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Abstract

Two area-preserving twist maps are associated to a smooth closed convex table: the (classical) billiard map and the dual billiard map. When
the table is circular, these maps are integrable and their phase spaces are foliated by invariant curves. The invariant curves with rational rotation
numbers are resonant and do not persist under generic perturbations of the circle. We present a sufficient condition for the break-up of these
curves. This condition is expressed directly in terms of the Fourier coefficients of the perturbation. It follows from a standard Melnikov argument.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the fundamental questions in dynamical systems is
the effect that small perturbations of a dynamical system cause
on its unperturbed invariant sets. Probably, the most remarkable
examples of persistent invariant sets are the Diophantine tori
of completely integrable Hamiltonian flows or symplectic
maps [1]. On the other hand, the resonant tori generically
break up although, if the perturbation is small enough, some
periodic orbits always persist in a small neighborhood of each
resonant tori [2]. The standard tool in continuous systems for
determining the effect of a concrete perturbation over a resonant
tori is the subharmonic Melnikov function [9,24]. (Originally,
Melnikov functions were introduced to study the splitting of
separatrices, which is just another problem concerning the
break-up of delicate invariant structures.) The development of
subharmonic Melnikov methods for discrete systems (that is,
for maps) is more recent [23,25], but these works are focussed
rather on abstract theorems than in physical applications. Our
goal is to present a simple and self-contained derivation of the
subharmonic Melnikov method for integrable twist maps and,
next, to apply it to some billiard problems. The novel result
of this paper is to present an application of the subharmonic
E-mail address: rafael@vilma.upc.edu.
URL: http://www.ma1.upc.edu/∼rafael/.

0167-2789/$ - see front matter c© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2005.12.007
Melnikov method for maps in which all the computations can
be carried out. These computations are interesting because they
allow us to estimate the amplitude of the perturbed resonances;
see Section 5.

To begin with, we shall establish a sufficient condition for
the break-up of a given resonant invariant curve of an integrable
area-preserving twist map under a concrete perturbation of the
map. Our condition follows from the study of a function defined
on the unperturbed resonant curve in terms of the Lagrangian of
the perturbed map. Following the literature, this function should
be called the subharmonic Melnikov potential, but we call it the
radial Melnikov potential for some reasons that will become
clear in Section 2.

The definition of subharmonic Melnikov potentials for
perturbed integrable area-preserving maps is not new. For
instance, it is used in [23] to estimate the difference
of the frequencies on two invariant curves bounding a
given resonance, whereas its generalization to 2n-dimensional
perturbed integrable twist maps is contained in [25]. In those
papers, the Melnikov potential is written in terms of the second
type generating function of the perturbed map. Second type
generating functions depend on the old angle and the new
action, whereas the first type generating functions (that is, the
Lagrangians) used in our work depend on both angles (old
and new). This is a minor difference, but first type generating
functions are the natural choice for billiard systems.
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We shall prove that a resonant curve breaks up when its
Melnikov potential is not constant; see Corollary 8. We stress
that this is a first order condition, and so it is sufficient but not
necessary for the break-up. Similar conditions for the break-up
of resonant invariant surfaces in the frame of volume-preserving
maps have been obtained in [15].

Next, we shall study the classical and dual billiard
maps associated to small perturbations of circular tables. A
particularly nice aspect of both problems is that the break-
up condition can be stated directly in terms of the Fourier
coefficients of the perturbation of the circle; see Theorem 1.
We note that, with the definition of integrability used in this
paper, circular tables are the only ones giving rise to integrable
twist maps [3,26]. The billiard map inside an ellipse is also
“integrable”, but it has a separatrix so that global action-angle
coordinates cannot be introduced over its whole phase space.

Birkhoff [4] introduced the problem of convex billiard tables
more than 75 years ago as a way to describe the motion
of a free particle inside a closed convex curve such that it
reflects at the boundary according to the law “angle of incidence
equals angle of reflection”. He realized that this billiard motion
can be modeled by an area-preserving twist diffeomorphism
defined on the open cylinder T × (−1, 1). Since then, billiards
have become a paradigm of conservative dynamical systems,
because in the billiard problem the formal side, usually so
formidable in dynamics, almost completely disappears, and
only the interesting questions need to be considered [4, page
170]. We refer to the monographs [13,21] for the latest
developments in billiard dynamics. The invariant curves of a
classical billiard map are related to its caustics; see [12].

On the other hand, following J.K. Moser, the dual billiard
problem may serve as a crude model for planetary motion [16,
page 66]. The dual billiard map associated to a smooth (strictly)
convex closed plane curve Γ ⊂ R2 is defined on the unbounded
component of R2

\Γ as follows: the image of a point equals its
reflection in the tangency point of the oriented tangent line to
Γ through the initial point. The dual billiard motion can also be
modeled by an area-preserving twist diffeomorphism defined
on the half-cylinder T × (0, +∞). Smooth dual billiards have
been studied, for instance, in [19,20,10,6,22].

The periodic (classical) billiard trajectories are inscribed
polygons whose consecutive sides make equal angles with
the curve Γ , whereas the periodic dual billiard trajectories
are circumscribed polygons whose sides are bisected by their
tangency points about Γ . Given a rational number p/q, where
p and q are relatively prime, we say that the trajectory is p/q-
periodic when the polygon has q sides and makes p turns inside
(resp., about) Γ in the classical (resp., dual) billiard. We shall
call these polygons p/q-gons. In classical billiards, q ≥ 2. In
dual billiards, q ≥ 3. Besides, it is well known that the classical
(resp., dual) billiard dynamics verifies a variational principle
in which it is established that its p/q-periodic trajectories are
critical points of the length functional defined on the set of p/q-
gons inscribed in Γ (resp., of the extrema of the area functional
defined on the set of p/q-gons circumscribed about Γ ).

