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1. Introduction

A century ago, the phenomenon of the splitting of separatrices was discovered by Henri
Poincaré in his celebrated memoir on the three-body problem [39]. While trying to inte-
grate the problem of the three bodies, expanding the solutions with respect to a small
parameter, Poincaré noticed that the main obstruction was due to the possibility of
transversal intersection of invariant manifolds that were coincident (separatrices) for the
unperturbed integrable problem. To measure the size of such splitting, he developed a
perturbative method in the parameter of perturbation, say ε, and he was confronted with
a singular separatrix splitting problem, in the sense that the separatrices of the unper-
turbed problem depended on ε in an essential way. He already noticed that the size of the
splitting of the separatrices predicted by his perturbative method was exponentially small
with respect to ε [39, page 223], a fact which prevented him to provide rigorous results,
since the remainder of his perturbative expansion was, in principle, O(ε2).

Seventy years later, the Poincaré perturbative method was rediscovered by Melnikov
and Arnold [36, 2], giving rise to the well-known Poincaré-Melnikov-Arnold theory, more
shortly addressed as the Melnikov method [27, 48].

The goal of this lecture is to review such theory, for flows as well as for maps. For flows,
we will address specifically the singular separatrix splitting in Hamiltonians with one and
a half degrees of freedom. For maps, the Melnikov method is just in its first steps, and we
will only consider here the regular case, where a direct application of a first order theory
is enough. It is worth remarking that we will restrict ourselves to the case of separatrices
to a periodic orbit for flows, and to a fixed point for a map. This means that the more
interesting cases of separatrices to invariant tori [48] will not be dealt here, in spite of their
crucial interest for the problem of the Arnold diffusion, for which we refer to the lecture
by Pierre Lochak [31].

The method we present here to handle the singular separatrix splitting for Hamiltonian
flows was initiated by Lazutkin and co-workers [29, 25], and it is based on the construction
of a splitting function which is invariant under the action of the perturbed flow. The an-
alyticity of the problem is pushed forward to compute this splitting function for complex
values, and to recover it in the real world in form of an exponentially small in ε measure
of the splitting. This method can also handle rapidly quasiperiodic perturbations of one
degree of freedom Hamiltonian systems, as is explained in the lecture by Vassili Gelfre-
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ich [7]. We are firmly convinced that it can be successfully applied to the singular case for
planar area preserving maps. At the present time, the only drawback of this theory, that
may prevent its application to more general frameworks, is the existence of a convergent
normal form in a neighborhood of the invariant object that possesses the separatrix.

Concerning related work, let us recall that other complete proofs of lower bounds or
asymptotic expressions for the rapidly forced pendulum or very similar systems, using
different kinds of methods and hypotheses, can be found in [12, 23, 16, 20, 47, 41]. Upper
estimates, but valid for more general systems, can be found in [38, 18, 43, 19, 17].

For maps, the Melnikov method is not so well-developed [14, 21, 22, 26], so we expound
here the first order theory, giving special emphasis to the case of analytic symplectic maps,
where a computable framework is available [9, 10].

In particular, we frequently rely on the Melnikov potential, a function defined on the
unperturbed separatrix, as a useful tool in the framework of symplectic maps, as well as in
Hamiltonian flows. Its importance is even bigger in the high-dimensional case, which will
not be considered in this lecture, for the sake of brevity. Thus, we will restrict ourselves to
planar twist maps, whereas the case of the 2n-dimensional twist maps will be addressed
in the lecture [11].

The main difference between the Melnikov potential (or function) in these two settings,
is that for maps, the complex period of the unperturbed homoclinic solution is not lost, and
hence the Melnikov potential is a doubly periodic function. This extra property makes easier
for maps the proof of the splitting of separatrices for a very wide kind of perturbations,
since the complex variable methods are readily applicable.

Full details of the ideas presented here are spread out in several papers [13, 9, 10],
where the required framework and hypotheses, as well as the results obtained here, are
thoroughly detailed, and other more general situations are dealt with. We hope that this
survey can provide a good starting point for those who want to know about some of the
tools utilized in the search of homoclinic orbits, and may want to try to overcome the
difficult points not addressed in this lecture.

2. Hamiltonian systems with one and a half degrees of freedom

Along the first part of this lecture, we will deal with Hamiltonians of the form

h(x, t/ε) = h0(x) + εph1(x, t/ε),

where h0(x) = h0(x1, x2) is a Hamiltonian with one degree of freedom, h1(x, θ) is 2π-
periodic in θ = t/ε, ε > 0 is an small parameter, and p > 0.

The Hamiltonian system associated to h0 is integrable. For simplicity, we shall assume
that it is a classical Hamiltonian: h0(x) = x2

2/2+V (x1). Its associated system of differential
equations is given by

ẋ1 = x2, ẋ2 = f(x1), (1)

where f(x1) = −V ′(x1), which can be written also as a second order equation ẍ1 = f(x1).
The Hamiltonian system associated to the complete Hamiltonian is:

ẋ1 = x2 + εp∂2h
1(x, t/ε),

ẋ2 = f(x1)− εp∂1h
1(x, t/ε).

(2)

The complete Hamiltonian h(x, t/ε) is a perturbation of h0, which is very rapidly
oscillating in time.
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We will assume some hypotheses. First, we will require the existence of a separatrix for
the unperturbed solution to a saddle point, i.e., f(0) = 0, f ′(0) > 0, and ω0 :=

√
f ′(0) > 0:

H1 The unperturbed system (1) has a saddle point at the origin with characteristic expo-
nents ±ω0, with ω0 > 0, and there exists a homoclinic solution x0(t) =

(
x0

1(t), x0
2(t)

)
to this point: x0(t) −→ 0 for t→ ±∞.

