n+ 1.
(iii) If α(x) ∈ R2l−1[x] is odd and β(x, y) ∈ R2n[x, y] is even, then #Z̃θ0 ≤ max(l, n+ 2).
Proof. These three items a based on the following formulae. If α(x) = x2j−1 and

β(x, y) = 0, then m(θ, t) = (2r(t))jλ(t) cos2j−1 θ sin θ. If α(x) = 0 and β(x, y) = xiy2j−i,
then m(θ, t) = (2r(t))jμ(t) cosi θ sin2j−i θ. Hence, if the polynomial α(x) ∈ R2l−1[x] is odd
and the polynomial β(x, y) ∈ R2n[x, y] is even, the function m(θ, t) has the form

m(θ, t) = λ(t)
l∑

j=1

aj(θ)(r(t))j + μ(t)
n∑

j=1

bj(θ)(r(t))j

for some trigonometric polynomials aj(θ) and bj(θ). Since ω = 0, we get that

(15) M̃θ0(t) := M̃(θ0, t) =
l∑

j=1

aj(θ0)Aj(t) +
n∑

j=1

bj(θ0)Bj(t),

where Aj(t) =
∑

k∈Z
λ(t+ kh)(r(t + kh))j and Bj(t) =

∑
k∈Z

μ(t+ kh)(r(t+ kh))j .
The functions z(t), r(t), λ(t), and μ(t) are 2πi-periodic and meromorphic in C. On the

one hand, the poles of z(t) are the points in the set πi + 2πiZ, all of them simple, and so
λ(t) = 4csz′(t) has the same poles, but they are double ones. On the other hand, the poles
of r(t) are the points in the sets ±h+ πi + 2πiZ, all of them simple, and so μ(t) = −4csr′(t)
has the same poles, but they are double ones.

Thus, Aj(t), Bj(t), and M̃θ0(t) are elliptic functions with periods h and 2πi. Their poles
are the points in the set πi + hZ + 2πiZ. Their orders are at most max(j, 2), j + 2, and
max(l, n + 2), respectively. To end the common part of the proof, we note that M̃θ0(t) is
nonconstant because Z̃θ0 �= R/hZ.

(i) If β(x, y) = 0, the elliptic function (15) becomes M̃θ0(t) =
∑l

j=1 aj(θ0)Aj(t), and its
order is at most max(l, 2), so that it has at most max(l, 2) roots in a cell and #Z̃θ0 ≤ max(l, 2).
We can substitute this last bound by #Z̃θ0 ≤ l because if α(x) = x and ω = 0, then either
Z̃θ0 = R/hZ or Z̃θ0 = ∅; see item (iv) of Theorem 17.

(ii) If α(x) = 0, the elliptic function (15) becomes M̃θ0(t) =
∑n

j=1 bj(θ0)Bj(t) and is
odd, because μ(t) is odd and r(t) is even. Its order is at most n + 2, but the rough bound
#Z̃θ0 ≤ n+ 2 can be improved using the symmetry. We get that M̃θ0(h/2 + πi) = 0, because

M̃θ0(h/2 + πi) = M̃θ0(−h/2 + πi) = M̃θ0(−h/2 − πi) = −M̃θ0(h/2 + πi).

This means that M̃θ0(t) has at most n+ 1 real roots modulo h.
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(iii) In this case, the bound #Z̃θ0 ≤ max(l, n + 2) cannot be improved.
Remark 6. Proposition 6 also holds for the integrable trigonometric family of volume-

preserving maps introduced in [23]. The proof does not requires any change. On the contrary,
Proposition 7 cannot be directly translated into the trigonometric setting, because the com-
plex singularities of the natural parametrization of the separatrix in that setting are more
complicated.

Recall that in the introduction we had a brief discussion of the type of primary heteroclinic
intersections that appear. In our case, by Theorem 1, it is enough to remember that primary
intersections are the intersections that arise as the continuation of the nondegenerate zeroes
of the Melnikov function.

Any vertical curve intersects the horizontal line {t = t0} in at least one point, so the
number of vertical curves cannot be larger than the cardinal of the horizontal sections of the
zero-level set. Therefore, as a by-product of Proposition 6, we get that there are at most 2n
vertical curves when α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y]. In fact, Propositions 6 and 7 have
stronger consequences on the homology/homotopy classes of the heteroclinic intersections of
the invariant manifolds.

We recall that Z̃ is the projection of the zero-level set Z = M−1(0) onto the torus τ̃ defined
in (14). Assume that 0 is a regular value of the Melnikov function. Then Z̃ is a submanifold
of the torus, and its connected components are closed smooth curves. Therefore, once we have
fixed an induced orientation on the torus, we can assign to each connected component γ̃ of Z̃
its homology class [γ̃] ∈ H1(T2) = Z2.

In the case of the torus τ̃ , we will identify horizontal lines with the class (1, 0) and vertical
lines, generated by the vector (ω, h), with the class (0, 1). Thus, [γ̃] = (p, q) ∈ Z2 means
that γ̃ is a closed curve that wraps around the torus |p| times in the horizontal direction and
|q| times in the vertical one. For instance, the set Z̃ has four connected components with
homology class (0, 1) or (0,−1) in the subfigures 4(a)–4(d), whereas it has just two connected
components with homology class (1,−2) or (−1, 2) in the subfigures 4(f)–4(i). Subfigure 4(e)
is excluded because then 0 is a singular value of the Melnikov function.

Remark 7. With regard to the three types of heteroclinic curves mentioned in the intro-
duction, we note that a connected component γ̃ such that [γ̃] = (p, q) gives rise for ε small
enough to vertical (resp., equatorial) (resp., bubble-type) curves when q �= 0 (resp., q = 0 but
p �= 0) (resp., p = q = 0).

Remark 8. The first homology group and the first homotopy group (that is, the funda-
mental group) of a torus coincide: H1(T2) = Z2 = π1(T2). Hence, we could use homotopy
instead of singular homology.

