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Abstract

We present a numerical study of some billiard tables depending mertarbative parametee > 0 and ahyperbolicity
parameter: > 0. These tables are ellipses o= 0 and circumferences in the lintit— O*. Elliptic billiard tables are integrable
and have four separatrices, which break up when0.

We conjecture, based on numerical experiments, that-as0" the area of the main lobes of the resulting turnstile (which
can be interpreted as the difference of the lengths of the symmetric primary homoclinic billiard trajectories) behaves like an
exponential termee~""/" times an asymptotic suari@jj>0 oz_jhzf such thatg # 0. This series is Gevrey-1 of type= 1/2r2,
so that its Borel transform is convergent on a disk of raditis i the limite — 0, the serie§:jZo a?hz-" is an analytic function
which can be explicitly computed with a discrete Melnikov method. The asymptotic @jig@wjhzi associated to the second

exponential ternae=2"/" has the same properties. Finally, we have detected stmmest invisiblehomoclinic bifurcations that
take place in an exponentially small region of the parameter space.

Our computations have been performed in multiple-precision arithmetic (hamely, with several thousands decimal digits)
and rely strongly on the expansion of the local invariant curves up to very high orders (namely, with several hundreds Taylor
coefficients). Our programs have been written using the PARI system.
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1. Introduction

Birkhoff [2] introduced the problem afonvex billiard tablesis a way to describe the motion of a free particle
inside a closed convex curve such that it reflects at the boundary according to the law “angle of incidence equals
to angle of reflection”. He realized that this billiard motion can be modeled by an area-preserving (in fact, twist)
diffeomorphism defined on the annulus. If the curve is an ellipse, its billiard map has separatrices, and if it is
close to a circumference, the square of its billiard map is close to the identity in a portion of the phase space.
The splitting of separatrices of area-preserving maps close to the identity is one of the most paradigmatic fields
related toexponentially smalphenomena. The field reached its maturity with the work of Lazutkin. He gave an
asymptotic formula for the splitting size in tletandard mapand provided the basic lines of a prddb]. His
work influenced strongly the research in the field and many papers are based on his ideas. Lazutkin’s formula
was fully proved 15 years later by Gelfreift0]. The current state-of-the-art of the field is describefllR] (see
also Sectior?).

Our goal is to present several numerical results about the exponentially small splitting of separatrices that
takes place for the billiard maps associated to some perturbed almost circular ellipses. This question was pose
more than 10 years ago by Taban({®2], Section IX) in the case of a concrete quartic perturbation. The general
case was posed ifd]. There do not exist (neither analytical nor numerical) results on this problem in the
literature.

To keep the technicalities of this introduction to a minimum, we shall describe the main results of this paper
outside of the frame of twist maps, but then we need to explain what is the length of certain kind of billiard
trajectories. That is very clear for periodic trajectories, but we need to consider homoclinic ones.

The chordsof a curve are the segments perpendicular to the curve at their ends. To any chord is associated a
two-periodic trajectory. If this trajectory is hyperbolic, the chord is caligderbolic For instance, the major axis
of an ellipse is a hyperbolic chord. (In this paper, ellipses never are circumferences.)

Let7 be a billiard trajectory homoclinic to a hyperbolic chord of a cutyevhose bi-infinite sequence of impact
pointsis..., c_1, cop, c1, . . .. Let£ be the length of the chord. By hyperbolicity, the sequence of impact points tends
at an exponential rate to the ends of the chord. Thus, the series

Length7:= Z (Ick+1 — ckl =€)
keZ

converges to a negative quantity called themoclinic) lengthof 7.

Billiards inside ellipses are calledliptic. Elliptic billiards are integrable and have separatrices. The trajectories
contained on the separatrices of an elliptic billiard correspond to rays passing through the foci of the ellipse
and they converge to the major axis of the ellipse. Using this geometric characterization and a straightforward
telescopic argument, one realizes that the lengttamf homoclinic trajectory inside an ellipse is equal to
minus the focal distance of the ellipse. The fact that all the homoclinic lengths coincide is a direct consequence
of the existence of the separatrices. We shall take the difference of lengths of some perturbed homoclinic
trajectories as a symplectic invariant measure of the splitting of the separatrices under perturbations of the
ellipse.

Now, to be more precise, we consider the perturbed ellipse

2 2 2n
X €
C€={(x,y)eR2:2+y+ y2n=1} @)
a 14

where O< b < a,e > 0,n > 2,e = (1 — b?/a®)Y/?, andy = b/e. Heree is theperturbative parameter2. is the
degree of the perturbatiga andb are thesemi-axes lengthaf the unperturbed ellips€p, ande is theeccentricity
of Co. The diameter of’. has length &, its ends are the points-¢, 0) and is always hyperbolic. Thg/perbolicity
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parameter: > 0 determined by

a h a ) h h
5= cosh<2> , ; = sinh (2) , e= tanh(z)

guantifies how much hyperbolic it is, sinbeis the characteristic exponertf the two-periodic trajectory along
it, see SectiorB8.2 The intrinsic parameters of the problem we are dealing witheaaad h. Hence, we shall
express any quantity in terms of them. The cufyas the ellipsex?/a? + y?/b? = 1 fore = 0, and it tends to the
circumference® + y? = 42 in the limith — 0% for any fixede. The perturbative monomiay?*/y?" is O(eh?"),
sincey~! = a~1sinh(:/2) = O(h).

The smooth convex curv€,. has two axial symmetries, which play a keyle. A billiard trajectory inside
C. is x-axial (respectively,y-axial) when it is symmetric with regard to theaxis (respectivelyy-axis). In-
side Co there are foux-axial and foury-axial homoclinic billiard trajectories (s€€ig. 2), which persist under
symmetric perturbationf7]. Let 7 (respectively;7_) be any of thesg-axial (respectivelyx-axial) persistent
homoclinic trajectories insid€,. The following asymptotic expansion for the difference of homoclinic lengths
A = Length7 [ — Length7} has been numerically established

Axaee ™M ath? (h - O, efixed).
Jj=0

The symbolx has been used to emphasize the asymptotic nature of this series. In other words, if we retain only
finitely many terms of the right-hand side, the error will be of the order of the first discarded term.

The dominant asymptotic coefficieaf does not vanish in the range<Oe < 1 for n = 2—4. Therefore, the
homoclinic lengths no longer coincide and the separatrices really split under the perturbations of degree four, six
and eight. In addition, although the first coefficients of the asymptotic s@i}ai% aj.hzf decrease, an accurate

computation of several hundreds of its coefficients shows that it is Geaeyl so it diverges for all # 0. In fact,
it is Gevrey-1 of typep = 1/272, since the following asymptotic expansion holds

€ .

(2?2 -
o 1= Loal + > BT (> +o0).

j= — T =
€(2j+ 2)! =

We have computed the limit5, and the first coeﬁicientgf with more than forty decimal digits for = 2—4 and
fore =10 % withk = 1,2, ..., 9, 10, 50. The values obtained fer= 1050 are a very accurate approximation of
the limitsa®, = lim._o a5, andp? = lim .o B5. Surprisingly, if the perturbation is quartie:= 2, thenad, = —8
and the first limit valueaglO are rational combinations of powerssof, namely

4 4 8 8
B="2 RB--2t B=Z -7 BT
We have not found similar results for the perturbations of degree six and eight.
We hope to obtain some analytical results about the exponential smallness of the separatrix splitting in future
papers. As a first step, we would like to check that the separatrix splitting is exponentially small compaired to
the limit 2 — O for a fixede.

1A serieszi fjxf is Gevrey-r of typgo when there exist constan€ ¢ > 0 such that f;| < Cp'iI(rj + £), whereI'(z) stands for the
Gamma function. When = 1, the Borel transfornz,. £3s972/(j — 1)! converges in the disks € C : |s| < 1/p}.
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The experiments presented up to now are very similar to the ones contairfé on perturbed weakly
hyperbolic McMillan maps. We note that the study of billiards is computationally more expensive (by a factor
10) than the study of McMillan maps. In spite of this drawback, the experiments in the current paper are more
accurate due to three factors: (1) the hardware is faster (we have used a Beowulf cluster with several tens of
processors, instead of a single computer); (2) the software is better (we have written our programs using the PARI
system[1], instead of hand-made routines); and (3) the algorithms have been tuned in several tricky ways. The
realization of these improvements has been an incentive to push the experiments beyond the first exponential term
C. Simb has performed similar experiments for tandard mamnd theHénon mapalthough he never published
them.

To explain this new challenge, lett be the homoclinic invariants (introduced[®], see also SectioR.1) of
the symmetric trajectorieS';'E. As usualw™ andw™ have the same asymptotic behavior, but with opposite signs.

In fact,

* = +on2aeh 26y ah? (h — 0T, efixed)
Jj=0

WherezjZO aj-hzf is the same series that appeared in the expansiah dhus, it is quite natural to study the

asymptotic behavior of2 := w* 4 w~. There are reasons to guess tfzahas order eznz/h, see SectioR.5 We
have checked that this guest is correct, since

=040 x 1672aeh~2e~ 27/ Za);hzj (h — 0T, efixed)
Jj=0

for some new seriegjjZO wjhzj, which is also Gevrey-1 of type = 1/272, although the analysis of this asymptotic
series has been more delicate.