To visualize better the dynamical properties of the 2πε-periodic in time system (2),
we can consider the associated Poincaré map defined by:

P (x0) = x(2πε), (3)

where x(t) is the solution of system (2) that begins at x0 when t = 0.
For h1 ≡ 0, system (2) becomes autonomous and therefore the phase portraits of the

Poincaré map P and system (1) are identical. In fact, this phase portrait is foliated by the
level curves of the Hamiltonian h0. Assuming, without loss of generality, V (0) = 0, the
homoclinic orbit x0 is contained in the level curve h0(x) = 0.

For h1 6≡ 0 and 0 < |ε| � 1, the dynamics of system (2) becomes more intricate
and the phase portrait of the Poincaré map P looks different. There exists a hyperbolic
fixed point x∞ close to (0, 0), whose unstable and stable curves Cu, Cs intersect—P is an
area preserving map—but generically they do not coincide. We denote xh := (xh1 , x

h
2) the

homoclinic point that is closest to the unperturbed one x0(0). The evolution of x∞ under
the flow of system (2) gives rise to a 2πε-periodic orbit γp, as well as to its associated
invariant manifolds W u(γp), W s(γp).

The splitting of separatrices can be measured by different quantities, like the distance
d between the two invariant curves near x0(0), the angle α between the invariant curves at
the homoclinic point xh, or the area A of the lobe that remains between the two invariant
curves from xh to their next intersection. Among them, the area A has the property of
being invariant, that is, it does not depend on the homoclinic point xh. Even more, it is
invariant under canonical changes of variables.

The standard tool to measure such splitting quantities is the Melnikov function

M(s, ε) =
∫ +∞

−∞
{h0, h1}(x0(t+ s), t/ε) dt =

∑
k 6=0

Mk(ε) e iks/ε, (4)

called also the Melnikov integral. A direct approach of the Melnikov theory [27] gives, for
instance for the distance d, the following asymptotic expression:

d = d(s) = εp
M(s, ε)
‖x0(s)‖

+ O(ε2p). (5)

The variable s simply parameterizes the separatrix x0(s), so that d(s) is the distance
between invariant curves in the normal direction to x0(s).

We make now some comments on the features of the Melnikov method that will hold
also in other frameworks. The Melnikov function is 2πε-periodic with respect to s, in spite
of the fact that d(s) is not. In other words, the Melnikov function is invariant under the
action of the unperturbed Poincaré map P0, i.e., the Poincaré map (3) for h1 ≡ 0. It is also
worth remarking that M(s, ε) has zero mean, and in fact it can be written as

M(s, ε) =
∂L

∂s
(s, ε), L(s, ε) = −

∫ +∞

−∞
h1(x0(t+ s), t/ε) dt,
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where L(s, ε) is called the Melnikov potential. Using a Lagrangian formalism for our model,
h(x1, x2, t/ε)−x2 · ẋ1 = L(x1, ẋ1, t/ε) = L0 + εpL1 + O (ε2p), the Melnikov potential takes
the form L(s, ε) =

∫+∞
−∞ L1(x0

1(t + s), ẋ0
1(t + s), t/ε) dt, and can also be obtained via a

variational approach [1]. Moreover, L is as smooth as the function t 7→ h1(x0(t), θ).
We are going to consider the analytic case. (In particular, we will able to compute the

Melnikov function using residue theory.) This means that we will assume some analyticity
properties on the unperturbed system, as well as on the separatrix:

H2 The function f(x1) is real entire, and x0
2(u) = ẋ0

1(u) is analytic on a strip |=u| < a,
with a pole of order r at u = ±a i as its only singularity on each line =u = ±a i.

For an entire function f(x1), it is not difficult to check that the homoclinic solution
x0(u) behaves very well for large |<u|. In particular, x0(u) is T i-periodic, for T = 2π/ω0,
and the analyticity of x0

2(u) on a complex strip |=u| < a, for some a < T , follows from
the analyticity of the unperturbed system. The main restriction of this hypothesis is the
assumption that the only singularity of x0

2(u) on each component of the boundary of this
strip is a pole of some order r ≥ 1, which implies a severe restriction on the behavior of
f(x1) for x1 big enough. More precisely, if r ≥ 2, it is easy to check that f(x1) has to
be a polynomial of degree 2 or 3, for r = 3 or r = 2, respectively. Analogously, r = 1
can only take place if f(x1) is a trigonometric polynomial of degree 1 or 2, and then
x0

1(u) ∼ ik log(u ∓ a i) for u → ±a i, with k equal to 2 or 1, respectively. All the other
values of r and of the degree of the (trigonometric) polynomial f(x1) give rise to branching
points (“poles of fractional order”) as singularities of x0

2(u).
A direct application of the Melnikov theory is useful as long as the Melnikov term

dominates the reminder in (5). This is the typical case for the regular cases, where the
Melnikov function does not depend on the parameter of perturbation. Unfortunately, in our
model the Melnikov function not only depends on ε, but it is also exponentially small in ε
(in fact o( e−a/ε), as will be shown in Corollary 2), and a direct application of equation (5)
only gives that the O(ε2p) term is the one that dominates.