We need the following result from Morse theory.
Lemma 8. If a ∈ R is a regular value of a smooth function f : X → R defined over a

compact manifold X, the homology class of the level set La = f−1(a) is zero.
Proof. It suffices to prove this for Morse functions, because Morse functions are dense and

the homology class of a closed curve does not change under small perturbations.
Let a and b be two regular values of f such that a < b. Then La and Lb are the borders

of the smooth manifold f−1([a, b]), and so they have the same homology class. Let c be the
maximum value of f . Since f is Morse, there exists a unique point x ∈ X such that f(x) = c.
This point is a nondegenerate maximum, and so if δ > 0 is small enough, c − δ is a regular
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(a) ω = 0 (b) ω = π/3 (c) ω = 9π/20

(d) ω = π/2 − 10−3 (e) ω = π/2 (f) ω = π/2 + 10−3

(g) ω = 11π/20 (h) ω = 2π/3 (i) ω = π

Figure 4. The only bifurcation of Z̃ in the range 0 ≤ ω ≤ π under the perturbation κ(x, y, z) = (0, x, 0)
takes place at the singular frequency ω = π/2. These pictures show this bifurcation for h = 1. The symmetric
points move as the frequency ω varies.

value and Lc−δ is just a small closed curve around x. Hence, Lc−δ is contractible, and its
homology class is equal to zero.

The homology classes of the connected components of the projected zero-level set Z̃ are
bounded in the following theorem. These bounds restrict the topological complexity of the
primary heteroclinic set Pε = Z + O(ε) for small values of ε.

Theorem 9. Assume that 0 is a regular value of the Melnikov function associated with
the perturbation (8). Let γ̃1, . . . , γ̃r be connected components of the projected zero-level set
Z̃ = M̃−1(0). Let [γ̃1] = (p1, q1), . . . , [γ̃r] = (pr, qr) be their homology classes.

(i) The homology of Z̃ is zero:
∑

j [γ̃j ] =
∑

j (pj, qj) = (0, 0).
(ii) If α(x) ∈ Rn−1[x] and β(x, y) ∈ Rn[x, y], then 2 |qj| ≤

∑
j |qj| ≤ 2n.

(iii) Assume that ω = 0. Let l, n ∈ N. Then we have the following:
1. If α(x) ∈ R2l−1[x] is odd and β(x, y) = 0, then 2 |pj| ≤

∑
j |pj| ≤ l.

2. If α(x) = 0 and β(x, y) ∈ R2n[x, y] is even, then 2 |pj | ≤
∑

j |pj| ≤ n+ 1.
3. If α(x) ∈ R2l−1[x] is odd and β(x, y) ∈ R2n[x, y] is even, then 2 |pj| ≤

∑
j |pj| ≤

max(l, n + 2).
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Proof. (i) It suffices to apply Lemma 8 to the projected function M̃ : T2 → R.
(ii) We are under the hypotheses of Proposition 6, and 0 is a regular value of the Melnikov

function, so there exists some t∗ ∈ R such that #Zt∗ ≤ 2n. On the contrary, Zt0 = T for all
t0 ∈ R, and the Melnikov function should be identically zero.

Using that Z̃ = γ̃1 � · · · � γ̃r and that each curve γ̃j wraps |qj| times in the vertical
direction, we get that

∑
j |qj| ≤

∑
j # (γ̃j ∩ (T × {t∗})) = #Zt∗ ≤ 2n. Next, we obtain the

bound 2 |qj| = |qj| +
∣∣∑

i
=j qi
∣∣ ≤∑i |qi| ≤ 2n from the identity

∑
j qj = 0.

(iii) This follows in a similar way, but from Proposition 7.

6. Splitting of separatrices. In this section we shall present two theorems about the
splitting of the separatrix. In the first one, we shall establish a sufficient condition for the
splitting of the separatrix under some entire perturbations, whereas in the second one we find
a broad class of polynomial perturbations that split the separatrix. The sufficient condition
is obtained through the study of the complex singularities of the Melnikov function. To be
more precise, if the Melnikov function can be analytically extended for complex values of its
variables and this extension has some nonremovable singularity, then the original Melnikov
function cannot be identically zero and the separatrix splits.

For simplicity, we have restricted our study to perturbations of the form

(16) fε = (Id + εκ) ◦ f, κ(x, y, z) = (0, 0, β(x, y))

for some nonzero even entire function β(x, y). The study is a bit more cumbersome when
the entire perturbation has the more general form (8) with α(x) odd and β(x, y) even. If
α(x) is not odd or β(x, y) is not even, our current technique does not work, because ramified
singularities are harder to deal with than isolated ones.

Theorem 10. Let Bθ : C → C be the entire function

(17) Bθ(r) =
∫ r

0
β(

√
2s cos θ,

√
2s sin θ)ds.

Let r(t) = z(t+ h) − z(t− h) with z(t) = tanh(t/2). If the function

(18) δθ(t) = δ+θ (t) + δ−θ (t), δ±θ (t) = Bθ±ω(r(t± h))

has a nonremovable singularity at t = πi for some θ ∈ T, then the separatrix splits.
We note that z(t) is meromorphic and its poles are the points in the set πi+2πiZ. Hence,

since the function Bθ(r) is entire and nonzero, the compositions δ+θ (t) and δ−θ (t) always have
a nonremovable singularity at the point t = πi. Our sufficient condition for the splitting is
that the sum δ+θ (t) + δ−θ (t) be still singular at t = πi, which is generic.

Proof. The function Bθ(r) is entire because the parity of the perturbation β(x, y) cancels
the square roots that appear in (17).

The first step is to rewrite the Melnikov function in a more convenient form. Using
that α(x) = 0 and the relation μ(t) = −4csr′(t), the Melnikov function (10) has the form
M(θ, t) = −4cs(Δθ)′(t), where

Δθ(t) =
∑
k∈Z

δ
[k]
θ (t), δ

[k]
θ (t) = Bθ+kω(r(t+ kh)).
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Using that δθ(t) = δ
[1]
θ (t) + δ

[−1]
θ (t), we shall prove that the series Δθ(t)—and hence, the

Melnikov function—has a nonremovable singularity at t = πi for some θ ∈ T.
Since the function Bθ(r) is entire, the composition δ

[k]
θ (t) = Bθ+kω(r(t+ kh)) is analytic

but at the poles of the meromorphic function r(t + kh), which are the points in the sets
±h− kh+ πi + 2πiZ. Thus, the difference

Δθ(t) − δθ(t) =
∑

k 
=±1

δ
[k]
θ (t)

is analytic at t = πi for any θ ∈ T. On the other hand, by hypothesis, δθ(t) has a nonremovable
singularity at t = πi for some θ ∈ T.

