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THE BILLIARD INSIDE AN ELLIPSE DEFORMED
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(Communicated by Yingfei Yi)

Abstract. The billiard dynamics inside an ellipse is integrable. It has zero
topological entropy, four separatrices in the phase space, and a continuous
family of convex caustics: the confocal ellipses. We prove that the curvature
flow destroys the integrability, increases the topological entropy, splits the
separatrices in a transverse way, and breaks all resonant convex caustics.

1. Introduction

One can shorten a smooth plane curve by moving it in the direction of its normal
vector at a speed given by its curvature. This evolution generates a flow (called
curvature flow or curve shortening flow) in the space of smooth plane curves that
coincides with the negative L2-gradient flow of the length of the curve. That is,
the curve is shrinking as fast as it can using only local information.

M. Gage and R. Hamilton [10] described the long time behavior of smooth convex
plane curves under the curvature flow. They proved that convex curves stay convex
and shrink to a point as they become more circular. This convergence to a “limit”
circle takes place in the C∞-norm after a suitable normalization. M. Grayson proved
that any embedded planar curve becomes convex before it shrinks to a point [11].

The length, the enclosed area, the total absolute curvature, the isoperimetric
ratio (for convex curves), the number of inflection points, and other geometric
quantities never increase along the curvature flow [6]. On the contrary, we present
an example of how the curvature flow can increase the topological entropy of the
billiard dynamics inside convex curves. The topological entropy of a dynamical sys-
tem is a nonnegative extended real number that is a measure of the complexity of
the system [15]. To be precise, the topological entropy represents the exponential
growth rate of the number of distinguishable orbits as the system evolves. There-
fore, increasing entropy means a more complex billiard dynamics, which is a bit
surprising since the curvature flow rounds any convex smooth curve and circles are
the curves with the simplest billiard dynamics.

Birkhoff [2] introduced the problem of convex billiard tables almost 90 years ago
as a way to describe the motion of a free particle inside a closed convex smooth
curve. The particle is reflected at the boundary according to the law “angle of
incidence equals angle of reflection”.
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If the boundary is an ellipse, then the billiard dynamic is integrable [5, 13, 19].
In particular, billiards inside ellipses have zero topological entropy. The motion
along the major axis of the ellipse corresponds to a hyperbolic two-periodic orbit
whose unstable and stable invariant curves coincide, forming four separatrices. The
points on these separatrices correspond to the billiard trajectories passing through
the foci of the ellipse. The interior of an ellipse is foliated with a continuous family
of convex caustics: its confocal ellipses. A caustic is a curve inside the billiard
table with the property that a billiard trajectory, once tangent to it, stays tangent
after every reflection. Caustics with Diophantine rotation numbers persist under
small smooth perturbations of the boundary [16], but resonant caustics —the ones
whose tangent trajectories are closed polygons, so that their rotation numbers are
rational— are fragile structures that generically break up [17, 18].

All these dynamical and geometric manifestations of the integrability of billiards
inside ellipses disappear when the ellipse is slightly deformed by the curvature flow.

Theorem 1.1. The curvature flow breaks all resonant convex caustics, splits the
separatrices in a transverse way, increases the topological entropy, and destroys the
integrability of the billiard inside an ellipse.

The proof of this theorem has two steps. First, we introduce the subharmonic and
homoclinic Melnikov potentials associated to the perturbation of the ellipse under
the curvature flow following the theory developed in [8,9,17,18]. In order to study
these Melnikov potentials, we need several explicit formulas for the unperturbed
billiard dynamics that can be found in [5, 8]. Second, we check that none of these
Melnikov potentials is constant, which implies that the separatrices split and all
resonant convex caustics break up. The loss of integrability follows directly from
a theorem of Cushman [7], whereas the increase of the topological entropy follows
from a theorem of Burns and Weiss [3].

We also find all the critical points of the Melnikov potentials, so we can locate all
primary homoclinic points and all Birkhoff periodic trajectories, at least for small
enough perturbations. Finally, we relate the homoclinic Melnikov potential to the
limit of the subharmonic Melnikov potential when the resonant caustic tends to
the separatrices. This is, to our knowledge, the first time that such a relation has
explicitly shown up in a discrete system. Similar relations in continuous systems
(that is, for ODEs) have been known from the eighties, see [12, §4.6].

Our perturbed ellipses are static, we do not deal with time-dependent billiards.
This paper is strongly inspired by Dan Jane’s example [14] of a Riemannian

surface for which the Ricci flow increases the topological entropy of the geodesic
flow. His example is also based in a Melnikov computation, although the final
step of his argument requires the numerical evaluation of some Melnikov function.
On the contrary, our result is purely analytic, since we characterize our Melnikov
potentials in a quite explicit way using the theory of elliptic functions.

We complete this introduction with a note on the organization of the article. In
Section 2 we review some known results concerning billiards inside ellipses. The first
order deformation of the ellipse under the curvature flow is given in Section 3. We
review the Melnikov theory for billiard maps inside perturbed ellipses in Section 4.
We check that the Melnikov potentials are not constant by analyzing their complex
singularities in Section 5. Finally, we prove Theorem 1.1 in Section 6.
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2. The billiard inside an ellipse

We consider the billiard dynamics inside the unperturbed ellipse

(2.1) Q0 =

{
(x, y) ∈ R

2 :
x2

a2
+

y2

b2
= 1

}
, 0 < b < a.

Let c =
√

a2 − b2 be the semi-focal distance of Q0, so the foci of Q0 are the points
(±c, 0). We recall a geometric property of ellipses [19]. Let

Cλ =

{
(x, y) ∈ R

2 :
x2

a2 − λ2
+

y2

b2 − λ2
= 1

}
, λ �∈ {a, b},

be the family of confocal conics to the ellipse Q0. It is clear that Cλ is an ellipse
for 0 < λ < b and a hyperbola for b < λ < a. No real conic exists for λ > a.

