
HIGH-ORDER PERSISTENCE OF RESONANT CAUSTICS IN PERTURBED
CIRCULAR BILLIARDS

COMLAN EDMOND KOUDJINAN AND RAFAEL RAMÍREZ-ROS

ABSTRACT. We find necessary and sufficient conditions for high-order persistence of resonant
caustics in perturbed circular billiards. The main tool is a perturbation theory based on the
Bialy-Mironov generating function for convex billiards. All resonant caustics with period q
persist up to order dq/ne − 1 under any polynomial deformation of the circle of degree n.

1. INTRODUCTION

The goal of this work is two-fold. First, to extend the first-order perturbation theory for exact
twist maps developed in [41, 39, 17] to a higher-order theory. Second, to apply that theory to
the study of high-order persistence of resonant caustics in perturbed circular billiards. The
second goal is strongly motivated by some of the numerical experiments discussed in [37].

The computational aspects of our analysis are greatly simplified when working with the
Bialy-Mironov generating function for convex billiards discovered in [7, 4]. We were also
inspired by [10]. We know just a few practical high-order Melnikov theories for time-periodic
perturbations of integrable continuous systems (ODEs) —see, for instance, [14, 15]—, but
none for perturbations of integrable discrete systems (maps). In that sense, our theory is novel.

The fragility of resonant caustics is a key idea behind recent proofs of local versions of the
Birkhoff conjecture (see below) and related results about the rigidity of the length spectrum of
strictly convex domains [1, 29, 25, 24, 30, 23]. See also the surveys [28, 19]. Almost all these
works describe the first-order persistence condition of resonant caustics contained in [41]. We
hope that our new high-order persistence conditions will be equally useful.

A caustic is a curve such that any billiard trajectory, once tangent to the curve, stays tangent
after every reflection. The robustness of a convex caustic is closely related to the arithmetic
properties of its rotation number ρ ∈ (0, 1), a number that measures the number of turns around
the caustic per impact. Tangent lines to the caustic can be counterclockwise or clockwise
oriented. We fix the counterclockwise orientation, so ρ ∈ (0, 1/2]. Lazutkin [33] showed that
for any smooth strictly convex domain there is a positive measure Cantor set R ⊂ (0, 1/2) of
Diophantine rotation numbers that accumulates to 0 such that there is a caustic for any rotation
number ρ ∈ R. These caustics persist under smooth deformations of the domain [40].

Let ρ = p/q ∈ (0, 1/2] be a rational rotation number such that gcd(p, q) = 1. A convex
caustic is called p/q-resonant (or p/q-rational) when all its tangent trajectories form closed
polygons with q sides that make p turns around the caustic. We say that q is the period of
the caustic. Resonant caustics generically break up under perturbation. Recent results in [20]
confirm their fragility. Once fixed q ≥ 2, the space of convex domains with a resonant caustic

Date: March 10, 2025.
Key words and phrases. Convex billiards, twist maps, periodic orbits, invariant curves, perturbation theory.

1



of period q has infinite dimension and codimension [2]. The space of convex domains with at
least one resonant caustic is dense in the space of all convex domains [31].

We shall not deal with the case ρ = 1/2, since convex domains with 1/2-resonant caustics
are easily characterized as the constant width domains [32, 22]. Centrally symmetric convex
domains with a 1/4-resonant caustic have also been completely characterized in terms of the
Fourier coefficients of the square of the support function of the convex domain in [11]. Some
non-circular convex domains with a 1/3-resonant caustic were constructed in [26].

Circles and ellipses are the only known strictly convex smooth domains almost completely
foliated by convex caustics. The centenary Birkhoff conjecture claims that they are the only
ones [42]. Bialy [3] proved the following weak version of this conjecture. If almost every
billiard trajectory in a convex domain is tangent to a convex caustic, then the domain is a disk.
A much stronger version of the Birkhoff conjecture for centrally symmetricC2-domains, based
on the structure of the 1/4-resonant caustic, was recently established by Bialy and Mironov [9].
See also [11, 6] for effective (that is, quantitative) versions on these two results. Near centrally
symmetric domains were considered in [27].

We are interested in two practical problems. First, to characterize the deformations of the
circle that preserve a given resonant caustic. Second, to determine all resonant caustics that
are preserved under a given deformation of the circle. In that regard, we recall that any Z2-
symmetric analytical deformation of a circle (with certain Fourier decaying rate) preserving
both its 1/2-resonant and 1/3-resonant caustics has to be an isometric transformation [44].

In what follows we introduce some notations and state our two main results.
Let Γε be a deformation of the unit circle with smooth support function

(1) h(ψ; ε) = hε(ψ) � 1 +
∑
k≥1

εkhk(ψ) as ε→ 0,

where ψ ∈ T = R/2πZ is the normal angle and ε ∈ [−ε0, ε0] is the perturbative parameter.
We say that a resonant caustic of the unit circle O(εm)-persists under Γε when the billiard in
Γε is O(εm+1)-close to having that resonant caustic. See Definition 2 for more details.

Let νl : (0, 1/2)→ R∪ {∞}, with l ∈ Z and |l| ≥ 2, be the sequence of functions given by

(2) νl(ρ) = ν−l(ρ) =


tan(lπρ)− l tan(πρ)

tan(πρ) tan(lπρ)
, if 2lρ 6∈ Z,

1/ tan(πρ), if 2lρ ∈ Z but lρ 6∈ Z,
∞, if lρ ∈ Z.

Once again, we realize that Gutkin’s equation tan(lπρ) = l tan(πρ) is ubiquitous in billiard
problems. See [22, 4, 8, 12] for other examples. Cyr [16] proved that νl(ρ) has no rational
roots ρ = p/q ∈ (0, 1/2) when |l| ≥ 2. The case lρ ∈ Z never takes place in our computations.
The singular value νl(ρ) =∞ has been written just for definitness. It is irrelevant.

Fourier coefficients of 2π-periodic functions are denoted with a hat: a(t) =
∑

l∈Z âle
ilt.

Given a 2π-periodic smooth function a(t) and a subset R ⊂ Z, let µR{a(t)} =
∑

l∈R âle
ilt be

the projection of a(t) onto its R-harmonics. We only consider the cases R = qZ or R = qZ?
with Z? = Z \ {0}.
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Theorem 1. Let ρ = p/q ∈ (0, 1/2) be any rational rotation number such that gcd(p, q) = 1.
The high-order persistence of the p/q-resonant caustic of the unit circle under the deformation
with support function (1) can be determined as follows.
a) It O(ε)-persists if and only if µqZ?{h1} = 0.
b) It O(ε2)-persists if and only if it O(ε)-persists and µqZ?{h2 + θ2

1/2} = 0, where

θ1(t) =
∑

l 6∈qZ∪{−1,1}

νl(ρ)ĥ1,l e ilt if h1(ψ) =
∑
l∈Z

ĥ1,l e ilψ.

c) It O(εm)-persists for somem ≥ 3 if and only if it O(εm−1)-persists and µqZ?{hm+ζm} = 0,
where ζm is a smooth 2π-periodic function, only depending on h1, . . . , hm−1, that can be
explicitly computed from recurrences given along the paper.

The O(ε)-persistence result in Theorem 1 is just a reformulation of the main theorem in [41].
Condition µqZ?{hm + ζm} = 0 is equivalent µqZ{h′m + ζ ′m} = 0. In particular, condition
µqZ?{h2 + θ2

1/2} is equivalent to µqZ{h′2 + θ1θ
′
1} = 0.

Let Tn[ψ] be the space of 2π-periodic real trigonometric polynomials of degree ≤ n in ψ.

Definition 1. We say that a deformation Γε of the unit circle with support function (1) is
polynomial of degree ≤ n when

(3) hk(ψ) ∈ Tnk[ψ], ∀k ≥ 1,

and is centrally or anti-centrally symmetric when hε(ψ+ π) = hε(ψ) or hε(ψ+ π) = h−ε(ψ).

Being centrally symmetric is a property of single curves. Being anti-centrally symmetric is
a property of deformations.

Theorem 2. Let dxe = min{k ∈ Z : k ≥ x} be the ceil function. If ρ = p/q ∈ (0, 1/2) is
a rational rotation number such that gcd(p, q) = 1 and Γε is a polynomial deformation of the
unit circle of degree ≤ n, then the p/q-resonant caustic O(εχ−1)-persists under Γε, where

χ = χ(Γε, q) =


1 + 2 d(q − n)/2ne , for anti-centrally symmetric Γε and odd q,
2dq/2ne, for anti-centrally symmetric Γε and even q,
d2q/ne, for centrally symmetric Γε and odd q,
dq/ne, otherwise.

The idea behind this theorem is quite simple. For non-symmetric deformations, it suffices
to check that ζm(t) ∈ Tnm[t] for m = 1, . . . , χ − 1, where ζm(t) are the functions introduced
in Theorem 1. Symmetric deformations require to check that, in addition, those polynomials
ζm(t) are π-periodic or π-antiperiodic.

Polynomial deformations of the unit circle of degree≤ n can be defined without mentioning
support functions. For instance, we can define them in Cartesian coordinates (x, y) as

(4) Γε =
{

(x, y) ∈ R2 : x2 + y2 = P (x, y; ε)
}
,

for some smooth function P (x, y; ε) of the form P (x, y; ε) � 1 +
∑

k≥1 ε
kPk(x, y) as ε → 0

with Pk(x, y) ∈ Rkn[x, y] for all k ≥ 1. Alternatively, we can also define them in polar
coordinates (r, φ) as

Γε =
{
r(φ; ε) · (cosφ, sinφ) : φ ∈ T

}
,
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for some smooth polar function r(φ; ε) of the form r(φ; ε) � 1 +
∑

k≥1 ε
krk(φ) as ε →

0 with rk(φ) ∈ Tkn[φ] for all k ≥ 1. The Cartesian setting was considered in [37] with
P (x, y; ε) = 1 − εyn. The polar setting was considered in [41] with r(φ; ε) = 1 + εr1(φ) +

O(ε2) and in [44] with r(φ; ε) = 1 + εr1(φ) + ε2r2(φ) + O(ε3). Any deformation of the
unit circle expressed in Cartesian coordinates as (4) for some P (x, y; ε) = 1 + εP1(x, y) with
P1(x, y) ∈ Rn[x, y] is a polynomial deformation of degree ≤ n in the sense of Definition 1
with h1(ψ) = 1

2
P1(cosψ, sinψ). See Lemma 10. We are interested in such deformations

because we want to understand the numerical experiments discussed in [37]. However, for
brevity, we omit the corresponding proofs for deformations written in polar coordinates or in
Cartesian coordinates with more than the first order term εP1(x, y). Such proofs are just a slew
of boring computations based in the Taylor, multinomial and Lagrange inversion theorems. We
only stress that h1(ψ) = r1(ψ), which justifies that the O(ε)-persistence result in Theorem 1
is just a reformulation of the main theorem in [41].