To be able to validate the role of the Melnikov term in equation (5), we consider s
complex. A crucial point is to control the perturbative function h1, as well as its derivatives,
over the separatrix x0(u) near the singularity u = a i. For the clearness of the exposition,
we simply will assume that h1 is of polynomial type in x:

H3 The function h1(x, θ) is 2π-periodic and C1 in θ, with zero mean:
∫ 2π

0 h1(x, θ) dθ = 0.
With respect to x, it can take either of the following forms:

(a) if f is 2π-periodic, h1 is a trigonometric polynomial in x1 and a polynomial in
x2; h1(x, θ) = x1g(θ) is also allowed,

(b) h1 is a polynomial in x, in the case that f is not 2π-periodic.

As a consequence of Hypothesis H3, h1(x, θ) can be written as a sum of monomials
in the variable x, each of which has a pole at u = ±a i, when x = x0(u), for every θ. We
will denote by ` the greatest order of this pole among these monomials, and we will call
it the order of the perturbation on the separatrix or, even more precisely, the order of the
perturbation on the singularity of the homoclinic solution.

By its definition, it is not difficult to observe that ` satisfies ` ≥ r−1. In general, ` will
be the order of the pole of h1(x0(u), θ) at u = ±a i, if there is no cancellation between the
different monomials of h1, when evaluated on x0(u). An example where these cancellations
take place is provided by h1 = h0(x). In such case, h0(x0(u)) is constant (and hence with
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no pole at all), but for instance the monomial x2
2/2 has a pole of order 2r. The same

happens if h1 is functionally dependent on h0.
Let us note that in the case h1(x, θ) = x1g(θ), system (2) is equivalent to the scalar

equation ẍ1 = f(x1)+εpg(t/ε), i.e., the perturbation only depends on time. In the trigono-
metric case, x0

1(u) has logarithmic singularities, but we take, by convention, ` = 0.
The main point in measuring an exponentially small splitting of separatrices consists

of defining a 2πε-periodic distance d(s) in (5), which means that it is invariant under the
action of the Poincaré map (3). In this way, we will introduce in (20) the so-called splitting
function ψ, after introducing some suitable “flow-box” canonical coordinates (S,E). In
these coordinates, S is a common parameter for both the stable and the unstable manifolds,
E = 0 is the equation of the stable manifold, and E = ψ(S) is the equation for the
unstable one. It is important to notice that the splitting function is 2πε-periodic and
independent of time, and hence it gives an invariant measure of the distance between
the invariant manifolds. In particular, its zeros give rise to homoclinic orbits, and all
the splitting quantities are obtained from it. Thus, the area A and the angle α given
in Theorem 1 are expressed in terms of the integral and the derivative of the splitting
function ψ.

The next theorem states a better approximation than (5) for the area A and the
splitting angle α, for p := power of ε > ` = order of the perturbation on the separatrix.
Theorem 1 (Upper estimate) Under hypotheses H1–H3, assume that γ := p − ` > 0.
Then, for ε→ 0+, the following formulae hold:

A = εp
[∫ s̄0

s0
M(σ, ε) dσ

]
+ O(ε2γ+r, εp+2) e−a/ε,

sinα = εp
M ′(s0, ε)
‖x0(s0)‖2

+ O(ε2γ+r−2, εp) e−a/ε,

where s0 < s̄0 are the two zeros of the Melnikov function (4) closest to zero.
This theorem gives upper sharp estimates of exponentially small order for the area A

and the angle α. We now introduce an additional hypothesis on the Poisson bracket of h0

and h1 over x0(u):
H4 J±1(x0(u)) has a pole of order exactly `+ 1 at u = ±a i, where

J(x, θ) := {h0, h1}(x, θ) =
∑
k 6=0

Jk(x) e ikθ.

If one writes the Laurent expansion J±1(x0(u)) =
∑
k≤`+1 J±1,k(u∓a i)−k of J±1(x0(u))

at u = ±a i, hypothesis H4 is equivalent to assume that the coefficient J1,`+1 = J−1,`+1 is
not zero. Under this generic additional hypothesis, a direct computation of the Melnikov
function shows that Theorem 1 provides asymptotic expressions:
Corollary 2 (Asymptotic expression) If moreover hypothesis H4 holds, the first terms
of A and sinα in Theorem 1—those containing the Melnikov function (4)—are not zero
and are dominant with respect to the second ones, for ε→ 0+:

A = 4 |J1,`+1| εγ+1 e−a/ε
[
1 + O(εγ+r−1, ε`+1)

]
,

sinα = −2 |J1,`+1|
‖x0(0)‖2

εγ−1 e−a/ε
[
1 + O(εγ+r−1, ε)

]
.
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Concerning optimality of p, our estimates are valid for p > `, which is the condition
required for the Extension Theorem 5 in some complex strip (15). We believe that this
Extension Theorem is not true if p < ` (this has to do with the fact that the term εpM(s, ε)
of the Melnikov method is not small in the complex strip |=s| ≤ a−ε for p ≤ `). Of course,
we do not claim that p > ` is the optimal lower bound, but it is clear that new methods are
needed for lower ranges of p. For instance, D. Treschev [47], using a continuous averaging
method, proves for an specific trigonometric example with ` = 2, that the splitting is given
by the Melnikov method for p > 0 = `−2. Also in the trigonometric case, G. Gallavotti [20]
gives p > `− 1 as a probably optimal lower bound, and recent papers by C. Simó [43] and
V. Gelfreich [24], as well as numerical experiments, seem to indicate that the lower bound
can be p > `− 2.