The fundamental property of the billiard inside Q0 is that any segment (or
its prolongation) of a billiard trajectory is tangent to Cλ for some fixed caustic
parameter λ > 0. The notion of tangency in the degenerate case λ = b is the
following. A trajectory is tangent to Cb if it passes alternatively through the foci.

We refer to [1,20] for a general background on Jacobian elliptic functions. Let us
recall some definitions. Given a quantity k ∈ (0, 1), called the modulus, the elliptic
integral of the first kind and the complete elliptic integral of the first kind are

F (ϕ) = F (ϕ, k) =

∫ ϕ

0

(1 − k2 sin2 φ)−1/2dφ, K = K(k) = F (π/2, k).

We also write K ′ = K ′(k) = K(
√

1 − k2). The elliptic sine and the elliptic cosine
are defined by the relations

(2.2) sn t = sn(t, k) = sin ϕ, cn t = cn(t, k) = cosϕ, t = F (ϕ) = F (ϕ, k).

If the angular variable ϕ changes by 2π, then the angular variable t changes by 4K.
Thus, any 2π-periodic function in ϕ, becomes a 4K-periodic function in t. We will
usually denote the functions in t by putting a tilde above the name of the function
in ϕ. For instance, the 4K-periodic parameterization of the ellipse

(2.3) q̃0 : R → Q0, q̃0(t) = (a sn t, b cn t),

is obtained from the 2π-periodic parameterization

(2.4) q0 : R → Q0, q0(ϕ) = (a sinϕ, b cosϕ).

Clearly, q̃0(t) = q0(ϕ). The billiard dynamics associated to the convex caustic Cλ

becomes a rigid rotation t �→ t + δ in the angular variable t. It suffices to find the
modulus k and shift δ associated to each convex caustic Cλ.

Lemma 2.1 ([5]). Once fixed a caustic parameter λ ∈ (0, b), we set the modulus
k ∈ (0, 1) and the shift δ ∈ (0, 2K) by the formulas

(2.5) k2 = (a2 − b2)/(a2 − λ2), δ = 2F
(
asin(λ/b), k

)
.

The segment joining q̃0(t) and q̃0(t + δ) is tangent to the caustic Cλ for all t ∈ R.

Let m and n be two relatively prime integers such that 1 ≤ m < n/2. Let ρ(λ)
be the rotation number of the convex caustic Cλ. We want to characterize the
convex caustic Cλ whose tangent billiard trajectories form closed polygons with n
sides that makes m turns inside Q0 or, equivalently, the caustic parameter λ ∈ (0, b)
such that ρ(λ) = m/n. Such a caustic parameter is unique because ρ : (0, b) → R

is an increasing analytic function such that ρ(0) = 0 and ρ(b) = 1/2; see [4].
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Any (m, n)-periodic billiard trajectory gives rise to an (n − m, n)-periodic one by
inverting the direction of motion. Hence, a convex caustic is (m, n)-resonant if
and only if it is also (n − m, n)-resonant. This explains why we can assume that
m < n/2.

The caustic Cλ is the (m, n)-resonant convex caustic if and only if

(2.6) nδ = 4Km.

This identity has the following geometric interpretation. When a billiard trajectory
makes one turn around Cλ, the old angular variable ϕ changes by 2π, so the new
angular variable t changes by 4K. On the other hand, we have seen that the variable
t changes by δ when a billiard trajectory bounces once. Hence, a billiard trajectory
inscribed in Q0 and circumscribed around Cλ makes exactly m turns around Cλ

after n bounces if and only if (2.6) holds.
From now on, k and δ will denote the modulus and the shift defined in (2.5). We

will also assume that relation (2.6) holds, since we only deal with resonant caustics.
We will skip the dependence of the Jacobian elliptic functions on the modulus.

The billiard dynamics through the foci of the ellipse can also be simplified by
using a suitable variable s ∈ R. If a billiard trajectory passes alternatively through
the foci, its segments tend to the major axis of the ellipse both in future and past.
We consider the change of variables (−π/2, π/2) � ϕ �→ s ∈ R given by

(2.7) tanh s = sin ϕ, sech s = cosϕ,

in order to give explicit formulas for this dynamic. If ϕ moves from −π/2 to π/2,
then s moves from −∞ to +∞. Thus, any 2π-periodic function in ϕ generates a
nonperiodic function in s. We will usually denote the function in s by putting a
hat above the name of the function in ϕ. For instance, the parametrization of the
upper semi-ellipse Q+

0 = Q0 ∩ {y > 0} given by

(2.8) q̂0 : R → Q+
0 , q̂0(s) = (a tanh s, b sech s),

is obtained from parameterization (2.4). Clearly, q̂0(s) = q0(ϕ).
The billiard dynamics through the foci become a constant shift s �→ s + h in the

variable s ∈ R for a suitable shift h > 0.

Lemma 2.2 ([8]). Once we have fixed the semi-lengths 0 < b < a, let c =
√

a2 − b2

be the semi-focal distance and let h > 0 be the quantity determined by

(2.9) sinh(h/2) = c/b, cosh(h/2) = a/b, tanh(h/2) = c/a.

The segment from q̂0(s) to −q̂0(s+h) passes through the focus (−c, 0) for all s ∈ R.

Note that lims→±∞ q̂0(s) = (±a, 0), which shows that the trajectories through
the foci tend to bounce between the vertices of the major axis of the ellipse. It is
known that these vertices form a two-periodic hyperbolic trajectory whose char-
acteristic exponent is h. That is, the eigenvalues of the differential of the billiard
map at the two-periodic hyperbolic points are λ = eh and λ−1 = e−h. Following
a standard terminology in problems of splitting of separatrices, we will say that
the parameterizations (2.3) and (2.8) are natural parameterizations of the billiard
dynamics tangent to the convex caustic Cλ and through the foci, respectively.