The map q 7→ χ(Γε, q) is unbounded for any polynomial deformation Γε of degree ≤ n,
since χ(Γε, q) � 2q/n as odd q → +∞ for centrally symmetric deformations, and χ(Γε, q) �
q/n as q → +∞ otherwise. The experiments described in [37, Numerical Result 5], which
cover degrees 3 ≤ n ≤ 8 and periods 3 ≤ q ≤ 100, suggest that none of the p/q-resonant
caustics O(εχ)-persists under monomial deformations (4) with P (x, y; ε) = 1−εyn and n ≥ 3.
Its proof requires to check that µqZ∗{hχ + ζχ} 6= 0, which is a challenge. If it were true, that
monomial deformations would break all resonant caustics in such a way that there would be
breakups of any order, because the map q 7→ χ(Γε, q) ∈ N is exhaustive.

The paper is organized as follows. Section 2 begins with a description of the Bialy-Mironov
generating function and ends with a list of necessary conditions for the existence of smooth
convex resonant caustics in smooth strictly convex domains. The general notion of high-order
persistence of convex resonant caustics in deformed smooth convex domains is presented in
Section 3 and applied to deformed circles in Section 4, where Theorem 1 is proved. The results
about polynomial deformations of circles, including Theorem 2, are presented in Section 5.
Finally, we discuss three open problems: the co-preservation of resonant caustics with different
rotation numbers, the convergence of a procedure to correct the original deformation in order
to preserve a chosen resonant caustic and the asymptotic measure of some exponentially small
phenomena as the period q grows. See Section 6. Several technical proofs have been relegated
to the appendices.

2. EXISTENCE OF SMOOTH CONVEX RESONANT CAUSTICS

To begin with, we introduce coordinates in the space of oriented lines, define the support
function and the billiard map of a convex domain, and describe the Bialy-Mironov generating
function following [10]. We also recall the periodic version of the variational principle for
twist maps following [38]. Next, we combine all those elements to find necessary conditions
for the existence of smooth convex resonant caustics in Theorem 4. This part is inspired by the
computations in [10, Theorem 2.2] and the Lagrangian approach to the existence of rotational
invariant curves (RICs) of twist maps described in [34, 31]. Finally, we discuss five simple
examples: circles, ellipses, constant width curves, Gutkin billiard tables (also called constant
angle curves) and centrally symmetric curves with 1/4-resonant caustics.
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FIGURE 1. The billiard map f(ϕ, λ) = (ϕ1, λ1), the normal angle ψ = (ϕ1 + ϕ)/2
and the incidence-reflection angle θ = (ϕ1 − ϕ)/2.

The billiard dynamics acts on the subset of oriented lines (rays) that intersect the boundary
of the convex domain. An oriented line ` can be written as

cosϕ · x+ sinϕ · y = λ,

where ϕ ∈ T := R/2πZ is the direction of the right normal to the oriented line and λ ∈ R is
the signed distance to the origin. Thus, (ϕ, λ) ∈ A := T × R are coordinates in the space of
oriented lines, which is topologically a cylinder.

Let Γ be a smooth strictly convex closed curve of R2. We fix its counterclockwise orientation
and assume its interior contains the originO, so there is a positive smooth 2π-periodic function
h(ϕ), called the support function of Γ, such that {λ = h(ϕ)} and {λ = −h(ϕ + π)} are the
1-parameter families of oriented lines positively and negatively tangent to Γ. Then

z : T→ Γ ⊂ R2 ' C, z(ϕ) =
(
x(ϕ), y(ϕ)

)
= h(ϕ)e iϕ + h′(ϕ)e i(ϕ+π/2),

is a parametrization of Γ, where ϕ ∈ T is the counterclockwise angle between the positive
x-axis and the outer normal to Γ at the point z(ϕ).

The space of the oriented lines that intersect the interior of Γ is the open cylinder

AΓ = {(ϕ, λ) ∈ A : −h(ϕ+ π) < λ < h(ϕ)}

and the billiard map f : AΓ → AΓ acts by the reflection law in Γ. That is, f(ϕ, λ) = (ϕ1, λ1)
means that the oriented line `1 with coordinates (ϕ1, λ1) is the reflection of the oriented line `
with coordinates (ϕ, λ) with respect to the tangent to Γ at the second intersection of ` with Γ.
See Figure 1. The shocking discovery by Bialy and Mironov was that the billiard map f is an
exact twist map with generating function

S(ϕ, ϕ1) = 2h(ψ) sin θ, ψ =
ϕ1 + ϕ

2
, θ =

ϕ1 − ϕ
2

.

To be precise, λ1 dϕ1 − λ dϕ = f ∗(λ dϕ)− λ dϕ = dS, so

(5) f(ϕ, λ) = (ϕ1, λ1)⇔
{
λ = −∂1S(ϕ, ϕ1) = h(ψ) cos θ − h′(ψ) sin θ,
λ1 = ∂2S(ϕ, ϕ1) = h(ψ) cos θ + h′(ψ) sin θ,
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and f preserves the standard area form dϕ∧ dλ. See, for instance, [10, Proposition 2.1]. Here,
∂iS denotes the derivative with respect to the i-th variable. The strict convexity of Γ implies
the twist condition: ∂12S(ϕ, ϕ1) = 1

2
ρ(ψ) sin θ > 0, where ρ(ψ) = h′′(ψ) +h(ψ) is the radius

of curvature of Γ at the point z(ψ).
We say that ψ ∈ T and θ ∈ (0, π) are the normal angle and the angle of incidence/reflection

at each impact point, whereas ϕ ∈ T is the side angle. We consider S(ϕ, ϕ1) defined on the
universal cover {(ϕ, ϕ1) ∈ R2 : ϕ < ϕ1 < ϕ+ 2π} because S(ϕ+ 2π, ϕ1 + 2π) = S(ϕ, ϕ1).

Let us briefly recall the classical variational principle for exact twists maps. The interested
reader can find more details in [38, §V]. We will introduce several operators which are not
standard in the variational approach, but they simplify computations and shorten formulas.

Given any sequence {aj}, we consider the shift, sum, difference and q-average operators

τ{aj} = aj+1, σ{aj} = aj+1 + aj, δ{aj} = aj+1 − aj, µ{aj} =
aj + · · ·+ aj+q−1

q
.

For simplicity, we omit the dependence of µ on q and we just say that µ is the average operator.
Let p/q ∈ (0, 1) be a rational number with gcd(p, q) = 1. We call the elements of the space

X =
{
{ϕj} ∈ RZ : ϕj < ϕj+1 < ϕj + 2π, ϕj+q = ϕj + 2πp, ∀j ∈ Z

}
p/q-periodic sequences. We define the p/q-periodic action A : X → R as

A{ϕj} =

q−1∑
j=0

S(ϕj, ϕj+1) = 2

q−1∑
j=0

h(ψj) sin θj,

where ψj = σ{ϕj}/2 and θj = δ{ϕj}/2. Periodicities ϕj+q = ϕj + 2πp, ψj+q = ψj + 2πp
and θj+q = θj imply that µ{S(ϕj0+j, ϕj0+j+1)} = 2µ{h(ψj0+j) sin θj0+j} = A{ϕj}/q for all
j0 ∈ Z. Critical points of the action, which we call p/q-periodic configurations, can be lifted to
full p/q-periodic orbits of the billiard map f by taking λj = −∂1S(ϕj, ϕj+1) = ∂2S(ϕj−1, ϕj).
Thus, any p/q-periodic configuration defines a p/q-periodic billiard trajectory inside Γ with
side angles ϕj , normal angles ψj = σ{ϕj}/2 and incidence-reflection angles θj = δ{ϕj}/2.
We characterize such configurations in the next proposition, where we also recall a formula
for the length of their corresponding periodic billiard trajectories.

Proposition 3. A p/q-periodic sequence {ϕj} is a p/q-periodic configuration if and only if

σ{h′(ψj) sin θj} − δ{h(ψj) cos θj} = 0, ∀j ∈ Z,

where ψj = σ{ϕj}/2 and θj = δ{ϕj}/2, in which case

2qµ
{
h(ψj) sin θj

}
= A{ϕj} = L, µ{h′(ψj) sin θj} = 0, µ{θj} = πp/q,

where L is the length of the p/q-periodic configuration {ϕj}.

Proof. A p/q-periodic sequence {ϕj} is a critical point of the action if and only if

σ{h′(ψj) sin θj} − δ{h(ψj) cos θj} = ∂2S(ϕj, ϕj+1) + ∂1S(ϕj+1, ϕj+2) = 0

for all j ∈ Z. The first equality above follows from S(ϕj, ϕj+1) = 2h(ψj) sin θj and relations
ψj = σ{ϕj}/2 = (ϕj+1 + ϕj)/2 and θj = δ{ϕj}/2 = (ϕj+1 − ϕj)/2.
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Identities 2qµ
{
h(ψj) sin θj

}
= L and µ{h′(ψj) sin θj} = 0 are proved in [10, Theorem 2.2].

By q-periodicity of {θj}, we get

µ{θj} =
1

q

q−1∑
i=0

θj+i =
1

q

q−1∑
i=0

θj+i + θj+i+1

2
=

1

q

q−1∑
i=0

ψj+i+1 − ψj+i
2

=
ψj+q − ψj

2q
=
πp

q
. �

We look for necessary conditions for the existence of convex resonant caustics inside Γ.
Tangent lines to such a caustic can be counterclockwise or clockwise oriented. We fix the
counterclockwise orientation, so we assume that p/q < 1/2 from now on. Any p/q-resonant
convex caustic gives rise to a 1-parameter family of p/q-periodic orbits of the billiard map.
We want to parametrize this family using a dynamical parameter t ∈ R in which the billiard
map acts as the constant shift t 7→ t + ω with angular frequency ω = 2πp/q. The dynamical
parameter is not unique. If a(t) is any smooth ω-periodic function such that 1+a′(t) > 0, then
s = t+ a(t) is another dynamical parameter.