Next, we find some concrete perturbations of the form (16) that split the separatrix.
For simplicity, we shall deal with perturbations such that the computation of the singular
parts of the functions δ±θ (t) defined in (18) around their singularity t = πi can be easily
analyzed. Polynomial perturbations are a natural choice. We need the following notation for
the statement of the result. Given any β(x, y) ∈ Rn[x, y], we shall denote by

∑n
l=0 βl(x, y) its

decomposition as a sum of homogeneous polynomials. That is, βl(ρx, ρy) = ρlβl(x, y) for all
ρ ∈ R. Let Rϕ : R2 → R2 be the rotation

(19) Rϕ(x, y) = (x cosϕ− y sinϕ, x sinϕ+ y cosϕ).

Proposition 11. If β(x, y) ∈ R2n[x, y] is even and β2n◦R2ω �= (−1)nβ2n, then the separatrix
splits under the polynomial perturbation (16).

Proof. The decomposition of the polynomial β(x, y) ∈ R2n[x, y] has only even terms:
β(x, y) =

∑n
l=0 β2l(x, y). Then the entire function Bθ : C → C defined in (17) is the (not

necessarily even) polynomial

Bθ(r) =
n∑

l=0

B̂l(θ)rl+1, B̂l(θ) =
2lβ2l(cos θ, sin θ)

l + 1
.

The point t = πi is a simple pole of the meromorphic function z(t) = tanh(t/2), and so it
becomes a pole of order n + 1 of the functions δ+θ (t) = Bθ+ω(z(t + 2h) − z(t)) and δ−θ (t) =
Bθ−ω(z(t)− z(t− 2h)). In particular, there exist some Laurent coefficients δ̂±1 (θ), . . . , δ̂±n+1(θ)
such that

δ±θ (t) =
δ̂±n+1(θ)

(t− πi)n+1
+ · · · + δ̂±1 (θ)

t− πi
+ (some analytic function at t = πi).

For instance, using that the residue of z(t) at its poles is equal to 2, we get that the dominant
Laurent coefficients are δ̂±n+1(θ) = (∓2)n+1B̂n(θ ± ω).

Finally, we note that if there exist some θ ∈ T and some index j = 1, . . . , n+ 1 such that
δ̂+j (θ)+ δ̂−j (θ) �= 0, then δθ(t) = δ+θ (t)+δ−θ (t) has a nonremovable singularity at t = πi and the
separatrix splits. The functional condition β2n ◦R2ω �= (−1)nβ2n is equivalent to the existence
of some angle θ ∈ T such that

β2n(cos(θ + 2ω), sin(θ + 2ω)) �= (−1)nβ2n(cos θ, sin θ),
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which is equivalent to the existence of θ such that δ̂+n+1(θ) + δ̂−n+1(θ) �= 0.
Using this proposition, we shall obtain many polynomial perturbations that split the

separatrix. To explain this, we introduce the complexified variables

(20) z = x+ yi, z̄ = x− yi.

In these variables, the functional equation β2n◦R2ω = (−1)nβ2n reads as β̃2n◦R̃2ω = (−1)nβ̃2n.
Here, R̃ϕ(z, z̄) = (eϕiz, e−ϕiz̄) and

β̃2n(z, z̄) =
n∑

k=−n

β̃
[k]
2nz

n+kz̄n−k

stand for the rotation (19) and the homogeneous polynomial β2n(x, y) in the complexified vari-
ables, respectively. The transformed polynomial β̃2n(z, z̄) is still a homogeneous polynomial
of degree 2n because the change (20) is linear.

Lemma 12. The functional equation β2n ◦R2ω = (−1)nβ2n holds if and only if

(21) β̃
[k]
2n

(
e4ωki − (−1)n

)
= 0 ∀k = −n, . . . , n.

Proof. R̃2ω(z, z̄) = (e2ωiz, e−2ωi z̄) maps zn+kz̄n−k onto e4kωizn+kz̄n−k.
Now we are ready to give precise statements about the splitting of the separatrix under

polynomial perturbations of the form (16). For instance, we shall see that both nonresonant
frequencies and high-order resonant frequencies—that is, ω/π /∈ Q or ω/π is an irreducible
fraction with a high denominator—are strong obstructions for the persistence of the separatrix.
A homogeneous polynomial β2n(x, y) of degree 2n is rotationally invariant when it has the
form

β2n(x, y) = β̃
[0]
2nz

nz̄n = β̃
[0]
2n|z|2n = β̃

[0]
2n(x2 + y2)n

for some constant β̃[0]
2n ∈ R. These polynomials are the only homogeneous ones that remain

invariant under the action of the continuous group of rotations Rϕ : R2 → R2.
Theorem 13. If β(x, y) is an even polynomial of degree 2n, then the perturbation (16) splits

the separatrix in any of the following two cases:
(i) n odd and e4kωi �= −1 for k = 1, . . . , n; or
(ii) n even, β2n(x, y) not rotationally invariant, and e4kωi �= 1 for k = 1, . . . , n.
Proof. From Proposition 11 and Lemma 12, we know that (21) is a necessary condition

for the persistence of the separatrix. Let us check that this condition is incompatible with the
two listed cases.

(i) If n is odd and e4kωi �= −1 for k = 1, . . . , n, condition (21) implies that β̃[k]
2n = 0 for all

k = −n, . . . , n. Therefore, the homogeneous polynomial β2n(x, y) is zero, which contradicts
the fact that β(x, y) has degree 2n.

(ii) If n is even and e4kωi �= 1 for k = 1, . . . , n, then condition (21) implies that β̃[k]
2n = 0 for

all k �= 0, which contradicts the fact that β(x, y) has degree 2n and β2n(x, y) is not rotationally
invariant.

It would be interesting to know whether there exist some entire perturbations of the
form (16) that preserve the separatrix. Of course, such perturbations cannot verify the suffi-
cient condition for splitting given in Theorem 10. We have not found any perturbation of this
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kind, which is not so strange because in similar contexts, related with other McMillan maps,
they simply do not exist. An area-preserving example of this situation can be found in [13],
and a high-dimensional symplectic one in [14].