Remark 2.3. We can associate four different billiard trajectories to each s ∈ R.
The first two are

(
(−1)nq̂0(s + nh)

)
n∈Z

and
(
(−1)nq̂0(s− nh)

)
n∈Z

, which have the

same starting point q̂0(s) ∈ Q+
0 but are traveled in opposite directions. The last
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q0(t) = q0(s)

q0(t − δ)

−q0(s + h)

Q0

Cλ

˜

˜

˜

ˆ q0(t + δ)

−q0(s − h)

˜
ˆ

Figure 1. A billiard trajectory (dashed line) tangent to the ellipse
Cλ tends to a billiard trajectory (dotted line) through the foci (the
two solid squares) as λ → b−. The values of t and s are chosen in
such a way that q̃0(t) = q̂0(s).

two are their symmetric images with respect to the origin:
(
(−1)n+1q̂0(s+nh)

)
n∈Z

and
(
(−1)n+1q̂0(s − nh)

)
n∈Z

, which start in a point on the lower semi-ellipse Q−
0 .

Hence, there is a one-to-four correspondence between s and the homoclinic billiard
trajectories inside the ellipse Q0. Indeed, we should consider s defined modulo h,
because s and s + h give rise to the same set of four homoclinic trajectories.

The billiard dynamics through the foci correspond to the caustic parameter
λ = b, so it should be obtained as the limit of the billiard dynamics tangent to
the convex caustic Cλ when λ → b−. See Figure 1. Note that Cλ flattens into the
segment of the x-axis enclosed by the foci of the ellipse when λ → b−. We confirm
this idea in the following lemma. We also stress that limλ→b− δ �= h. This has to
do with the minus sign that appears in Lemma 2.2 in front of the point q̂0(s + h).

Lemma 2.4. Let k ∈ (0, 1), K = K(k) > 0, K ′ = K ′(k) = K(
√

1 − k2) > 0,
and δ ∈ (0, 2K) be the modulus, the complete elliptic integral of the first kind, the
complete elliptic integral of the first kind of the complementary modulus, and the
constant shift associated to a convex caustic Cλ. Set ζ = 2K − δ ∈ (0, 2K). Then:

lim
λ→b−

k = 1, lim
λ→b−

K = +∞, lim
λ→b−

K ′ = π/2, lim
λ→b−

ζ = h,

where h > 0 is the characteristic exponent defined in (2.9). Besides,

lim
λ→b−

q̃0(t) = q̂0(t), lim
λ→b−

q̃0(t ± δ) = −q̂0(t ∓ h),

and both limits are uniform on compacts sets of R, but not on R.

Proof. The first limit follows from the definition k2 = (a2−b2)/(a2−λ2). We know
that limk→1− K(k) = +∞ and K ′(1) = K(0) = π/2, which gives the second and
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third limits. Let α, ϕ, ψ, ψ0 ∈ (0, π/2) be the angles determined by relations

sin α = k, sin ϕ = λ/b, sin ψ =
√

1 − λ2/a2, sin ψ0 =
√

1 − b2/a2 = c/a.

We note that cosα tanϕ tanψ = 1, which implies that F (ϕ, k) + F (ψ, k) = K.
See [1, Formula 17.4.13]. Besides, δ/2 = F (asin(λ/b), k) = F (ϕ, k). Therefore,

lim
λ→b−

ζ/2 = lim
λ→b−

(K − δ/2) = lim
λ→b−

(
K − F (ϕ, k)

)
= lim

λ→b−
F (ψ, k)

= F (ψ0, 1) = artanh(sin ψ0) = artanh(c/a) = h/2.

The property limλ→b− q̃0(t) = q̂0(t) is a direct consequence of the limits

lim
k→1−

sn(t, k) = tanh t, lim
k→1−

cn(t, k) = sech t,

which can be found in [1]. Finally,

lim
λ→b−

q̃0(t ± δ) = − lim
λ→b−

q̃0(t ± δ ∓ 2K) = −q̂0(t ∓ h),

where we have used that q̃0(t) is 2K-antiperiodic and limλ→b− ζ = h. �

3. An ellipse under the curvature flow

Let T = R/2πZ. Let Q0 = q0(T), q0 : T → R2, be a closed smooth embedded
curve in the plane. This curve may not be an ellipse. The t-time curvature flow of
Q0 is the curve Qt = qt(T) = q(T; t) where the map q : T× [0, τ ) → R

2, q = q(ϕ; t),
satisfies the initial value problem

(3.1)
∂q

∂t
= κN, q(·, 0) = q0.

Here, κ and N are the curvature and the unit inward normal vector, respectively.
Observe that ϕ is not, in general, the arc-length parameter.

M. Gage and R. Hamilton [10] showed that if Q0 is strictly convex, then the
curvature flow is defined for t ∈ [0, τ ), where τ = A0/2π and A0 is the area enclosed
by Q0. Besides, Qt shrinks to a point and becomes more circular as t → τ−.

Let Q0 be the ellipse (2.1). We want to study a small deformation of Q0 under
the curvature flow. Henceforth, in order to emphasize that we are only interested in
infinitesimal deformations of Q0, we will denote the infinitesimally deformed ellipse
by the symbol Qε, instead of Qt.