Let us stress the three main differences between this setting, where we deal with functions of
a continuous variable t ∈ R, and the previous setting, where we had sequences whose elements
are labeled by a discrete index k ∈ Z.

Firstly, we define the shift, sum, difference and average operators as

τ{a(t)} = a(t+ ω), σ{a(t)} = a(t+ ω) + a(t), δ{a(t)} = a(t+ ω)− a(t)

and µ{a(t)} = 1
q

∑q−1
j=0 a(t + jω). These operators diagonalize in the Fourier basis. Operator

µ is the projection onto the resonant qZ-harmonics: µ = µqZ, but we omit the qZ subscript for
simplicity. Both claims are proved in Appendix A.

Secondly, we define the p/q-periodic action of a side function ϕ(t) as

A{ϕ(t)} = qµ {S(ϕ(t), ϕ(t+ ω))} = 2qµ{h(ψ(t)) · sin θ(t)},
where ϕ(t), the normal function ψ(t) and the incidence-reflection function θ(t) are related by

(6) ψ = ϕ+ θ = σ{ϕ}/2, 2θ = δ{ϕ}, µ{ψ − t} = 0, µ {t− ϕ} = ω/2 = µ{θ}.
We ask functions ϕ(t) − t, ψ(t) − t and θ(t) to be 2π-periodic, as a continuous analogue of
the discrete periodicity conditions ϕj+q = ϕj + 2πp, ψj+q = ψj + 2πp and θj+q = θj . Hence,
they are lifts of some functions ϕ, ψ : T → T and θ : T → R. To simplify the exposition, we
sometimes abuse the notation and use the same symbol for an object and its lift. Other times
we denote lifts with a tilde. We also ask that ϕ′(t) > 0, so that ϕ : R→ R can be inverted.

Thirdly, condition σ{h′(ψj) sin θj} − δ{h(ψj) cos θj} = 0 becomes the difference equation

(7) σ{h′ ◦ ψ · sin θ} − δ{h ◦ ψ · cos θ} = 0.

Remark 1. Relations (6) are redundant, but we have listed all of them for future references.
They can be used to determine all three functions ϕ(t), ψ(t) and θ(t) from any one of them.
Usually, we will determine ϕ(t) and ψ(t) from θ(t). If θ(t) is a smooth 2π-periodic function
such that µ{θ} = ω/2, then there is a unique smooth 2π-periodic function ϕ(t) − t such that
δ{ϕ} = 2θ and µ{t− ϕ} = ω/2. See Lemma 12 in Appendix A for a proof. Then ψ = ϕ+ θ
implies that ψ = σ{ϕ}/2 and µ{ψ − t} = 0.

Theorem 4. Let p/q ∈ (0, 1/2) be any rational rotational number with gcd(p, q) = 1. If there
is a smooth convex p/q-resonant caustic inside Γ, the following necessary conditions hold.
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(f) There are three smooth 2π-periodic functions ϕ(t)− t, ψ(t)− t and θ(t) related by (6)
that satisfy the difference equation (7). Besides, ϕ′(t) > 0.

(p) There is a smooth parametrization c : T → AΓ such that G = c(T) is a graph and
f(c(t)) = c(t+ ω).

(a) The p/q-periodic action is constant on the side function: A{ϕ(t)} = L, where L is the
length of all p/q-periodic billiard trajectories in Γ.

Proof. (f) Let g(ϕ) be the smooth support function of the p/q-resonant caustic. Set

G = graph(g) := {(ϕ, λ) ∈ A : λ = g(ϕ)
}
.

The caustic is inside Γ, so G ⊂ AΓ. Clearly, G is f -invariant, so f |G defines a smooth
preserving orientation circle diffeomorphism r : T→ T such that

f̃
(
ϕ, g̃(ϕ)

)
=
(
r̃(ϕ), g̃(r̃(ϕ))

)
, r̃q(ϕ) = ϕ+ 2πp = ϕ+ qω,

where f̃ : ÃΓ → ÃΓ, g̃ : R → R and r̃ : R → R are the corresponding lifts. Identity
r̃q(ϕ) = ϕ + qω is the key. It follows from the definition of p/q-resonant caustic. It
implies that ϕ 7→ r̃(ϕ) becomes the constant shift t 7→ t+ ω in the smooth parameter

t = s̃(ϕ) :=
1

q

q−1∑
j=0

(
r̃j(ϕ)− jω

)
.

Inversion of s̃(ϕ(t)) = t defines a smooth function such that ϕ′(t) > 0, ϕ(t)− t is 2π-
periodic, and any sequence {ϕ(t + jω)}, t ∈ R, is a p/q-periodic configuration of f .
Then Proposition 3 implies that the normal function ψ(t) and the incidence-reflection
function θ(t) obtained from ϕ(t) by relations (6) satisfy the difference equation (7).

(p) We define

λ(t) = −∂1S(ϕ(t), ϕ(t+ ω)) = ∂2S(ϕ(t− ω), ϕ(t)).

Since ϕ(t)− t and λ(t) are 2π-periodic, the map c = (ϕ, λ) : R→ R2 can be projected
to a map from T to A. Since g(ϕ) is the support function of the caustic, we get that
λ(t) = g(ϕ(t)) and c(T) = G ⊂ AΓ. Condition ϕ′(t) > 0 implies that c′(t) 6= (0, 0),
so c : T→ G is a parametrization. Implicit equations (5) imply f(c(t)) = c(t+ ω).

(a) The p/q-periodic sequences {ϕ(t+jω)}j∈Z form a 1-parameter family of critical points
of the p/q-periodic action, being t ∈ R a smooth parameter. Therefore, the action is
constant on this 1-parameter family. That is, all periodic billiard trajectories tangent to
the p/q-resonant caustic have the same length. �

Remark 2. If these three necessary conditions hold, then µ{h′ ◦ ψ · sin θ} = 0. This relation
follows by applying operator µ to (7), since µ ◦ σ = 2µ and µ ◦ δ = 0 on the space of smooth
2π-periodic functions.

To provide a first insight into the usefulness of Condition (f) in Theorem 4, let us give some
information about functions ϕ(t), ψ(t) and θ(t) in five examples.

Example 1. The simplest example is the completely integrable circular billiard. If Γ is a circle
of radius one centered at the origin, then h(ψ) ≡ 1, so AΓ = T× (−1, 1) and the billiard map
f : AΓ → AΓ is given by f(ϕ, λ) = (ϕ + $(λ), λ) with $(λ) = 2 arccosλ. In particular, we
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can take ϕ(t) = t − ω/2, ψ(t) = t, θ(t) ≡ ω/2, ω = 2πp/q and L = 2q sin(ω/2) for any
p/q ∈ (0, 1/2). Straightforward computations show that these functions satisfy Condition (f).

Example 2. Elliptic billiards are integrable too, but their computations are harder. If Γ is the
ellipse {x2/a2 + y2/b2 = 1}, then h(ψ) =

√
a2 cos2 ψ + b2 sin2 ψ; see [5, Lemma 1]. The

explicit expression of ϕ(t), ψ(t) and θ(t) as functions of a dynamical parameter t requires
the use of elliptic functions whose modulus depends on the eccentricity of the ellipse and the
rotation number p/q of each resonant caustic. See [39, 17, 5] for similar computations. We
omit the details, since we only deal with deformations of circles in this work, but we stress that
ϕ′(t), ψ′(t) 6≡ 1 in elliptic billiards, unlike circular billiards.

Example 3. Constant width curves are a classic example. Any such curve, other than a circle,
has a nonsmooth (with cusps) and nonconvex 1/2-resonant caustic [32]. The curve Γ has
constant width w > 0 when h(ψ)+h(ψ+π) ≡ w, which implies that all (2Z\{0})-harmonics
of h(ψ) vanish, In that case, we take ϕ(t) = t−ω/2, ψ(t) = t, θ(t) ≡ ω/2, ω = π and L = 2w
for p/q = 1/2. These functions satisfy Condition (f) because sin θ(t) ≡ 1, cos θ(t) ≡ 0 and
h′(ψ) + h′(ψ + π) ≡ 0.

Example 4. Gutkin billiard tables [22, 4], also called constant angle curves, are another classic
example. We claim that circles are the only convex billiard tables with a p/q-resonant caustic,
with p/q ∈ (0, 1/2), whose incidence-reflection function θ(t) is constant. In that case, θ(t) ≡
ω/2 with ω = 2πp/q, so ϕ(t) = t− ω/2 and ψ(t) = t are the functions determined from θ(t)
by relations (6). Therefore, the difference equation (7) becomes

tan(ω/2)
(
h′(t+ ω) + h′(t)

)
= h(t+ ω)− h(t).

If h(t) =
∑

l∈Z ĥle
ilt satisfies this equation, then ĥl = 0 for any index l ∈ Z such that

tan(lπp/q) 6= l tan(πp/q).

Cyr [16] proved that given any integer l 6∈ {−1, 0, 1}, equation tan(lπp/q) = l tan(πp/q) has
no rational solution p/q ∈ (0, 1/2). This proves the claim, because circles are the only convex
curves whose support function is a trigonometric polynomial of degree one.

Example 5. A smooth centrally symmetric convex curve Γ with support function h(ψ) has a
convex 1/4-resonant caustic if and only if

h2(ψ) = ĉ0 +
∑

l∈2+4Z

ĉle
ilψ and h+ h′′ > 0.

This claim is proved in [11, Proposition 3.1]. Along the proof, the authors check three facts.
First, all such curves are centrally symmetric: h(ψ + π) = h(ψ). Second, once fixed one of
such curves, there is a constant R > 0 such that h2(ψ) + h2(ψ + π/2) = R2. Third, then we
can take ψ(t) = t and determine the incidence-reflection function θ(t) by means of

h(t) = R sin θ(t), h(t+ π/2) = R cos θ(t).