The following existence results are obtained using the
above characterization of periodic billiard trajectories as critical
Fig. 1. An element of I2/5
0 (left) and an element of C2/5

0 (right).

points of the functionals length and area. They hold when the
billiard curve is smooth and strictly convex, and essentially go
back to G.D. Birkhoff:

• (Classical version) For any integers q ≥ 2 and 1 ≤ p ≤

q/2 relatively prime, there exist at least two geometrically
distinct p/q-periodic classical billiard trajectories [21,
Section 2.5].

• (Dual version) For any integers q ≥ 3 and 1 ≤ p ≤ q/2
relatively prime, there exist at least a p/q-periodic dual
billiard trajectory [21, Section 4.1].

We ask p and q to be relatively prime because, otherwise,
the p/q-periodic trajectories could be a polygon with fewer
vertices traversed several times.

Let us now consider the billiard dynamics associated to a
circle Γ0 of radius r0. It is an exercise in elementary geometry
to check that:

• (Classical version) For any integers q ≥ 2 and 1 ≤ p ≤ q/2
relatively prime, there exists a continuous family I p/q

0 of
regular p/q-gons inscribed in Γ0 whose consecutive sides
make equal angles with Γ0.

• (Dual version) For any integers q ≥ 3 and 1 ≤ p ≤ q/2
relatively prime, there exists a continuous family C p/q

0 of
regular p/q-gons circumscribed about Γ0 whose sides are
bisected by their tangency points about Γ0.

Of course, each family is obtained just by rotating any
of its elements with respect to the center of the circle. We
show in Fig. 1 an element of I2/5

0 and another of C2/5
0 . In

particular, all the polygons of I p/q
0 have the same perimeter,

l p/q
0 = 2q sin(πp/q)r0, and all the polygons of C p/q

0 have the

same area, Ap/q
0 = q tan(πp/q)r2

0 . This also follows from the
variational principles, since any functional is constant on each
continuum set formed by critical points. Thus, if a family I p/q

0

(resp., C p/q
0 ) persists under some perturbation Γε = Γ0 + O(ε)

of the circle, then the polygons of the perturbed family I p/q
ε

(resp., C p/q
ε ) do not need to be regular, but they shall still have

the same perimeter (resp., area).
A sufficient condition for the break-up of these continuous

families of polygons under small perturbations of Γ0 is given
below. Let nθ = (cos θ, sin θ). We write the perturbation in
polar coordinates as follows:

Γε = {rε(θ)nθ : θ ∈ T}, rε(θ) = r0 + εr1(θ) + O(ε2), (1)

for some smooth function rε : T → R.
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Theorem 1. Let
∑

j∈Z r̂ j
1 ei jθ be the Fourier expansion of

r1(θ). Let q ≥ 2 be any integer. If there exists some j ∈ qZ\{0}

such that r̂ j
1 6= 0, then the families I p/q

0 and C p/q
0 do not persist

under the perturbation (1).

Remark 2. If we write the perturbation (1) in Cartesian
coordinates as

Γε =

{
(x, y) ∈ R2

: x2
+ y2

+ εP1(x, y) + O(ε2) = r2
0

}
, (2)

then the O(ε)-terms of (1) and (2) verify the relation 2r0r1(θ)+

P1(r0nθ ) = 0.

In Section 2 we introduce the maps and the variational
principles with which we will be working. It also contains the
general Melnikov theory for resonant curves of twist maps.
The proofs concerning classical billiards and dual billiards are
contained in Section 3 and Section 4, respectively. In order
to illustrate the strength and the limits of the theory, several
examples are studied in Section 5. Finally, some open problems
are listed in the last section.

2. Break-up of resonant invariant curves in twist maps

For the sake of simplicity, we will assume that the objects
considered here are smooth. For a general background on twist
maps we refer, for instance, to the book [11, Section 9.3] or to
the review [14].

2.1. Twist maps

Let T = R/2πZ, A = T × R, and π1 : A → T
be the natural projection. Sometimes it is convenient to work
in the universal cover R of T. We will use the coordinates
(s, y) for A and (x, y) for R2. The horizontal and vertical
directions in these coordinates will be called the angular and
radial directions, respectively. A tilde will always denote the lift
of a point, function or set to the universal cover. If g is a real-
valued function, ∂i g denotes the derivative with respect to the
i th variable. We will consider certain diffeomorphisms defined
on an open cylinder of the form C = T × Y , Y = (y−, y+), for
some −∞ ≤ y− < y+ ≤ +∞. Then C̃ = R × Y is an open
strip of the plane.

A diffeomorphism f : C → C is called an area-preserving
twist map when it preserves area, orientation, and verifies the
classical twist condition: if f̃ (x, y) = (x ′, y′) is a lift of f then

∂2x ′(x, y) > 0.

In what follows, the lift f̃ remains fixed. We also assume,
although it is not essential, that f verifies some rigid boundary
conditions. To be more precise, if y− and y+ are finite, we
suppose that the twist map f can be extended continuously
to the closed cylinder C̄ = T × Ȳ , Ȳ = [y−, y+], as a rigid
rotation on the boundaries. That is, there exist some boundary
frequencies ω± ∈ R, ω− < ω+, such that f̃ (x, y±) =

(x + ω±, y±). When y− = −∞ (resp., y+ = +∞), the
lower (resp., upper) boundary condition is stated in terms of
the corresponding limit. These rigid boundary conditions are
verified by the classical and dual billiard maps considered in
this paper.