We consider the elliptic coordinates (μ, ϕ) associated to the ellipse Q0. That is,
(μ, ϕ) are defined by relations

(3.2) x = c cosh μ sin ϕ, y = c sinh μ cosϕ,

where c =
√

a2 − b2 is the semi-focal distance of Q0. The ellipse Q0 in these elliptic
coordinates reads as μ ≡ μ0, where cosh μ0 = a/c and sinh μ0 = b/c. Therefore,
the deformation Qε of the ellipse Q0 can be written in elliptic coordinates as

(3.3) μ = με(ϕ) = μ0 + εμ1(ϕ) + O(ε2),

for some 2π-periodic smooth function με : R → R. If a curve is symmetric with
respect to a line, so is its curvature flow deformation, as long as it exists. Thus,
the deformation Qε has the axial symmetries of the ellipse Q0 with respect to both
coordinates axis. This means that με(ϕ) is even and π-periodic. Next, we compute
the first order term of this function. That is, we compute the function μ1(ϕ).
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Lemma 3.1. Let Qε be the deformation under the ε-time curvature flow of the
ellipse (2.1). If we write the deformed ellipse Qε as in equation (3.3), then

(3.4) μ1(ϕ) =
−ab

(a2 cos2 ϕ + b2 sin2 ϕ)2
.

Proof. Let q : T × [0, τ ) → R, q = qt(ϕ) = q(ϕ; t), be the solution of the initial
value problem (3.1), where q0(ϕ) = (a sin ϕ, b cosϕ). On the one hand, we obtain
from (3.1) that qε(ϕ) = q0(ϕ) + εq1(ϕ) + O(ε2), where q1(ϕ) = κ0(ϕ)N0(ϕ),

κ0(ϕ) =
ab

(a2 cos2 ϕ + b2 sin2 ϕ)3/2

is the curvature of the ellipse Q0 at the point q0(ϕ), and

N0(ϕ) =
−1

(a2 cos2 ϕ + b2 sin2 ϕ)1/2
(b sin ϕ, a cosϕ)

is the inward unit normal vector of the ellipse Q0 at the point q0(ϕ).
On the other hand, we deduce from the elliptic coordinates (3.2) that

qε(ϕ) = (c coshμε(ϕ) sinϕ, c sinh με(ϕ) cosϕ)

= (a sinϕ, b cosϕ) + εμ1(ϕ)(b sinϕ, a cosϕ) + O(ε2).

By combining these two results, we get that

−ab

(a2 cos2 ϕ + b2 sin2 ϕ)2
(b sin ϕ, a cosϕ) = μ1(ϕ)(b sinϕ, a cosϕ),

which implies formula (3.4). �

4. Subharmonic and homoclinic Melnikov potentials

For the sake of brevity, we introduce both Melnikov potentials just for billiards
by means of a variational approach. A more powerful geometric approach for the
study of the break up of resonant invariant curves and the splitting of separatrices
of general area-preserving twist maps can be found in [8, 9, 17].

We begin with some basic properties of billiards described in [13, 19].
Let Q = q(T), q : T → R2, be a closed smooth embedded curve in the plane.

This curve may not be an ellipse. The associated billiard problem consists in the
free motion of a particle inside Q that is ellastically reflected at the impacts with
Q. We model this dynamic by means of the billiard map f : T× (0, π) → T× (0, π),
f(ϕ, θ) = (ϕ′, θ′), defined as follows. If the particle hits Q at a point q(ϕ) under an
angle of incidence θ ∈ (0, π), then q(ϕ′) is the next impact point and θ′ ∈ (0, π) is
the next angle of incidence.

The billiard map is an exact twist map with Lagrangian h(ϕ, ϕ′) = |q(ϕ)−q(ϕ′)|.
This means that the billiard dynamic satisfies the following variational principle.
Billiard trajectories inside Q are in one-to-one correspondence with the (formal)
stationary configurations Φ = (ϕj)j∈Z of the action functional

(4.1) W [Φ] =
∑
j∈Z

h(ϕj , ϕj+1).

The series for W [Φ] may be divergent, but ∂W
∂ϕj

only involves two terms of the series,

and so ∇W is always well defined. Indeed, W [Φ] can be written as a convergent
series when dealing with periodic and homoclinic trajectories. Let us explain this.
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Let m and n be relatively prime integers such that 1 ≤ m < n/2. If the impact
points q(ϕj), j ∈ Z, form an (m, n)-periodic billiard trajectory, then

h(ϕj+n, ϕj+n+1) = h(ϕj + 2πm, ϕj+1 + 2πm) = h(ϕj , ϕj+1),

so there are only n different terms in the action functional (4.1), which encode
the (m, n)-periodic dynamics. In particular, any (m, n)-periodic billiard trajectory
is in correspondence with a stationary configuration Φ = (ϕ0, . . . , ϕn−1) of the
(m, n)-periodic action

(4.2) W (m,n)[Φ] = h(ϕ0, ϕ1) + · · · + h(ϕn−1, ϕ0 + 2πm).

If there is an (m, n)-resonant caustic C inside Q, then there is a continuum of
(m, n)-periodic billiard trajectories inscribed in Q and circumscribed around C,
and so, a continuum Φ = Φ(ϕ) = (ϕ0(ϕ), . . . , ϕn−1(ϕ)), ϕ0(ϕ) = ϕ, of stationary
configurations of the periodic action (4.2). Hence, the existence of C implies that

L(m,n) : T → R, L(m,n)(ϕ) = W (m,n)[Φ(ϕ)] =
n−1∑
j=0

h(ϕj(ϕ), ϕj+1(ϕ))

is a constant function, because ∇W (m,n)[Φ(ϕ)] ≡ 0. Here, ϕn(ϕ) = ϕ + 2πm.
Next, we consider a perturbative situation. Let Qε = qε(T), qε : T → R2, be a

perturbed ellipse that has the form (3.3) in the elliptic coordinates (3.2). We do
not assume now that this perturbed ellipse is obtained through the curvature flow.