Note that θ(t+ π/2) = π/2− θ(t) and ψ(t+ π/2) = ψ(t) + π/2. The last relation means that
the tangent lines to Γ at the impacts of any 1/4-periodic trajectory form a rectangle. This fact
plays a key role in the Bialy-Mironov proof of a strong version of the Birkhoff conjecture [9].
If we set ϕ = ψ − θ and ω = π/2, then functions ϕ(t), ψ(t) and θ(t) satisfy Condition (f).
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3. PERSISTENCE OF SMOOTH CONVEX RESONANT CAUSTICS

Necessary conditions in Theorem 4 are not sufficient for the existence of smooth convex
resonant caustics, see Example 3. However, if the envelope of the 1-parameter family of lines
from z(ψ(t)) to z(ψ(t + ω)), where t is the dynamical parameter, is a smooth convex curve,
then those conditions are sufficient too. That is the case when we consider small enough
smooth deformations Γε = Γ0 + O(ε) of a smooth strictly convex curve Γ0, not necessarily a
circle, with a smooth strictly convex resonant caustic.

We consider that setting. To be precise, we assume the following hypothesis from here on.
(H) Let p/q ∈ (0, 1/2) be a rational rotational number such that gcd(p, q) = 1. Let Γ0 be

a smooth strictly convex curve with support function h0(ϕ). We assume that there is
a smooth convex p/q-resonant caustic with support function g0(ϕ) inside Γ0. We also
assume that the origin is in the interior of the caustic, so 0 < g0(ϕ) < h0(ϕ). Let
Γε = Γ0 + O(ε), with ε ∈ [−ε0, ε0], be a deformation of the unperturbed curve with
smooth support function h(ϕ; ε). Let (ϕ1, λ1) = fε(ϕ, λ), Sε(ϕ, ϕ1) = 2h(ψ; ε) sin θ
and Aε{ϕ} = qµ{Sε(ϕ, τ{ϕ})} = 2qµ{h ◦ ψ · sin θ} be the perturbed billiard map in
Γε, the perturbed generating function and the perturbed action, respectively.

We need two parameters in that perturbed setting. The dynamical parameter t parametrizes
the invariant objects. The perturbative parameter ε ∈ [−ε0, ε0] labels the ovals. Then the shift,
sum, difference and average operators are applied to functions that depend on t and ε, although
they only act on t. For instance, τ{a(t; ε)} = a(t+ω; ε). We will denote the derivatives of the
support function h(ψ; ε) = hε(ψ) as h′ = dh

dψ
and ḣ = dh

dε
. Analogously, we will denote the

derivatives of any function a(t; ε) = aε(t) as a′ = da
dt

and ȧ = da
dε

.
Next, we state an immediate extension of Theorem 4.

Corollary 5. If 0 < ε0 � 1, the unperturbed smooth convex resonant p/q-caustic persists
under deformation Γε, ε ∈ [−ε0, ε0], if and only if the following three conditions hold.

(F) There are three smooth 2π-periodic functions ϕ(t; ε)− t, ψ(t; ε)− t and θ(t; ε) related
by (6) that satisfy the difference equation (7). Besides, ϕ′(t; ε) > 0.

(P) There are smooth parametrizations cε : T→ AΓε such that Gε = cε(T) are graphs and

fε(cε(t)) = cε(t+ ω).

(A) The p/q-periodic action is constant on the side function: Aε{ϕ(t; ε)} = L(ε), where
L(ε) is the length of all p/q-periodic billiard trajectories in Γε for ε ∈ [−ε0, ε0].

Remark 3. Similarly to Remark 2, if these necessary conditions hold, then

2qµ{h ◦ ψ · sin θ} = L, µ{h′ ◦ ψ · sin θ} = 0, 2qµ{ḣ ◦ ψ · sin θ} = L̇.

Only the last formula is new. Let us prove it. If we derive the first relation with respect to ε,
use the summation by parts formula and take advantage of (7), we get

L̇ = 2qµ
{
ḣ ◦ ψ · sin θ + h′ ◦ ψ · sin θ · ψ̇ + h ◦ ψ · cos θ · θ̇

}
= 2qµ{ḣ ◦ ψ · sin θ}+ qµ

{
h′ ◦ ψ · sin θ · σ{ϕ̇}+ h ◦ ψ · cos θ · δ{ϕ̇}

}
= 2qµ{ḣ ◦ ψ · sin θ}+ qµ

{[
σ{h′ ◦ ψ · sin θ} − δ{h ◦ ψ · cos θ}

]
· τ{ϕ̇}

}
= 2qµ{ḣ ◦ ψ · sin θ}.
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We can normalize Γε by a scaling in such a way that L̇ = 0, but we do not need it.

Full persistence of resonant caustics is a extremely rare phenomenon, so we introduce the
more common concept of O(εm)-persistence for some order m ∈ N ∪ {0}.

Definition 2. Let m ∈ N ∪ {0}. The unperturbed resonant p/q-caustic O(εm)-persists under
deformation Γε if and only if the following three conditions hold.

(F)m There are smooth 2π-periodic functions ϕ(t; ε)− t, ψ(t; ε)− t and θ(t; ε) related by (6)
such that ϕ′(t; ε) > 0 and

(8) σ{h′ ◦ ψ · sin θ} − δ{h ◦ ψ · cos θ} = O(εm+1) as ε→ 0.

(P)m There are smooth parametrizations cε : T→ AΓε such that Gε = cε(T) are graphs and

fε ◦ cε − τ{cε} =
(
0,O(εm+1)

)
as ε→ 0.

(A)m There is a ‘length’ L(ε) > 0 such that the side function ϕ = ϕ(t; ε) satisfies

Aε{ϕ} − L(ε) = O(εm+1) as ε→ 0.

If the resonant caustic O(εm)-persists, but not O(εm+1)-persists, we say that deformation Γε
O(εm+1)-breaks the caustic.

Since O(εm)-persistence is the main concept of this work, some comments are in order. If
ϕ0(t), ψ0(t) and θ0(t) are the unperturbed side, normal and incidence-reflection functions, then

σ{h′ ◦ ψ0 · sin θ0} − δ{h ◦ ψ0 · cos θ0} = O(ε) as ε→ 0,

since h = h0+O(ε). Therefore, the unperturbed caustic always O(ε0)-persists. We do not need
to check all three Conditions (F)m, (P)m and (A)m, because there are logical dependencies
among them. We prove in Proposition 6 that Conditions (F)m and (P)m are equivalent and
both imply Condition (A)m. We will only check Condition (F)m in our computations. We have
included the other conditions as part of our definition to present a broader view of the problem.

The three conditions look similar, but they have different characteristics. On the one hand,
Conditions (F)m and (P)m are stated in terms of a single iteration of the perturbed map fε. On
the other hand, Condition (A)m requires to consider all the shifts

ϕ̄j = ϕ̄j(t; ε) = τ j{ϕ(t; ε)} = ϕ(t+ jω; ε), j = 0, . . . , q.

Hence, Conditions (F)m and (P)m are easier to deal with from a computational point of view.
Condition (F)m means that there is a reparametrization ϕε(t) = ϕ(t; ε) of the original angle

ϕ in terms of a new dynamical parameter t such that

∂2Sε(ϕε(t− ω), ϕε(t)) + ∂1Sε(ϕε(t), ϕε(t+ ω)) = O(εm+1) as ε→ 0,

which stands out its Lagrangian nature. It was inspired by the proofs of the existence of
(resonant and nonresonant) rotational invariant curves contained in [34, 31]. Condition (A)m
follows the variational approach in [17].

Remark 4. Following [41, 39], we could also have considered a fourth condition defined in
terms of ϕ ∈ T instead of t ∈ R. However, such approach forces us to deal with the power
map f qε , which is technically impractical. We have not pursued it. That discarded condition is:

(G)m There are smooth functions g•ε , g
?
ε : T → R such that f qε (ϕ, g•ε (ϕ)) = (ϕ, g?ε (ϕ)),

g?ε , g
•
ε = g0 + O(ε) and g?ε − g•ε = O(εm+1) as ε→ 0.
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It means that f qε projects G•ε = graph(g•ε ) onto G?
ε = graph(g?ε ) in the vertical direction. None

of these two graphs have to coincide with Gε = cε(T), but all of them are O(εm+1)-close.

Let us prove the logical dependencies among these O(εm)-persistence conditions and how
the dominant terms in their O(εm+1)-errors are related.

Proposition 6. Conditions (F)m and (P)m are equivalent and both imply Condition (A)m. Let
ϕ0(t) = ϕ(t; 0) be the unperturbed side function. If the p/q-resonant caustic O(εm)-persists
and we follow the notations introduced in Definition 2, then there is a smooth 2π-periodic
function Em+1(t) and a smooth 2π/q-periodic function Lm+1(t) such that

σ{h′ ◦ ψ · sin θ} − δ{h ◦ ψ · cos θ} = εm+1τ{Em+1}+ O(εm+2),(9a)

fε ◦ cε − τ{cε} =
(
0, εm+1τ{Em+1}+ O(εm+2)

)
,(9b)

Aε{ϕ} − L(ε) = εm+1qLm+1 + O(εm+2),(9c)

as ε→ 0. Besides, µ{Em+1ϕ
′
0} = L′m+1 and

∫
T Em+1ϕ

′
0 = 0.

Proof. Firstly, we check that (F)m ⇒ (P)m & (A)m, L′m+1 = µ{Em+1ϕ
′
0} and

∫
T Em+1ϕ

′
0 = 0.

Let ϕ(t; ε), ψ(t; ε) and θ(t; ε) be the functions described in (F)m and Em+1(t) be the function
determined by (9a). Set ϕ1(t; ε) = ϕ(t + ω; ε), so ϕ1 = τ{ϕ}. We consider the smooth 2π-
periodic functions λ(t; ε) and λ1(t; ε) given by

λ = h ◦ ψ · cos θ − h′ ◦ ψ · sin θ, λ1 = h ◦ ψ · cos θ + h′ ◦ ψ · sin θ.

Set cε(t) =
(
ϕ(t; ε), λ(t; ε)

)
and dε(t) =

(
ϕ1(t; ε), λ1(t; ε)

)
. Implicit equations (5) imply that

f ◦cε = dε. Besides, λ1−τ{λ} = σ{h′◦ψ ·sin θ}−δ{h◦ψ ·cos θ} = εm+1τ{Em+1}+O(εm+2),
which is equivalent to estimate (9b). This proves (P)m.