As ¢ — 0, the Gevrey coefficients$ andwS tend to the Taylor coefficient? andw? of a couple of analytic
functions (in the variablé) which can be explicitly computed with a discrete Melnikov method. For instance,

n—2 i 2j 2
0 ayig2\ (/A ng? 2 (—1)/(2n)%
o = (=147 ;(2j+1)!’ =(-1r8 Z @i+

Obviously, the errorsaj- — a9| = O(¢) and |a)j- — a)?| = O(¢) are not uniform in the index, since the Taylor
coefficients verify someotential boundswhereas the Gevrey coefficiergmw at a factorial rate, seRemark 3

A similar understanding of the next exponential terms seems unreachable with the present techniques, and not fo
computing limitations. For instance, in the same way that the sum of the homoclinic invarsiaatsde ™ cancels
the first exponential term jointly with its whole asymptotic series, so that it leads naturally to the study of the second
exponential term, the combinati@f(wt — w~)/472 — A cancels simultaneously the first and second exponential
terms (jointly with their asymptotic series). But, although this quantity seemsto be okarder37°/ ash — 0F ,
we have been not able to filter any information about the asymptotic series that this third exponential term could
have. There are intrinsic mathematical limitations that obstruct this study.

The last question that we have tackled out is the analysis of the homoclinic bifurcations that take place inside
the perturbation of degree six

2 2 2 4

X<y y y
Cy=14(x,y) eR?: = + == 4d) = =1p.
¢ {(xy) a2+b2+6(y2+)y4 }
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Once fixede andh, we look for changes in the topology of the perturbed invariant curves whebiftiveation
parameter dvaries. It turns out that there exist three bifurcation valles< dp < d_ such that

d=dy =>wt=0, d=dy= A=0.

At the bifurcation valuel = d,. (respectivelyd = d_) the separatrices have a cubic tangency at the Yeaxial
(respectivelyx-axial) persistent homoclinic orbits and the number of primary homoclinic orbits changes. In the
weakly hyperbolic case, these bifurcationsaraost invisiblesince they take place in an exponentially small (with
respect td) range ofd. Concretely,

Di=d —dy=<e™ /" 512 (h— 07, efixed)
j=0

for some asymptotic serleE =0 (Séhzf such thatsy = 872 + O(e). (It is worth mentioning that there are other
homoclinic bifurcations for blg values df, but they fall out of the scope of this work since they are perfectly
visible.)

The experiments get complicated by problems of stability, precision, and time. This forces us to use a
multiple-precision arithmetic, to expand the invariant curves up to high order, and to take advantage of symmetries.
The methods go back to C. Sinf19], and were first applied if8]. They are also explained i6]. The main
obstacle is the computation of exponentially small quantities with much more precision than the usual one;
namely, with a relative error less than 8% in the most extreme cases. Hence, the use of a multiple-precision
arithmetic is unavoidable, due to the requirement of a very high precision in the final result, and the cancellation
of order e 27/ produced when adding the homoclinic invariants. For sample, wher0.002, the computation
requires an arithmetic with 6500 digits and the expansion of the invariant curves up to order 1100. It takes two
to three hours, depending on the degre@n a single Xeon 2800 processor running Linux. The computations
have been launched in a Beowulf cluster of Xeon processors. The programs have been written using the PARI
systen1].

We complete this introduction with a note on the organization of this paper. In S&;tiwa introduce some
concepts about the splitting of separatrices for area-preserving maps and we recall some results about exponentially
small phenomena. In Secti@ we present the convex billiard tables studied through the rest of the paper. After-
wards, we describe in Secti@h the results on the exponentially small splittings that take place under monomial
perturbations. The study of the primary homaoclinic bifurcations under a binomial perturbation is contained
in Section5. The details on the Melnikov and numerical computations are relegated to AppeAdaed B,
respectively.

2. Notations and a bit of history
We introduce some quantities used to measure the size of the splitting and we reproduce several results on their

exponentially smallness. For the sake of space the exposition is very compact, sometimes even without precise
statements of the theorems. More details can be found in the siii2y

2.1. Homoclinic invariants

Let f : M — M be an analytic exact area-preserving diffeomorphism defined on an exact symplectic surface
M. Let U = —d6 be the exact symplectic two-form such thyats = U. Then there exists a functiah: ¥ — R
such thatf*6 — 6 = dL. This function is theyenerating functiomf the magf.
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Let m, be a saddle point df Then the eigenvalues off@n ) are of the form. andx 1 for some reak such
that|A| > 1. Squaring the map if necessary, we can assume.tkal. The quantity: > 0 such thak = €’ is the
characteristic exponerdf the saddle point.

It is well-known that a saddle point,, hasstableandunstable curves

W(meo) = {m € M : lim,_ 4o dist(f"(m), mso) = 0},
WH(mso) = {m € M : lim,_, _ dist(f" (m), mx) = 0}.

They are analytic immersions of the real lineMhwithout self-intersections and there exist some analytic parame-
terizationsn'S: R — WS such that

mUS0) = moo, () = m'Gr). ) =m* ().
Itis convenient to pass to the parameter In r (respectivelyr = — Inr) on the unstable (respectively, stable) curve
by settingy(r) = mY(€') andyS(r) = mS(e™?). Clearly, the functiong/*S(¢) satisfy the conditions

Jim g0 =mee, M U0 =mee fWU0) = YU+ D).

Finally, let O = (m,),.cz be a homoclinic orbit tan, passing through a pointg (that is,m, = f"(mg) and
lim,,_, 400 M, = Mmyo) such thainS(r¥S) = 4S(t45) = mg for some parameters's > 0 andr*S = In 45,
Then theLazutkin homoclinic invariantf mg is defined as the quantity

w(mo) := B, (%) = r'rSBmirt), mS(rd).

It does not depend on the point of the homoclinic orbiln,) = w(mg) for all n, so that we can write» = w(0).
Moreover,w is invariant by symplectic changes of variables and is proportional to the splitting angle. In particular,
o(0) = 0if and only if the invariant curves are tangent al@hdr herefore, it is a very suitable quantity to measure
the splitting size on a homoclinic orbit.

On the other hand, theomoclinic actiorof the orbitO is the quantity

W[O] 1= (L(mn) — L(moo)).

nez

By hyperbolicity this series is absolutely convergent. Now, let us suppos@that (m,),cz andO~ = (m} ),z
are a couple of homoclinic orbits such that the pieces of the cui$betweennd andmg do not contain
other points of these orbits. These pieces enclose a region cdthbe & he areaA of this lobe is also invariant
by symplectic changes of variables. It is another classical measure of the splitting size. UdtarKey-Meiss-
Percival action principld17], we get that

A= WO - W0 = 3 (Limy) — Lim})).
nez

Finally, we recall that a homoclinic orb® = (m,),cz is calledprimary when the pieces of the curvég!S
between the saddle point,, and the homoclinic pointig have only their ends in common. These orbits are very
important, because if there is one homoclinic orbit, there are an infinity of them, but only a finite portion of them
are primary. And this portion suffices to understand the structure of the homoclinic tangle. The homaoclinic orbits
mentioned in this paper are always primary.
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2.2. The ole of the reversors

Many area-preserving maps have a very useful property which simplifies very much the search of homoclinic
points. Let us explain it.

We suppose that the diffeomorphigrhas a reversoR, that is, an involutive map such thito R = Ro f~1.
We also assume that tisgmmetry line

FiX{R} :={m € M : R(m) = m}

is a smooth curve in the surfadé. Finally, we suppose that, € Fix{R}. Then the reversor interchanges the
invariant curvesR(W"S) = wsY,

Under these assumptions, the points on the intersection of the invariant curves with the symmetry line are a special
kind of homoclinic points, usually callesymmetric From a numerical point of view, the symmetric homoclinic
points are easier to compute, since the symmetry lines often have closed expressions. Furthermore, if a reversible
diffeomorphism has an invariant curve transverse to a symmetry line, then the associated symmetric homoclinic
points persist under small reversible perturbations of the diffeomorphism.

On the other hand, R is a reversor of, then f o R is another reversor. Therefore, the reversors (and so their
symmetric homoclinic orbits) appear in natural couples. That is, if a reversible map has a symmetric homoclinic
orbit O* passing through a poimtzar € Fix{R}, usually it has another symmetric homoclinic orbit passing
through a poinin, € Fix{f o R}. Then the homoclinic invariants™ = w(0%) and the lobe areA enclosed by
these orbits are the most natural quantities to measure the splitting size. We present some examples in the next
subsections.

2.3. The standard map and theshidn map

Probably, the most celebrated example isdtendard maplefined by
SM:T? - T?, SM(x, y) = (x + y + €Ssinx, y + € sinx).

Itis area-preserving and reversible. The nRgp, y) = (2r — x, y + € sinx) is one of the reversors, beiig = r} its
symmetry line. Ife > 0, the origin is hyperbolic and its characteristic exportdatdetermined by = 4 sint?(h/2).

Letw™ andw™ be the Lazutkin invariants of the symmetric homoclinic orbits passing through the first intersection
of the invariant curves with the symmetry lines of the reversdesd SMo R, respectively. LeA be the area of

the lobe enclosed between the couple of symmetric homoclinic orbits. Then the following asymptotic formulae
hold

2 . 2 .
T = +4gh2e /0 Za)jhzf, A =27 lg ™ /h Za)jhzf
j=0 j=0

for some real coefficients; that can be determined through some auxiliary problems independentToese
asymptotic formulae were first stated[B]. A complete proof can be found [10]. The fact that the quantities
27°h—?A, wt, and—w~ have the same asymptotic expansion can be understood with an argument based on the
splitting function, see Sectich5.

The first asymptotic coefficienbg ~ 1118827706 is thed_azutkin constantSeveral hundreds of asymptotic
coefficientsw; were computed by C. Sii His experiments suggest that the se@}szo a)jhzj is Gevrey-1 of type

p=1/272
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As a second example, let us considerlt@on map
HM: R? > R%,  HM(x,y) = (x + y + ex(1 — x), y + ex(1 — x)).