Let W
(m,n)
ε = W

(m,n)
0 + εW

(m,n)
1 + O(ε2) be the (m, n)-periodic action associated

to the perturbed ellipse Qε. That is,

W
(m,n)
k [Φ] = hk(ϕ0, ϕ1) + · · · + hk(ϕn−1, ϕ0 + 2πm), k = 0, 1,

where hε = h0 + εh1 + O(ε2) is the Lagrangian of the billiard map inside Qε. If the
(m, n)-resonant convex caustic Cλ persists under the deformation Qε, then there
exists a continuum Φε = Φε(ϕ) = (ϕε,0(ϕ), . . . , ϕε,n−1(ϕ)), ϕε,0(ϕ) = ϕ, of critical

configurations of W
(m,n)
ε , and so the function L

(m,n)
ε : T → R,

L(m,n)
ε (ϕ) = W (m,n)

ε [Φε(ϕ)] = W
(m,n)
0 [Φ0(ϕ)] + εW

(m,n)
1 [Φ0(ϕ)] + O(ε2),

should be constant, although this constant may depend on ε. We have used

that ∇W
(m,n)
0 [Φ0(ϕ)] ≡ 0 in the second equality. Hence, the first-order term

L
(m,n)
1 (ϕ) = W

(m,n)
1 [Φ0(ϕ)] should also be constant. This function has the form

(4.3) L
(m,n)
1 : T → R, L

(m,n)
1 (ϕ) =

n−1∑
j=0

h1(ϕj , ϕj+1) = 2λ
n−1∑
j=0

μ1(ϕj).

The last equality is proved in the middle of the proof of Proposition 4.1 in [17].
The points qj = (a sin ϕj , b cosϕj) are the consecutive impact points of the billiard
trajectory inscribed in the ellipse Q0 and circumscribed around the caustic Cλ

starting at q0 = (a sinϕ, b cosϕ). That is, the sequence ϕ0 = ϕ, ϕ1, . . . , ϕn−1, ϕn is
given by the unperturbed billiard dynamics around the (m, n)-resonant caustic.

Definition 4.1. The function (4.3) is the (m, n)-subharmonic Melnikov potential
for the billiard dynamics inside the perturbed ellipse (3.3).

Corollary 4.2. If the (m, n)-subharmonic Melnikov potential is not constant, then
the (m, n)-resonant caustic does not persist under perturbation (3.3).
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Remark 4.3. The following result is contained in [17], but we do not need it. If
the (m, n)-subharmonic Melnikov potential does not have degenerate critical points
and ε > 0 is small enough, then there is a correspondence between its critical points
and the (m, n)-periodic Birkhoff billiard orbits inside the deformed ellipse (3.3).

The persistence of a continuum of homoclinic billiard trajectories (that is, the
persistence of a separatrix ) can be studied by using the same variational technique.

For simplicity, we assume that the perturbation (3.3) preserves the axial sym-
metries of the ellipse Q0. This means that με(ϕ) = μ0 + εμ1(ϕ) + O(ε2) is an even
π-periodic smooth function. In particular,

μ̆∞ := μ1(−π/2) = μ1(π/2).

There are four separatrices, but symmetric perturbations cause the same effect on
any of them. Therefore, it suffices to study a single homoclinic Melnikov potential.

The homoclinic Melnikov potential (4.4) is defined in a completely analogous
way to the subharmonic Melnikov potential (4.3). There are just three differences.
First, the caustic parameter is λ = b in the homoclinic case. Second, the sum for the
homoclinic Melnikov potential is infinite, because homoclinic billiard trajectories
have infinite impact points. Third, we are forced to subtract the constant μ̆∞ from
each term μ1(ϕj) in order to get a convergent series.

Definition 4.4. The homoclinic Melnikov potential for the billiard dynamics inside
the symmetrically perturbed ellipse (3.3) is the function

(4.4) L1 : (−π/2, π/2) → R, L1(ϕ) = 2b
∑
j∈Z

(
μ1(ϕj) − μ̆∞

)
,

where q0(ϕj) = (−1)j(a sin ϕj , b cosϕj) are the consecutive impact points of the
billiard trajectory inside the ellipse Q0 such that the segment from q0(ϕ) to −q0(ϕ1)
passes through the focus (−c, 0).

The series in the homoclinic Melnikov potential converges uniformly on compact
subsets of (−π/2, π/2) because μ1(ϕj) tends geometrically fast to μ̆∞ as j → ±∞.

Proposition 4.5 ([9]). If the homoclinic Melnikov potential (4.4) is not constant,
the separatrices of the unperturbed billiard map do not persist under the perturba-
tion (3.3). If the homoclinic Melnikov potential does not have degenerate critical
points and ε > 0 is small enough, then there is a one-to-four correspondence be-
tween its critical points (modulo the billiard dynamics) and the transverse primary
homoclinic billiard trajectories inside the deformed ellipse (3.3).

This proposition follows directly from Theorem 2.1 in [9], where the splitting of
separatrices and the appearance of perturbed transverse primary homoclinic orbits
are studied in the more general setting of exact symplectic maps.

Remark 4.6. The correspondence is one-to-four because each critical point gives rise
to two different homoclinic “paths” (mirrored by the central symmetry with respect
to the origin) and each “path” can be traveled in two directions. See Remark 2.3.

5. Computations with elliptic functions

Let us assume that the perturbed ellipse (3.3) is the ε-time curvature flow of the
ellipse (2.1), so that the first-order term μ1(ϕ) has the form (3.4). We cannot apply
the result about nonpersistence of resonant convex caustics established in [17] or
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the result about splitting of separatrices established in [8] to this curvature flow
setting, because the function (3.4) is not entire in the variable ϕ. Nevertheless,
many of the ideas developed in [8, 17] are still useful.

Let μ̃
(m,n)
1 : R → R be the function defined by μ̃

(m.n)
1 (t) = μ1(ϕ), so

(5.1) μ̃
(m,n)
1 (t) =

−ab

(a2 cn2 t + b2 sn2 t)2
.

Here, Cλ is the (m, n)-resonant convex caustic inside Q0, the modulus k ∈ (0, 1)
and the shift δ ∈ (0, 2K) are defined in (2.5), and variables ϕ and t are related
through relation t = F (ϕ), so identities (2.2) hold. We skip the dependence of the
Jacobian elliptic functions on the modulus k.

