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1. Introduction

A general theory for perturbations of an integrable planar map with a separatrix to a
hyperbolic fixed point has been developed in a previous lecture [5]. The splitting of the
perturbed invariant curves was measured, in first order with respect to the parameter of
perturbation, by means of a periodic Melnikov function M defined on the unperturbed
separatrix. In the case of planar twist maps, M has zero mean and therefore there exists a
periodic function L (called the Melnikov potential) such that M = L′. Consequently, if L
is not identically constant (respectively, has non-degenerate critical points), the separatrix
splits (respectively, the perturbed curves cross transversely).

The aim of this lecture is to present a similar theory for more dimensions. The natural
frame is to consider twist maps on cotangent bundles. Once the suitable definition of
unperturbed separatrix has been introduced (a non-trivial problem in the high-dimensional
case), a scalar function L can be defined on it, in such a way that L verifies the same
properties than in the planar case. The derivation of L is easily related to variational
principles, and the property of being a scalar function instead of a vectorial function like
the classical Melnikov function, makes it more useful for computations and geometrical
understanding. Even more, it allows the application of Morse theory to establish the
minimal number of transverse homoclinic orbits.

The results to be presented in this lecture are valid for exact symplectic maps on
arbitrary exact symplectic manifolds, that is, the twist character is not essential. We have
restricted ourselves to twist maps only for simplicity. Full details of the ideas presented
here are contained in [4], where another more general situation (i.e., the exact symplectic
case) is studied. Related ideas can be found in [1, 15, 14, 8, 7].

2. The maps

A twist map F is a map from a connected subset U of the cotangent bundle of a manifold
M (which can be non-compact) into U , which comes equipped with a twist generating
function L :M×M→ R that satisfies

F ∗(y dx)− y dx = Y dX − y dx = dL(x,X), (X,Y ) = F (x, y),

where (x, y) are any cotangent coordinates on T ∗M, that is, x are coordinates on M,
extended to coordinates (x, y) in the obvious way. The symplectic form ω0 on T ∗M reads
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as ω0 = dx ∧ dy in cotangent coordinates. This can also be written in a coordinate free
manner. Given L, one can retrieve the map (at least implicitly) from y = −∂1L(x,X), and
Y = ∂2L(x,X). This can be done globally (i.e., U = T ∗M) only whenM is diffeomorphic
to a fiber of T ∗M, for example when M is the covering space of Tn or a manifold of
constant negative curvature.

Finally, let us denote by π : T ∗M→M the canonical projection.

3. The theory

Assume now that we are given a smooth twist diffeomorphism F0 on the cotangent bundle
T ∗M. Let L0 be its twist generating function. We assume that there exists a hyperbolic
fixed point z∞0 of F0, such that its n-dimensional (unstable and stable) invariant manifolds
Wu,s

0 are doubled, that is, they coincide: W :=Wu
0 =Ws

0.
In the planar case, the separatrix consists of the intersection of the invariant curves,

except for the hyperbolic fixed point, which is the only point where such invariant manifolds
are not submanifolds of the cotangent bundle. In the high-dimensional case, the situation
is more complicated. We can consider three topologies on the set W: the one induced by
the inclusion W ⊂ T ∗M, and the two ones induced by the inclusions W ⊂ Wu,s

0 . We
first define the bifurcation set Σ of this problem as the subset of W formed by the points
such that the three topologies do not coincide. Then, the separatrix Λ is defined as its
complementary in W , i.e.,

Λ :=W \ Σ.

With this definition, it turns out that Λ is a doubly asymptotic exact submanifold of
T ∗M, invariant by F0.

Next, consider a perturbed twist map Fε, and let Lε = L0 + εL1 + O(ε2) be the twist
generating function of Fε. For 0 < |ε| � 1, there exists a hyperbolic fixed point z∞ε of Fε,
close to z∞0 , and it is not restrictive to normalize the twist generating function by imposing
Lε(x∞ε , x∞ε ) = 0, where x∞ε = π(z∞ε ). In particular, L1(x∞0 , x

∞
0 ) = 0, where x∞0 = π(z∞0 ).