As before, the origin is a hyperbolic fixed pointdf> 0. The relation between the characteristic expoimesuad

€ is the same than in the previous sample. TlEaéh map is reversiblek(x, y) = (x — y, —y) is a distinguished
reversor, andly = 0} is the symmetry line. The Lazutkin invariants of the associated couple of symmetric homoclinic
orbits verify the asymptotic formulae

2 .
w* =< £4mh~%e N "0 n?.
jz0

This asymptotic series has nothing to do with the one of the standard map. | do not know references with a
complete proof of this asymptotic expansion. The first asymptotic coeffiaignt 24744255935525 can be

found in [3]. The fact thatwg # 0 was analytically established jii11]. Several hundreds of digits afy are

listed in[20]. Some numerical experiments performed by C. &8uggest that this new asymptotic series is also
Gevrey-1.

2.4. McMillan maps and Melnikov methods

Now we present a qualitatively different kind of example. Concretely, we study perturbations of some integrable
standard-like maps first introduced by McMill§1B]. Although these perturbed maps are by far less known than
the standard or the @hon maps, they have the following interesting property. They depend on two parameters:
the perturbation strengthand the characteristic expondnbf the origin. Fore = 0, they are integrable with a
separatrix to the origin, whereas they asymptote to flows with homoclinic connectibns-a&". Moreover, some
explicit exponentially small estimates of the splitting size can be obtained using a discrete version of the Melnikov
method. It represents a strong coincidence with the billiard maps here studied.

To begin with, let us consider the area-preserving map

2uoy
1+ y2

FIR2 SR flxy) = (y, et +ev/<y))

whereV(y) = 3, .4 V,»?" is anyeven entire perturbation. Jf := 10 + V1 > 1, the origin is a hyperbolic point
whose characteristic exponéris determined by the relation = coshi. This map is reversible amk(x, y) = (y, x)

is a reversor whose symmetry line is the bisectyix= x}. Let A be the area of the region enclosed by the invariant
curves between the couple of symmetric homoclinic orbits contained in the first quadrant.é)jhier@®(of A can

be computed using standard ideas in Melnikov theory:

A=A €) = eAr(h) + O(), Ax(h) = e ™ /(8 V(27) + O®2)

whereV(g) = D ons1 V,£21=1/(2n — 1)! is the Borel transform o¥/(y), see[5]. Thus, the Melnikov terna A1(h)
gives the right asymptotic behavior Afwhenh is fixed, A1(h) # 0, ande — 0. On the contrary, wheh — Ot
the Melnikov prediction is, at a first glance, useless, unddsexponentially small irn.

The paper$5] and[6] are devoted to clarify the asymptotic behaviorfofish — OT. In the first paper, it is
analytically established that jf > 6 then

A =ee ™/ M@rV(27) + O(h?) (h — OF, e = hP).
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On the other hand, the main conclusion of the numeric experiments presented in the second pape¥iithat if
or V'(y) = y3 then

A=ee ™My oh¥ (- OF, efixed)
Jj=0

where}” ;. a5h?/ is Gevrey-1 of typep = 1/272 andafy = 8V (27) + Ofe).
2.5. The splitting function and the splitting potential

We describe briefly some ideas originally proposed by Lazutkin, which were the first step to prove the expo-
nentially smallness of some splitting quantities. Besides, they help to understand the close relation among several
splitting quantities. Although these ideas are semi-heuristic in the most general frame, their validity has been
established rigorously in some concrete cases.

After Lazutkin, the standard way to prove the exponential smallndssfithe above-mentioned quantities is to
construct a real analytie-periodic functionw(r), called thesplitting function whose main properties are:

(1) Itsroots are in one-to-one correspondence with the primary homoclinic points.

(2) The area of the lobe enclosed by the separatrices between two primary homaoclinic points is equal to its integral
between the corresponding roots.

(3) The Lazutkin invariant of a primary homoclinic orbit is equal to its first derivative at the corresponding root.

(4) Ithas zero meanfé1 ¥(r)dr = 0.

Next, this function is analytically extended to a complex strip of the folm= {t € C : |3t| < §} for some positive
width § and it is bounded in a bit narrower strips, usually of width- 2. Hence, its Fourier coefficients are
exponentially small, and so the splitting quantities also are. In many cases, these quantities haw&eofar,
for someB. We note thaé = = for the Henon map, whereds= /2 for the standard map, the McMillan perturbed
maps, and our billiard maps.

Using that¥(¢) has zero mean, we find anotheperiodic function®(¢), called thesplitting potentiaJ such that
¥(r) = O'(r). We can chos®(z) in such a way that it has zero mean. Besides, when the map is reversible, the
splitting potential is even and, normalizing it, one can impose that the symmetric primary homoclinic orbits are
located at = 0 andr = h/2. Hence,

h " — ot
A:@(2>—@(0), ot =0"0), w =6 (2)

We write the Fourier expansion of the splitting potential as

o) =—3 Y _ O, cos(ln),

n>1

whereT = 2r/ h. Inwhat follows, we suppose thé, has order @279/ which is rather natural, since the splitting
potential ish-periodic and can be extended to the sfifip Then we can approximate the first Fourier coefficients
of ©(r) in terms of the splitting quantities* andA. Firstly, we note that

A=) Ou1, T=4> 0’6y, A=) (2n1+1P 0.

n>0 n>0 n>0



158 R. Ramfez-Ros / Physica D 210 (2005) 149-179
whereX := (ot + w™)/T? andA = (0™ — w~)/T?. Therefore, we get that

oA A4
1N 8 ’ 2N47 3N 8 M

These digressions clarify why the quantitie€2—2A, w*, and—w»~ have the same asymptotic behaviohas-
0*. They also suggest that the sutn:= ot + v~ ~ 1672426, and the combination?(wt — w™)/47° — A
have sizes of orderé™/" and e 57/ respectively. Thus, we have found candidates to study the second and third
exponential terms that govern the splitting.

3. Billiard tables

We collect some classical results on convex and elliptic billiards. Most of them can be found in the mono-
grapheg14,21] although we have taken the notation fr¢fi3], Section 9.2). We also present the perturbations we
shall study later on.

3.1. Convex billiard tables

Let C be a closed convex curve in the Euclidean pl&3eLetz : T — C be a parameterization of this curve,
whereT := R/2nZ stands for the configuration space. Finally, let us consider the phase space

A:=Tx(0,nx)={06,r):0€T,0<r<m} (2)

Then we can model the billiard dynamics insidéy means of the map (o, r) = (¢', ') defined as follows. If the
particle hits the curve at a poiat= ¢(f) € C under an angle of incidencethe next pointis’ = ¢(¢') € C and the
next angle of incidence is. This map has the following properties:

e Regularity.If the curve is smooth or analytic, so is the map.

e Hyperbolicity.Let c;. = ¢(6+) be the ends of a chord & and?¢ = |c; — c_|. Let ks be the curvature of at
c+. Then the chord is hyperbolic if and only i + «_)¢ > 4. When this condition holds, the characteristic
exponent: > 0 of the associated two-periodic points is determined by the relation

2cosh(g> =/ (ky + k)L

e Reversibility.If Cis symmetric with regard to both axes of coordinates, there exists a parameteriZéfien
(x(0), y(0)) such thatx(0) is even,y(0) is odd, and; (6 + =) = —¢(6). Under this choice, the map is reversible,
R(6,r) = (= — 6, r) is areversor, and

mez{@ﬂeAw=g WMM}

e ExactnessLet p = |£(0)| cosr andp’ = |z(¢)| cosr’. The map is exact in th@(p) coordinatesp’'dd’ — pdd =
dL(6, 0"), whereL(0, 0') = |¢(0) — ¢(9')| is thegenerating functiomr Lagrangian

e Twist characterGivenc = ¢(9), the function (0x) > r — 6'(0, r) € T \ {0} is a diffeomorphism. Hence, given
two different impact points andc’, there exists a unique billiard trajectory framto ¢’.

e Lagrangian formulationThe billiard dynamics can be expressed by means of implicit difference equations of
second order: given three impact poiets, ¢, ¢+ € C such thate_ = ¢(0-), ¢ = ¢(0) andcy = ¢(6+), there
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exists a billiard trajectory from_ to c; passing througk if and only if
dL(6_,0) + 01L(6, 64) = 0.

e Variational formulation.The billiard trajectories]” = (ci)rez € CZ are in correspondence with the (formal)
critical points of theaction functional

WiT: > R, WOkez] = Y L(Ok-1.6k)
keZ

by means of the relatior, = ¢(6;). We shall writeW[T] = W[(0x)rez]-
e Actions and lengthdf 7 and7 ~ are two billiard trajectories homoclinic to a hyperbolic chordpthe area
of the region enclosed by the invariant curves between them is equal to

A=W[T]—W[T'] =LengthiT ~ — Length7 * =: A.
3.2. Elliptic billiard tables

Let f : A — A be the billiard map inside the ellipse

2 2
C:{(x,y)eRzi;Cz—i—zz=l}={§(9):9€7f} 0<b<a,

wherez(0) = (acosb, bsind) is the parameterization we shall use.

The chord whose ends are the vertexes= (+a, 0) is hyperbolic, becaude= |c, — c_| = 2a andk+ = a/b?,
sothat k4 + x_)¢ = 4a?/b? > 4. Besides, its characteristic exponhig determined by the relation cogh@) =
a/b, as mentioned in the introduction.

We recall now a nice geometric property of the ellipses. Let

y2

+b2—k2

c(r) = {(x, y) e R?: = 1} 22 £ b2, a?

a? — A2

be the family ofconfocal conicgo the ellipse. It is clear thaf(x) is an ellipse forr? < b? and a hyperbola for
b? < 12 < a®. No real conic exists fok? > 4?. Concerning the degenerate casés {h?, a®}, we first note that
for , — b~ (respectivelyr — bT) the conicC(}) flattens into the region of theaxis enclosed by (respectively,
outside) the foci of the ellips€ = C(0). On the other hand, the hyperbola flattens into the whedgis when
A—a .