7. Bifurcations of the zero-level set in an example. In this section, we shall study the
bifurcations in ω ∈ T of the topological shape of the zero-set Z ⊂ T × R for the perturbation
κ(x, y, z) = (0, x, 0). We note that, according to Lemma 5 and Remark 4, Z contains (and
is symmetric with regard to) the eight symmetric points shown in Figure 3 and it is also
(π/2, 0)-periodic.

Based on detailed numerical computations and several analytical arguments, we conjecture
that 0 is a singular value of the Melnikov function if and only if ω = ±π/2, and so the only
bifurcations of Z = M−1(0) take place at those values. For instance, we show in Figure 4 the
numerically computed shape of Z̃ for several values of the frequency in the range 0 ≤ ω ≤ π.

We give a dynamical interpretation of these Melnikov-like results. If ω �= ±π/2, the set
of primary intersections Pε = Z + O(ε) consists of four vertical curves for ε small enough;
see Theorem 1. Each curve has a symmetric twin, because Pε is invariant under the axial
symmetry S(x, y, z) = (−x,−y, z). The fixed sets of the reversors are

FixRε = {(x, y, z) ∈ R3 : y = εx/2, z = 0},
Fix Tε = {(x, y, z) ∈ R3 : x = 0, z = 0}.

Hence, two heteroclinic vertical curves cross a curve O(ε)-close to the x-axis, and the other
pair of heteroclinic curves cross the y-axis. The rotation number of these vertical curves is
equal to ω in the range −π/2 < ω < π/2, but it jumps to ω ∓ π when the bifurcation values
ω = ±π/2 are crossed. The shape of the primary set when ω = ±π/2 is not completely clear,
because then 0 is a singular value of the Melnikov function and Theorem 1 cannot be applied.
This is an open question.

The rest of the section is devoted to presenting some rigorous results supporting the previ-
ous conjecture, although we have found a complete proof only for h ≥ h0 ≈ 2.28. Nevertheless,
we have been able to prove the following results. If ω is a regular frequency (that is, if 0 is a
regular value of the Melnikov function), then Z contains just four vertical curves. Otherwise,
we say that ω is a singular frequency and Z contains the four vertical curves jointly with the
images and preimages of exactly one horizontal straight line, in which case the degenerate
zeroes of the Melnikov function are just the points in the intersections between the horizontal
and vertical curves. The number of singular frequencies is finite. The frequencies ω = 0 and
ω = π are regular. The frequencies ω = ±π/2 are singular and are the only singular ones
when the characteristic exponent is big enough: h ≥ h0 := log 16 − log(

√
113 − 9) ≈ 2.28.

In order to lighten the computations, we write the Melnikov function in its simplest form.
Let χ : R → R be the function

(22) χ(t) =
4c2s2

cosh((t+ h)/2) cosh2(t/2) cosh((t− h)/2)
.

Then, using that α(x) = x and β(x, y) = 0, the Melnikov function (10) becomes

(23) M(θ, t) = a(t) sin 2θ + b(t) cos 2θ,
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where a(t) and b(t) are given by the absolutely convergent series

a(t) =
∑
k∈Z

cos(2kω)χ(t + kh), b(t) =
∑
k∈Z

sin(2kω)χ(t+ kh).

We also introduce the complex-valued function

(24) E(t) = Eω(t) =
∑
k∈Z

e2kωiχ(t+ kh) = a(t) + b(t)i,

which plays a crucial role in the digression because of the relation

(25) ∂θM(θ, t)/2 +M(θ, t)i = E(t)e2θi.

This relation has interesting consequences. For instance, if (θ0, t0) ∈ T × R is a degenerate
zero of the Melnikov function, E(t0) must be zero. In particular, 0 is a regular value of the
Melnikov function when E(t) has no real zeroes. Therefore, we are naturally led to the study
of the sets

(26) Ω = Ωh = {ω ∈ T : Eω(t) has some real zero}, h > 0.

Their main properties are addressed in the following lemma, whose proof is deferred to Ap-
pendix A. The proof is based on some nice properties of quasi-elliptic functions that can be
deduced from elementary facts of complex variable theory contained in any basic textbook,
like, for instance, [34].

Lemma 14. Given any h > 0, the set (26) is finite, π-periodic, and symmetric: Ω = −Ω.
If the function (24) has some real zero, all of them are simple, and the set of its real zeroes is
either hZ or h/2 + hZ, so Ω is the disjoint union of the sets

Ω0 = {ω ∈ T : Eω(0) = 0}, Ω1 = {ω ∈ T : Eω(h/2) = 0}.

Further, ±π/2 ∈ Ω1, 0 /∈ Ω, and π /∈ Ω. Finally, Ω1 = {±π/2} for h ≥ h1 := 2 log 20
9 ≈ 1.60

and Ω0 = ∅ for h ≥ h0 := log 16 − log(
√

113 − 9) ≈ 2.28.
Conjecture 15. Ω = Ω1 = {±π/2} and Ω0 = ∅ for all h > 0.
We present in Appendix B strong numerical evidence for this conjecture.
Lemma 16. Let E : R → C be an analytic function such that E(−t) = E(t).
(i) If E(t) has no real zeroes, then there exists a unique odd analytic function ϕ : R → R

and an integer n ∈ {0, 1} such that E(t) = |E(t)| e(ϕ(t)+πn)i for all t ∈ R.
(ii) If E(t) has no real multiple zeroes, then there exists a unique odd analytic function

ϕ : R → R and a function n : R → {0, 1} such that E(t) = |E(t)| e(ϕ(t)+πn(t))i for all t ∈ R.
The function n(t) is constant, but at the zeroes of E(t).

Proof. (i) If a function is analytic and never zero on a convex subset of the complex plane,
then it has an analytic argument on that convex subset. This is an elementary result in
complex variable theory; see [4, section 2.1]. Let ϕ(t) be an analytic argument of E(t)/E(0);
that is, any analytic function ϕ : R → R such that

E(t) = E(0) |E(t)/E(0)| eϕ(t)i = |E(t)| e(ϕ(t)+πn)i.
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Obviously, n = 0 if E(0) > 0 and n = 1 if E(0) < 0. The argument is not unique, but it is
determined up to a multiple of 2π; that is, it is determined once we choose the value of ϕ(0)
from the set 2πZ. The condition E(−t) = E(t) implies that ϕ(−t) + ϕ(t) = 2ϕ(0) for all real
t. If we want an odd argument, ϕ(0) = 0 is the only possible choice.