Analogously, let μ̂1 : R → R be the function defined by μ̂1(s) = μ1(ϕ) − μ̆∞, so

(5.2) μ̂1(s) =
a

b3
− ab

(a2 sech2 s + b2 tanh2 s)2
.

Here, variables ϕ and s are related through identities (2.7).
The key observation in what follows is that (5.1) can be analytically extended

to an elliptic function defined over C, whereas (5.2) can be analytically extended
to a meromorphic function over C. We list below the main properties of these
extensions.

Lemma 5.1. Let m and n be two relatively prime integers such that 1 ≤ m < n/2.
Let Cλ be the (m, n)-resonant elliptical caustic of the ellipse Q0. Let δ ∈ (0, 2K) be
the shift defined by sn(δ/2) = λ/b, so relation (2.6) holds. Set ζ = 2K−δ ∈ (0, 2K).
The function (5.1) is an even elliptic function of order four, periods 2K and 2K ′ i,
and double poles in the set

T = T− ∪ T+, T± = t± + 2KZ + 2K ′ iZ, t± = ±ζ/2 + K ′ i.

It has no other poles. There exist two Laurent coefficients α2, α1 ∈ C, with α2 �= 0,
such that

μ̃
(m,n)
1 (t± + τ ) =

α2

τ2
± α1

τ
+ O(1), τ → 0.

Proof. We know that the square of the elliptic cosine is an even elliptic function of
order two and periods 2K and 2K ′ i. Thus, the function

f(t) = a2 cn2 t + b2 sn2 t = b2 + (a2 − b2) cn2 t

has the same properties. (We have used the identity sn2 + cn2 ≡ 1.) Hence, the
function f(t) has exactly two roots (counted with multiplicity) in the complex cell

C = {t ∈ C : −K ≤ �t < K, 0 ≤ �t < 2K ′} .

Let us find them. On the one hand, the values of the Jacobian elliptic functions at
t = K are

sn K = 1, cn K = 0, dn K =
√

1 − k2 =
√

(b2 − λ2)/(a2 − λ2).

On the other hand, the values of the Jacobian elliptic functions at t = δ/2 are
sn(δ/2) = λ/b,

cn(δ/2) = b−1
√

b2 − λ2, dn(δ/2) = ab−1
√

(b2 − λ2)/(a2 − λ2).

Therefore, the addition formula for the elliptic sine implies that

sn(ζ/2) = sn(K−δ/2) =
sn K cn(δ/2) dn(δ/2) − sn(δ/2) cnK dn K

1 − k2 sn2 K sn2(δ/2)
=

√
a2 − λ2/a.
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Next, we check that the function f(t) vanishes at the points t = t±:

f(t±) = b2 + (a2 − b2) cn2(±ζ/2 + K ′ i)

= b2 + (a2 − b2)
(
1 − k−2 sn−2(±ζ/2)

)
= 0.

We note that t± = ±ζ/2 + K ′ i ∈ C, so these are the two roots we were looking for
and, in addition, they are simple roots. From the parity and periodicity of f(t), we
also deduce that

f ′(t−) = f ′(−ζ/2 + K ′ i) = −f ′(ζ/2 − K ′ i) = −f ′(ζ/2 + K ′ i) = −f ′(t+).

Finally, all the properties of the function (5.1) follow directly from the fact that

μ̃
(m,n)
1 = −ab/f2. It suffices to take α2 = −ab/(f ′(t+))2 = −ab/(f ′(t−))2 �= 0. �

Lemma 5.2. Let h > 0 be the characteristic exponent (2.9). The function (5.2) is
an even meromorphic π i-periodic function with double poles in the set

S = S− ∪ S+, S± = s± + π iZ, s± = ±h/2 + π i/2.

It has no other poles. There exist two Laurent coefficients β2, β1 ∈ C, with β2 �= 0,
such that

μ̂1(s± + σ) =
β2

σ2
± β1

σ
+ O(1), σ → 0.

Proof. The square of the hyperbolic secant is an even meromorphic π i-periodic
function. Thus, the function

g(s) = a2 sech2 s + b2 tanh2 s = b2 + c2 sech2 s

has the same properties. We have used the identities sech2 + tanh2 ≡ 1 and c2 =
a2 − b2. Next, we look for all the roots of g(s). We note that

g(s) = 0 ⇔ cosh2 s = −c2/b2 = − sinh2(h/2) = cosh2(h/2 + π i/2) ⇔ s ∈ S.

We have used that cosh2 s = cosh2 r if and only if s − r ∈ π iZ or s + r ∈ π iZ.
These roots are simple. In fact, if s∗ ∈ S, then cosh2 s∗ = −c2/b2 and sinh2 s∗ =
−a2/b2, so g(s∗) = 0 and g′(s∗) = −2c2 sinh s∗/ cosh3 s∗ �= 0. From the parity and
periodicity of g(s), we deduce that g′(s−) = −g′(h/2 − π i/2) = −g′(s+). Finally,
all the properties of μ̂1(s) follow directly from the fact that μ̂1 = a/b3 − ab/g2. It
suffices to take β2 = −ab/(g′(s+))2 = −ab/(g′(s−))2 �= 0. �

Next, we are going to prove that the (m, n)-subharmonic Melnikov potential (4.3)
is not constant. We recall that the billiard dynamics inside the ellipse Q0 around
the (m, n)-resonant caustic Cλ becomes a rigid rotation t �→ t+δ in the new variable
t = F (ϕ). Thus, the (m, n)-subharmonic Melnikov potential (4.3) becomes

(5.3) L̃
(m,n)
1 (t) = 2λ

n−1∑
j=0

μ̃
(m,n)
1 (t + jδ), μ̃

(m,n)
1 (t) =

−ab

(a2 sn2 t + b2 cn2 t)2
,

in the variable t.