The fundamental geometric property of elliptic billiards is thay segment (or its prolongation) of a billiard
trajectory inside the ellipse C is tangérib one fixed confocal coni@(). Thus, the confocal conics araustics The
notion of tangency in the degenerate cases is the following. A ltaagent taC(b) when it passes through one of the
foci (£¢, 0), wherec = v/a? — b2. A line istangent toC(a) when it coincides with thg-axis. As a by-product, we
obtain thatthe elliptic billiard map is integrable, since the functibn A — Ris afirstintegral. Using the symplectic
coordinatesq, p) defined in the previous subsection, this first integral becori@s p) = b2 + 2 sin? 6 — p?.

The phase portrait of the elliptic billiard médgs displayed inFig. 1 It shows that thexo-shaped level set
A~1(b) = {(p, 0) : p = £csinb} contains the two-periodic points and the four separatrices connecting them.

2 |n a projective sense, that is, the points of tangency can be proper or improper.
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Fig. 1. Phase portrait of the elliptic billiard map i ) coordinates. The solid squares are the hyperbolic two-periodic points. The thick lines
are the separatrices. The thin lines are the symmetry lines. The dashed lines are some level curves of the fisstpintggral

The ellipse is symmetric with regard to both axes of coordinates. Therefore, the elliptic billiafdsneyersible.
LetRbe the reversor introduced in Sect®d, whose associated symmetry lirgs= Fix{R} and/_ := Fix{f o R}
are also shown iffig. 1L Theoo-shaped level set~1(b) intersects transversely each symmetry line at four points.
Consequently, inside the ellipse there are foaxial and foury-axial homoclinic billiard trajectories (sd€g. 2),
which persist under symmetric perturbations.

3.3. Perturbed elliptic billiard tables

We restrict our study to the polynomial perturbations that can be written as

2 2 2
Céz{(x,y)eRz:zz—f-ZzwLeP()y/z):1} 3)
for someP(s) € R[s] such thatP(0) = P’(0) = 0 andn := deg|P(s)] > 2. Heree is theperturbative parameter
2n is thedegree of the perturbatiomndy = b/e, wheree = (1 — b%/a%)/2 is the eccentricity of the ellipse.

This perturbation preserves the axial symmetries of the unperturbed ellipse, the two-periodic hyperbolic trajectory
fromc_ = (—a, 0) toc4 = (a, 0), and the characteristic exponérf this trajectory. The last claim follows from
the conditionP(0) = P’(0) = 0. It suffices to realize that neither the length- |c.. — c_| nor the curvature . of
C. atcs depend onr.

Fig. 2. The two kinds of axial homoclinic trajectories inside an ellipsaxial (left) andy-axial (right). The foci are marked with squares.
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Fig. 3. The homoclinic tangle far = 1, b = 4/5, ¢ = 2, andP(s) = s2.

On the other hand, this kind of perturbation always splits the separaiiceEhat is, the invariant curves no
longer coincide, although they still have some common pointshémeoclinicpoints, which creates a complicate
homoclinic tangleln Fig. 3, we show a small part of this homoclinic tangle for a quartic perturbation. In the figure
there are just eight primary homoclinic orbits: the axial ones, and all primary lobes have the same geométtic area:

To end, we recall that symmetric perturbations preserves the axial homoclinic trajectories, which become the
key objects for the study developed in this paper. HencefortH] Jet(respectively,7_) be any of the foury-
axial (respectivelyx-axial) persistent homoclinic trajectories inside the perturbed ellipsevtdie the Lazutkin
homoclinic invariant of7 =. Finally, letA = A = Length7_ — Length7} and2 = o™ + o™,

4. Exponentially small separatrix splittings in some billiard tables

Before to present our numerical results on the exponentially small asymptotic behavior of the splitting quantities
A ands2, we shall derive some analytical predictions about it obtained by using a discrete Melnikov method.

Melnikov methods are very well-known techniques for studying the splitting of separatrices under small perturba-
tions of dynamical systems with homoclinic connections. Ifthe perturbation is of @rithen a standard computation
provides the first order term inof almost any splitting object. In the frame of area-preserving maps, this has to do
with the fact that the splitting potentiél(r) introduced in Sectio@.5has the form®(r) = ¢L(z) + O(e?), for some
function L(z), called theMelnikov potential

Coming back to our billiard problem, and for the sake of brevity, we shall restrict our digressions to the pertur-
bations(3) of the form P(s) = s with n > 2. They correspond to the monomial perturbations introduc€d)in
In [7], it is shown that the Melnikov potential associated to these perturbations is

Ly(t) = a€ > " £,(t + kh), (4)

keZ

wheret, (1) = —v(t)sect”?s andv(r) = sechf — h/2)sech{ + h/2). Then if

A= A(h, €) = eA1(h) + O(?), 2= 2(h, €) = e21(h) + O(?)
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are the splitting quantities we want to study, their Melnikov terms are

Avh) = Ly (;’) _L,0). @)=L (’;) +L7(0). 5)

These Melnikov terms turn out to be exponentially smal.itNamely,

A1(h) = ae~™/"aO(h) + O(e~37°/ 1y,

2 5 (h — 01), (6)
21(h) = 1672ah—2e=27/h0(h) + O(h—2e~47"/h)

wherea®(h) andw®(h) are some even analytic functions such that

n—2 j 2]
ag = a’(0) = (-1)4n ;0(2]41)! (7)
n—2 j 2j
0 — (eSS CYE
g = %0) = (-1) B”ZFZO (2j +1)!

The functionsx®(h) andw®(h) can be explicitly computed for any > 2. As a sample, when the perturbation is
quartic:n = 2, they are given by

O(h)  16m?sintP(h/2 5h2  T7Th*
w(): | (/)=4712<1—+ +) (8)

2 h2 cost(h/2) 12 720

The proof of these claims is rather technical and it has been defersppendix A.1 The key point is the
elliptic character of the Melnikov potential.

Thesplitting constantag anda)g defined in(7) do not vanish for any > 2, because is transcendental. (Nev-

ertheless, lim_ 100 ag =1lim,- 10 a)8 = 0.) In particular, we have the following exponentially small Melnikov
predictions

oO(n) =

A~ aee_”z/hocg, 2~ 16712a€h_28_2”2/ha)8 9)

for small enough values di and e. However, the interpretation of the sentence “small enough” is crucial for
understanding the different questions to be asked. Of courseeditar case—fixed 2 > 0 ande — 0— falls
outside the scope of this paper. We restrict our attention teitigular situations:

e Theperturbative singular case — 0 andh — O*.
e Thenonperturbative singular case # 0 fixed andz — 0O*.

To begin with, we formulate below a very precise and refined quantitative conjecture on the exponentially small
asymptotic behavior of some splitting quantities related to the monomial perturbétiprigve believe that the
asymptotic expansior(40) also hold under non-monomial perturbations, but then they vanish identically in some
cases, giving rise to several homoclinic bifurcations, see Sesfjon

Among many other things, if this conjecture was true, then the Melnikov predi(@jowould give the exact
measure of the splitting size in the perturbative singular case, whereas in the nonperturbative singular one the only
mistake would stem from the splitting constaa&anda)g, which would have to be substituted by new splitting
constantse§ = o + O(e) andw§ = w3 + OCe).

Conjecture 1. For any integern > 2 and for any small enough = 0, there exist two serie§:jZo aj.hzf and
>0 a)j.hzf such that the lobe area = A, the homoclinic invariants®, and the sun2 = ot + »~ associated
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to the monomial perturbationd) have the asymptotic expansions
- —2/h €12
A =< ae€ Z o'h
j=0

+ _ 2 3 —2p—72/h €p2i
=< +2ncach€™" Zoajh (h — 0%, € fixed). (10)
Jj=
Q = 1672aeh—2e 27/ Z w;hzj
j=0

In addition the following properties hotd

(1) If o) = 322029 andw®(h) = 3 ;.o wh? are the Taylor expansions of the even analytic functions that
appear in the Melnikov term$), thena = o9 + O(e) andw§ = w9 + O(e) for all j > 0.

(2) The serie$” ;- pash? andy” . wfhzf are Gevrey 1 of typp = 1/271

(3) The sequenc(af)Po defined by

(27%)Pe

has some finite limi&S, # 0 when j — +oo. In fact, there exist some asymptotic coefficieEﬁssuch that
@ = a5, + 221 B @sj — +oo. Moreover § = 0.

(4) The sequence(s??)jzo, (a_)})jzo and(@$) ;>0 defined by

@r?)2 o — o9
2j+2) €

~|— ea) + ezjaa)€ =

12)
have some finite limits? 0, ok, &S 7& Owhenj — +o00. Infact, there exist some asymptotic coefﬁcieﬁj’[,sﬁ}L
andjj; such thats? < w9, + Zz>1 mi~ o7 < ok, + Y nfi T andas < @5, + Y q 7f T asj — +oc.
Moreover 79 = ;1 = 0.

(5) There eX|st some valua§,, %, ﬁ, ’71 € Rsuchthatg, = a2, + O(e), &S, = &2, + O(e), E = /31 + O(e),
andn; = 771 + O(e). B
(6) Under the quartlc monomial perturbatlo(mat is whenn = 2) it turns out thatw 2&0 = —16, /38 =

147%/3, B3 = —2n%, B3 = 27*/3 — 87®/5, B2 = —9x8/5, andn? = 247, for all I > 2.

Remark 2. In fact, we believe that the quantities introduced in the conjecture that depend on the perturbative
parametee (the Gevrey coefficients’ andw¢, the limit valuesxt, andds,, the asymptotic coefﬁuen]ﬁ,‘ andny)

are analytic at = 0. If this was true, then it would be very clear Why aII these quantitiesgeg-close to thelr

finite limits ase — O.