Let us now discuss some examples satisfying hypotheses H1–H4:

1. A forced pendulum equation, with Hamiltonian

h =
x2

2

2
− (cosx1 + 1) + εpx2 cosx1 sin

t

ε
. (6)

The pendulum equation has homoclinic orbits Γ± = {(x0
1(±t),±x0

2(t))}, where x0
1(t) =

2 arctan(sinh t), x0
2(u) = ẋ0

1(u) has poles of order r = 1 at u = ±π i/2, and ` = 3.
2. A perturbed Duffing equation, with Hamiltonian

h =
x2

2

2
− x2

1

2
+
x4

1

4
+ εp

(
x2

2

2
cos

t

ε
+ x1x2 sin

2t
ε

)
. (7)

For the Duffing equation, the homoclinic orbits are Γ± = {(±x0
1(t), x0

2(±t))}, where
x0

1(t) =
√

2/ cosh t, x0
2(u) = ẋ0

1(u) has poles of order r = 2 at u = ±π i/2, and ` = 4.
3. A perturbed cubic potential equation, with Hamiltonian

h =
x2

2

2
− x2

1

2
+
x3

1

3
+ εpx1 cos

t

ε
. (8)

The unperturbed cubic potential has the homoclinic orbit Γ = {(x0
1(t), x0

2(t))}, where
x0

1(t) = (
√

3/2) (cosh(t/2))−2, x0
2(u) = ẋ0

1(u) has poles of order r = 3 at u = ±π i,
and ` = 2.

Applying Theorem 1 and Corollary 2 to the examples (6), (7) and (8), we get the following
corollary.

Corollary 3 For ε→ 0+, the following estimates hold:

1. A = 16
3 πε

p−2 e−π/2ε[1 + O(εp−3, ε4)], for the pendulum equation (6), if p > 3;
2. A = 4

3πε
p−3 e−π/2ε[1 + O(εp−3, ε5)], for the Duffing equation (7), if p > 4;

3. A = 24πεp−1 e−π/ε[1 + O(εp, ε3)], for the cubic potential equation (8), if p > 2.

2.1. SKETCH OF THE PROOF

First of all, to deal with the local behavior of system (2), we use a Normal Form Theorem,
which asserts that the Birkhoff normal form is convergent in a neighborhood of the origin,
whose size is independent of ε. Besides, the normal form and the change of variables to
normal form are, respectively, O(εp+2) and O(εp+1)-close to the unperturbed ones, that
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is for h1 ≡ 0. The proof of this fact is based on a parameterized version of a well known
theorem due to Moser [37]. More recent proofs, valid for more degrees of freedom, can be
found in [4, 6].

The Normal Form Theorem provides “natural” parameterizations xu(t, s) and xs(t, s)
for the local invariant manifolds W u

loc(γp) and W s
loc(γp), respectively for <(t+s) < −T and

<(t+ s) > T . These parameterizations xu(t, s), xs(t, s) are called “natural” [9], since they
are formed by solutions of system (2) in the real variable t, and the action of the Poincaré
map is simply a shift of amount 2πε in the complex variable s. It is worth mentioning
that they are uniquely determined except for a change of parameter s = S + φ(S)), for a
2πε-periodic function φ of size O(εp+1).

From the explicit solution of the Normal Form system, one obtains the existence of
local flow box coordinates outside of the local unstable invariant manifold W u

loc(γp).

Theorem 4 (Flow Box Theorem) There exists a canonical change of variables

(x, θ = t/ε) ∈ U 7−→ (S,E, θ) = (S(x, θ), E(x, θ), θ) ∈ V, (9)

analytic in x, 2π-periodic and C2 in θ on U = {(x, θ) ∈ C2 × R : ‖x− γp(θ)‖ < r2
0} \

W u
loc(γp), with r0 independent of ε, such that transforms system (2) in a flow box system

Ṡ = 1, Ė = 0, (10)

and satisfies:
1.

S(x, θ) = S0(x) + O(εp+1), E(x, θ) = E0(x) + O(εp+1), (11)

where x 7→
(
S0(x), E0(x) = h0(x)

)
is the corresponding change for system (1).

2. Denoting (S,E, θ) ∈ V 7−→ (X (S,E, θ), θ) ∈ U the inverse change to (9), the following
estimate holds

X (S,E, θ) = X 0(S,E) + O(εp+1), (12)

where x = X 0(S,E) is the inverse change to x 7→ (S,E) = (S0(x), E0(x)).
3. Along the local stable manifold xs(t, s), the flow-box functions (9) satisfy

S(xs(t, s), t/ε) = t+ s, E(xs(t, s), t/ε) = 0. (13)

This is a local result. Now, to extend the parameterization xu(t, s) of the unstable
manifold for other values of (t, s), we compare xu(t, s) with the unperturbed separatrix
x0(t+ s). For s ∈ R, a standard real comparison of solutions gives

xu(t, s)− x0(t+ s) = O(εp+1), (14)

for −T ≤ t+ s ≤ T , and t, s ∈ R. We need an analogous version for complex s.
Since x0(u) has a singularity in the complex field at u = ±a i, we will restrict ourselves,

as in [12], to a complex strip Du
ε of imaginary width equal to a− ε:

Du
ε := {(t, s) ∈ R× C : |=s| ≤ a− ε, |t+ <s| ≤ T}. (15)

The following Extension Theorem ensures us that the parameterization xu(t, s) of the
unstable invariant manifold W u(γp) is still defined and close enough to the unperturbed
separatrix.
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Theorem 5 (Extension Theorem) Let x0(t + s) be the unperturbed separatrix of sys-
tem (1), and xu(t, s) the local parameterization of the unstable invariant manifold, where
s ∈ C, |=s| ≤ a− ε, and t+ <s = −T .