We now define the Melnikov potential in the same way as for planar twist maps [5]:

L : Λ −→ R, L(z) =
∑
k∈Z
L1(xk, xk+1), xk = π(zk), zk = F k0 (z), z ∈ Λ. (1)

The Melnikov theory is based on the following properties of the Melnikov potential [4]:
− L : Λ→ R is well-defined, smooth and invariant under the action of the unperturbed

map: L◦F0 = L. Consequently, L can be defined on the reduced separatrix Λ∗ = Λ/F0.

− The differential of the Melnikov potential M = dL (called the Melnikov function),
measures, in first order in ε, the distance between the perturbed invariant manifolds,
and is also defined on the reduced separatrix Λ∗.

− If L 6≡ constant, then the perturbed invariant manifolds Wu,s
ε split for 0 < |ε| � 1,

i.e., they do not coincide.
− If L has a critical point at z = z0 then, for 0 < |ε| � 1, Wu,s

ε intersect transversally
on a homoclinic point near z0.

− If the unperturbed invariant manifolds are completely doubled (i.e., Σ = {z∞0 }), the
reduced separatrix is a compact n-dimensional manifold without boundary. Actually,
if σ denotes the sign of the product of the eigenvalues with modulus greater that one
of DF0(z∞0 ), and Sn−1 stands for the unit sphere of Rn, then Λ∗ is homeomorphic to
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S×Sn−1 for σ = +, and it is somewhat more complicated for σ = − (for more details,
see [4]).
In this situation, Morse theory applied to the Melnikov potential, thought as a function
over Λ∗, gives the minimal number of transverse homoclinic orbits, under conditions
of generic position.

− There exists a variational principle, in an analogous way to the one of the planar
case [9, 6], which establishes that the homoclinic orbits of a twist map with twist
generating function L are the extremals of the homoclinic action

W [O] :=
∑
k∈Z
L(xk, xk+1), O = (xk)k∈Z,

and a homoclinic area can be defined for every pair of homoclinic orbits O = (xk)k∈Z,
O′ = (x′k)k∈Z, and is given by the difference of homoclinic actions ∆W [O,O′] =
W [O′]−W [O]. In terms of the Melnikov potential, there is also a nice expression for
the homoclinic area:

∆W [O,O′] = ε
(
L(z′0)− L(z0)

)
+ O(ε2).

We finish this survey of results with two remarks about different, but related, settings.
1. Regarding Hamiltonian flows, let Hε : T ∗M×R→ R be a time-periodic Hamiltonian

of period T , and Fε = ΨT
ε under the conditions of this section, where Ψt

ε(z) is the
solution of the associated Hamiltonian equations with initial condition z at t = 0. If
H = H0 + εH1 + O(ε2), one can see [4] that the Melnikov potential takes the form
(already known to Poincaré)

L(z) = −
∫
R

H1(Ψt
0(z), t) dt,

where H1 is determined by imposing H1(Ψt
0(z∞0 ), t) ≡ 0, or simply H1(z∞0 , t) ≡ 0, if

H0 is autonomous.
2. In relation with a non-symplectic setting, let us assume now that M = R

n, that is,
T ∗M = R

2n. In that case, using a different point of view [13, 2], one can assume
that the unperturbed map F0 : R2n → R

2n possesses n independent first integrals
H1, . . . ,Hn on the separatrix Λ (not necessarily in involution, since this concept re-
quires a symplectic structure), and consider a perturbation F = F0 + εF1 + O(ε2)
(not necessarily symplectic). Then, the Melnikov vectorial function M : Λ→ R

n can
be written as (compare with the planar case in [5]):

M = (M1, . . . ,Mn)>, Mj(z) =
∑
k∈Z
〈∇Hj(zk+1), F1(zk)〉, zk = F k0 (z), z ∈ Λ.