Remark 3. We see from Eq(8) that the functionr®(h) is analytic in the open disk| < 7 if n = 2, and this also
holds for any: > 3. Thus, given any € (0, r), its Taylor coefficients verify the Cauchy inequalitle§| < Mr=2

forsomeM = M(r) > 0.So Iimjﬁ+oo(2n2)21a?/(2j + 2)! = 0. This motivates the presencedr the denominator
of the normalized sequen¢gl). On the contrary, the limizS, would be O€) and thero®, = lim._ o5, = 0.

Remark 4. Sincew®(h) = 2a°(h) for the quartic monomial perturbation (this relation does not hold for other
monomial perturbations), one could think that the relatiofis= 2a%, andn? = 28? whenn = 2 are evident, but
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Fig. 4. g /ad — 1| (left) and|w§/wd — 1] (right) vs.e, for n = 2-4.

this is a completely wrong argument, because although the Taylor coefficients verify the relé‘ti@rﬁxo, they
have nothing to do with the limitsZ, anda?,, as has been stressed in the previous remark.

Remark 5. We have conjectured that the first coefficient of the asymptotic s@rigs ﬂf i~! vanishes, that is,

ﬁl = 0. At the present time we do not know of an ultimate reason for this, but it allows us to control in a very
precise way the size of the error in the numerical experiments, since the relative error in our final results must be of
the same order that the computed valué?fln our computatronq,8€| < 10740, The same trick can be applied to

the serreil>1 npj~andy",_q ni i, but notto} ", 7§ i

Remark 6. As regards the fact th@ and;ﬁ3 are rational combinations of powerssof for 2 </ < 5 andn = 2,
it is worth noting that we have not been able to find similar expressions neither for other indexes (thatis6jor
nor for other monomial perturbations (that is, for 3).

Next, we shall present some numerical evidences supporting this conjecture. The algorithms used to perform the
computations are briefly explainedAppendix B

The use of a very expensive multiple-precision arithmetic encourages us to consider perturbations as simple a:
possible. Accordingly, we have restricted the computations to the monomial perturbations of degree four, six, and
eight. That is, we have considered only the cases2—4.

In a first step, we analyze the differences between the Gevrey coefficients and the Taylor coefficients. We have
plotted inFig. 4 the graphs of the relative errors of the splitting constants in the range & 1 whenn = 2—
4. We see thairg = 0‘0 + O(e) and wgy = wo + O(e). We have also plotted ifrig. 5 the graphs of the first five
Gevrey coeffrcrent&j anda)j in the range O< ¢ < 1 whenn = 2. Besides, we have marked the porntsa@
and (Q a)o) corresponding to the first five Taylor coefficients of the functif@s It turns out that lina_.o o =
or/ and lim,oo§ = a)o for j < 4. The same behavior is observed for bigger valuesasfd for the monomral
perturbations of degree six and eight. We have skipped the corresponding graphs and figures for the sake of clarity an
brevity.

In a second step, we study the Gevrey character of the asymptotic@;iéﬁzi and) j wjhzf . By definition, a
serieszj fx’ is Gevrey-1 of type if and only if the radius of convergence of its Borel transfoEr) fjsffl/(j —
1)!is equalto p. In particular, if the limit Iimj_>+oo(|fj|/j!)l/j exists and itis equal tp, thenzj fjx/is Gevrey-1
of type p. Therefore, to prove that the serig3; o5h% andy_ ; w5h?/ are Gevrey-1 of type = 1/272, it suffices
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Fig. 5. The Gevrey coeﬁicientéj (left) anda)j (right) vs.¢, for 0 < j < 4 andn = 2. The marked points correspond to the Taylor coefficients

0 0
o andwj.

to check that the sequences

o 2] 151 o 2] 5]
=@/ Gh =AY G (13)

tend to one ag — +oo. To carry out this idea, we have computed the first three-hundred Gevrey coefficients
aj- andwj for n = 2—4 and several values ef To be precise, we have performed the computations ferl0—*
with k =1,2,...,9,10,50. All the considered values ef have the same behavior. The results éo& 1/10
are shown inFig. 6. They strongly suggest that the sequen(@3) tend to one ag — +o0 in a very regular
way.
We describe now with more detail the behavior of the Gevrey coefficz'ugrasj — 4o00. We know that the series
> j=0@5h? is Gevrey-1 of type = 1/272 when there exist constan®s ¢ > 0 such thafe| < C(27%) 2/ I"(2j +
0), whereF(z) stands for the Gamma function. If the third item of our conjecture was true then one couldtake
andC = O(e¢). In order to show that this part of the conjecture holds, we have plotted the normalized coeffici¢nts
in Fig. 7for e = 1/10 andn = 2—4. Apparently, the limita, = IlmjﬁJrooa exist, are finite, and do not vanish
for that value ofe. The computations for other values«)glve rise to S|m|Iar pictures. The limitgs, have been
obtained by using an extrapolation algorithm based on the hypothesis that there exist some asymptotic coefficients

1.4 14—

135} . 135} &

131 ° 1.3}

125} = 1.25}

12} 1.2}

145} -4 % 1 1.15}

1.1} & 1 14t

1.05 1 1.05}
1 1

0.95 | 0.95}

0.9 - : . ' : 0.9 s : s s ;
0 50 100 150 200 250 0 50 100 150 200 250

Fig. 6. The coefficient&j (left) andaij (right) vs.j, for e = 1/10 andn = 2—-4.
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Fig. 7. The coefficiente?; vs.j, fore = 1/10. Heren = 2 (left), n = 3 (center), and = 4 (right). The dashed lines correspond to the limits

ag, =1limj 4o a;.

Ef such that

o =as, + > BT (- +oo).
1>2

The extrapolation gives very accurate results, with relative errors belo#?1@hich is a strong evidence in
favor of this hypothesis. As a by-product, we have also obtained the first asymptotic coeffitfidatsseveral
values ofe. We have listed them ifiable 1for e = 1/10,/ < 5 andn = 2—-4. _

Next, we have studied the limits as— 0 of the valuesrg, and the asymptotic coefficiengs. It follows from
our experiments that there exists some real num&&randﬂ? such thats, = a2, + O(e) andg; = ﬂ? + Of(e),
foralll > 2. For instance, it suffices a fast lookTable 2to conclude tha&?, = —8 whenn = 2. (All the decimal
digits displayed in that table are correct.) _

In the same way, we have computed the Iirﬁ@§ and the first asymptotic coefficierﬂ£ forn = 2—4, sedlable
3. Again only fifteen decimal digits are displayed for lack of space. Once we obtained those limits, we performed
a very simple analysis on them to check if they can be written in terms of constants like &loe amazing result
is thata?, = —8 and

— — — 274 8x8 978
132:7’ 133:—2]'[47 1391:7—77 Bg:—i
3 5
for the quartic perturbationt = 2. We have not found similar expressions for the perturbations of degree six and
eight.
We study now the asymptotic behavior of the Gevrey coefficiefjtsTo be more precise, we present some

evidences on the asymptotic behavior of the sequenes:0, (@7) =0, and ()0 defined in(12). We have

i?wzlﬁriit valuesxé, and the asymptotic coefficien% fore=1/10and2<1<5

n=2 n=3 n=4
ol —1.16597562512247. . —23.4104844051732.. —9.67410358657990. .
,Eg —43.6306192301996. . 101018554836853. . —262997174628752. .
Eg 148054861925489. . 239577105626966. . 408805738204272. .
Ej 677423466092879.. —844672532630471.. 319470851156197..

B —994025385554344. . —308104356004984 . . —238298206234643. .
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Table 2
The limit valuesié, for e = 107 andn = 2
k @,

1 —1.165975625122468373529040135443460358542

2 —7.449092531371673911420271545562073543475

3 —7.946098383262567005137717933763785097189

4 —7.994621602908399166977213485737723046739

5 —7.999462277810808702904299377196448045944

6 —7.999946228956154791741328850069755526071

7 —7.999994622907366092630849251484409662842

8 —7.999999462290854115271895158003157677079

9 —7.999999946229086586587151861284233717707
10 —7.999999994622908670409314683826426540133
50 —8.000000000000000000000000000000000000000
Table 3 _
The constantg?, andg) for2 </ <5

n=2 n=3 n==4

&go —8.00000000000000. . —28.7884960229620. . —9.88592076539110..
Bg 454575758158678. . 135789383552383. . —279105562715324. .
£ —194.818182068004. . 271660085733978. . 422589824119769. .
EO —151167102316902. . —274809190533494. . 325321232487986. .
£ —170793558289270. . —355090495717297 . . —239903150880230. .

plotted the first terms of these sequencefiys. 8—-10 respectively, for = 1/10 andn = 2—4. For each index

j >0, the termszu?, a_)} andw“j- have been obtained by means of an extrapolation in the perturbative parameter

from the computed values ajj inthe nete = 1071, 1072, ..., 10719, The figures strongly suggest that the limits
02 = lim @2, oL = lim o, & = lm &
@oo j—=>+oo w]’ @oo j—>+oow ’ @oo Jj—+o0o wj

exist, are finite, and do not vanish. As before, these limits have been obtained by means of another extrapolation
algorithm based on the hypothesis that there exist some asymptotic coeﬁixﬁen_jftsaﬁdn*l such that

~0_ 0 0.1 =1 =1 e I D RO e il
Of <@+ 3 M @ =@ kD T 8= 0%+ ) ]

>2 =2 >1
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Fig.8. The coefficients?vs.j, forn = 2 (left),n = 3 (center), and = 4 (right). The dashed lines correspond to the Iirm&s =1mjs e LB?
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Fig.9. The coefficientsjl._vs.j, forn = 2 (left),n = 3 (center), and = 4 (right). The dashed lines correspond to the linats '= lim;_, 1 5}1..
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Fig. 10. The coefficient&j‘vs.j, for e = {5. Here,n = 2 (left), n = 3 (center), and: = 4 (right). The dashed lines correspond to the limits
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Table 4
The constantsJ, andn? for2 <7 <5

n=2 n=3 n=4
2, —16.0000000000000. . —159420897719167. . —155917027114383. .
r_]g 909151516317356. . 796404298581449. . —1927.69790108031. .
ﬁg —3896363641360009. . 124856464528904. . 581429600713378..
rﬁ —302334204633805. . —172192452195518. . 541110879347534. .
r_]g —341587116578540. . —189634813662865 .. —466432082576045. .