(ii) It suffices to realize that, at any simple zero, the argument undergoes a jump by a
multiple of π. When these jumps are stored in the discrete-valued function n(t), the function
ϕ(t) remains analytic.

These two lemmas are the basis for the next theorem, in which the shape and bifurcations
of the zero-level set Z = M−1(0) ⊂ T × R are described.

Theorem 17. Let Z be the zero-level set of the Melnikov function (23). Let Ω = Ω0 ∪ Ω1

be the decomposition of the set (26) given in Lemma 14. Let ω ∈ T. There exists a unique
odd analytic function θ̄ω : R → R such that the following hold:

(i) If ω /∈ Ω, then Z = {θ = θ̄ω(t) (mod π/2)} and ω is a regular frequency.
(ii) If ω ∈ Ωj, then Z = {t = jh/2 (mod h)} ∪ {θ = θ̄ω(t) (mod π/2)} and ω is a

singular frequency. The degenerate zeroes of the Melnikov function are just the points in the
intersections between the horizontal lines and the vertical curves.

(iii) The function Θ̄(t, ω) := θ̄ω(t) is analytic on R × (T \ Ω).
(iv) If ω = 0 (mod π/2), then θ̄ω(t) ≡ 0.
(v) θ̄ω(t+ h) = θ̄ω(t) + ω (mod π/2).
(vi) θ̄ω(h/2 − t) + θ̄ω(h/2 + t) = ω (mod π/2).
(vii) θ̄−ω(t) = −θ̄ω(t) and θ̄ω+π(t) = θ̄ω(t).
Proof. Sometimes, we do not write explicitly the dependence on the frequency. Using that

a(t) is even and b(t) is odd, we see that the function (24) verifies the relation E(−t) = E(t).
This is important, because it was a hypothesis in Lemma 16.

(i) If ω /∈ Ω, then E(t) has no real zeroes, and so ω is a regular frequency. It remains to
prove that Z is composed of four vertical curves of the form {θ = θ̄(t) (mod π/2)} for some
function θ̄(t). Let θ̄ : R → R be the odd analytic function θ̄(t) = −ϕ(t)/2, where ϕ(t) =
arg(E(t)/E(0)) is the argument introduced in Lemma 16. Let n be the integer mentioned in
the same lemma. Using that E(t) has no real zeroes jointly with relation (25), we have

Z = M−1(0) = {(θ, t) ∈ T × R : E(t)e2θi ∈ R}
= {(θ, t) ∈ T × R : sin(ϕ(t) + πn+ 2θ) = 0}
= {(θ, t) ∈ T × R : θ = θ̄(t) (mod π/2)}.

(ii) We know that E(t) has no real multiple zeroes. Let ϕ(t) and n(t) be the functions
given in Lemma 16. Let θ̄(t) = −ϕ(t)/2. Then

Z = {(θ, t) ∈ T × R : E(t)e2θi ∈ R}
= {(θ, t) : E(t) = 0} ∪ {(θ, t) : sin(ϕ(t) + πn(t) + 2θ) = 0}
= {t = jh/2 (mod h)} ∪ {θ = θ̄(t) (mod π/2)}.

Therefore, Z = M−1(0) contains four vertical curves that intersect infinitely many horizontal
straight lines. Obviously, these intersections are degenerate zeroes of the Melnikov function.
Next, we shall prove that the other zeroes are nondegenerate.
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Let (θ0, t0) be a zero of the Melnikov function not contained in any horizontal line:
M(θ0, t0) = 0 and E(t0) �= 0. Then ∂θM(θ0, t0) = 2E(t0)e2θ0i �= 0; see (25).

On the other hand, let (θ, t1) be a point contained in some horizontal line: M(θ, t1) = 0,
E(t1) = 0, and E′(t1) �= 0. Again from relation (25), we get ∂θM(θ, t1) = 0 and ∂tM(θ, t1) =
�E′(t1)e2θi, where � denotes imaginary part. Hence, the degenerate zeroes on the horizontal
line {t = t1} are just those that verify the condition �E′(t1)e2θi = 0. But, since E′(t1) �= 0,
there are exactly four of such angles θ ∈ T. These four angles are the ones correspond-
ing to the four intersections of the horizontal line {t = t1} with the four vertical curves
{θ = θ̄(t) (mod π/2)}.

(iii) Level sets associated with regular values of analytic functions vary in an analytic way
under analytic perturbations.

(iv) If ω = 0 (mod π/2), then sin(2kω) = 0 for all k, and b(t) = �E(t) ≡ 0.
(v) This has to do with the fact that the zero-level set Z is (ω, h)-periodic. Given any

t ∈ R, we consider the slice Zt = {θ ∈ T : (θ, t) ∈ Z}. If E(t) �= 0, then

Zt+h = {θ ∈ T : θ = θ̄(t+ h) (mod π/2)},
Zt + ω = {θ ∈ T : θ = θ̄(t) + ω (mod π/2)}.

But these two sets coincide, due to the (ω, h)-periodicity of Z, and so we obtain that θ̄(t+h) =
θ̄(t) + ω (mod π/2) for any real t such that E(t) �= 0. Indeed, by analytic continuation, this
equality holds for any real t.

(vi) It follows directly from the previous item and the odd character of θ̄(t): θ̄(h/2− t) +
θ̄(h/2 + t) = −θ̄(t− h/2) + θ̄(t− h/2) + ω = ω (mod π/2).

(vii) First, θ̄−ω(t) = −1
2 argE−ω(t) = −1

2 argEω(t) = 1
2 argEω(t) = −θ̄ω(t). Second,

θ̄ω+π(t) = −1
2 argEω+π(t) = −1

2 argEω(t) = θ̄ω(t).
Remark 9. The numerical computations show that θ̄ω(t+h) = θ̄ω(t)+ω holds only in the

range −π/2 < ω < π/2; see Figure 4. This does not contradict item (v) in Theorem 17.
Remark 10. Similar results hold for the perturbation κ(x, y, z) = (0, 0, y2). In that case,

it turns out that the Melnikov function has the form

M(θ, t) = â(t) sin 2θ + b̂(t) cos 2θ + ĉ(t)

for some absolutely convergent series â(t), b̂(t), and ĉ(t). The analytical study is harder
because of the additional third term—compare with (23). We have numerically checked that
the only bifurcations take place at the singular frequencies ω ∈ {0,±π/2, π}, whereas the
zero-level set still contains just four vertical curves for regular frequencies.