Proposition 5.3. Let α2 �= 0 be the dominant Laurent coefficient introduced in
Lemma 5.1. The (m, n)-subharmonic Melnikov potential (5.3) is an even elliptic
function of order two with periods ζ and 2K ′ i, poles in the set

(5.4) T = t� + ζZ + 2K ′ iZ, t� = ζ/2 + K ′ i,
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and principal parts

L̃
(m,n)
1 (t� + τ ) =

{
4λα2τ

−2 + O(1) as τ → 0, if n is odd,
8λα2τ

−2 + O(1) as τ → 0, if n is even.

In particular, it is not constant. Besides, its only real critical points are the points
of the set ζZ/2, and all of them are nondegenerate.

Proof. We skip the dependence of μ̃
(m,n)
1 (t) and L̃

(m,n)
1 (t) on (m, n) for simplicity.

The finite sum L̃1(t) = 2λ
∑n−1

j=0 μ̃1(t + jδ) can be analytically extended to an

elliptic function L̃1 : C → C defined over the whole complex plane; see Lemma 5.1.
The point t+ ∈ C is a singularity of μ̃1(t+ jδ) if and only if t+ + jδ ∈ T = T−∪T+.
Besides,

t+ + jδ ∈ T+ ⇔ jδ ∈ 2KZ ⇔ 2jm ∈ nZ ⇔ j ∈ {0, n/2},
t+ + jδ ∈ T− ⇔ (j − 1)δ ∈ 2KZ ⇔ 2(j − 1)m ∈ nZ ⇔ j − 1 ∈ {0, n/2}.

We have used that δ = 4Km/n, t− = t+ + δ − 2K, and gcd(m, n) = 1. Equalities
j = n/2 and j − 1 = n/2 only can take place when n is even. Hence, we distinguish
two cases:

• If n is odd, then μ̃1(t) and μ̃1(t + δ) are the only terms in the sum that
have a singularity at t = t+, so that

L̃1(t+ + τ ) = 2λμ̃1(t+ + τ ) + 2λμ̃1(t+ + δ + τ ) + O(1)

= 2λμ̃1(t+ + τ ) + 2λμ̃1(t− + τ ) + O(1)

= 4λα2τ
−2 + O(1) as τ → 0.

• If n is even, then nδ/2 = 2Km and L̃1(t) = 4λ
∑n/2−1

j=0 μ̃1(t+ jδ). We note

that μ̃1(t) and μ̃1(t + δ) are the only terms in this new sum that have a
singularity at t = t+, so

L̃1(t+ + τ ) = 4λμ̃1(t+ + τ ) + 4λμ̃1(t+ + δ + τ ) + O(1)

= 4λμ̃1(t+ + τ ) + 4λμ̃1(t− + τ ) + O(1)

= 8λα2τ
−2 + O(1) as τ → 0.

Thus, the analytic extension L̃1 : C → C has a double pole at t = t+ in both

cases, which implies that L̃1 : R → R is not constant.
Next, let us prove that the points in the set ζZ/2 are the only real critical points

of L̃1(t), and all of them are nondegenerate. The derivative L̃′
1(t) is odd, has periods

ζ and 2K ′ i, has triple poles in the set (5.4), and vanishes at the points in the set
{0, ζ/2, K ′ i} + ζZ + 2K ′ iZ due to its symmetry and periodicities. These critical

points are nondegenerate and they are the only critical points because L̃′
1(t) is an

elliptic function of order three. �
Let us check that the homoclinic Melnikov potential (4.4) is not constant. We

recall that the billiard dynamics inside the ellipse Q0 through the foci becomes a
constant shift s �→ s + h in the variable s defined by (2.7). Thus, the homoclinic
Melnikov potential (4.4) becomes

(5.5) L̂1(s) = 2b
∑
j∈Z

μ̂1(s + jh), μ̂1(s) =
a

b3
− ab

(a2 sech2 s + b2 tanh2 s)2
,

in the variable s.
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Proposition 5.4. Let β2 �= 0 be the dominant Laurent coefficient introduced in
Lemma 5.2. The homoclinic Melnikov potential (5.5) is an even elliptic function
of order two with periods h and π i, poles in the set

S = s� + hZ + π iZ, s� = h/2 + π i/2,

and principal parts

L̂1(s� + σ) = 4bβ2σ
−2 + O(1), σ → 0.

In particular, it is not constant. Besides, its only real critical points are the points
of the set hZ/2, and all of them are nondegenerate.

Proof. The series L̂1(s) = 2b
∑n−1

j=0 μ̂1(s + jh) can be analytically extended to a

meromorphic function L̂1 : C → C defined over the whole complex plane; see
Lemma 5.2. The point s+ ∈ C is a singularity of the j-th term μ̂1(s + jh) if and
only if s+ + jh ∈ S = S− ∪ S+. Besides,

s+ + jh ∈ S+ ⇔ j = 0, s+ + jh ∈ S− ⇔ j = −1.

Here, we have used that h ∈ R and s− = s+ − h. Hence, μ̂1(s − h) and μ̂1(s) are
the only terms in the sum that have a singularity at s = s+, so that

L̂1(s+ + σ) = 2bμ̂1(s+ − h + σ) + 2bμ̂1(s+ + σ) + O(1)

= 2bμ̂1(s− + σ) + 2bμ̂1(s+ + σ) + O(1)

= 4bβ2σ
−2 + O(1) as σ → 0.

Therefore, the analytic extension L̂1 : C → C has a double pole at s = s+, which

implies that the homoclinic Melnikov potential L̂1 : R → R is not constant.
Finally, the points in the set hZ/2 are the only real critical points of L̂1(s), and

all of them are nondegenerate. This is proved following the same argument at the
end of the proof of the previous proposition. �

Finally, we establish the relation between the homoclinic Melnikov potential
and the limit of the (m, n)-subharmonic Melnikov potential when m/n → 1/2 or,
equivalently, when λ → b−. We still assume that the perturbed ellipse is obtained
by using the curvature flow, so this is a very specific result. The relation depends
on the parity of the period n, which is a phenomenon that, to our knowledge, never
takes place in continuous systems. This is the reason for our interest in it.