Let D = {(x, x ′) ∈ R2
: ω− < x ′

− x < ω+}. Then there
exists a function h : D → R such that f̃ (x, y) = (x ′, y′) if and
only if

y = −∂1h(x, x ′), y′
= ∂2h(x, x ′). (3)

The function h is called the Lagrangian or generating function
of f .

Remark 3. In order to give a geometric interpretation of h, we
note that if y− is finite (as for classical and dual billiard maps),
then the quantity h(x, x ′) is equal to the area of the region in the
strip C̃ enclosed by the lower boundary C̃− = R × {y−}, the
vertical line Ỹ (x ′) = {x ′

} × Y , and the f̃ -image of the vertical
line Ỹ (x) = {x} × Y ; see [11, Section 9.3].

The term Lagrangian is due to the fact that twist maps satisfy
a variational principle, since their orbits are in correspondence
with the critical points of some real-valued functionals, called
actions. To clarify this, we describe the periodic version of this
principle. A point (x, y) ∈ C̃ is said to be a p/q-periodic point
of f̃ , for some integers p and q relatively prime, whenever
f̃ q(x, y) = (x + 2πp, y). Obviously, ω− < 2πp/q < ω+.
Then the corresponding point (s, y) ∈ C , x = s̃, is a periodic
point of period q by f that is translated by 2πp in the base by
the lift. Analogously, a f̃ -orbit {(xk, yk)}k∈Z is p/q-periodic
when (xk+q , yk+q) = (xk + 2πp, yk) for all k ∈ Z. In the
periodic variational principle [14, Section V], it is stated that the
p/q-periodic points of the lift are in one-to-one correspondence
with the critical points of the p/q-periodic action W p/q

:

Rq
→ R defined by

W p/q(x0, . . . , xq−1) = h(x0, x1) + h(x1, x2) +

· · · + h(xq−1, x0 + 2πp).

2.2. Integrable twist maps

Let f0 : C → C be an integrable twist map, that is, an area-
preserving twist map with a lift f̃0 : C̃ → C̃ of the form

(x ′, y′) = f̃0(x, y) = (x + ω(y), y)

such that ω′(y) > 0 for all y ∈ Y and the limits ω± =

limy→y±
ω(y) are finite. Its Lagrangian h0(x, x ′) depends only

on the difference x ′
− x , since (∂1 + ∂2)h0(x, x ′) = y′

− y ≡ 0.
In fact, h0(x, x ′) = l0(x ′

− x) for some function l0(ω) such that
l ′0(ω(r)) = r .

Integrable twist maps leave invariant all the horizontal lines
R × {y}. We restrict our study to the resonant ones, that is,
those whose rotation number is rational. If p/q ∈ Q and ω− <

2πp/q < ω+, let y p/q
0 = ω−1(2πp/q) and T p/q

0 = R×{y p/q
0 }.

Any orbit(
x p/q

k , y p/q
k

)
= f̃ k

0

(
x p/q

0 , y p/q
0

)
, x p/q

k = x + 2πkp/q,

y p/q
k = y p/q

0 ,



R. Ramı́rez-Ros / Physica D 214 (2006) 78–87 81
contained in T p/q
0 is p/q-periodic. Finally, we stress that all

these p/q-periodic orbits have the same p/q-periodic action,
namely

q∑
k=1

h0

(
x p/q

k−1, x p/q
k

)
=

q∑
k=1

l0
(

x p/q
k − x p/q

k−1

)
≡ ql0(2πp/q).

(4)

2.3. Radial curves and radial potentials

Let fε be a perturbation of an integrable twist map and let
f̃ε be a fixed lift. Moreover, let hε = h0 + εh1 + O(ε2) be the
perturbed Lagrangian.

As is well known, the resonant invariant curves T p/q
0 do not

persist under generic perturbations but, following Birkhoff [4,
Section VI] and Arnold [1, Section 20], there exist a couple of
radial curves

T p/q
ε =

{(
x, y p/q

ε (x)
)

: x ∈ R
}
,

T̂ p/q
ε =

{(
x, ŷ p/q

ε (x)
)

: x ∈ R
}

close to T p/q
0 such that f̃ q

ε projects T p/q
ε onto T̂ p/q

ε along the
radial direction. This follows directly from the next lemma.

Lemma 4. For any small enough ε, there exists a couple of 2π -
periodic functions y p/q

ε , ŷ p/q
ε : R → Y such that:

(i) y p/q
ε (x) = y p/q

0 + O(ε) and ŷ p/q
ε (x) = y p/q

0 + O(ε),
uniformly in x ∈ R;

(ii) f q
ε

(
x, y p/q

ε (x)
)

=

(
x, ŷ p/q

ε (x)
)

, for all x ∈ R.

Proof. To obtain the 2π -periodic function y p/q
ε (x), it suffices

to realize that

G p/q(y, ε; x) := π1

(
f̃ q
ε (x, y)

)
− x − 2πp

is 2π -periodic in x and verifies the hypotheses

G
(

y p/q
0 , 0; x

)
= 0, ∂1G

(
y p/q

0 , 0; x
)

= qω′

(
y p/q

0

)
6= 0

of the Implicit Function Theorem at the point (y, ε) =

(y p/q
0 , 0). Here, we have used the twist condition ω′(y) > 0.