Then, if γ = p− ` > 0, xu(t, s) is defined on Du
ε given in (15) and satisfies there:

xu(t, s)− x0(t+ s) = O(εγ).

The proof [13] of this theorem is based on a good choice of the solutions of the varia-
tional equations associated to the separatrix and the partition of the strip Du

ε in different
regions.

By hypothesis H1, for t + <s ≥ T/2, x0(t + s) arrives and remains at the open set
U where the flow-box functions (9) are defined. By the Extension Theorem, the same
happens to xu(t, s) for T/2 ≤ t+ <s ≤ T , and |=s| ≤ a− ε, and we can therefore define,
for |=s| ≤ a− ε, the functions:

Su(s) := S(xu(t, s), t/ε)− t, Eu(s) := E(xu(t, s), t/ε), (16)

which do not depend on t, by the Flow Box Theorem 4. Moreover, by the natural parame-
terization of the manifolds, it turns out that Su(s)−s and Eu(s) are analytic for |=s| ≤ a−ε
and 2πε-periodic in s.

By the Extension Theorem, it turns out that Eu(s) is well-approximated by the Mel-
nikov function on the complex strip |=s| ≤ a− ε:

Eu(s) = εpM(s, ε) + O(ε2γ+r−1, εp+1). (17)

As a consequence, the difference between Eu(s)−Eu
0 and εpM(s, ε) is O( e−a/ε) for real s,

where Eu
0 is the zero order Fourier coefficient of Eu:

Eu(s)− Eu
0 = εpM(s, ε) + O(ε2γ+r−1, εp+1) e−a/ε. (18)

From the Flow Box Theorem 4, the local stable manifold xs(t, s) has a very simple
expression in the (S,E) coordinates:

(S,E) = (S(xs(t, s), t/ε), E(xs(t, s), t/ε)) = (t+ s, 0),

i.e., E = 0. By (16), the arriving unstable manifold xu(t, s) has in these coordinates the
expression

(S,E) = (S(xu(t, s), t/ε), E(xu(t, s), t/ε)) = (t+ Su(s), Eu(s))

and, in particular, the unstable curve Cu of the Poincaré map P defined in (3), is given
by (S,E) = (2πnε+ Su(s), Eu(s)).

Therefore, it is very natural to introduce the splitting function ψ given implicitly by
ψ(2πnε+ Su(s)) = Eu(s), or simply by ψ(Su(s)) = Eu(s), using that Su(s)− s and Eu(s)
are 2πε-periodic in s.

Now, one checks that for s ∈ R, S = Su(s) is real analytic and invertible, and its
inverse s = su(S) satisfies that su(S)− S is O(εp+1) and 2πε-periodic in S.

Therefore, ψ(S) is explicitly defined, for real values of S, as

ψ(S) = Eu(su(S)). (19)
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Since su(S) − S is O(εp+1) and 2πε-periodic in s, we can introduce a new natural
parameterization for the unstable invariant manifold

x̃u(t, S) = xu(t, su(S)),

in such a way that ψ(S) can be also written as

ψ(S) = E(xu(t, su(S)), t/ε)− E(xs(t, S), t/ε) = E(x̃u(t, S), t/ε). (20)

The next Proposition contains the properties of the splitting function ψ. From this Propo-
sition, and mainly from the estimate (21), Theorem 1 and Corollary 2 follow.

Proposition 6 The function ψ is a 2πε-periodic, real analytic function that satisfies the
following properties.

1. There exists hu ∈ R such that xu(t, hu) = xs(t, hs) (giving an homoclinic connection),
with hs = Su(hu). Consequently, ψ(hn) = 0, for hn = hs + 2πεn, n ∈ N. Moreover,
ψ′(hn) is independent of n, and

ψ′(hn) =
∂xs

∂S
(t, hn) ∧ ∂x̃

u

∂S
(t, hn) =

∥∥∥∥∂xs

∂S
(t, hn)

∥∥∥∥ · ∥∥∥∥∂x̃u

∂S
(t, hn)

∥∥∥∥ sinα(t, hn),

where ∧ denotes the exterior product on R2, and α(t, hn) denotes the angle between
xu(t, hu + 2πεn) = x̃u(t, hn) and xs(t, hn).

2. The area of the lobe between the invariant curves is given by A =
∣∣∣∫ h̄nhn ψ(S) dS

∣∣∣, where
hn and h̄n are the two consecutive zeros of ψ(S) closest to zero.

3. ψ0 =
∫ hn+2πε
hn

ψ(S) dS = 0.
4. ψ(S) satisfies for S ∈ R the estimate

ψ(S) = εpM(S, ε) + O(ε2γ+r−1, εp+1) e−a/ε. (21)

3. Twist maps

Assume that F0 : R2 → R
2 is a smooth diffeomorphism with a separatrix Γ to a saddle point

z∞0 and a non-trivial first integral H0. We can assume that F0 preserves the orientation,
taking the square of the map if necessary. Thus, Spec[DF0(z∞0 )] = {λ, λ−1}, where λ > 1.
Let h = lnλ be the associated characteristic exponent.

Now, consider a family of smooth diffeomorphisms F = F0 + εF1 + O(ε2) : R2 → R
2.