8. Conclusion and open problems. In this paper, we have obtained several analytical
results about the splitting of separatrices under perturbations of some integrable volume-
preserving maps using a discrete version of the Melnikov method. The integrable maps have a
two-dimensional heteroclinic connection of spherical shape between two fixed points of saddle-
focus type. We have bounded the topological complexity of the primary heteroclinic set under
some polynomial perturbations. We have also given a sufficient condition for the splitting of
the separatrices under some entire perturbations. Finally, we have obtained a complete picture
of the bifurcations that take place under a simple perturbation. Despite these results, many
unsolved questions remain. We indicate four.
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The first question is: How accurate are our first-order Melnikov estimates? Of course, it
would be necessary to compute numerically the perturbed invariant manifolds and to com-
pare the real distance between them with the distance predicted by using the Melnikov func-
tion. A related numerical experiment was performed in [9] for linear perturbations of a
four-dimensional symplectic version of the McMillan map. This is a work in progress.

Second, we conjecture that the separatrix splitting studied in this paper is exponentially
small in the characteristic exponent, although the role of the frequency is still unclear. Several
examples of the effect that resonant frequencies can have in the dynamics of three-dimensional
maps near Hopf-saddle-node bifurcations can be found in [11, 12], although not related to a
problem about the splitting of separatrices. One could guess an asymptotic exponentially small
formula for the splitting using a multiple-precision arithmetic, like in [31]. Such formulae for
the splitting of one-dimensional heteroclinic connections between saddle-focus fixed points of
volume-preserving systems have already been found in [2] (for maps) and [8] (for flows), but
we do not know any similar formula for the two-dimensional case.

Another question is: What about Šil’nikov-like bifurcations in the discrete setting? The
perturbation of a spheromak structure in three-dimensional flows is a classical setup for study-
ing Šil’nikov bifurcations. Some results about the continuous case are contained in [10]. It is
natural to consider the discrete version of this problem, although the problem seems qualita-
tively more complicated.

It would be also interesting to study some questions about transport. As a first step,
we should compute the geometric flux through the perturbed separatrices. The O(ε)-term of
this flux can be computed by integrating certain Melnikov two-forms over a suitable region;
see [24]. Next, we could follow the ideas introduced in [26], although we must take into
account that the scenario for maps is richer than the one for flows. For instance, we recall
that equatorial and bubble-type heteroclinic curves cannot appear in autonomous flows.

Finally, we stress that only volume-preserving (conservative) perturbations have been
studied in this paper, although the study of dissipative perturbations is also possible. See, for
instance, the theories developed in [9, 7, 25].

Appendix A. Proof of Lemma 14. Here, we study the existence of real zeroes of the
function (24). This function has many properties similar to those of elliptic functions, and so
we shall study its zeroes using tools typical in the theory of elliptic functions.

We list in the next lemma some basic properties of the function E(t), including that E(t)
is meromorphic, 2πi-periodic, and h-quasi-periodic, and so quasi-elliptic.

Lemma 18. The function E(t) = Eω(t) =
∑

k∈Z
e2kωiχ(t+ kh) verifies the following:

(i) It is meromorphic in the complex plane and its poles are the points in the set P =
πi + hZ + 2πiZ (double ones).

(ii) E(t+ 2πi) = E(t) and E(t+ h) = e−2ωiE(t) for all complex t.
(iii) E(−t) = E(t) for all complex t.
(iv) If ω = π/2 (mod π), the points t = h/2 (mod h) are the only real zeroes of E(t), all

of them being simple ones.
(v) If ω = 0 (mod π), then E(t) has no real zeroes.
(vi) E−ω(t) = Eω(t) and Eω+π(t) = Eω(t).
Proof. (i) The function χ(t) is meromorphic in the complex plane, and its poles are the
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points in πi + 2πiZ (double ones) and πi ± h+ 2πiZ (simple ones).
(ii) The function E(t) is 2πi-periodic because so is χ(t). On the other hand,

E(t+ h) =
∑
k∈Z

e2kωiχ(t+ kh+ h) =
∑
k∈Z

e2(k−1)ωiχ(t+ kh) = e−2ωiE(t).

(iii) We recall that E(t) = a(t)+ b(t)i, where a(t) and b(t) are real analytic functions such
that a(t) is even and b(t) is odd. Hence, E(−t) = a(−t)+ b(−t)i = a(t)− b(t)i = a(t)− b(t)i =
E(t).

(iv) In this case, e2kωi = −1, and so E(t + h) = −E(t). Thus, E(t) becomes an elliptic
function with periods 2h and 2πi. Further, E(t) has order four, because it has just four poles
(counted with multiplicity) on any cell with periods 2h and 2πi; see (i).

Using that the elliptic function

E(t) =
∑
k∈Z

(−1)kχ(t+ kh)

is even, h-antiperiodic, and 2πi-periodic, we get that E(t) vanishes at the four points h/2,
3h/2, h/2 + πi, and 3h/2 + πi. For instance, E(h/2) = E(−h/2) = −E(h/2), so E(h/2) = 0.
But we know that E(t) has exactly four zeroes (counted with multiplicity) on each cell with
periods 2h and 2πi. Since the previous four zeroes belong to the same cell, they are the only
ones (modulo periodicities), and they are simple.

(v) χ(t) > 0 in R. Thus, if e2ωi = 1, E(t) =
∑

k∈Z
χ(t+ kh) > 0 for any real t.

(vi) First, E−ω(t) =
∑

k∈Z
e2kωiχ(t+ kh) =

∑
k∈Z

e2kωiχ(t+ kh) = Eω(t), because χ(t) is
real analytic. The second property is trivial.

Next, we gain some insight on the structure of the complex zeroes of the quasi-elliptic
function E(t). Roughly speaking, we state in the following lemma that E(t) has order two,
and its zeroes look like in Figure 5. The proof is adapted from similar proofs about elliptic
functions.

Lemma 19. The quasi-elliptic function E(t) has order two; that is, it has two zeroes in any
cell with periods h and 2πi. Let t1 and t2 be the zeroes in any cell. Then

(27) t1 + t2 ∈ 2ωi + hZ + 2πiZ.