as j — +oo. For instance, we have listed Fable 4the limits 02, and the first asymptotic coefficientﬁ for

n = 2—4. The tables with the limitsl, anda<, jointly with the first asymptotic coef‘ficient@l_andr;”lE have been
skipped for the sake of brevity. When the perturbation is quartic (that is, wkeR), we see thab?, = 242, and

1 =29, forall/ > 2, compareTables 3 and 4

5. Almost invisible homoclinic bifurcations in a billiard table

The previous section dealed with some splitting quantities associated to the eight axial homoclinic trajectories
under the monomial perturbatio(is). For more general perturbations there exist other primary homoclinic trajec-
tories and several primary homoclinic bifurcations take place. Since this work is devoted to singular problems, we
restrict our attention to the bifurcations that appear for small values of the characteristic exponent. We shall detect
(and describe) some almost invisible homoclinic bifurcations under a binomial perturbation. They take place in an
exponentially small range of the parameter space in the singularimitO™. Lazutkin[16] studied analytically
a similar problem in the framework of generalized standard maps.
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Fig.11. The graph of the splitting functian(r) in a fundamental domain before bifurcation (left), just at bifurcation (center), and after bifurcation
(right).

To begin with, we present some bounds on the numlaéiprimary homoclinic trajectories inside the polynomial
perturbation(3). These bounds depend only on the degree of the perturbation. Their proof has been relegated
to Appendix A.2

Lemma 7. Givenh > 0and a polynomialP(s) such thatP(0) = P'(0) = 0 andn := deg[P(s)] > 2, there exists
€0 = €o(P, h) > 0 such that

x €1{8,16,24,...,8(n — 1)} Ve € (0, o).

As a corollary of this lemma, we get that the only primary homoclinic orbits inside small enough quartic
perturbations (that is, when= 2) are the eight axial homoclinic orbits, becayse {8}. Thus, the case = 3 is
the first scenario in which is possible to find homoclinic bifurcations. Consequently, let us consider the perturbation
of degree six

2 2 2 4
Cd:{(x,y)eRzi;Cz—l—ZZ—i—e(;)z—i-d))):4=1} (14)
associated to the monic polynomig{s) = s3 + ds?, whered € R is an additional parameter. Under this perturba-
tion, we know fromLemma 7that x = x(d) € {8, 16} for small enoughk, and so the following questions are quite
natural. Are both values(= 8 and 16) realized? What homoclinic bifurcations take place whehanges? The
first rough numerical explorations in the space of parameleesandd) misleadingly suggest that= 8 for small
values ofh. Let us explain in detail what bifurcations really occur and why they are almost invisible in the singular
case.

We have explained in Sectigh5 that there exists a real analytieperiodic function¥(z), called thesplitting
function whose roots are in 1-to-1 correspondence with the primary homoclinic points. We also recall that our billiard
problem has four separatrices, and so we are confronted to four splitting functions. But, due to the symmetries, these
four functions coincide and it suffices to find the number of roots mokofone of them and then to quadruplicate
it to get the total number of primary homoclinic orbits. Moreover, since our problem is reversible, we can normalize
(1) in such a way that it becomes odd and the axial homoclinic points are located at thepein®s (modh)
ands_ = h/2 (modh). Then, the transition fromy = 8 = 4 x 2to x = 16 = 4 x 4 can only occur as displayed
in the qualitative pictures dfig. 11 That is, at the bifurcation¥(¢) has a triple root at = 7, or else at = 7_.
This means, in a more geometric language, that the bifurcations always take place through cubic tangencies of the
invariant curves along the foyraxial homoclinic orbits or else along the faxaxial homoclinic ones.

Consequently, we can reduce the search of primary homoclinic bifurcations inside the symmetr{d 4)tve
the study of the vanishing of the Lazutkin invariaat$ of the axial homoclinic trajectories. We also shall study
the vanishing of the are@of the lobe enclosed between them for completeness. Of course, these quantities depend
onh, € andd. Once fixede andh, we look for changes as the additional parametegiries.
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Fig. 12. The graphs of the functiovf_f(d) (continuous lines)y~(d) (dotted lines), and™(d) (dashed lines), fok = 2 (left) andk = 1 (right).
Here,e = 1/2.
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Fig. 13. The graphs of the functiods (h), d¢(h), andd¢ (h), for e = 1/10 in the ranges & & < 10 (left), 0< 7 < 2 (center), and G i < 1
(right).

In order to accomplish it, we consider the normalized funcfions

2/’1 wi(h, €, d)

A(d) = XM A(h, e, d), @ (d) = e Lh2eT o
T

We have plotted irFig. 12their graphs in the rangé € [-2, 0], for e = 1/2 andh = 1, 2. Letd, = dS(h) and
d+ = d.(h) be the only roots of these functions in the interva®[ 0]. In turns out that; < d,. < d—. Accordingly

to the above digression, the roats arevalues of bifurcationIn fact, after a careful computation and visualization
of the invariant curves, we obtain the following resultsdAt d (respectivelyd = d_) the invariant curves have
a cubic tangency at the foyraxial (respectivelyx-axial) homoclinic orbits. Besideg,= 8 for -2 < d < d and

d_ <d < 0,whereay = 16 ford € (d4, d-).

We note that ifh is relatively small, the three roots,, d, andd_ become almost indistinguishable. See, for
instance, the caske = 1 in Fig. 12 In fact, the functionsA(d) andw™(d) match absolutely at the scale of that
picture. To see this more clearly, we have plottedrig. 13the graphs of the function# (i), dg(h), andds (h),
for e = 1/10 in several ranges. In the last picture of that figure, when/0< 1, it is very difficult to distinguish
the three graphs. (Apparently, the limits jm_ o d$ (k) and lim,_, 1 dS(h) there exist and are finite, but they fall
out of the scope of this work.)

3 The factorse e/ ande~th2e™’/" ;272 regularize the singular behavior of the quantitleandw® ase — 0 andi — O*. Besides,
A ~ +w* ase — 0 andh — Ot
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We shall check that the bifurcation valugs(i) andd< (k) are exponentially close in, and so it is difficult to
detect these bifurcations using only brute force methods. Due to this, as a first step in our study, we shall derive
some analytical predictions of the bifurcation values by using the Melnikov method described in Sedtien
Melnikov potential associated to the binomial perturba{ib4) is linear in the parametat. Concretely, it is the
elliptic function

L(t;d) = L3(t) + dL2(1),

whereL,(¢) is defined in(4). The functionL,(z) is the Melnikov potential associated to the monomial perturba-
tion (1). Thus, ifd$.(h) = d?_L(h) + O(e) are the bifurcation values, their Melnikov approximatiol@:{h) are given
by

 L5()
L(t+)

h
dO(h) = . whererp =0 and =, (15)

because they are the roots of the functiérig; -). In the same way, ii¢(h) = d°(h) + O(e), then

L3(h/2) — L3(0)

Orny —
0= L0 - 02y

sinced%(h) is the root of the functior.(k/2;-) — L(0;-). We have computed these Melnikov approximations
in Appendix A.3 The result is:

dO (), d(h), d°(h) = d°(h) + O(e™™ /"),

2 o2 (h — 0"), (16)
do(n) — d%(h) = e ™ /"80(h) + O(e=2" /)

whered®(h) ands®(h) are the even analytic functions

_ 1 2z +h?) t:mi‘?(h/Z) 1 7 N - 15 N
costt(h/2) 3n 6 36

h h?  17h* 318
8%(h) = 3272h—2tant? (2) = 812 (1 e )

d%(n)

6 " 720 10080

Hence, we guess that the bifurcation valdgéh) are close t@lg := d%0) = 1 — n2/6 ~ —0.645, for small enough
values ofh ande. See, for instancesig. 13 We also have the following exponentially small Melnikov prediction
for the range in which the primary homoclinic bifurcations take place:

D = d* (h) — d.(h) ~ e ™ /"3 17)

for small enough values dfande. Here 83 := §9(0) = 872
We state below a conjecture on the asymptotic behavior of the bifurcation Earifj@ was true, the predic-
tion (17) would give the right answer in the singular perturbative case, whereas in the singular nonperturbative
case the asymptotic consta&‘&: 872 would have to be substituted by a new asymptotic consigat 8n2
+ O(e).
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Table 5

The constand for e = 107+

K 55

10 78.9568351978330244918250679636819034908091432514355285038189. ..
20 78.9568352087148689495877435531181542121109228680918690955383. ..
30 78.9568352087148689506759279989003906379204897708863980836546. . .
40 78.9568352087148689506759279990092090824987134134674144626028. ..
50 78.9568352087148689506759279990092090825095952579252368268609. . .
o0 78.9568352087148689506759279990092090825095952579263250113068. . .

The last row contains the limf) = 872.

Conjecture 8. For any small enough = 0, there exists a serieEjzo (Sj.hzf such that the following asymptotic
expansion holds

D=e /"N 5512 (h— 07, € fixed).
j=0

Besidesif 3~ ;. 8%2/ is the Taylor expansion @f(k) = 3272h~2tant?(h/2), thens$ = 87 + Ofe) for all j > 0.
In particular, 8§ = 872 + O(e).

We have limited the exposition of the numerical evidences supporting this conjecture, for the sake of brevity, to
one table. Namelylable 5 in which it can be realized very clearly thigt= 872 + O(¢). The computation of other
asymptotic coefficients gives rise to similar tables.