For 0 < |ε| � 1, F is a general perturbation of the integrable map F0, and it has a saddle
point z∞ “close” to z∞0 and the local stable and unstable manifolds W u, W s of z∞ are
“close” to Γ, but, in general, they no longer coincide. To compute their distance, for every
point z in the separatrix Γ, we denote by zu (respectively zs), the “first” intersection of
W u (respectively W s) with the normal to Γ at z. Following Poincaré and Arnold [40, 2], we
introduce the difference of first integrals (“energies”) as the distance between the invariant
curves:

∆(z) := H0(zu)−H0(zs) =: εM(z) + O(ε2), z ∈ Γ, (22)

and we introduce the Melnikov function M as the first order term in ε of the difference of
energies. To obtain the expression of M , we first observe that for every fixed z and any
m > 0, we can write:
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∆(z) = H0(F−m(zu))−H0(Fm(zs)) +
m∑

k=1−m
H0(F k(zα))−H0(F k−1(zα)),

where α = α(k) is given by α = u if k ≤ 0, and α = s if k > 0. Passing to the limit
m→ +∞, we obtain

∆(z) =
∑
k∈Z

(H0 ◦ F −H0)
(
F k(zα)

)
. (23)

Now, since zα ∈ Wα is O(ε)-close to z, it turns out that F k (zα) = F k0 (z) + O(ε),
uniformly in k. Moreover, H0 ◦F −H0 = ε〈∇H0 ◦F0, F1〉+ O(ε2), where 〈·, ·〉 denotes the
scalar product in R2. Putting all this together in (23), we obtain the following expression
for the Melnikov function in (22):

M(z) =
∑
k∈Z
〈∇H0(zk+1), F1(zk)〉, zk = F k0 (z), z ∈ Γ. (24)

Since the present framework is regular, i.e., the characteristic exponent h (or equiva-
lently, the eigenvalue λ = eh) does not depend on the parameter of perturbation ε, the
Melnikov theory simply says that if M has a simple zero at z = z0, then for 0 < |ε| � 1,
the perturbed invariant manifolds W u, W s, intersect transversally on a homoclinic point
near z0. In particular, one has the following formula for the angle of intersection α:

|tanα| = |dM(z0)ε|
‖∇H(z0)‖2

+ O(ε2).

From (24) we see that the Melnikov function is invariant under the action of the
unperturbed map: M ◦ F0 = M , but ∆(z) is not (we found the same situation in the
case of flows). Consequently M can be defined on the reduced separatrix Γ∗ = Γ/F0 which
is the quotient of the separatrix by the unperturbed map, and is homeomorphic to the
one-dimensional torus T, at least if we only take into account one branch of the separatrix.

A very important case takes place when F is a twist map, that is, when there exists a
smooth function L(x,X) such that

(X,Y ) = F (x, y)⇐⇒ y = −∂1L(x,X), Y = ∂2L(x,X). (25)

We fix L by imposing L(x∞, x∞) = 0, where z∞ = (x∞, y∞). Planar twist maps are the
simplest case of exact symplectic maps. See the lecture [11] (resp., the paper [10]) for the
generalization of these results to the context of twist maps (resp., exact sympectic maps).

By straightforward expansion in ε, setting L = L0 + εL1 + O(ε2), it follows that

M(z) = dL(z), L(z) =
∑
k∈Z
L1(xk, xk+1), zk = (xk, yk) = F k0 (z), z ∈ Γ.

We note that, since L(x∞, x∞) = 0, L1(x∞0 , x
∞
0 ) = 0, if z∞0 = (x∞0 , y

∞
0 ). Hence, the

previous series is uniformly and absolutely convergent over z ∈ Γ, giving rise to a smooth
function L called the Melnikov potential. The critical points of the Melnikov potential
are the zeros of the Melnikov function. Again, it is worth remarking that the Melnikov
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potential is invariant under the action of unperturbed map: L ◦F0 = L and, consequently,
L can be defined on the reduced separatrix Γ∗ = Γ/F0.

For twist maps, the Melnikov theory asserts that if there exist non-degenerate critical
points of the Melnikov potential L, then F has transverse homoclinic orbits for 0 < |ε| � 1.
Moreover, if z0, z′0 denote consecutive non-degenerate critical points of L, the area A of
the lobe between the invariant manifolds has a nice expression:

A = ε
(
L(z′0)− L(z0)

)
+ O(ε2).

Notice that the above formula does not change when z0, z′0 are replaced by F k0 (z0), Fm0 (z′0),
as it should be.

This formula can also be obtained from a variational principle, due to MacKay, Meiss
and Percival [33, 15], which establishes that the homoclinic orbits of the twist map (25)
are the extremals of the action

W [O] :=
∑
k∈Z
L(xk, xk+1), O = (xk)k∈Z,

and that the area between consecutive homoclinic orbits O = (xk)k∈Z, O′ = (x′k)k∈Z is
given by its difference of actions A = W [O′]−W [O].

From now on, we will restrict ourselves to the analytic twist case, i.e., we will assume
that F in (25) is a real analytic twist map, as well as the twist generating function L
and the first integral H0. As a first result, we note that if the Melnikov potential L is not
constant, it has a maximum and a minimum on the reduced separatrix (i.e., on T), which
are of finite order, and as a consequence the Melnikov function has zeros of odd finite
order, which implies that F is non-integrable [5].

Moreover, it is worth introducing a natural parameterization of Γ (with regard to F0),
i.e., a bijective analytic map z0 : R −→ Γ such that:

F0(z0(t)) = z0(t+ h), ∀ t ∈ R,

where we recall that h = lnλ. One way of obtaining such parameterization, consists of
looking for the standard parameterization ϕ : R −→ Γ that conjugates the action of F0

to a multiplication by the eigenvalue λ = eh: F0(ϕ(r)) = ϕ(λr), and making the change
of variable t = log r, i.e., r = et, obtaining z0(t) = ϕ( et). However, since F0 is integrable,
there is an easier way of finding z0(t), based on the fact that, maybe multiplying the first
integral by a suitable constant, the above natural parameterization is a solution of the
Hamiltonian vector field associated to H0, i.e., ż0 = J · ∇H0 ◦ z0, where J =

( 0 1
−1 0

)
.