Additionally, the set
T = {t1, t2} + hZ + 2πiZ

formed by the complex zeroes of E(t) is symmetric with regard to the vertical lines {�t = 0
(mod h)} and {�t = h/2 (mod h)}.

Proof. We recall the following version of the argument principle [34, section 6.3]. Let C
be a contour in the complex plane, let f(t) be a function analytic inside and on C, let g(t)
be a meromorphic function without zeroes or poles on C, and let t1, . . . , tJ and p1, . . . , pK be
the zeroes and poles of g(t) in the interior of C, repeated as many times as their multiplicities
and orders, respectively. Then

(28)
1

2πi

∮
C
f(t)

g′(t)
g(t)

dt =
∑

j

f(tj) −
∑

k

f(pk).
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�t = h/2

�t = 0

•

• •

•

� t1

� t2

� t1 � t2

∗ t1

∗t2

◦ t0

−πi h − πi

πi h + πi

Figure 5. The three scenarios for the set of zeroes of the quasi-elliptic function E(t). First ( �): The zeroes
are on the lines {�t = h/2 (mod h)}. Second ( �): The zeroes have the same imaginary part modulo 2πi. Third
( ∗): The zeroes are on the lines {�t = 0 (mod h)}. The double poles are marked with the symbol •. The
middle point is t0 = h/2 + ωi in the three cases, because t1 + t2 ∈ 2ωi + hZ + 2πiZ.

This version of the principle assumes that the contour has no self-intersections, and that it is
oriented counterclockwise.

If we choose any cell of periods h and 2πi as the contour C, and set f(t) = 1, g(t) = E(t)
in (28), we get that E(t) has J = K = 2 zeroes in the cell, because the integrals of the quotient
E′(t)/E(t) over opposite sides of the cell cancel out. (We recall that E(t) has exactly one
double pole on each cell.)

Let t1 and t2 be the zeroes and p be the double pole of E(t) in a cell C. Let the corners of
the cell be s, s+ h, s+ h+ 2πi, s+ 2πi. Now, if we keep the same contour, but take f(t) = t
and g(t) = E(t), we get that

t1 + t2 − 2p =
1

2πi

(∫ s+h

s
+
∫ s+h+2πi

s+h
+
∫ s+2πi

s+h+2πi
+
∫ s

s+2πi

)
tE′(t)
E(t)

dt

=
1

2πi

(
h

∫ s+2πi

s

E′(t)
E(t)

dt− 2πi
∫ s+h

s

E′(t)
E(t)

dt
)

=
h

2πi
logE(t)|s+2πi

s + logE(t)|ss+h

on making use of the quasi-periodic properties of E(t).
Using again the quasi periodicities E(s + 2πi) = E(s) and E(s + h) = e−2ωiE(s), we see

that logE(t)
]s+2πi

s
∈ 2πiZ and logE(t)

]s
s+h

∈ 2ωi + 2πiZ. Therefore,

t1 + t2 ∈ 2ωi + 2p+ hZ + 2πiZ.

Now, relation (27) follows because we know that the double pole p ∈ πi + hZ + 2πiZ.
Finally, the specular symmetries with regard to the vertical lines are a direct consequence

of the relations E(−t) = E(t) and E(t+ h) = e−2ωiE(t).
Using this lemma, we realize that there are just three possible scenarios for the set of

complex zeroes of the quasi-elliptic function E(t), which are listed in the caption of Figure 5.
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We have numerically checked that only the first scenario takes place, but we have not found
a proof. Therefore, in the following lemma we can only deduce that the set of real zeroes of
E(t) is either hZ or h/2 + hZ, although we suspect that the case hZ is a mirage.

Lemma 20. If E(t) has some real zeroes, all of them are simple, and the set of its real
zeroes is either hZ or h/2 + hZ.

Proof. We note that E(t) cannot have either a double real zero or two different real zeroes
modulo h. On the contrary, we could take t1, t2 ∈ R in Lemma 19, so that R � t1 + t2 ∈
2ωi+hZ +2πiZ. But this would imply that ω = 0 (mod π), and then E(t) has no real zeroes;
see Lemma 18. Therefore, the set of real zeroes has the form t∗ + hZ for some single real zero
t∗ ∈ [0, h). But, since t∗ + hZ must be symmetric with regard to the points 0 and h/2, there
are only two possibilities: either t∗ = 0 or t∗ = h/2.

As a by-product of this lemma, the set defined in (26) can also be defined as

Ω = Ωh = {ω ∈ T : Eω(0)Eω(h/2) = 0}.

To prove Lemma 14, it suffices to check that (1) Ω is finite; (2) Eω(0) �= 0 for all h ≥ h0 and
all ω ∈ T; and (3) Eω(h/2) �= 0 for all h ≥ h1 and all ω �= ±π/2.

Lemma 21. The set Ω = {ω ∈ T : Eω(0)Eω(h/2) = 0} is finite.
Proof. The claim follows from the fact that, once any h > 0 is fixed, the function

T � ω �→ Eω(0)Eω(h/2) ∈ C

is analytic, but not identically zero since the series E0(t) =
∑

k∈Z
χ(t+ kh) is positive for all

real t.
Lemma 22. If h ≥ h0 := log 16 − log(

√
113 − 9), then Eω(0) > 0 for all ω ∈ T.

Proof. We introduce the positive quantities

χk = χk(h) := χ(kh) =
4 cosh2(h/2) sinh2(h/2)

cosh((k + 1)h/2) cosh2(kh/2) cosh((k − 1)h/2)
,

where χ(t) is the function given in (22). Our goal is to prove that

Eω(0) =
∑
k∈Z

e2kωiχk = χ0 + 2
∑
k≥1

cos(2kω)χk > 0

for all h ≥ h0 and ω ∈ T. Here, we have used the symmetry χ−k = χk. Since maxω∈T |cos(2kω)|
= 1, in order to prove the lemma it suffices to establish that

(29) 2
∑
k≥1

χk(h) < χ0(h) ∀h ≥ h0 := log 16 − log(
√

113 − 9).