Proposition 5.5. If m and n are relatively prime integers such that 1 ≤ m < n/2,

lim
m
n → 1

2

L̃
(m,n)
1 (t) = constant +

{
L̂1(t), if n is odd,

2L̂1(t), if n is even,

uniformly on compact subsets of R.

Proof. The proof is based on the fact that any elliptic function is determined, up to
an additive constant, by its periods, its poles, and the principal parts of its poles.
The periods, poles, and principal parts of the subharmonic and homoclinic Melnikov

potentials L̃
(m,n)
1 (t) and L̂1(s) are listed in Propositions 5.3 and 5.4, respectively.

We only have to see that the former ones tend to the latter ones.
Let λ ∈ (0, b) be the caustic parameter such that Cλ is an (m, n)-resonant caustic.

It is known that if m/n → 1/2, then λ → b−. See [4, Proposition 10]. Besides,
we have seen in Lemma 2.4 that limλ→b− K ′ = π/2 and limλ→b− ζ = h. Thus, it
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suffices to check that limλ→b− α2 = β2, where α2 and β2 are the Laurent coefficients
introduced in Lemmas 5.1 and 5.2. This limit is a straightforward computation. �

6. Proof of Theorem 1.1

The claims of Theorem 1.1 about the break up of all resonant convex caustics
and the splitting of the separatrices in a transverse way are a direct consequence of
the results above. Let us explain this.

First, let Cλ be the (m, n)-resonant convex caustic of the billiard dynamics inside

the unperturbed ellipse Q0, and let L̃
(m,n)
1 (t) be the (m, n)-subharmonic Melnikov

potential for the billiard dynamics inside the ellipse Q0 deformed by the curvature

flow. We have seen in Proposition 5.3 that L̃
(m,n)
1 (t) is not constant. Hence, the

caustic Cλ does not persist under the curvature flow; see Corollary 4.2.
Second, let L̂1(s) be the homoclinic Melnikov potential for the billiard dynamics

inside the ellipse Q0 deformed by the curvature flow. We have seen in Proposi-
tion 5.4 that L̂1(s) is not constant, its only real critical points are the points of the
set hZ/2, and all of them are nondegenerate. Thus, the separatrices do not persist
under the curvature flow and the billiard map associated to the deformed ellipse
has eight primary transverse homoclinic trajectories; see Proposition 4.5.

Next, we recall two classical results about surface diffeomorphisms possesing
homoclinic points with a topological (that is, not necessarily transverse) crossing.

Let W s(p) and W u(p) be the stable and unstable invariant curves of a hyperbolic
fixed point p of a diffeomorphism f : M → M defined on a surface M . The points
q ∈ W s(p) ∩ W u(p), with q �= p, are called homoclinic. If the diffeomorphism is
analytic, then W s(p) and W u(p) are analytic inmersed curves that have a transverse
intersection at p. In particular, if W s(p) and W u(p) intersect at some homoclinic
point q, either both curves coincide along some of their branchs (and so, the map
has a separatrix) or they have a contact of finite order at q. The next theorem
says that the only integrable analytic area-preserving maps with homoclinic points
are the ones with separatrices. An analytic map f : M → M is called integrable if
there exists an analytic nonconstant function H : M → R such that H ◦ f = H.

Theorem 6.1 ([7, Section 3]). Any analytic area-preserving diffeomorphism pos-
sessing a homoclinic point with finite order contact is nonintegrable.

The splitting of separatrices, besides nonintegrability in analytic area-preserving
maps, also gives rise to positive topological entropy in surface C1 diffeomorphisms.

Theorem 6.2 ([3, Section 2]). Any surface C1 diffeomorphism possessing a ho-
moclinic point with a topological crossing (possibly with infinite order contact), has
positive topological entropy.

We can apply both theorems to our perturbed billiard maps, because those
maps are analytic area-preserving diffeomorphisms defined on the annulus T×(0, π)
possesing transverse homoclinic points.

This ends the proof of Theorem 1.1.
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[13] Valerĭı V. Kozlov and Dmitrĭı V. Treshchëv, Billiards, Translations of Mathematical Mono-
graphs, vol. 89, American Mathematical Society, Providence, RI, 1991. A genetic introduction
to the dynamics of systems with impacts; Translated from the Russian by J. R. Schulenberger.
MR1118378

[14] Dan Jane, An example of how the Ricci flow can increase topological entropy, Ergodic Theory
Dynam. Systems 27 (2007), no. 6, 1919–1932, DOI 10.1017/S0143385707000211. MR2371602

[15] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical sys-
tems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University

Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza.
MR1326374

[16] V. F. Lazutkin, Existence of caustics for the billiard problem in a convex domain (Russian),
Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 186–216. MR0328219

[17] Sônia Pinto-de-Carvalho and Rafael Ramı́rez-Ros, Non-persistence of resonant caustics in
perturbed elliptic billiards, Ergodic Theory Dynam. Systems 33 (2013), no. 6, 1876–1890,
DOI 10.1017/S0143385712000417. MR3122155

[18] Rafael Ramı́rez-Ros, Break-up of resonant invariant curves in billiards and dual bil-
liards associated to perturbed circular tables, Phys. D 214 (2006), no. 1, 78–87, DOI
10.1016/j.physd.2005.12.007. MR2200796

[19] Serge Tabachnikov, Billiards (English, with English and French summaries), Panor. Synth.
1 (1995), vi+142. MR1328336

[20] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory
of infinite processes and of analytic functions; with an account of the principal transcendental
functions; Reprint of the fourth (1927) edition. MR1424469
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