Set ϕ̄j = τ j{ϕ}, ψ̄j = τ j{ψ} and θ̄j = τ j{θ} for all j ∈ Z. Note that ϕ̄j+q(t; ε) =
ϕ̄j(t; ε)+2πp, ψ̄j+q(t; ε) = ψ̄j(t; ε)+2πp and θ̄j+q(t; ε) = θ̄j(t; ε). If we derive the expression
that defines the action and we recall that ϕ = ϕ0 + O(ε), then we obtain the estimate

d

dt

[
Aε{ϕ}

]
=
∑q−1

j=0

[
∂1Sε(ϕ̄j, ϕ̄j+1)ϕ̄′j + ∂2Sε(ϕ̄j, ϕ̄j+1)ϕ̄′j+1

]
=
∑q−1

j=0

[
∂2Sε(ϕ̄j−1, ϕ̄j) + ∂1Sε(ϕ̄j, ϕ̄j+1)

]
ϕ̄′j

=
∑q−1

j=0

[
σ{h′ ◦ ψ̄j−1 · sin θ̄j−1} − δ{h ◦ ψ̄j−1 · cos θ̄j−1}

]
ϕ̄′j

= εm+1
∑q−1

j=0 τ
j{Em+1ϕ

′}+ O(εm+2)

= εm+1qµ{Em+1ϕ
′}+ O(εm+2)

= εm+1qµ{Em+1ϕ
′
0}+ O(εm+2),

which, by integration, is equivalent to estimate (9c) for any smooth 2π/q-periodic function
Lm+1 such that L′m+1 = µ{Em+1ϕ

′
0}. This proves (A)m and the relation between Lm+1 and

Em+1. The operator µ is the projection onto the qZ-harmonics, so the zero-th harmonics of
Em+1ϕ

′
0 and L′m+1 coincide, so

∫
T Em+1ϕ

′
0 =

∫
T L
′
m+1 = 0.

Secondly, we check that (P)m ⇒ (F)m. Let cε(t) =
(
ϕ(t; ε), λ(t; ε)

)
be the parametrization

described in (P)m and Em+1(t) be the error function given in (9b). Property ϕ′ > 0 holds
because cε : T→ Gε ⊂ AΓε is a parametrization and Gε is a graph. Functions ϕ, ψ = σ{ϕ}/2
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and θ = δ{ϕ}/2 satisfy relations (6). Set
(
ϕ1(t; ε), λ1(t; ε)

)
= fε(cε(t)). We deduce from

implicit equations (5) that

σ{h′ ◦ ψ · sin θ} − δ{h ◦ ψ · cos θ} = λ1 − τ{λ} = εm+1τ{Em+1}+ O(εm+2),

which is exactly estimate (9a). This proves (F)m. �

Remark 5. We can prove that
∫
T Em+1ϕ

′
0 = 0 in another way. The flux of the exact twist map

fε across the graph Gε = cε(T), which is a rotational curve, is zero [38, §V]. This flux is∫
fε(Gε)

λ dϕ−
∫
Gε

λ dϕ =

∫
T
(λ1ϕ

′
1 − λϕ′)

=

∫
T
δ{λϕ′}+ εm+1

∫
T
τ{Em+1ϕ

′}+ O(εm+2)

= εm+1

∫
T
Em+1ϕ

′
0 + O(εm+2) as ε→ 0.

We have used that if cε(t) =
(
ϕ(t; ε), λ(t; ε)

)
and (ϕ1, λ1) = f(ϕ, λ), then ϕ1 = τ{ϕ} and

λ1 = τ{λ}+ εm+1τ{Em+1}+ O(εm+2). We have also used that ϕ = ϕ0 + O(ε).

Definition 3. The 2π/q-periodic function Lm+1(t) is the p/q-resonant potential of orderm+1.
The 2π-periodic function Em+1(t) is the p/q-resonant error of order m+ 1.

We will check in the next section that if the p/q-resonant caustic O(εm)-persists under a
deformation of the unit circle, then the Melnikov potential Lm+1(t) is uniquely determined
from previously computed objects. See the second item in Proposition 8.

4. HIGH-ORDER PERSISTENCE IN DEFORMED CIRCLES

Let us apply the previous high-order persistence theory to smooth deformations of circles.
The main goal is to check that the smooth 2π-periodic coefficients of the Taylor expansions in
powers of the perturbative parameter ε of the perturbed side, normal and incidence-reflection
functions can be computed recursively order by order as long as some compatibility conditions
hold. Such compatibility conditions have to do with the inversion of the difference operator δ,
so they boil down to the fact that certain smooth 2π-periodic functions have no qZ-resonant
harmonics. We look for a practical way to find the exact order at which a given resonant caustic
is destroyed, so we write down explicit formulas for all recursive computations.

To begin with, we assume the following hypothesis from here on.
(H’) Let p/q ∈ (0, 1/2) be a rational rotational number such that gcd(p, q) = 1. Let Γ0 be

the unit circle centered at the origin, see Example 1. The unperturbed side, normal and
incidence-reflection functions are

ϕ0(t) = t− ω/2, ψ0(t) = t, θ0(t) = ω/2, ω = 2πp/q.

Let Γε, with ε ∈ [−ε0, ε0], be a deformation of Γ0 with smooth support function (1).
We look for some perturbed side, normal and incidence-reflection functions

(10) ϕ(t; ε) �
∑
k≥0

εkϕk(t), ψ(t; ε) �
∑
k≥0

εkψk(t), θ(t; ε) �
∑
k≥0

εkθk(t)

that satisfy Condition (F)m for an order m ∈ N ∪ {0} as high as possible.
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Notation 1. If a(t; ε) �
∑

k≥0 ak(t)ε
k as ε → 0, then a≤m(t; ε) =

∑m
k=0 ak(t)ε

k. Symbol
a≤m(t; ε) may be used even when there are no coefficients ak(t) with k > m. Symbol a<m(t; ε)
has a similar meaning. An expression like Cm = Cm[[a≤m, b<m]] means that Cm is a smooth 2π-
periodic function that can be written as a differential expression in some smooth 2π-periodic
functions ak for 1 ≤ k ≤ m and bk for 1 ≤ k < m. The term differential means that the
derivatives of functions ak and bk can appear in those expressions.

The study of the approximate difference equation (8) requires to recursively compute the
asymptotic expansions ofR := h ◦ ψ · cos θ and Q := h′ ◦ ψ · sin θ as ε→ 0.

Lemma 7. Set c = cos(ω/2) and s = sin(ω/2). The coefficients of the asymptotic expansions

R = h ◦ ψ · cos θ � c+
∑
k≥1

Rkε
k, Q = h′ ◦ ψ · sin θ �

∑
k≥1

Qkεk

have the form

Qk = Qk[[h′≤k, ψ<k, θ<k]] = sh′k + Q̃k[[h′<k, ψ<k, θ<k]],
Rk = Rk[[h≤k, ψ<k, θ≤k]] = R̃k[[h≤k, ψ<k, θ<k]]− sθk.

Besides, Q̃1 = 0, R̃1 = ch1, Q̃2 = sh′′1ψ1 + ch′1θ1 and R̃2 = ch2 + ch′1ψ1 − sh1θ1 − cθ2
1/2.

The proof of Lemma 7 is postponed to Appendix B. The first coefficients are obtained from
the explicit recurrences for Q̃k and R̃k given in Lemma 15.

Once we know thatQ<k andR<k only depend on ψ<k and θ<k, we deduce that if ϕ<k(t; ε),
ψ<k(t; ε) and θ<k(t; ε) satisfy Condition (F)k−1, then ϕ≤k(t; ε), ψ≤k(t; ε) and θ≤k(t; ε) satisfy
Condition (F)k provided coefficients ϕk(t), ψk(t) and θk(t) are chosen in such a way that
σ{Qk} = δ{Rk}. We prove below that these k-th coefficients can be found if and only if Qk
has no qZ-resonant harmonics, in which case all three k-th coefficients are uniquely determined
provided that they have no qZ-resonant harmonics either.

Proposition 8. Assume that the p/q-resonant caustic O(εk−1)-persists for some order k ∈ N.
a) Q̄k := 1

2π

∫
TQk = 0.

b) The p/q-resonant Melnikov potential of order k is completely determined from previously
computed objects: Lk = Lk[[h≤k, ψ<k, θ<k]].

c) The p/q-resonant caustic O(εk)-persists if and only if

(11) µ{Qk} = 0,

in which case θk(t) is the unique smooth 2π-periodic solution of

(12) sδ{θk} = δ{R̃k} − σ{Qk}, µ{θk} = 0,

and then ϕk(t) and ψk(t) are uniquely determined from θk(t) by

(13) δ{ϕk} = 2θk, µ{ϕk} = 0, ψk = ϕk + θk.

d) If condition (11) fails, then it is satisfied for any support function h? = h+ εkηk such that

(14) µ
{
sη′k +Qk

}
= 0,

so the p/q-resonant caustic O(εk)-persists under a corrected deformation Γ?ε = Γε+O(εk).
We can choose the correction ηk in such a way that it only contains (qZ \ {0})-harmonics.
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Proof. We use several times along this proof that µ ◦ τ = µ, µ ◦ σ = 2µ and µ ◦ δ = 0 on
the space of smooth 2π-periodic functions. We also use that if b(t) is a smooth 2π-periodic
function, δ{a} = b has a smooth 2π-periodic solution a(t) if and only if µ{b} = 0, in which
case the solution is unique under the additional condition µ{a} = 0. See Lemma 12.
a) The asymptotic expansions in Lemma 7 imply that

σ{h′ ◦ ψ · sin θ} − δ{h ◦ ψ · cos θ} =
k∑
j=1

(
σ{Qj} − δ{Rj}

)
εj + O(εk+1).