Besides, y and ε are the variables, whereas x is considered just
a parameter. Once we have proved the existence and uniqueness
of y p/q

ε : R → Y , we determine ŷ p/q
ε : R → Y by means of

property (ii). Finally, the uniformity in x ∈ R follows from the
periodicity of the functions. �

Corollary 5. The radial curves T p/q
ε and T̂ p/q

ε have the
following properties:

(i) they have a non-empty intersection;
(ii) their intersection points are p/q-periodic points of f̃ε;

(iii) they coincide identically if and only if T p/q
0 persists.

Therefore, it is rather useful to quantify the separation
between the radial curves T p/q

ε and T̂ p/q
ε , which is done in the

next lemma.
Lemma 6. ŷ p/q
ε (x) − y p/q

ε (x) = (L p/q
ε )′(x), where L p/q

ε :

R → R is the function

L p/q
ε (x) =

q∑
k=1

hε

(
x̄ p/q

k−1(x; ε), x̄ p/q
k (x; ε)

)
,

x̄ p/q
k (x; ε) = π1

(
f̃ k
ε

(
x, y p/q

ε (x)
))

.

Proof. We shall not write the dependence on ε and p/q. Given
any x ∈ R, we introduce the notations

(x̄k, yk) = f̃ k (x, y(x)) , dk = dk(x) := ∂1 x̄k(x; ε),

k = 0, . . . , q.

Then x̄0 = x and x̄q = x + 2πp, so d0 = dq = 1. Besides,
y0 = y(x) and yq = ŷ(x). From the implicit equation (3),
we get that ∂1h(x̄0, x̄1) = −y0, ∂2h(x̄q−1, x̄q) = yq , and
∂2h(x̄k−1, x̄k) + ∂1h(x̄k, x̄k+1) = 0 for k = 1, . . . , q − 1.
Therefore, L ′(x) = ∂1h(x̄0, x̄1)d0 +

∑q−1
k=1(∂2h(x̄k−1, x̄k) +

∂1h(x̄k, x̄k+1))dk + ∂2h(x̄q−1, x̄q)dq = ŷ(x) − y(x). �

Corollary 7. The resonant curve T p/q
0 persists if and only if

(L p/q
ε )′(x) ≡ 0.

Since the function L p/q
ε (x) is 2π -periodic, it can be

considered as a function defined on T = R/2πZ. We shall say
that L p/q

ε : T → R is the radial potential of the resonant radial
invariant curve T p/q

0 under the perturbation fε .

2.4. The radial Melnikov potential

Once the radial potential L p/q
ε (x) = L p/q

0 (x) + εL p/q
1 (x) +

O(ε2) is introduced, it is rather natural to extract information
from its low-order terms. This is the main idea behind any
Melnikov approach to a perturbative problem; see [9,24]. The
zero-order term L p/q

0 (x) is constant (and so useless), since

L p/q
0 (x) =

q∑
k=1

h0

(
x p/q

k−1, x p/q
k

)
=

q∑
k=1

l0
(

x p/q
k − x p/q

k−1

)
≡ ql0(2πp/q),

where x p/q
k = x p/q

k (x) := x̄ p/q
k (x; 0) = π1( f̃ k

0 (x, y p/q
0 )) =

x + 2πkp/q; compare with (4). We shall say that the first-order
term L p/q

1 : R → R is the radial Melnikov potential of the

resonant invariant curve T p/q
0 under the perturbation fε . The

following corollary displays the most important property of the
radial Melnikov potential in relation to the goals of this paper;
moreover, the proposition below provides a closed formula for
its computation.

Corollary 8. If L p/q
1 (x) is not constant, the curve T p/q

0 does
not persist.

Proposition 9. L p/q
1 (x) =

∑q
k=1 h1(x p/q

k−1, x p/q
k ), where

x p/q
k = x + 2πkp/q. In particular, L p/q

1 (x) is a 2π/q-periodic
function.
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Proof. Given any x ∈ R, we introduce the notations

x p/q
k = x p/q

k (x) := x̄ p/q
k (x; 0),

z p/q
k = z p/q

k (x) := ∂2 x̄ p/q
k (x; 0),

for k = 0, . . . , q . The perturbed Lagrangian is hε = h0 + εh1
+ O(ε2). Then the first-order term of the radial potential is

L p/q
1 (x) =

q∑
k=1

h1

(
x p/q

k−1, x p/q
k

)
+ ∂1h0

(
x p/q

0 , x p/q
1

)
z p/q

0 + ∂2h0

(
x p/q

q−1, x p/q
q

)
z p/q

q

+

q−1∑
k=2

(
∂1h0

(
x p/q

k , x p/q
k+1

)
+ ∂2h0

(
x p/q

k−1, x p/q
k

))
z p/q

k .

Using the implicit Eq. (3) for the integrable twist map, the
third line vanishes. The second line of the above equation also
vanishes, due to the fact that x̄ p/q

0 (x; ε) = x and x̄ p/q
q (x; ε) =

x + 2πp for small values of ε. Besides, x p/q
k = x p/q

k (x) =

x̄ p/q
k (x; 0) = π1( f̃ k

0 (x, y p/q
0 )) = x + 2πkp/q .