6. Conclusion

We have formulated several conjectures related to the singular phenomena that appear in some billiards tables
We have also presented some very accurate numerical experiments, which support strongly both conjectures. Th
next step must be to prove these conjectures. We hope that this problem would be a stimulating challenge for some
readers, whether in this framework with billiard maps or in the frame of the generalized standard maps.
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Appendix A. Some details of the Melnikov computations

We have adopted a very compact style along this appendix, avoiding to give the more cumbersome and less
crucial details in the computations, because similar ones can be found in the literature. See, for jdstnte,
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A.1. Melnikov potential for monomial perturbations

Here, we address some computations related to the elliptic Melnikov potép(idl= ae®" > kez tn(t + kh)
introduced in(4). All the computed objects are expressed in terms of the even derivatives of the function

w0 (Y ot (2).

where dng) = dn(u, k) is one of the 12 Jacobian elliptic functions. Hekejs the modulus K = [J
k% sinu)~Y2du is the complete elliptic integral of the first kincand K’ = fg/z(l— k2 sinu)~Y/2du Wherek’

is thecomplementary moduluk? + k> = 1. Finally, the quantity = —7K'/K s called thenome We refer tq23]

for a general background on elliptic functions.

We recall thaelliptic functions are characterized (modulo additive constants) by their periods, poles and principal
parts the difference of elliptic functions with the same periods, poles and principal parts is a bounded entire function,
and hence constant by Liouville’s theorem.

Thus, we are naturally led to the search for the poles (and their principal paktgpt= ae? > kez a(t + kh).

The functiont,, (r) is meromorphic aneri-periodic. Its poles are the points in the set$2 + #iZ andxi/2 +
h/2+ wiZ. From now ong;(f, t) stands for the coefficient of the term+ 7)/ in the Laurent expansion of a
meromorphlc functiory'(¢r) aroundr = 7. The poles0 € mi/2+ h/2 + niZ are simple and, due to the symmetry,
a_1(ln, tg ) +a_1(t,, ty) = 0.Thepoleg € 7i/2 + niZhave order2 — 2anda_;(¢,, to) = Oforall odd integers
j=1

Therefore L, (1) = ae? 3", £x(t + kh) is an elliptic function characterized (modulo an additive constant) by
the following properties: (1) Its periods aneandri; (2) Its poles are the points in the seit/2 + hZ + 7iZ; and
(3) Its principal part around a polg is ae? Z?;} a_2j(ly, 7i/2)(t — t0)~%.

On the other hand, the square of the Jacobian elliptic functiom)da@n(, k) is characterized (modulo an
additive constant) by the properties!)(lts periods are R and 2K'i; (2) Its poles are the points in the skti +
2K7 + 2K'iZ; and (3) The principal part around any palg is —(u — ug) 2, see([23], Section 22).

Hence, if we takgy = e /", thenk’ = K=/ h and

zr/2

En ](h)

0. (A1)

L,(r) = constant- ae?" Z @)

whereg, ;j(h) = a_2j(€,, 7i/2). In particular, the Melnikov term@) are

A1(h) = ae® Z Ln j(h)algl;l) ,  $21(h) = ae? Z En(éjhzaigfl)

wheres ;(h) := ¥=2(0) — ¢2=2)(h/2) anda;(h) := ¥@?)(0) + ¥ 2)(h/2). We need two lemmas to study the
asymptotic behavior of the above quantities.

Lemma 9. For any 1 < j < n — 1, there exists an even analytic functle,n i(h) such thatsn j0) = (—1y 4~
ands, j(h) = h2U="g, ;(h).

The above lemma is obtained using a trick containg@h Section 4).

Lemma 10. If T = 2x/ h, then
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(@) ¥(t) = 2T?[1/8 + ¢° + g cosTr + 2¢? cos At + O(¢)],

(b) v (r1)/v" (t+) = —T?(1 & 249 + O(¢?)), wherer, = Oandr_ = h/2.

(©) 8;(h) := v@=2(0) — y(2=2(h/2) = 4T?/g[(-1)/~1 + O(g)], for all j > 1.
(d) a,(h) = W”(O) + w‘zf’(h/Z) 2(2T)2+242[(—1) + O(g)], for all j > 1.

Proof. The first item follows directly from the definition af(r) and the Fourier expansion

27.[ qll

dn(2Kt/h, k) = ﬁ + = Z I
nzl

cosquTr),

which can be found ifi23, p. 511] The others follow from the first one.O

Now we are ready to prove the formulae for the constaglts «%(0) andwg = «%(0) given in(7). For instance,
using the couple of lemmas we see that

1 =172 1 j—1 2 2 —

n— 1 JT 2j n AN — n n— T
anda§ = a%(0) = 4" 31 1 %( 1y 4= = (—1y'4n2 125 ((2})11),’ We recall that = tanh(/2) ~
h/2 andé, ;(0) = (—=1)'4"~ J. The constandz)O is obtained in the same way.
Finally, we are going to check that when the monomial perturbation is quartic the funafijsand (k)

have the form given i8). If n = 2, then

aO(h) = 4¢*T?€5 1(h) = 167°h % tantf <';> a-» (ez, ’;') ,

and a straightforward computation shows that

(62’ I> S|an1(h/2)

The proof forw®(h) follows the same lines.
A.2. Proof of the bounds on the number of primary homoclinic orbits

Here we shall prove the three claims containedéemma 7

The first claim is the lower boung > 8, which is trivial. It does not require additional comments, because we
already know that the eight axial homoclinic trajectories persist under small enough symmetric perturbations.

The second claimis the upper bounek 8(n — 1). We know thatin our billiard problem there exists areal analytic
h-periodic odd functionZ (), called the splitting function, whose roots modalbare in one-to-four correspondence
with the primary homoclinic trajectories. (The factor four has been explained at the beginning of Sectn
also recall thatv(r) = ©'(r) = €L’(r) + O(e), whereL'(z) is the derivative of the Melnikov potential associated to
the polynomial perturbatio(B). Therefore, to prove the upper bound, it suffices to seelfth@} has at the most
2n — 2 roots inR/ hZ, counted with multiplicity.

If P(s) = Z'}:z ijj,thenL(t) = Z'}:z p;Lj(t), wherethe functions ;(¢) are defined i¢4). From the properties
of the functiond. ;(r) listed inAppendix A.1, we deduce that the only poles of the elliptic functiof) are the points
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in the setri/2 + Zh + Z=i, and all of them have orden2- 2. Its derivativel’(r) has the same poles, but of order
2n — 1. Thus,L’(r) has exactly 2 — 1 roots in any complex cell. (Non-constant elliptic functions have the same
number of poles and roots in a cell, counted with multiplicity.) Besides, using the symhiiétry) = —L’(r) and

the periodicityL’(t + h + 2ri) = L'(r), we obtain that./(h/2 + #i) = —L'(h/2 + 7i). S0,h/2 + 7iis a complex

root of L'(r) and the number of real roots (modulé) of L'(¢) is less or equal than2— 2.

The last claim is that the number of primary homoclinic trajectories changes in eights. This property follows
from two facts. First, due to the symmetries, the four separatrices have the same homoclinic bifurcations, so that
they appear in fours. Second, due to the reversibility,rtperiodic splitting function(¢) is odd and the axial
homoclinic points are located at the points= 0 (modh) and:z— = h/2 (modh). Then, it turns out that any
change in the interval (&:/2) generates a twin change i@, h)—see, for instancésig. 11—, and the number of
roots of¥(¢r) changes in twos. Finally, & 4 x 2.

A.3. Melnikov computations for the bifurcation problem
We recall the notatiot, ;(h) = a_2;(€,, 7i/2) introduced inAppendix A.1 If we sety~1 = sinh(:/2), it is

easy to check thab 1 (1) = n?, £3.1(h) = n?(2/3 — n?), andés 2(h) = —n?. Thus, using formulgA.1) we find the
expressions

2 (s
L40) = —acti?y' 0. 10 =ac? (18- ) v+ 0.
Finally, from the second item containedliemma 10we see that the Melnikov approximations of the bifurcation
valuesds (k) = d% (k) + O(e) defined in(15) verify the asymptotic estimate

dd(n) =

alts) _ 62< 2 2 I/f([l)(tjc)> (6> —4—T?)
6

_ _Z = 0]
0y B T +ow

whereas their difference is exponentially small:

O0) - d) = & <W(“)(f—) V)
() — d(h) =

— 22 2
6 (v ~ v ) =81+ 0.

This implies that the functiong®() ands°(k) defined implicitly in (16) ared®(h) = ¢2(n? — 2/3 — T2/6) and
89(h) = 8T2¢2. To obtain their final forms, it suffices to recall that tanh@:/2), T = 27/ h, andnp~! = sinh(z/2).
The computation of%(%) follow the same lines. We skip it.

Appendix B. Some details of the numerical computations

In this appendix we shall explain the ideas behind the computations and we shall describe some of the algorithms
used. We shall emphasize the points that depend strongly on the peculiarities of billiard maps, since the others have
already been described[i6,19].

B.1. Multiple-precision arithmetic: main problems and basic principles

To begin with, let us explain why the use of a multiple-precision arithmetic is necessary. We recall that the lobe
area is computed as the difference of actidns W[0O~] — W[O™], see Sectior2.1 This difference causes an
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important loss of significant digits, even for moderate valués bfcan only be overcome by computing the actions
with more correct digits than the lost ones. For sample, let us sel, e = 1/10, andn = 2. Under this setup, the
actions are

W[OT] ~ —0.09992503852271571273156135027523196060135775467
W[O™] ~ —0.09992503852271571273156135027523196060135716286

for h = 10~1. ThenA ~ 5.9181x 10~*3 and so the cancellation causes the loss of more than 40 digits. Smaller
values ofh cause stronger cancellations~~ 1.0137 x 10~4%8for h = 102, andA ~ 2.1022x 10-4%8for h =
10-3. The cancellations are even worse inthe computatish ef o* + »~. Andtotopitall, in order to gethundreds
of coefficients in the expansiofs0) we use an extrapolation method, which shall require the computatidaiod
£2 with a very high precision for hundreds of small value$of

Our programs have been written using the PARI systEnThe PARI system is a package capable of doing
formal computation on recursive types at high speed. Although it is possible to use PARI as a C library, we have
used it as a sophisticated programmable calculator, which contain most of the control instructions of a standard
language like C.