The O(εk−1)-persistence hypothesis means that σ{Qj} = δ{Rj} for j = 1, . . . , k − 1. If
Ek and Lk are the p/q-resonant error and potential of order k, respectively, then τ{Ek} =
σ{Qk} − δ{Rk} and L′k = µ{Ek} = 2µ{Qk}, since ϕ′0(t) = 1. Finally, Q̄k = 1

2π

∫
TQk =

1
4π

∫
T Ek = 0. (See the last claims in Proposition 6.)

b) It is a direct consequence of properties L′k = 2µ{Qk} and Qk = Qk[[h′≤k, ψ<k, θ<k]].
c) Condition (11) is necessary: O(εk)-persistence means σ{Qk} = δ{Rk}, so µ{Qk} = 0.

Condition (11) is sufficient: If µ{Qk} = 0, then

µ
{
δ{R̃k} − σ{Qk}

}
= −2µ{Qk} = 0,

so (12) has a unique smooth 2π-periodic solution θk(t). Then we find ϕk and ψk by means
of relations (13). Finally, the O(εk)-terms of σ{h′ ◦ψ ·sin θ} and δ{h◦ψ ·cos θ} are σ{Qk}
and δ{R̃k − sθk}, respectively. See Lemma 7. Both terms coincide when the first relation
in (12) holds. Property ϕ′(t; ε) = 1 + O(ε) > 0 holds for ε ∈ [−ε0, ε0] if 0 < ε0 � 1.
Relations (6) follow from condition µ{θk} = 0 and relations (13), since ψk = ϕk + θk
implies that µ{ψk} = 0 and ψk = σ{ϕk}/2. This proves that Condition (F)k holds.

d) We deduce from Lemma 7 that if Q?k is the O(εk)-coefficient of (h?)′ ◦ ψ<k · sin θ<k, then
Q?k = sη′k +Qk. The existence of the correction ηk follows from property Q̄k = 0. �

Finally, we prove Theorem 1 by recursively applying Proposition 8 for k = 1, . . . ,m.

Proof of Theorem 1. We denote the Fourier coefficients of smooth 2π-periodic functions with
a hat, so we write h1(t) =

∑
l∈Z ĥ1,le

ilt and θ1(t) =
∑

l∈Z θ̂1,le
ilt.

a) We know thatQ1 = sh′1 from Lemma 7. Hence, the necessary and sufficient condition (11)
for O(ε)-persistence becomes µ{h′1} = 0 or, equivalently, µqZ?{h1} = 0.

b) We know that Q2 = sh′2 + Q̃2 and Q̃2 = sh′′1ψ1 + ch′1θ1 from Lemma 7. Let us check that
µ{Q̃2} = sµ{θ1θ

′
1}. In order to do that, we need three properties.

Firstly, once we know that the resonant caustic O(ε)-persists, we determine the first-order
coefficient θ1(t) by solving (12) with k = 1. That is,

(15) sδ{θ1} = δ{R̃1} − σ{Q1} = δ{ch1} − σ{sh′1}, µ{θ1} = 0.

Secondly, we determine ϕ1(t) and ψ1(t) by solving (13) with k = 1. In particular,

θ1 = δ{ϕ1}/2, ψ1 = σ{ϕ1}/2.

Thirdly, we recall that if a(t) and b(t) are 2π-periodic functions, then

µ
{
aδ{b}

}
= −µ

{
δ{a}τ{b}

}
, µ

{
aσ{b}

}
= µ

{
σ{a}τ{b}

}
.
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Next, we use these three properties to get the formula we are looking for:

µ{Q̃2} = µ{sh′′1ψ1 + ch′1θ1} = µ
{
sh′′1σ{ϕ1}+ ch′1δ{ϕ1}

}
/2

= µ
{[
σ{sh′′1} − δ{ch′1}

]
τ{ϕ1}

}
/2 = µ

{[
σ{sh′1} − δ{ch1}

]′
τ{ϕ1}

}
/2

= −sµ
{
δ{θ′1}τ{ϕ1}

}
/2 = sµ

{
δ{ϕ1}θ′1

}
/2 = sµ{θ1θ

′
1}.

Thus, condition (11) for O(ε2)-persistence becomes µ
{
h′2 + θ1θ

′
1

}
= 0 or, equivalently,

µqZ?{h2 + θ2
1/2} = 0.

Set e±l = e ilω ± 1. The Fourier coefficients of the unique smooth 2π-periodic solution
of (15) are easily determined: θ̂1,l = 0 for all l ∈ qZ and

se−l θ̂1,l =
(
ce−l − ilse+

l

)
ĥ1,l, ∀l 6∈ qZ.

The RHS of this identity vanishes, and θ̂1,l too, when l = ±1. If l 6∈ qZ ∪ {−1, 1}, then

θ̂1,l =

(
c

s
− il

e+
l

e−l

)
ĥ1,l =


tan(lω/2)− l tan(ω/2)

tan(ω/2) tan(lω/2)
ĥ1,l, if 2l 6∈ qZ,

ĥ1,l

tan(ω/2)
, if 2l ∈ qZ.

We have used that e+
l = 0 when 2l ∈ qZ and l 6∈ qZ, whereas e−l 6= 0 for all l 6∈ qZ. The

formulas above are equivalent to the expression of θ1(t) given in Theorem 1.
c) We know from Lemma 7 thatQm = sh′m+Q̃m, where Q̃m is a smooth 2π-periodic function,

only depending on h1, . . . , hm−1 —since approximations ϕ<k, ψ<k and θ<k are uniquely
determined from h<k for any k = 1, . . . ,m − 1— that can be explicitly computed from
recurrences given in Appendix B. We also know that

∫
TQm = 0, and so

∫
T Q̃m = 0. This

means that there is a smooth 2π-periodic function ζm such that sζ ′m = Q̃m. Finally, the
necessary and sufficient condition for O(εm)-persistence becomes µ{h′m + ζ ′m} = 0 or,
equivalently, µqZ?{hm + ζm} = 0. �

Functions ζm can be recursively computed from the formulas listed in Appendix B. For
instance, we have already seen that ζ1 = 0 and ζ2 = θ2

1/2 along the proof of Theorem 1. After
some tedious computations by hand that we do not include here, we get that

ζ3 = θ1θ2 + h1θ
2
1/2− h′′1ψ2

1/2 + cθ3
1/3s− ch′1θ1ψ1/s,

which will allow us to analyze some O(ε3)-persistence problems in the future. See Section 6.
We stress that further expressions for ζ4, ζ5, . . . can be obtained using a symbolic algebra sys-
tem, but we have doubts about their practical usefulness.

5. POLYNOMIAL DEFORMATIONS OF THE UNIT CIRCLE

We tackle two problems in this section, both related with polynomial deformations of the
unit circle. First, to prove Theorem 2. Second, to prove that the support function (1) of any
polynomial deformation (4) with P (x, y; ε) = 1 + εP1(x, y) and P1(x, y) ∈ Rn[x, y] satisfies
condition (3); see Lemma 10. This second result allows us to explain with Theorem 2 some of
the numerical experiments about the polynomial deformations (4) with P (x, y; ε) = 1 − εyn
performed in [37], which was the original motivation of this work.
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To begin with, we check that, once fixed the order m ∈ N and the degree n ≥ 3, all resonant
caustics of high enough period O(εm)-persists under polynomial deformations of degree ≤ n.
We explicitly quantify how high this period q should be. Some resonant caustics become more
persistent in the presence of symmetries.

Theorem 9. Under the hypotheses of Theorem 2, the p/q-resonant caustic O(εm)-persists if
any of the following three conditions are met:
a) q > nm;
b) Γε is centrally symmetric, q is odd and 2q > nm; or
c) Γε is anti-centrally symmetric, q 6= m mod 2, m ≥ 2 and q > n(m− 1).

Lemma 10. Any deformation of the unit circle expressed in Cartesian coordinates as (4) for
some P (x, y; ε) = 1 + εP1(x, y) with P1(x, y) ∈ Rn[x, y] is a polynomial deformation of
degree ≤ n in the sense of Definition 1. If P1 is even (respectively, odd), then this deformation
is centrally (respectively, anti-centrally) symmetric.

We have postponed the proofs of Theorem 9 and Lemma 10 to Appendix C, since they are
technically similar. The main difficulty is to check that some recursively computed 2π-periodic
trigonometric polynomials have degrees ≤ mn by induction on a recursive index m ≥ 1.

Theorem 2 is a direct consequence of Theorem 9.

Proof of Theorem 2. Let χ = χ(Γε, q) ∈ N be the exponent defined in Theorem 2. Let m =
χ− 1. We deduce from Theorem 9 that the p/q-resonant caustic O(εm)-persists because:

• If Γε is anti-centrally symmetric, then nm < q or n(m − 1) < q with m 6= q mod 2
and m ≥ 2;
• If Γε is centrally symmetric and q is odd, then nm < 2q; and
• Otherwise, nm < q. �

The experiments described in [37, Numerical Result 5] suggest that the p/q-resonant caustic
does not O(εχ)-persist under the polynomial deformation (4) with P (x, y; ε) = 1 − εyn. To
prove it, we should check that hχ + ζχ has some non-zero (qZ \ {0})-harmonic.

6. OPEN PROBLEMS

We describe three open problems that have arisen during the development of our high-order
perturbation theory. We have not addressed them here. Each of them is a nontrivial research
challenge. They are work in progress.

As a general principle, we claim that many billiard computations are greatly simplified
when working with the Bialy-Mironov generating function, so its discovery opens the door to
the resolution of many billiard problems that seemed almost intractable.

We also stress that both our high-order perturbation theory and our list of open problems
can be extended to the setting of dual, symplectic, wire, pensive and coin billiards, provided
we deal with those billiards in deformed circles.

6.1. Co-preservation of resonant caustics. Tabachnikov asked if there are convex domains,
other than circles and ellipses, that possess resonant caustics with different rotation numbers.
See [13, Question 4.7]. Theorem 1 and Cyr’s result on Gutkin’s equation provide an excellent
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framework to study the co-preservation of resonant caustics under deformations of the unit
circle. We mention two problems about such co-preservation.