Finally, it is clear that L p/q
1 (x) is a periodic function with

periods 2π and 2πp/q . But p and q are relatively prime. Thus,
2π/q is also a period. �

3. Classical billiards

Let Γ be a smooth closed strictly convex curve in the plane
R2. Without loss of generality, we can assume that Γ has
length 2π ; it is just a technical normalization condition. Let
γ : T → Γ be an arc-parameterization of this curve and
γ̃ : R → Γ be a fixed lift. Finally, let us consider the open
cylinder C = T × (y−, y+), with y± = ±1. Then we can
model the classical billiard dynamics inside Γ by means of a
map f : C → C , f (s, y) = (s′, y′), defined as follows; see
Fig. 2. If the particle hits Γ at a point γ (s) under an angle of
incidence φ ∈ (0, π), then the next impact point is γ (s′) and the
next angle of incidence is φ′

∈ (0, π). Here, y = − cos φ and
y′

= − cos φ′. It is well known [11, Section 9.2] that, in these
coordinates, the billiard map f is an area-preserving twist map
whose Lagrangian is

h(x, x ′) =
∣∣γ̃ (x) − γ̃ (x ′)

∣∣ .
Besides, f verifies the rigid boundary conditions with ω− = 0
and ω+ = 2π .

Let us now consider the classical billiard dynamics inside
a circle Γ0 of radius r0 = 1, since Γ0 must have length 2π .
Then γ0(s) = ns = (cos s, sin s) is an arc-parameterization. Let
f0 : C → C be the area-preserving twist map that models the
classical billiard dynamics inside Γ0 in the coordinates (s, y).
It is integrable. In fact, it is easy to check that

f̃0(x, y) = (x + ω(y), y) , ω(y) = 2 cos−1(−y),

where cos−1
: (−1, 1) → (0, π) stands for the inverse

of the cos function, and so ω : (−1, 1) → (0, 2π) is a
diffeomorphism.

Thus, given any integers q ≥ 2 and 1 ≤ p < q relatively
prime, there exists only one radial coordinate y p/q

0 ∈ (−1, 1)
Fig. 2. The classical billiard.

such that ω(y p/q
0 ) = 2πp/q, and so there exists just one

resonant invariant curve T p/q
0 = R × {y p/q

0 } with rotation

number p/q. The curves T p/q
0 , 1 ≤ p < q, are in two-to-

one correspondence with the continuous families I p/q
0 , 1 ≤ p

≤ q/2, of regular p/q-gons inscribed in Γ0 mentioned in the
Introduction (but in the case q = 2, of course). This has to
do with the fact that a p/q-gon can be traversed clockwise or
counterclockwise. So we can restrict our attention to the case
1 ≤ p ≤ q/2.

This correspondence between resonant invariant curves of
a (classical) billiard map and continuous families of inscribed
polygons whose consecutive sides make equal angles with
the billiard curve holds for any smooth strictly convex curve.
Therefore, in order to prove the claim contained in Theorem 1
about the families I p/q

0 , it suffices to prove the same claim

about the invariant curves T p/q
0 , which follows directly from

Corollary 8 and the next proposition.

Proposition 10. The radial Melnikov potential of the resonant
invariant curve T p/q

0 of the classical billiard map inside the
perturbed circle (1) is

L p/q
1 (x) = 2 sin(πp/q)

q∑
k=1

r1(x + 2kπp/q)

= 2q sin(πp/q)
∑
j∈qZ

r̂ j
1 ei j x .

Proof. The second equality is trivial: the sum
∑q

k=1ei j (x+2kπp/q)

is equals to qei j x when j ∈ qZ, and vanishes otherwise. It
remains to prove the first equality.

Let γε(s) be an arc-parameterization of Γε . Then hε(x, x ′) =

|γ̃ε(x) − γ̃ε(x ′)| is the Lagrangian of the classical billiard map
inside Γε . We have shown in Proposition 9 that, if hε = h0 +

εh1 + O(ε2), the radial Melnikov potential is

L p/q
1 (x) =

q∑
k=1

h1

(
x p/q

k−1, x p/q
k

)
,

x p/q
k = π1

(
f̃ k
0

(
x, y p/q

0

))
= x + 2πkp/q.
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Next, we compute the term h1(x p/q
k−1, x p/q

k ) that appears in this
formula.

From Eq. (1), we get that the arc-parameterization has the
form

γε(s) = rε(θε(s))nθε(s)

for some 2π -periodic function θε(s). We know that γ0(s) =

r0ns , so θ0(s) = s. Let θε(s) = s + εθ1(s) + O(ε2) and
γε(s) = r0ns + εγ1(s) + O(ε2). Then it turns out that γ1(s) =

r0θ1(s)ts + r1(s)ns , where ts = (− sin s, cos s) and ns =

(cos s, sin s). In particular,

γ̃1

(
x p/q

k

)
= r0θ1

(
x p/q

k

)
tp/q
k + r1

(
x p/q

k

)
np/q

k ,

np/q
k = n

x p/q
k

, tp/q
k = t

x p/q
k

.

On the other hand, h1(x p/q
k−1, x p/q

k ) = 〈u p/q
k , γ̃1(x p/q

k−1) −

γ̃1(x p/q
k )〉, where

u p/q
k =

np/q
k−1 − np/q

k

|np/q
k−1 − np/q

k |

.

Finally, we obtain the radial Melnikov potential in the
desired form:

L p/q
1 (x) =

q∑
k=1

h1

(
x p/q

k−1, x p/q
k

)
=

q∑
k=1

〈
u p/q

k , γ̃1

(
x p/q

k

)
− γ̃1

(
x p/q

k−1

)〉
=

q∑
k=1

〈
u p/q

k − u p/q
k+1, γ̃1

(
x p/q

k

)〉
= 2 sin(πp/q)

q∑
k=1

r1

(
x p/q

k

)
,

since 〈u p/q
k − u p/q

k+1, tp/q
k 〉 = 0, 〈u p/q

k − u p/q
k+1, np/q

k 〉

= 2 sin(πp/q), x p/q
k+q = x p/q

k + 2πp, and u p/q
k+q = u p/q

k . �

4. Dual billiards

Let Γ be a smooth closed strictly convex curve in the plane
R2. Let UΓ be the unbounded component of R2

\ Γ , that is,
the “exterior” of Γ . The dual billiard map f : UΓ → UΓ is
defined as follows (see Fig. 3): f (z) is the reflection of z in the
tangency point of the oriented tangent line to Γ through z. This
map is area-preserving [19]. Next we shall describe some useful
coordinates on UΓ . We skip many details, which can be found
in the nice paper of Boyland [6].