With the change of variable z = z0(t), the Melnikov function is given now by

M = L̇ , L(t) =
∑
k∈Z

f(t+ hk), f(t) = L1(x0(t), x0(t+ h)) , (26)

where x0(t) is the first component of z0(t).
From the change r = et used to find the natural parameterization, it turns out that

z0(t) can be extended for complex t, and it is 2π i-periodic. Hence, the Melnikov function
M and the Melnikov potential L given in (26) are doubly periodic functions with periods
h, T i = 2π i. When extra symmetries are present, T can be a divisor of 2π (for instance,
T = π). An important case takes place when the function f given in (26) has only isolated
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singularities in the complex field. Then, the same happens to M and L, and a powerful
criterion of non-integrability holds:

L has a singularity =⇒ L 6≡ constant =⇒ F is non-integrable.

Before passing to some applications, let us mention that the explicit computation of
the Melnikov potential can be carried out with the help of a Summation Formula, which
has not been developed here but can be found in [9].

3.1. APPLICATION: NON INTEGRABILITY OF BILLIARDS CLOSE TO ELLIPSES

Let us consider the problem of the “convex billiard table”: let C be an (analytic) closed
convex curve of the plane R2, parameterized by γ : T −→ C, in such a way that C is
traveled counterclockwise. A material point moves inside C and collides with C according
to the law “the angle of incidence is equal to the angle of reflection”. Following Birkhoff [3],
we consider the annulus A = {z = (ϕ, v) ∈ T×R : |v| < |γ̇(ϕ)|}, where the coordinate ϕ is
the parameter on C and v = |γ̇(ϕ)| cosϑ, with ϑ ∈ (0, π) the angle of incidence-reflection
of the material point. In this way, we obtain a twist map T : A −→ A given by (ϕ, v) 7−→
(Φ, V ) that models the billiard. Its twist generating function is S(ϕ,Φ) = |γ(ϕ)− γ(Φ)|.
It is geometrically clear that if C ′ is another closed convex curve obtained from C by a
similarity, then its associated map T ′ has an equivalent dynamics to T .

The map T has no fixed points but it has periodic orbits of period 2, corresponding
to opposite points with the “maximum” and “minimum” distance between them. Instead
of studying them as fixed points of T 2, we introduce a simplification, as is usual in the
literature [30, 46, 32].

We will assume that C is symmetric with regard to a point. Modulo a similarity, we can
assume that this point is the origin: C = −C. Consequently, we choose a parameterization
γ of C such that γ(ϕ + π) = −γ(ϕ) in such a way that the 2-periodic orbits are of the
form (ϕ0, 0), (ϕ0 + π, 0), that is, two opposite points over C.

Introducing the involution R : A → A given by R(ϕ, v) = (ϕ + π, v), we now define
a new map F : A → A by F = R ◦ T . Since F 2 = T 2, the dynamics of F and T are
equivalent. Moreover, since γ(Φ + π) = −γ(Φ), it is easy to check that

L(ϕ,Φ) = |γ(ϕ) + γ(Φ)| (27)

is a twist generating function for F , and consequently F is a twist map. We note that the
variable ϕ can be defined modulo π in the symmetric case.

As a first example, consider now a non-circular ellipse: C0 = {γ0(ϕ) : ϕ ∈ T}, where
γ0(ϕ) = (a cosϕ, b sinϕ), with a2 6= b2. Modulo a similarity, we can assume that a2−b2 = 1.
Thus a > 1, b > 0 and the foci of the ellipse are (±1, 0). Let us denote T0 : A −→ A the
analytic twist map associated to the ellipse C0, and F0 = R ◦ T0.

The points (0, 0) and (π, 0) form a 2-periodic orbit for T0 that corresponds to the
vertexes (±a, 0) of the ellipse, and hence z∞0 := (0, 0) = (π, 0) is a fixed point for F0.
(Remember that ϕ is defined modulo π in the symmetric case.) The main properties of F0

are listed in the following Lemma [9].

Lemma 7 a) z∞0 = (0, 0) = (π, 0) is a saddle fixed point of F0 and Spec[DF0(z∞)] =
{λ, λ−1}, with λ = (a+1)(a−1)−1 > 1. Moreover, if h := lnλ the following expressions
hold

a = coth(h/2), b = cosech(h/2).
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b) H0(ϕ, v) = sin2 ϕ − v2 is a first integral of F0, and Γ± = {(ϕ,± sinϕ) : 0 < ϕ < π}
are the separatrices of F0.

c) Let ϕ(t) = arcsin(sech t) and v(t) = sech t. Then, z±0 (t) := (ϕ(±t),±v(t)) are natural
parameterizations of Γ± with regard to F0.

d) Let Φ(t) = ϕ(t+ h). Then

b
sinϕ(t) + sin Φ(t)
|γ0(ϕ(t)) + γ0(Φ(t))|

= sech(t+ h/2). (28)

Birkhoff conjectured that the elliptic billiard is the only integrable convex billiard.
Our goal is to see that this is locally true for the symmetric billiards, i.e., any non-
trivial symmetric entire perturbation is non-integrable. (Non-trivial perturbation means
not reducible to an ellipse.) Thus, we now consider an arbitrary symmetric perturbation
Cε = −Cε of the ellipse C0. Modulo O(ε2) terms (which do not play any rôle in our first
order analysis) and a similarity, Cε can be put in the following “normal” form

Cε = {γε(ϕ) = (a cosϕ, sinϕ[b+ εη(ϕ)]) : ϕ ∈ T}, i) η analytic,
ii) η π-periodic. (29)

From the expression above, it is clear that Cε is an ellipse (up to first order in ε) if and
only if η(ϕ) is a constant function. As a consequence, we will say that Cε is a non-trivial
symmetric entire perturbation of the ellipse C0 when it can be put in the normal form (29)
and moreover, η(ϕ) is a non-constant entire function.