Firstly, we consider the co-preservation of caustics with different rotation numbers but equal
periods. Let q 6= 2, 3, 4, 6 be a fixed period, so

Pq = {p ∈ N : p/q < 1/2, gcd(p, q) = 1}
has several elements. If the deformation of the unit circle with support function (1) preserves
all p/q-resonant caustics with p ∈ Pq, then none of the smooth 2π-periodic functions h1 and
h2 +

(
θ

[p/q]
1

)2
/2 with p ∈ Pq have resonant (qZ \ {0})-harmonics, where

θ
[p/q]
1 (t) =

∑
l 6∈qZ∪{−1,1}

θ̂
[p/q]
1,l e ilt, θ̂

[p/q]
1,l = νl(p/q)ĥ1,l,

for some functions νl : (0, 1/2)→ R defined in (2), which have no rational roots when |l| ≥ 2.
The above necessary conditions for O(ε2)-persistence impose rather stringent restrictions on
the first-order coefficient h1. We do not state any specific result because we have not yet found
one satisfactory enough.

Secondly, we consider the co-preservation of caustics with rotation numbers 1/2 and 1/q
for some fixed period q ≥ 3 under deformations of the unit circle. The preservation of the
1/2-resonant caustic implies that all (2Z\{0})-harmonics of the support function (1) are zero,
which greatly simplifies the problem. The case q = 3 for centrally symmetric deformations
was studied by J. Zhang [44]. His method consists in a careful analysis of the obstructions for
O(ε2)-persistence of the 1/3-resonant caustic. His computations are more involved than the
ones outlined here because he uses the standard generating function for billiards (that is, the
minus distance between consecutive impacts) and he considers deformations of the unit circle
written in polar coordinates. We plan to extend Zhang’s results to some periods q > 3, starting
with periods q = 4, 5 for which it is necessary to study the obstructions for O(ε3)-persistence.

6.2. A convergence problem. We recall that the function ζm in Theorem 1 only depends on
h1, . . . , hm−1. Hence, if the p/q-resonant caustic O(εm)-persists, but not O(εm+1)-persists, and
we fix any higher order r > m, then there is a smooth 2π-periodic function η[r]

ε = O(εm+1)

such that the resonant caustic O(εr)-persists under the new deformation Γ
[r]
ε = Γε + O(εm+1)

with support function h[r]
ε = hε + η

[r]
ε . This function η[r]

ε can also be recursively computed and
only contains (qZ \ {0})-harmonics. See the last item in Proposition 8.

A natural question is: Does h[∞]
ε := limr→+∞ h

[r]
ε exist? That is, we look for a corrected

support function h[∞]
ε = hε + O(εm+1) such that the p/q-resonant caustic persists at all orders

under the deformation Γ
[∞]
ε with support function h[∞]

ε . This problem is closely related to the
density property established in [31].

The first author, in collaboration with V. Kaloshin and K. Zhang, is working on a more
ambitious version of this problem. Namely, once fixed a rational rotation number 1/q, the goal
is to construct a functional

HZ\qZ 3 h
F1/q7→ η ∈ HqZ\{0}

such that: 1) HA is a neighborhood of zero in a suitable space of 2π-periodic functions with
onlyA-harmonics; 2) F1/q(0) = 0; 3) F1/q is as regular as possible at h = 0, and 4) the convex
domain with support function 1 + h+ F1/q[h] has a 1/q-resonant caustic for any h ∈ HZ\qZ.
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6.3. Exponentially small phenomena. Let Γε be a polynomial deformation of the unit circle
of degree ≤ n in the sense of Definition 1. Let q ≥ 3 be a fixed period. Theorem 2 implies
that the p/q-resonant caustics O(εχ−1)-persist under Γε for all p ∈ Pq, so there are perturbed
normal functions ψ[p/q]

ε (t) and perturbed incidence-reflection functions θ[p/q]
ε (t) such that the

error

E [p/q]
ε (t) := σ

{
h′ε(ψ

[p/q]
ε (t)) · sin θ[p/q]

ε (t)
}
− δ
{
hε(ψ

[p/q]
ε (t)) · cos θ[p/q]

ε (t)
}

is O(εχ) as ε → 0. We recall that χ � 2q/n as odd q → +∞ for centrally symmetric
deformations, and χ � q/n as q → +∞ otherwise. Let us focus on the second case, which is
the generic one. It is natural to ask whether, in this generic case,

E [p/q]
ε (t) = O(εχ) ' O(εq/n) = O(e−q| log ε|/n)

as q → +∞ for fixed ε ∈ [−ε0, ε0]. This is a hard problem. It was partially addressed in [36],
where the authors establish an exponentially small upper bound on the difference of lengths
of 1/q-periodic billiard trajectories in analytic strictly convex domains as q → +∞. The
numerical experiments described in [37] suggest that these upper bounds can be improved to
exponentially small asymptotic formulas for some deformations. To be precise, we deduce
from the computations about the polynomial deformations (4) with P (x, y; ε) = 1− εyn, that
there are constants ξ(Γε) with a finite limit as ε → 0 such that the error E [1/q]

ε (t) has ‘size’
q−3e−q[| log ε|/n)+ξ(Γε)] as q → +∞ for any fixed ε ∈ [−ε0, ε0].

This problem can be addressed by the direct approach used by Wang in [43] or the approach
used by Kaloshin and Zhang in [31]. However, we feel that exponentially small asymptotic
formulas can only be obtained with more refined techniques, like the extension of ψ[p/q]

ε (t) and
θ

[p/q]
ε (t) to complex values of t, the analysis of their complex singularities, resurgence theory

and complex matching. See [18, 21, 35] for examples of how these refined techniques are
applied in the setting of discrete systems (maps).
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APPENDIX A. SHIFT, SUM, DIFFERENCE AND AVERAGE OPERATORS

Let 0 < p < q integers such that gcd(p, q) = 1. Set ω = 2πp/q. The shift, sum, difference
and average operators act on smooth functions a : T→ R as follows

τ{a(t)} = a(t+ ω),

σ{a(t)} = a(t+ ω) + a(t),

δ{a(t)} = a(t+ ω)− a(t),

µ{a(t)} = 1
q

∑q−1
j=0 a(t+ jω).
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They diagonalize in the Fourier basis and the average operator is the projection onto the reso-
nant qZ-harmonics.

Lemma 11. If a(t) =
∑

l∈Z âle
ilt is a smooth 2π-periodic function, then

τ{a(t)} =
∑

l∈Z e ilωâle
ilt,

σ{a(t)} =
∑

l∈Z(e ilω + 1)âle
ilt,

δ{a(t)} =
∑

l∈Z(e ilω − 1)âle
ilt,

µ{a(t)} =
∑

l∈qZ âle
ilt.

Hence, µ◦τ = µ◦µ = µ, µ◦σ = 2µ and µ◦δ = 0 on the set of smooth 2π-periodic functions.

Proof. The average 1
q

∑q−1
j=0 e ijlω is equal to one when l ∈ qZ but it vanishes otherwise. �

We deduce from this lemma that persistence condition (11) holds if and only if all resonant
qZ-harmonics of Qk are equal to zero.

Next, we invert operator δ, which is the key point in solving (12) and (13).

Lemma 12. Let b(t) be any smooth 2π-periodic function. Equation

δ{a(t)} = b(t)

has a smooth 2π-periodic solution a(t) if and only if µ{b(t)} = 0, in which case the solution
is unique under the additional condition µ{a(t)} = 0. Analogously, equation

δ{t+ ã(t)} = b(t)

has a smooth 2π-periodic solution ã(t) if and only if µ{b(t)} ≡ ω, in which case the solution
is unique under the additional condition µ{ã(t)} = 0.

Proof. If a(t) is a 2π-periodic solution, then

µ{b(t)} = µ
{
a(t+ω)−a(t)

}
=

1

q

q−1∑
j=0

[a(t+(j+1)ω)−a(t+ jω)] =
a(t+ qω)− a(t)

q
= 0.

Conversely, if µ{b(t)} = 0, then b(t) =
∑

l 6∈qZ b̂le
ilt, so that

âl = b̂l/(e
ilω − 1), ∀l 6∈ qZ,

defines the Fourier coefficients of the smooth 2π-periodic solution a(t) =
∑

l 6∈qZ âle
ilt such

that µ{a(t)} = 0. Smoothness follows from the bounds |â|l ≤ ν|b̂l| for all l 6∈ qZ, where
ν = 1/|e i2π/q − 1| > 0.

If a(t) = t+ ã(t) is a solution such that ã(t) is 2π-periodic, then

µ{b(t)} =
a(t+ qω)− a(t)

q
=
qω + ã(t+ qω)− ã(t)

q
= ω.

The converse is obtained with the same argument as before. �
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APPENDIX B. COMPUTATION OF SOME ASYMPTOTIC EXPANSIONS

Recall that ω = 2πp/q, c = cos(ω/2) and s = sin(ω/2) > 0, where p/q ∈ (0, 1/2) is some
rational number such that gcd(p, q) = 1. Let us compute the asymptotic expansions of

R := h ◦ ψ · cos θ, Q := h′ ◦ ψ · sin θ,
from the asymptotic expansion (1) of the support function and the asymptotic expansions (10)
of the side, normal and incidence-reflection functions. We assume that all coefficients hk(ψ),
ϕk(t), ψk(t) and θk(t) are smooth 2π-periodic functions.

Lemma 13. The coefficients of the asymptotic expansions

sin θ �
∑
k≥0

Skεk, cos θ �
∑
k≥0

Ckεk as ε→ 0

can be computed from the initial values S0 = s and C0 = c by means of the recurrences

(16) Sk = cθk +
1

k

k−1∑
l=1

lθlCk−l, Ck = −sθk −
1

k

k−1∑
l=1

lθlSk−l, ∀k ≥ 1.

In particular, Sk = Sk[[θ≤k]] = cθk + S̃k[[θ<k]] and Ck = Ck[[θ≤k]] = −sθk + C̃k[[θ<k]].

Proof. These recurrences are directly obtained from identities
d

dε
{sin θ} =

dθ

dε
· cos θ,

d

dε
{cos θ} = − dθ

dε
· sin θ. �

Definition 4. If α = {α1, α2, . . .} is a sequence of non-negative integers with a finite number
of non-zero terms and ψ = {ψ1, ψ2, . . .} is a sequence of smooth 2π-periodic functions, then

|α| =
∑
l≥1

αl, ‖α‖ =
∑
l≥1

lαl, α! =
∏
l≥1

αl!, ψα =
∏
l≥1

ψαll .

