
Existence and non-existence of (convex) caustics
Rafael Raḿırez-Ros

We consider the billiard dynamics inside a planar domain —a billiard table—
whose border is a smooth closed convex curve: a particle follows straight lines
inside the billiard table and it is reflected at the border following the rule “the angle
of incidence equals the angle of reflection”. From now on, the term convex means
that the border of the table has curvature everywhere non-negative, the term strict
means that it has no flat points —points at which the curvature vanishes—, and
the term smooth means that it admits a sufficiently high number of continuous
derivatives, the number being different on each result.

We recall that a smooth curve inside the table is a caustic if a billiard trajectory,
once tangent to it, stays tangent after every reflection. We refer to the books [9, 10]
for a background on billiards and caustics.

There exist several negative and positive results about convex caustics. First,
we shall describe some qualitative and quantitative non-existence theorems, which
go back to Mather, Gutkin and Katok. Next, we shall state the classical existence
result of Lazutkin, whose regularity was later improved by R. Douady. Finally, we
shall present a negative result for higher dimensional tables found by Berger.

Theorem 1 (Mather [6]). If the border of the table is C2 and has some flat point,
then there are no smooth convex caustics inside the table.

This result follows from a formula known in geometrical optics as the mirror
equation, see [10]. Mather used another method of proof based on the Lagrangian
formulation of billiard dynamics. Both proofs are elementary.

Gutkin and Katok obtained the following quantitative versions of Mather’s
theorem. Let d, w, and r be the the diameter, the width, and the inradius of the
billiard table. Let κ and κ be the minimal and maximal values of the curvature of
the border of the billiard table, and let L be its length.

Theorem 2 (Gutkin & Katok [4]). If some of the following quantitative geometric
conditions holds, the billiard table Ω contains a region Ω′ free of convex caustics.

Condition Description of Ω′√
2κd2 ≤ r A disc of radius r′ such that r′ > r −

√
2κd2

√
2κd2 ≤ w/3 A disc of radius r′ such that r′ > w/3−

√
2κd2

√
2κκd2 ≤ 1 A disc of radius r′ such that κr′ > 1−

√
2κκd2

√
2κκd2 ≤ 1 A convex set such that Area(Ω \ Ω′) ≤

√
2κd2L

We note that if the border of the table has a flat point, then κ = 0 and Ω′ = Ω,
so we recover Mather’s theorem. In particular, if we have a one-parameter family
of strictly convex billiard tables Ωt whose minimal curvature approaches zero at
some critical parameter t = t∗ of the family, while the global shape of the table
remains essentially unchanged, then the convex caustics are gradually pushed out
to the boundary in the limit t→ t∗. An example of this situation is given by the
strictly convex tables

Ωt =
{

(x, y) ∈ R2 : x2 + ty2 + y4 ≤ 1
}
, t > t∗ = 0.
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A key step in the proof of this quantitative theorem is to establish a suitable
set of upper and lower bounds on the Lazutkin parameter that arises in the string
construction. This construction is a geometric method —similar to the gardener’s
method to draw ellipses with prefixed foci— to draw all billiard tables with a
prefixed smooth convex closed caustic. These billiard tables are parameterized by
the Lazutkin parameter, which quantifies the distance between the caustic and
the border of the table. Small Lazutkin parameters correspond to caustics close
to the border. Gutkin and Katok showed that too big Lazutkin parameters are
incompatible with the geometric hypotheses of their theorem.

The non-existence of convex caustics implies the existence of billiard trajectories
whose past and future behaviours differ dramatically. To be more precise, we
say that a billiard trajectory is positively (respectively, negatively) ε-glancing if,
for some bounce, the angle of reflection with the positive (respectively, negative)
tangent vector is smaller than ε. Mather established, under the non-existence of
smooth convex caustics, the existence of infinitely many billiard trajectories that
are both positively and negatively ε-glancing for any ε > 0. To bound the number
of impacts n = n(ε) of such glancing billiard trajectories between its positive and
negative ε-bounces as ε → 0 is an open problem, similar to bound the speed of
Arnold diffusion in Hamiltonian Systems.

The only positive result of this talk is the following one.

Theorem 3 (Lazutkin [5], Douady [2]). If the border of the table is C6 and strictly
convex, then there exists a collection of smooth convex caustics close to the border
of the table whose union has positive area.

Originally Lazutkin asked for C553 regularity. Douady reduced it to C6, and
conjectured that C4 regularity may suffice. There exist C1 examples —C2 except
for a finite set of points— without caustics.

This result is deduced from an Invariant Curve Theorem for area-preserving
twist maps on the annulus that was one of the first results in KAM theory. The
reader is referred to the book [8] for a proof of the Invariant Curve Theorem in
the analytic case; the differentiable case contained in [5, 2] is technically more
involved, so it is not recommended as a first reading.

As a by-product of standard KAM-like results, all the caustics obtained in
Lazutkin’s theorem have two important properties. First, they persist under small
enough C6 perturbations of the table. Second, their rotation numbers are poorly
approximated by rational numbers since they belong to a Cantor set of the form

C = Cλ,τ,y∗ :=
{
y ∈ (0, y∗) : |y −m/n| ≥ λn−τ , ∀n ∈ N,m ∈ Z

}
for some constants λ > 0, τ > 2, and y∗ > 0. This set can be viewed as the open
interval (0, y∗) with a countable number of small gaps centered at rational values.

On the contrary, resonant caustics —the ones whose tangent trajectories are
closed polygons— have rational rotation numbers and can be destroyed under
arbitrarily small perturbations of the billiard table. See the example in [7].

Finally, let us consider the higher dimensional case. That is, we deal with
hypersurfaces of the Euclidean n-dimensional space instead of smooth curves of
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the plane, for any n ≥ 3. We assume that we have three open hypersurfaces
V−, U , and V+ of class C2 with non-degenerate second fundamental form at their
respective points y−, x, and y+. We also suppose that any line tangent to V− at
a point enough close to y− intersects transversely U at a point close to x and its
reflection is tangent to V+ at a point close to y+. All these hypotheses are local.

Theorem 4 (Berger [1]). Under these hypotheses of regularity, non-degeneracy,
and tangent reflection, the billiard hypersurface U is part of a quadric Q, and both
caustic hypersurfaces V− and V+ are part of the same quadric Q′ confocal to Q.

The proof follows from a duality argument once a higher dimensional version of
the planar mirror equation is established. In particular, the principal curvatures
of the hypersurface U at points close to x play a role similar to the one played by
the (planar) curvature in the planar case.

Gruber proved a similar theorem under weaker regularity hypotheses in [3].
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