4. The example

Let us consider central standard-like maps on R
2n = T ∗Rn, that is,

F0(x, y) = (y,−x+∇V0(y)) or L0(x,X) = −〈x,X〉+ V0(X) (2)

where V0(x) = Vc(‖x‖2) for some function Vc : [0,∞)→ R. Then, the “angular momenta”
Aij(x, y) = xiyj−xjyi are first integrals and the (n+1)-dimensional manifold in R2n of zero
angular momenta is An+1

0 := {(x, y) : Aij(x, y) = 0} = {(qa, pa) : a ∈ Sn−1, (q, p) ∈ R2}.
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We now introduce the reduced map in An+1
0 of F , as the planar standard-like map

f : R2 → R
2 defined by f(q, p) = (p,−q + 2V ′c (p2)p). We note that

f(q, p) = (Q,P )⇐⇒ F (qa, pa) = (Qa,Pa), ∀(q, p) ∈ R2, a ∈ Sn−1, (3)

so that the non-trivial dynamics on the separatrix is induced by the reduced map.
To take advantage of the results for planar twist maps in the lecture [5], we introduce

now the McLachlan map [10] as the central standard-like map with potential V0(y) =
µ ln(1 + ‖y‖2), µ > 1. It has the expression

F0(x, y) =

(
y,−x+

2µy
1 + ‖y‖2

)
, µ > 1. (4)

Its reduced map is nothing else but the McMillan map [11] whose separatrix Γ = Γ+ has
the following natural parameterization [3]:

Γ = {z0(t) = (q0(t), p0(t))}, q0(t) = p0(t− h), p0(t) = sinhh sech t,

where h > 0 is determined by the equation

coshh = µ.

Now, it is easy to check that
1. The origin is a hyperbolic fixed point of F0, and Spec[DF0(0)] = { e±h}.
2. The invariant manifolds of F0 are completely doubled, and the separatrix is given by

Λ = {(qa, pa) : (q, p) ∈ Γ, a ∈ Sn−1}.

3. The function z0 : R× Sn−1 −→ Λ given by

z0(t, a) = (p0(t− h)a, p0(t)a), p0(t) = sinhh sech t, (5)

is a natural parameterization of the separatrix, i.e., z0 is a diffeomorphism that satisfies
F0(z0(t, a)) = z0(t+ h, a), for t ∈ R and a ∈ Sn−1.

As expected, we now consider a general perturbation of (4) that preserves the standard
character, i.e.,

Fε(x, y) =

(
y,−x+

2µy
1 + ‖y‖2

+ ε∇V (y)

)
, µ > 1, ε ∈ R, (6)

with V : Rn → R determined by imposing V (0) = 0. The generating function of Fε that
vanishes at the origin is Lε = L0 + εL1, where L0(x,X) = −〈x,X〉+ µ ln(1 + ‖X‖2) and
L1(x,X) = V (X). The Melnikov potential is simply

L : R× Sn−1 → R, L(t, a) =
∑
k∈Z

V (p0(t+ hk)a), p0(t) =
sinhh
cosh t

. (7)

Since L is h-periodic in t (this is the invariance of the Melnikov potential under the
action of the unperturbed map), we can consider t defined modulo h, i.e., L defined over
the reduced separatrix S1 × Sn−1.

Repeating the arguments for the case of the planar twist maps [5], we see that if V is a
non-constant real entire function, then V (p0(t)a) has the same isolated singularities in the
complex variable t as p0(t), and it is not difficult to check that they remain as singularities
for the Melnikov potential, which must be non-constant. In this way we have established
the following result.
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Theorem 1 If V is a non-constant real entire function, then the perturbed invariant man-
ifolds of the standard-like map (6) split, for 0 < |ε| � 1.
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3. A. Delshams and R. Ramı́rez-Ros. Poincaré-Melnikov-Arnold method for analytic planar maps.
Nonlinearity, 9(1):1–26, 1996.

4. A. Delshams and R. Ramı́rez-Ros. Melnikov potential for exact symplectic maps. Preprint, May
1996. To appear in Comm. Math. Phys.

5. A. Delshams and R. Ramı́rez-Ros and T.M. Seara. Splitting of separatrices in Hamiltonian systems
and symplectic maps. In Simó [12].
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