Lemma 14. The coefficients of the asymptotic expansion

h ◦ ψ � 1 +
∑
k≥1

Hkε
k as ε→ 0

are given byHk = Hk[[h≤k, ψ<k]] = hk + H̃k[[h<k, ψ<k]] with

(17) H̃k =
k−1∑
i=1

k−i∑
j=1

 ∑
|α|=j,‖α‖=k−i

ψα

α!

h
(j)
i , ∀k ≥ 1.

Analogously, h′ ◦ ψ �
∑

k≥1Hk[[h
′
≤k, ψ<k]]ε

k as ε→ 0.

Proof. Set ∆ψ := ψ − t �
∑

i≥1 ε
iψi as ε → 0. Formula (17) is a direct consequence of the

asymptotic expansions

hi(t+ ∆ψ) �
∑
j≥0

(∆ψ)j

j!
h

(j)
i ,

(∆ψ)j

j!
�
∑
|α|=j

ψα

α!
ε‖α‖

as ∆ψ → 0 and ε → 0, respectively. The first expansion is the Taylor theorem. The second
expansion is the multinomial theorem.
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On the one hand, if |α| = j = 0 and ‖α‖ = k − i, then i = k and α = {0, 0, . . .}. On the
other hand, if |α| = j ≥ 1 and ‖α‖ = k − i, then i ≤ k − 1, j ≤ k − i and αl = 0 for all
l ≥ k. This justifies thatHk = Hk[[h≤k, ψ<k]] = hk + H̃k[[h<k, ψ<k]]. �

The next result is a more informative version of Lemma 7, whose proof was pending.

Lemma 15. The coefficients of the asymptotic expansions

R = h ◦ ψ · cos θ � c+
∑
k≥1

Rkε
k, Q = h′ ◦ ψ · sin θ �

∑
k≥1

Qkεk as ε→ 0

are given by

Qk = Qk[[h′≤k, ψ<k, θ<k]] = sh′k + Q̃k[[h′<k, ψ<k, θ<k]],

Q̃k = sH̃k[[(h
′
<k, ψ<k]] +

∑k−1
l=1 Hl[[h

′
≤l, ψ<l]]Sk−l[[θ≤k−l]],

Rk = Rk[[h≤k, ψ<k, θ≤k]] = R̃k[[h≤k, ψ<k, θ<k]]− sθk,

R̃k = cHk[[h≤k, ψ<k]] + C̃k[[θ<k]] +
∑k−1

l=1 Hl[[h≤l, ψ<l]]Ck−l[[θ≤k−l]].

Proof. It is a direct consequence of Lemmas 13 and 14. �

Finally, we compute the asymptotic expansion of the support function of the deformation of
the unit circle given by (4) in Cartesian coordinates. We assume that P (x, y; ε) = 1+εP1(x, y)
and P1(x, y) ∈ Rn[x, y].

Lemma 16. If P (x, y; ε) = 1 + εP1(x, y) with P1(x, y) =
∑

i,j≥0,i+j≤n pijx
iyj , then the

coefficients of the asymptotic expansion (1) of the support function of the deformation (4) can
be computed from recurrences

(18) 2hk + G̃?k [[h<k]] + G̃•k [[h′<k]] = G�k−1[[h≤k−1, h
′
≤k−1]], ∀k ≥ 1,

where

G?k = 2hk + G̃?k = 2hk + 2
∑′
|α|=2,‖α‖=k h

α/α!,

G̃•k = 2
∑′
|α|=2,‖α‖=k(h

′)α/α!,

G�k =
∑

i,j≥0,i+j≤n pij i! j!
∑
|α|=i,|β|=j,‖α‖+‖β‖=k x

αyβ/α!β!,

x = cosψ · h− sinψ · h′,
y = sinψ · h+ cosψ · h′.

Here, α = {α0, α1, . . .}, β = {β0, β1, . . .}, h = {1, h1, h2, . . .} and h′ = {0, h′1, h′2, . . .}.
Symbol

∑′
|α|=2,‖α‖=k means that we do not include the term with α0 = 1 and αk = 1.

Proof. We know that z(ψ; ε) =
(
x(ψ; ε), y(ψ; ε)

)
, where

x = x(ψ; ε) = cosψ · h(ψ; ε)− sinψ · h′(ψ; ε),

y = y(ψ; ε) = sinψ · h(ψ; ε) + cosψ · h′(ψ; ε),

is a normal parametrization of Γε, so the support function satisfies the implicit equation

h2 + (h′)2 = x2 + y2 = 1 + εP1(x, y).
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Therefore, recurrence (18) is a direct consequence of the asymptotic expansions

h2 � 1 +
∑
k≥1

G?kεk, (h′)2 �
∑
k≥2

G̃•kεk, P1(x, y) �
∑
k≥0

G�kεk

as ε→ 0, all of which follow from the multinomial theorem. �

APPENDIX C. PROOFS OF THEOREM 9 AND LEMMA 10

There are two main tools for both proofs. Firstly, the explicit formulas for the asymptotic
coefficients Sk = cθk + S̃k, Ck = C̃k − sθk, Hk = hk + H̃k, Rk = R̃k − sθk, Qk, G̃?k , G̃•k and
G�k given in Appendix B. Secondly, the following elementary properties:

• Tk[t] is a real vector space;
• a(t) ∈ Tk[t], b(t) ∈ Tl[t]⇒ a(t)b(t) ∈ Tk+l[t], a

′(t) ∈ Tk[t];
• α = {α0, α1, . . .} and a = {a0, a1, . . .} with aj(t) ∈ Tnj[t]⇒ aα(t) ∈ Tn‖α‖[t];
• a(t) ∈ Tk[t]⇒ σ{a(t)}, δ{a(t)}, µ{a(t)} ∈ Tk[t]; and
• b(t) ∈ Tk[t], µ{b(t)} = 0⇒ ∃!a(t) ∈ Tk[t] s. t. δ{a(t)} = b(t) and µ{a(t)} = 0.

We will use these properties without any explicit mention in what follows.

Lemma 17. If condition (3) holds and q > nm, then we can compute the O(εm)-corrections
θ≤m(t; ε), ϕ≤m(t; ε) and ψ≤m(t; ε) by solving the compatible equations (12) and (13) for
k = 1, . . . ,m. Compatibility is guaranteed because all necessary and sufficient persistence
conditions (11) hold for k = 1, . . . ,m.

Proof. It suffices to check that
i) Hk = hk + H̃k ∈ Tnk[t];

ii) R̃k,Qk ∈ Tnk[t] —so condition (11) holds because q > nm and Q̄k = 0—;
iii) θk, ϕk, ψk ∈ Tnk[t]; and
iv) Sk, Ck ∈ Tnk[t];

for k = 1, . . . ,m. We prove it by induction over m.
The base case m = 1 is trivial. Namely, H1 = h1 ∈ Tn[t] by condition (3), R̃1 = ch1 ∈

Tn[t], Q1 = sh′1 ∈ Tn[t], θ1 ∈ Tn[t] is the unique solution of problem (15), ϕ1 ∈ Tn[t] is
the unique solution of equation δ{ϕ1} = 2θ1 such that µ{ϕ1} = 0, ψ1 = ϕ1 + θ1 ∈ Tn[t],
S1 = cθ1 ∈ Tn[t] and C1 = −sθ1 ∈ Tn[t].

Next, let us assume that properties i)–iv) hold for k = 1, . . . ,m− 1. We need to prove that
they also hold for k = m. Property i) follows from (17) and condition (3). Property ii) follows
from the recurrences given in Lemma 15. Then θm ∈ Tnm[t] is the unique solution of equation
sδ{θm} = δ{R̃m} − σ{Qm} such that µ{θm} = 0, ϕm ∈ Tnm[t] is the unique solution of
equation δ{ϕm} = 2θm such that µ{ϕm} = 0, and ψm = ϕm + θm ∈ Tnm[t]. This proves
property iii). Property iv) follows from recurrences (16). �

Lemma 18. If condition (3) holds, Γε is centrally symmetric, q is odd and 2q > nm, then we
can compute all O(εm)-corrections too.

Proof. If Γε is centrally symmetric, then its support function h(ψ; ε) is π-periodic in ψ. In that
case, it is not hard to prove by induction over m that objects i)–iv) listed in the proof of the
previous lemma are also π-periodic for k = 1, . . . ,m. In particular, if q is odd and 2q > nm,
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then persistence condition (11) holds because all resonant qZ-harmonics of the π-periodic
trigonometric polynomial Qk ∈ Tnk[t] are equal to zero for k = 1, . . . ,m. �

Lemma 19. If condition (3) holds, Γε is anti-centrally symmetric, q 6= m mod 2, m ≥ 2 and
q > n(m− 1), then we can compute all O(εm)-corrections too.

Proof. We already know from Lemma 17 that we can compute the O(εm−1)-corrections, since
q > n(m− 1). Therefore, we only need to check that the last persistence condition

µ{Qm} = 0

holds. That is, we need to check that all resonant qZ-harmonics of Qm are equal to zero.
If the perturbation Γε is anti-centrally symmetric, then its support function satisfies that

h(ψ; ε) = h(ψ + π;−ε) and its asymptotic coefficients satisfy that

hk(ψ + π) = (−1)khk(ψ), ∀k ∈ N.

In that case, it is not hard to prove by induction over m that objects i)–iv) listed in the proof
of Lemma 17 satisfy the same property. Namely, that they are π-periodic and π-antiperiodic
functions for even and odd indexes k, respectively. In particular, if m is even (respectively,
odd), then Qm only contains even (respectively, odd) harmonics. Hence, Qm does not contain
harmonics e± iqt, because q 6= m mod 2, and it does not contain any harmonic e± ilqt with
l ≥ 2 either, because lq ≥ 2q > 2n(m − 1) ≥ nm and Qm ∈ Tnm[t]. We have used that
m ≥ 2 in the last inequality. �

Theorem 9 is a direct consequence of the previous three lemmas.

Proof of Lemma 10. We have to check that G̃?k , G̃•k ,G�k−1, hk ∈ Tnk for all k ≥ 1. We prove
it by induction over k. The base case k = 1 is trivial, because G̃?1 = 0, G̃•1 = 0, G�0 =
P1(cosψ, sinψ) and h1 = 1

2
P1(cosψ, sinψ). The induction step follows from the explicit

formulas given in Lemma 16 and the elementary properties listed at the beginning of this
appendix. The claims about symmetries are trivial. �
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