The main numerical difficulties that appear during the study of the singular splitting of separatrices of our billiard
maps are the computation of:

The billiard maps and their differentials with an arbitrary precigton
The Taylor expansions of the invariant curves up to an arbitrary ¢tder
The homoclinic invarianté ands2 with an arbitrary precisio®; and

The Gevrey expansiorfd0) up to an arbitrary ordel.

The quantitie® andJ must be inputs of the algorithm, because they set some properties of the objects we are looking
for. On the contraryP andK are determined in an automatic way when the computation begins. For instance, in the
computation of the lobe ared = W[O~] — W[O*] the number of digits lost by cancellations is approximately
equal toR + S, whereR = R(€) = | log,ge| andS = S(h) = 72h~1log,,e. Hence, to computd with precision

Q we must takeP ~ Q + R + S. Analogously, we seP ~ Q + R + 25 to compute the sun® = o' + o~ with

the same precision. On the other hand, the okdisrdetermined under the following optimization criterionKlfs

too big, the Taylor expansions become too expensive, but a to& lisnalso expensive, because then the number

of iterates to reach the homoclinic points (from a local fundamental domain in which the Taylor expansion gives an
enough accurate approximation of the invariant curves) grows too much. Therefore, there exists some optimal ordel
for which the computations become the fastest ones. This optimal value can be estimg{édl, Seetion 5D). To
acquaint the reader with the magnitude of our computations, we note that we have reached the wall30 and

J =300, withP = 7000 andk = 1100. In the previous literature there are not so extreme computations[6king

the only one that reaches a comparable level.

The problem of the computation of the map and its differential is trivial for the standard map, the
Henon map, the perturbed McMillan maps, and others generalized standard maps. These maps have explici
expressions in terms of polynomial or trigonometric functions. The billiard map is slightly harder, since
we have to solve a nonlinear equation to find the intersection of the reflected ray with the convex curve,
seeAppendix B.2

The local invariant curves of weakly hyperbolic objects must be developed up to high ord¢t8]$eegeneral
comments. Then the initial iterates can be taken far enough from the hyperbolic object and so the homoclinic
points can be attained in a few iterations. Here, few means thousands, instead of millions. In this way, undesirable
accumulation errors due to the large amount of operations is avoided and computing time is reduced. The Taylor
coefficients of the invariant curves of many analytic area-preserving maps can be obtained recursively. The recursive
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algorithm for our billiard maps is described Appendix B.3 Its derivation is less direct than for maps given by
closed explicit formulae.

The method to compute the symmetric primary homoclinic points and their homoclinic invariants does not
depend very much on the form of the map. The symmetric homoclinic points are found as the intersections between
the unstable invariant curve and the corresponding symmetry lines. The global unstable curve is obtained from the
local one by forward iteration of the map. The extrapolation method to obtain the first coefficients of the asymptotic
expansion of the homoclinic invariants is very standard. We refd6ltdor a general background on these
methods.

The main principle to design valid algorithms for the above computations is that, since the use of a multiple-
precision arithmetic is unavoidable, we have to mitigate its cost in all the possible ways. To mention just the most
obvious way, we shall solve any nonlinear equation by using the quadratically convergent Newton’s method. Of
course, we will begin the method in single precision and later we will refine the result by doubling the number of
digits after each Newton iteration. This methodology causes a cascade of changes in the number of digits used along
a concrete computation, because sometimes each evaluation of the initial nonlinear terms requires the solution of
another nonlinear equation and so forth, but the increase in speed is spectacular.

B.2. Billiard maps and their differentials

In Section3.1, we have modeled billiards inside a closed convex c@\®y means of diffeomorphisms on an
annulus, but from a numerical point of view it is better to model them by means of diffeomorphisms defined on the
phase space

M ={m = (q, p) € C xS: pis directed outward” atg}

consisting of points; = (x, y) € C and velocitiesp = (u, v) € S. That is, we use the four coordinatesy, u,
v, restricted to the conditions:(y) € C andu? + v? = 1. Then the billiard magf (g, p) = (¢, ') is defined as
follows. The new velocity' is the reflection op with respect to the tangent lifg C. The new poiny’ is determined
by imposing thayy’ = g — tp’ € C for somer < 0. The existence and uniquenesg/dollows from the convexity
of the curveC.

For brevity, hereafter we restrict the study to the monomial perturbatigna/hich are convex for at > 0 and
for all integern > 2. For further reference, we write their implicit equations as

X% = po + pay? + pay®, (B.1)

whereug = a?, u1 = —a?/b?, andu, = —ea®/y?*. We look for an algorithm to compute the billiard mipintly
with its differential df as fast as possible with arbitrary (but fixed) accuracy, for relatively small valuearaf not
very big values ot. Typically, 103 < 4 < 1071 and 0< € < 1.

Giveng = (x,y) € C,p=(u,v) €S, g = (x,y) € T,C, andp = (i, v) € T,,S, we want to computey(, p') =
flg. p)and |, p']l = df(q, p)lg, p]. We writeq' = (x', y') € C, p' = (", V') €S, ¢4’ = (¥, }') € Ty C, andp’ =
(u',v') e TyS. Using these notations, we perform the computation in two steps.

e Computation of the new velocit\wWe setr = (o, ) and r = (a, B), where = x, & =, B= —(u1 +
np,y?*=2)y andg = —(u1 + (2n — D, y?*~—2)y. Then the vector is normal to the curvéB.1) at the point
g. Thereforep’ = p—v-randp’ = p —v-r — v - r, where the quantities

<pvr> v=<P/sP_Vr)
’ (p',r)
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have been determined by imposing thae S andp’ € T,/S, respectively. We note that € S < (p/, p') =1
andp’ € TyS < (p', p') =0.

e Computation of the new poingi: g—t-p andg =g—1-p — - p/,wheret is the only real root of the
polynomial &, (r) = 12"~ + Y- ?&;¢/ given by the coefficients

£ =2 (p',r) - (1 + @1 — Dnjiny? =22 — 2
° an/Zn 7 1= an/Zn s

2 .
andé; = (jjl) (—y/v)—i~Yfor j=2,...,2n — 2, whereas the quantity

(g—rt-p.1)
(p', 1)

T =
is determined by imposing that € 7,/ C: If ' is any normal vector t€ atq’, thenq’ € T,C < (¢',r') = 0.

The more expensive part is to solve the polynomial equalpfr) = 0, which is obtained by imposing that the
new impact poing’ = g — tp’ verifies(B.1). The rootr is simple and negative. It is computed by Newton’s method
taking as initial approximation its value fer= 0, namely

_ xu'Ja® + y' /b? e R
W /ay?+ W /b)? " uw?— pw?

70

B.3. Taylor expansions of the invariant curves

The dynamics on the unstable invariant curve can be linearized. There exists some analytjc=m@aps) :
R — Candp = (u, v) : R — S such that

q(0)=(a.0). p(0)=(1.0). f(g(r). p(r)) = —(g(rr). p(ar)).

where) = ¢” is the characteristic multiplier of the hyperbolic periodic orbit.

Due to the axial symmetries of the monomial perturbati@dnsthe functionsc(r) andu(r) are even, whereas
y(r) and v(r) are odd. Our goal is to develop a recursive algorithm to compute the Taylor expanéipes
S ka0 X672, y(1r) = S po g e u(r) = 3o g ukr®, andu(r) = 3,1 vir® 1 up to any order. The key idea is
to realize that these four expansions can be determined by using the following four functional equations:

@) u(r)? +v(r)? =1,

(b) x(r)? = 1o + n1y(r)? + pny(r)?,
(©) (p(rr) + p(r), q(r)) = 0, and

(d) detly(rr) + g(r), p(rr)] = 0.

Equation (a) means that the velocitigs= («, v) have unit norm;p € S. Equation (b) follows from the fact that

the pointsg = (x, y) are on the curve defined I{i3.1). Equation (c) holds because the difference of consecutive
velocities is normal to the curve at the old impact point. Finally, we have stated in equation (d) that the difference
of consecutive impact points is parallel to the new velocity. Only equation (b) depends on the form of the curve. If
* € {a b, ¢, d} and! € Z, we denote byx); the equation obtained by equating the‘®ferms in both sides of the
functional equation«). For instance, (a) reads a$"*_y usur—_s + S2*_; vsvps1- = 0.
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We know thatvg = a andug = 1. Then equations (b)(c)1, and (d) give rise to a system whose one-parametric
family of non-trivial solutions isy; # 0, v1 = A~Y2y,/b, andx; = —ay1/b. We takey; = 2b, v1 = 22~ Y/2 and
x1 = —2a. Besides, the coefficiemy = —2/2 is found using equation (8)

Now, let us suppose tha, ..., x, y1, ..., ¥, uo, ..., Ug, v1, ..., ux have been computed for some integer
k > 1. Then using the equations gp)2, (C)ox+1, and (d¥+1, we get the linear system

4a2
2(,1 7 0 xk+1 /31
Ak +1) (% +2)(+ ) ~Y2 202+ 4 1)p Vel | = | B2
0 (&t 4 1) —2 2+, Ukl B3

whose independent term depends only on previously computed coefficients. The determinant of this system is
Aab(A% — 1)(1— 1%+2) £ 0, for anyk > 1. Thus, the coefficients 1, yr,1 andv,1 can be computed. Next, we
compute the coefficient; 1 from equation (&).2. Therefore, this algorithm can be applied recursively to obtain

the Taylor expansions up to any order.
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