Let Tε be the map in the annulus associated to the billiard in Cε, and Fε = R ◦ Tε.
For 0 < |ε| � 1, Cε is an analytic convex closed curve, and thus Fε is an analytic twist
map, being Lε(ϕ,Φ) = |γε(ϕ) + γε(Φ)| = L0(ϕ,Φ)+εL1(ϕ,Φ)+O(ε2) its twist generating
function, where L0(ϕ,Φ) = |γ0(ϕ) + γ0(Φ)| and

L1(ϕ,Φ) = b
sinϕ+ sin Φ
|γ0(ϕ) + γ0(Φ)|

[sinϕ η(ϕ) + sin Φ η(Φ)]. (30)

From now on, we consider only Γ+. Using the natural parameterization provided by
Lemma 7, the formula of L1 given in equation (30), and the formula (28), the function
f(t) in (26) takes the form

f(t) = L1(ϕ(t), ϕ(t+ h)) = sech(t+ h/2)[sech(t)η(ϕ(t)) + sech(t+ h)η(ϕ(t+ h))]. (31)

Now, assume we are given a non-trivial symmetric entire perturbation Cε of the ellipse.
Our aim is to prove the non-integrability of Tε, and for this purpose we only have to find
a singularity of L(t) =

∑
k∈Z f(t+ hk).

By hypothesis, η(ϕ) is a non-constant entire function, and by ii), it is π-periodic. By
Lemma 7, sinϕ(t) = sech(t) and cosϕ(t) = tanh(t) have simple poles at t = π i/2 and no
more singularities on =t = π/2. Since η(ϕ) is non-constant, t = π i/2 is a singularity of
η(ϕ(t)). So, we concentrate on t = π i/2. It is not difficult to check [8] that

t 7→
∑
k∈Z

f(t+ hk)− 2a
b

sech(t+ h/2) sech(t− h/2)η(ϕ(t))

is an analytic function on t = π i/2. Since sech(t+ h/2) sech(t− h/2) is also analytic and
non-zero on t = π i/2, t = π i/2 is a singularity of L(t) =

∑
k∈Z f(t+hk). We have proved:
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Theorem 8 Let Cε be any non-trivial symmetric entire perturbation of an ellipse. Then
the billiard in Cε is non-integrable for 0 < |ε| � 1.

3.2. APPLICATION: PLANAR STANDARD-LIKE MAPS

We consider the following planar standard-like map

F0(x, y) =
(
y,−x+ 2y

µ+ βy

1− 2βy + y2

)
, −1 < β < 1 < µ. (32)

These maps were introduced by Suris [45]. (Standard-like maps are twist maps: the twist
generating function of (x, y) 7→ (X,Y ) = (y,−x+ U ′(y)) is L(x,X) = −xX + U(X).)

The origin is a hyperbolic fixed point of the Suris map F0; its characteristic multipliers
are e±h, where the characteristic exponent h > 0 is given by coshh = µ. Moreover, the
polynomial H0(x, y) = [x2 − 2µxy + y2 − 2βxy(x + y) + x2y2]/2 is a first integral of F0,
and the energy level {H0 = 0} is a necklace containing two separatrices Γ± = Γ±µ,β to the
origin. Their natural parameterizations are given by [9]

Γ± =
{
z±0 (t) = (x±0 (t), x±0 (t+ h)) : t ∈ R

}
, x±0 (t) =

±c
∆ cosh t∓ b

, (33)

where c =
√
µ2 − 1 = sinhh, ∆ =

√
1− 2β2/(µ− 1), and b = β

√
(µ+ 1)/(µ− 1). We note

that Γ−µ,β = −Γ+
µ,−β, so we study only Γ = Γ+, z0 = z+

0 and x0 = x+
0 . In the particular

case β = 0, Γ− = −Γ+, and the map (32) is an odd map, called the McMillan map [35].
We consider now a perturbation formed by standard-like maps

F (x, y) =
(
y,−x+ 2y

µ+ βy

1− 2βy + y2
+ εV ′(y)

)
, −1 < β < 1 < µ , ε ∈ R, (34)

where V (y) is determined by imposing V (0) = 0. The twist generating function has the
form L(x,X) = L0(x,X)+εV (X), where L0 comes from the unperturbed map. Therefore,
the Melnikov potential is simply L(t) =

∑
k∈Z V (x0(t + hk)). If, for instance, V is a

non-constant real entire function, then V (x0(t)) has the same isolated singularities in the
complex variable t as x0(t), and it is not difficult to check that they remain as singularities
for the Melnikov potential L(t). In this way we have established the following result.

Theorem 9 If V is a non-constant real entire function, the map (34) is non-integrable
for 0 < |ε| � 1.
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NATO Adv. Sci. Inst. Ser. B Phys. Held in Toruń, Polland, 28 June–2 July 1993. Plenum, New York,
1994.
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