To begin with, let γ : T → Γ be an envelope
parameterization of Γ , that is, a parameterization of the curve
Γ such that

γ ′(s) = ρ(s)ts, ts = (− sin s, cos s),

for some function ρ(s) > 0, which is the radius of curvature of
Γ . Given any s ∈ T, let Ls be the tangent line to Γ at the point
Fig. 3. The dual billiard. The segment from z to f (z) is tangent to Γ at
1
2 (z + f (z)). The change UΓ 3 z 7→ (s, y) ∈ T × (0, +∞) is defined by

means of the relations γ (s) =
1
2 (z + f (z)) and y =

1
2 |z − γ (s)|2.

γ (s). As is shown in Fig. 3, we consider the decomposition
Ls = L−

s ∪ {γ (s)} ∪ L+
s , where

L−
s = {z ∈ Ls : 〈z − γ (s), ts〉 < 0},

L+
s = {z ∈ Ls : 〈z − γ (s), ts〉 > 0}.

The height function p(s) of Γ is the distance from the origin
to the line Ls . Then β(s) = p(s)ns is the nearest point to the
origin on the line Ls . Boyland proves that the height function
verifies the second-order differential equation

p′′
+ p = ρ, (5)

and that p′(s) equals the signed distance from γ (s) to β(s).
Finally, let `(s, t) be the distance from γ (s) to the

intersection Ls ∩ Lt . We note that `(s, t) 6= `(t, s). This
function can be expressed in terms of the radius of curvature
or the height function. Concretely,

`(s, t) =

∫ t
s sin(v − s)ρ(v)dv

sin(t − s)

=
p(s)

sin(t − s)
−

p(t)

tan(t − s)
+ p′(t).

The first equality is contained in [6]. The second one follows
from Eq. (5); it suffices to integrate by parts twice.

Given any point z ∈ UΓ , let s = s(z) be the unique
angle such that z ∈ L−

s , and let y = y(z) = `(z)2/2 with
`(z) = |z − γ (s)|. The map UΓ 3 z 7→ (s, y) ∈ C is an
area-preserving diffeomorphism, where C = T × (y−, y+)

with y− = 0 and y+ = +∞. The coordinates (s, y) will
be called envelope coordinates. The dual billiard map f :

C → C , f (s, y) = (s′, y′), is an area-preserving twist map in
these envelope coordinates [10,6]. Besides, it verifies the rigid
boundary conditions with ω− = 0 and ω+ = π .

From the the area-preserving character of the change z 7→

(s, y) and the geometric interpretation given in Remark 3, the
Lagrangian of f is

h(x, x ′) =

∫ x ′

x
y(x, u)du, y(x, u) =

1
2

˜̀(x, u)2.
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Hence, the quantity h(x, x ′) is the area bounded by the curve Γ
and the tangent lines L+

x and L−

x ′ .
Let us now consider the dual billiard dynamics outside a

circle Γ0 of radius r0. Its radius of curvature and its height
function are ρ0(s) = p0(s) = r0. Then γ0(s) = r0ns =

(r0 cos s, r0 sin s) is an envelope parameterization of Γ0, and
`0(s, t) = r0(1 − cos(t − s))/ sin(t − s) = r0 tan t−s

2 .
Let f0 : C → C be the area-preserving twist map that

models the dual billiard dynamics outside Γ0 in the coordinates
(s, y). The map f0 is integrable. In fact, it is easy to check that

f̃0(x, y) = (x + ω(y), y) , ω(y) = 2 tan−1
(√

2y/r0

)
,

where tan−1
: (0, +∞) → (0, π/2) stands for the inverse

of the tan function, and so ω : (0, +∞) → (0, π) is a
diffeomorphism.

Thus, given any integers q ≥ 3 and 1 ≤ p < q/2 relatively
prime, there exists only one radial coordinate y p/q

0 ∈ (0, +∞)

such that ω(y p/q
0 ) = 2πp/q , and so there exists just one

resonant invariant curve T p/q
0 = R × {y p/q

0 } with rotation

number p/q . It is clear that the curves T p/q
0 , 1 ≤ p < q/2,

are in one-to-one correspondence with the continuous families
C p/q

0 , 1 ≤ p < q/2, of regular p/q-gons circumscribed about
Γ0 mentioned in the Introduction. Therefore, to prove the claim
contained in Theorem 1 about the families C p/q

0 , it suffices to

prove the same claim about the invariant curves T p/q
0 , which

follows directly from Corollary 8 and the next proposition.

Proposition 11. The radial Melnikov potential of the resonant
invariant curve T p/q

0 of the dual billiard map outside the
perturbed circle (1) is

L p/q
1 (x) = 2r0 tan(πp/q)

q∑
k=1

r1(x + 2kπp/q)

− pr0

∫ 2π

0
r1(x)dx

= 2r0q tan(πp/q)
∑
j∈qZ

r̂ j
1 ei j x

− pr0r̂0
1 .