The rest of the proof is devoted to obtaining this bound. If we work with the multiplicative
variable x = e−h ∈ (0, 1), then χ0 = χ0(x) = (1 − x)2/x and

χk = χk(x) =
4(1 − x2)2x2k−2

(1 + xk+1)(1 + xk)2(1 + xk−1)
< 4(1 − x2)2x2k−2
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for any k ≥ 1 and x ∈ (0, 1). In particular,
∑
k≥1

χk(x) < 4(1 − x2)2
∑
k≥1

x2k−2 = 4(1 + x)(1 − x) ∀x ∈ (0, 1).

Let x0 := (
√

113 − 9)/16 < 1 and h0 := log(1/x0) > 0. If h ≥ h0, then x = eh ∈ (0, x0] and
8x2 + 9x− 1 ≤ 0. In particular, we conclude that the bound (29) holds.

Lemma 23. If h ≥ h1 := 2 log 20
9 , then Eω(h/2) �= 0 for all ω �= ±π/2.

Proof. This proof is similar to the previous one. We introduce the positive quantities

χ̃k = χ̃k(h) := χ(kh+ h/2) =
4 cosh2(h/2) sinh2(h/2)

cosh
(
(k
2 + 3

4)h
)
cosh2

(
(k
2 + 1

4)h
)
cosh

(
(k
2 − 1

4 )h
) .

Our goal is to prove that if h ≥ h1 and ω �= ±π/2, then

eωiEω(h/2) = 2
∑
k≥0

cos((2k + 1)ω)χ̃k = 2

(
χ̃0 +

∑
k≥1

akχ̃k

)
cosω �= 0.

Here, we have used the symmetry χ̃−(k+1) = χ̃k and have introduced the notation

ak = ak(ω) :=
cos(2k + 1)ω

cosω
.

That is, ak(ω) = T2k+1(cosω)/ cosω, where Tn(x) denotes the Chebyshev polynomial of first
kind and degree n defined by relation Tn(cosω) = cosnω. Now, using some standard prop-
erties of Chebyshev polynomials contained in [1, entries 22.5.29 and 22.14.1], we realize that
maxω∈T |ak(ω)| = 2k + 1. Therefore, in order to prove the lemma it suffices to establish that

(30)
∑
k≥1

(2k + 1)χ̃k(h) < χ̃0(h) ∀h ≥ h1 := 2 log(20/9).

The rest of the proof is devoted to proving this bound. If we work with the multiplicative
variable x = e−h/2 ∈ (0, 1), then χ̃0 = χ̃0(x) = 4(1 − x4)2/x(1 + x3)(1 + x)3 and

χ̃k = χ̃k(x) =
4(1 − x4)2x4k−2

(1 + x2k+3)(1 + x2k+1)2(1 + x2k−1)
< 4(1 − x4)2x4k−2

for any k ≥ 1 and x ∈ (0, 1). In particular,
∑
k≥1

(2k + 1)χ̃k(x) < 4(1 − x4)2
∑
k≥1

(2k + 1)x4k−2 = 12x2(1 − x4/3)

for all x ∈ (0, 1). Hence, if there exists some x1 ∈ (0, 1) such that

(1 − x4)2

1 − x4/3
=: f(x) ≥ g(x) := 3x3(1 + x3)(1 + x)3 ∀x ∈ (0, x1],
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(a) m0(h) and m1(h) vs h ∈ (0.5, 3).
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(b) log m0(h) and log m1(h) vs h ∈ (0.1, 1).

Figure 6. Graphs of the functions m0(h) = min{M0(ω,h) : ω ∈ T} (full curves) and m1(h) =
min{M1(ω,h) : ω ∈ T} (broken curves) in normal (left) and logarithmic (right) vertical scales.

then (30) holds for any h ≥ h1 := 2 log(1/x1). The function f(x) is increasing in the interval
(0, 1), whereas g(x) is decreasing in the same interval. On the other hand,

f(9/20) =
23543526721
25250080000

>
465593887647
512000000000

= g(9/20).

Therefore, we can take x1 := 9/20.

Appendix B. Numerical evidence for Conjecture 15. In the proofs of Lemmas 22 and 23,
we have shown that the analytic functions Mj : T × R+ → R defined by

M0(ω, h) = Eω(0), M1(ω, h) =
eωiEω(h/2)

2 cos ω
are positive when h ≥ h0 and h ≥ h1, respectively. We conjecture that, in fact, they are
positive everywhere, which is equivalent to Conjecture 15.

Figure 6 provides strong numerical evidence for this conjecture. Concretely, we have
numerically checked that the functions

mj : R+ → R, mj(h) = min{Mj(ω, h) : ω ∈ T}

are positive in the range 1/10 ≤ h ≤ 3. Greater values of h are already covered by our ana-
lytical results. Smaller values of h represent a computational challenge, because the functions
mj(h) are exponentially small in h as h → 0+; see subfigure 6(b). This is a typical behavior
for splitting problems in weakly hyperbolic settings.

The computation of such exponentially small splittings requires the use of a multiple
precision arithmetic to mitigate the strong cancellations that take place in such problems.
For instance, to compute the functions mj(h) at h = 1/10 it is necessary to work with at least
50 digits.
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[14] A. Delshams and R. Raḿırez-Ros, Melnikov potential for exact symplectic maps, Comm. Math. Phys.,

190 (1997), pp. 213–245.
[15] A. Delshams, Yu. Fedorov, and R. Ramı́rez-Ros, Homoclinic billiard orbits inside symmetrically

perturbed ellipsoids, Nonlinearity, 14 (2001), pp. 1141–1195.
[16] R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc., 218 (1976), pp. 89–113.
[17] R. W. Easton, Computing the dependence on a parameter of a family of unstable manifolds: Generalized

Melnikov formulas, Nonlinear Anal., 8 (1984), pp. 1–4.
[18] M. L. Glasser, V. G. Papageorgiou, and T. C. Bountis, Mel’nikov’s function for two-dimensional

mappings, SIAM J. Appl. Math., 49 (1989), pp. 692–703.
[19] P. J. Holmes, Some remarks on chaotic particle paths in time-periodic, three-dimensional swirling flows,

in Fluids and Plasmas: Geometry and Dynamics, Contemp. Math. 28, AMS, Providence, RI, 1984,
pp. 393–404.

[20] Y. T. Lau and J. M. Finn, Dynamics of a three-dimensional incompressible flow with stagnation points,
Phys. D, 57 (1992), pp. 283–310.
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