Proof. The second equality follows from a trivial computation
with Fourier coefficients, as in the previous section. It remains
to prove the first one.

Let pε(s) = r0 + εp1(s) + O(ε2) and γε(s) = r0ns + O(ε)

be the height function and an envelope parameterization of the
perturbed circle (1). Then the perturbed Lagrangian is

hε(x, x ′) = h0(x, x ′) + εh1(x, x ′) + O(ε2)

=
1
2

∫ x ′

x

˜̀
ε(x, u)2du,

where `ε(s, t) = `0(s, t) + ε`1(s, t) + O(ε2) =
pε(s)

sin(t−s) −

pε(t)
tan(t−s) + p′

ε(t).
First, we are going to show that p1(s) = r1(s), and

consequently

`1(s, t) =
r1(s)

sin(t − s)
−

r1(t)

tan(t − s)
+ r ′

1(t).
To prove it, let us consider the triangle formed by A = αε(s) =

rε(s)ns ∈ Γε , B = βε(s) = pε(s)ns ∈ Ls , and C = γε(s) ∈

Γε∩Ls . We recall thatLs is the tangent line to Γε at the point C .
We also know that dist(C, B) = |p′

ε(s)| = O(ε). If Â, B̂, and
Ĉ are the angles of the triangle, then B̂ = π/2 and Ĉ = O(ε).
The first claim follows from the orthogonality between Ls and
ns . The second one follows from the fact that the line through
the points A, C ∈ Γε tends to the tangent line to the curve Γε at
the point C (that is, to Ls) as A tends to C , because the curve is
smooth. Hence

|rε(s) − pε(s)| = dist(A, B) = dist(C, B) · tan Ĉ

= |p′
ε(s)| tan Ĉ = O(ε2),

and so r1(s) = p1(s).
Now we are ready to compute the first-order term h1(x, x ′)

of the Lagrangian. To begin with, we recall that `0(s, t) =

r0 tan t−s
2 and so

`0(s, t)`1(s, t) = r0
d
dt

{
tan

t − s

2
(r1(s) + r1(t))

}
− r0r1(t).

Then, using that h1(x, x ′) =
∫ x ′

x
˜̀0(x, u) ˜̀1(x, u)du, we get

that

h1(x, x ′) = r0 tan
x ′

− x

2
(r1(x) + r1(x ′)) − r0

∫ x ′

x
r1(u)du.

Finally, the radial Melnikov potential is

L p/q
1 (x) =

q∑
k=1

h1

(
x p/q

k−1, x p/q
k

)
= r0 tan(πp/q)

q∑
k=1

(
r1

(
x p/q

k−1

)
+ r1

(
x p/q

k

))
− r0

∫ x p/q
q

x p/q
0

r1(u)du

= 2r0 tan(πp/q)

q∑
k=1

r1

(
x p/q

k

)
− pr0

∫ 2π

0
r1(u)du,

since x p/q
k = π1( f̃ k

0 (x, y p/q
0 )) = x + 2πkp/q and r1(u) is

2π -periodic. �

5. Examples

To begin with, we consider classical and dual billiard
dynamics associated to the perturbations (1) such that

r1(θ) = α
cos θ − α

1 − 2α cos θ + α2 =
1
2

∑
06= j∈Z

α| j |ei jθ

for some α ∈ (0, 1). We note that no Fourier coefficient of
r1(θ) vanishes. Therefore, we deduce from Theorem 1 that
these perturbations destroy the families I p/q

0 and C p/q
0 for any

rational p/q. Hence, no resonant invariant curve of the classical
and dual billiard maps persists under these perturbations.

Next, we consider the following monomial perturbations of
the unit circle:

Γ n
ε =

{
(x, y) ∈ R2

: x2
+ y2

+ εyn
= 1

}
, n ≥ 0. (6)
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. L
{3
Fig. 4. Some orbits of the billiard map f : C → C inside the perturbed circle Γ n
ε

Right: n = 5 and ε = 0.015 displaying the p/q-resonances such that q ∈ Q5 =

The cases n = 0 and n = 1 have no interest, because Γ 0
ε and

Γ 1
ε are again circles. In these cases, the families I p/q

0 and C p/q
0

are preserved.
The results for n = 2 are optimal in the following sense:

no break-up is skipped by our method. Let us explain this. We
write Γ 2

ε in polar coordinates; see Remark 2. Then

r1(θ) = −
1
2

sin2 θ = −
1
4

+
1
8

ei2θ
+

1
8

e−i2θ .

The Fourier expansion of r1(θ) contains just three harmonics:
−

1
4 and 1

8 e±i2θ . Hence, we deduce from Theorem 1 that the

family I1/2
0 is destroyed under the perturbation Γ 2

ε . A priori,
no information about the other families can be deduced. But
Γ 2

ε is an ellipse and (classical and dual) elliptic billiards are
integrable,1 because of the celebrated Poncelet Porism [21,
Section 4.3]. This Porism also implies the preservation of the
families I p/q

0 and C p/q
0 for all q ≥ 3. Therefore, in this case the

sufficient condition stated in Theorem 1 is also necessary, and
so it is optimal.

The results for n ≥ 3 are far from optimal. Nevertheless,
they are useful to estimate the amplitude of the resonances in
the perturbed maps. In order to describe the results, we write Γ n

ε

in polar coordinates as before. Then r1(θ) = −
1
2 sinn θ . Let Qn

be the set of integers q ≥ 2 such that the j-th Fourier coefficient
of the function sinn θ is non-zero for some j ∈ qZ \ {0}. A
straightforward computation shows that

Q2l = {2, 4, . . . , 2l} ∪ {2, 3, . . . , l},

Q2l+1 = {3, 5, . . . , 2l + 1}

for any l ≥ 0. For instance, Q0 = Q1 = ∅, Q2 = {2}, Q3
= {3}, Q4 = {2, 4}, Q5 = {3, 5}, and Q6 = {2, 3, 4, 6}. Then,
we deduce from Theorem 1 that the families I p/q

0 and C p/q
0 are

destroyed under the perturbation Γ n
ε for any q ∈ Qn . A priori,

no information about the other families can be deduced. Thus,
some natural questions arise. What dynamical information can

1 Here, integrable only means that there exists a first integral, because elliptic
billiard have separatrices, so they are not integrable in the sense of Section 2.2.
eft: n = 4 and ε = 0.1 displaying the p/q-resonances such that q ∈ Q4 = {2, 4}.
, 5}.

be deduced from the sets Qn? Does Γ n
ε destroy the families

I p/q
0 and C p/q

0 for some q 6∈ Qn?
The first question has a simple answer. If q 6∈ Qn , the break-

up is not detected at first order in ε, and so the order of the
amplitude of the corresponding resonances is smaller than the
generic one. (Generically, the amplitude of the resonances in
area-preserving maps is O(ε1/2); see [23,17].) For instance,
when n = 4 (resp., n = 5) the biggest resonances are the ones
with q ∈ Q4 = {2, 4} (resp., q ∈ Q5 = {3, 5}). These “big”
resonances are displayed in Fig. 4.

The second question remains open. We conjecture that, for
any monomial perturbation (6) with n ≥ 3, the classical
and dual billiard dynamics is generic in the sense that all the
unperturbed resonant curves break up, no matter whether q
belongs to Qn or not. The proof of this conjecture is a work
in progress. Some experimental support on this conjecture is
given in Fig. 5, where we see that the 2/3-resonant (resp.,
3/4-resonant) invariant curve breaks up under the monomial
perturbation of degree four (resp., five). We have checked that
other resonant curves also break up.

We also stress that, in accordance with the answer of the
first question, the amplitude of the 2/3-resonance is smaller
than the one of the p/4-resonances when n = 4, whereas the
amplitude of the 3/4-resonance is smaller than the one of the
p/5-resonances when n = 5; compare Fig. 4 with Fig. 5.

To end this section, we note that the polynomial
perturbations

Γ n,α
ε =

{
(x, y) ∈ R2

: x2
+ y2

+ ε(x sin α + y cos α)n
= 1

}
,

α ∈ T (7)

are equivalent to the monomial perturbations (6). This has to
do with the fact that Γ α,n

ε is obtained from Γ n
ε = Γ n,0

ε by
means of a rotation of angle α, and rotations have no effect on
the (classical or dual) billiard dynamics. Hence, we know that
under the perturbation (7) the p/q-resonant curves with q ∈ Qn

break up, and we conjecture that the others also break up for any
n ≥ 3 and α ∈ T.
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e
Fig. 5. Some orbits in a narrow strip of the phase space of the billiard map insid
ε = 0.015 displaying the 3/4-resonance.

6. Conclusion and open problems

In this paper we introduced the radial Melnikov potential
to study the break-up of resonant invariant curves for
perturbations of integrable twist maps. Once we have fixed
some resonant curve of an integrable twist map and some
perturbation, the curve breaks up when the radial Melnikov
potential is not constant. This is a first-order condition, and so it
is sufficient but not necessary for the break-up. Then we applied
the theory to the classical and dual billiard maps associated
to small perturbations of circular tables. These problems are
very nice, since the previous first-order condition can be stated
directly in terms of the Fourier coefficients of the perturbation
of the circle, giving rise to a simple sufficient condition for
the break-up of resonant curves. Finally, we studied some
perturbations with the above condition and we formulated a
conjecture.

This research can be continued in several ways. For instance,
one can study perturbations of elliptic billiards which are a bit
harder because they have no global “action-angle” variables. In
this case, from our experience with related separatrix splitting
problems [7], we believe that, to derive the non-constant
character of the Melnikov potential, we must study its complex
singularities instead of its Fourier coefficients.

Another problem is the extension of the current theory to
perturbations of 2n-dimensional completely integrable twist
maps, which is more or less done in [25]. Next, one could
try to apply the theory to study the break-up of the resonant
invariant tori that appear in billiards inside spheres or ellipsoids.
To be more precise, we hope to obtain results about the break-
up of those resonant tori very similar to the results about the
splitting of separatrices for billiards inside perturbed ellipsoids
obtained in [8,5]. The bifurcations of periodic orbits can also be
studied, following the methods contained in [18] for the study
of homoclinic bifurcations. The fact that the billiard dynamics
inside symmetric curves is reversible could be useful, because
it reduces the problem of finding periodic orbits to a one-
dimensional search.

The last question we want to mention is to find some higher-
order conditions to determine whether a break-up takes place if
Γ n
ε . Left: n = 4 and ε = 0.1 displaying the 2/3-resonance. Right: n = 5 and

the Melnikov potential is constant. This is a first step towards
the conjecture about the break-up of the families I p/q

0 and

C p/q
0 under the perturbation (7) for any n ≥ 3 and α ∈ T.

Besides, once some higher-order condition ensures the break-
up of a resonant curve, the amplitude of the corresponding
resonance is very small, since the perturbed map is very close to
an integrable one in a neighborhood of the resonance. We plan
to estimate the amplitude of these small resonances using the
techniques explained in [17].
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