
BI-ASYMPTOTIC BILLIARD ORBITS INSIDE PERTURBED
ELLIPSOIDS

S. Bolotin1, A. Delshams2, Yu. Fedorov1 and R. Raḿırez-Ros2
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1 Introduction

Seventy-five years ago, thebilliard ball problem was introduced by G. Birkhoff to
describe the motion of a billiard ball inside a convex billiard table [1, §VI.6]. Since
then, billiards have become paradigmatic models for many questions in dynamical
systems. The monographs [9] and [17] present a good overview of the current state-
of-the-art in billiard problems.

Integrability is a classical subject in dynamical systems. Integrable billiards seem
to be very rare. Indeed, in the famousBirkhoff ’s conjectureit is stated that among
all the convex smooth billiard tables, only ellipses are integrable [17, §2.4]. Several
attempts have been made to prove this conjecture, but, so far, it remains open.

One of these attempts relies on the phenomenon of thesplitting of separatrices,
discovered a century ago by Henry Poincaré in his celebrated memoir on the three-
body problem [14]. In our context, it can be described as follows. The major axis
of an ellipse is a hyperbolic 2-periodic trajectory whose stable and unstable invariant
curves coincide, giving rise to several bi-asymptotic connections (calledseparatrices)
between the two points of the periodic trajectory. Although the hyperbolic periodic
trajectory persists under small perturbations of the ellipse, its stable and unstable
invariant curves generically do not coincide, but give rise to a complicated web whose
existence is an obstruction for the integrability. From a more dynamical point of view,
according to theBirkhoff-Smale theorem[15], the billiard ischaotic if the invariant
curves have transverse intersections. Chaotic means that the restriction of the billiard
to some invariant Cantor set is conjugated to a transitive topological Markov chain.

Several authors have analyzed the splitting of separatrices in that frame. This
approach began with the works of Tabanov [16], Lomeĺı [11], and Levallois [10].
For instance, Tabanov proved that the stable and unstable invariant curves become
transverse under the quartic perturbation

x = a cosφ y = b(1 + ε cos2 φ) sinφ

for small enoughε. This implies that the perturbed billiard is non-integrable and
chaotic.

Up to our knowledge, the best result on this problem was obtained by two of the
authors (A.D. and R.R.-R.) in [6], where it was shown that the perturbation

x = a cosφ y = b(1 + εη(φ)) sinφ
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becomes non-integrable for any non-constant entireπ-periodic functionη : R → R.
Moreover, if the unperturbed ellipse is narrow enough (b � a), the invariant curves
become transverse for any non-constant analyticπ-periodic functionη : R→ R. The
basic tool to prove these results is a discrete version of the Melnikov method.

From a physical point of view, it is natural to consider spatial billiards instead
of planar ones. That is, to study the motion of a particle inside regions enclosed by
closed convex surfaces of the three-dimensional Euclidean space.

Billiards inside ellipsoids are the only known examples of integrable billiards
inside convex smooth surfaces, so there is a spatial version of the Birkhoff conjecture.
The major axis of a generic ellipsoid is also a hyperbolic periodic trajectory whose
stable and unstable invariant surfaces coincide. These invariant surfaces form a bi-
asymptotic set with a richer topology than in the planar case. It is a CW-complex1

with two zero-dimensional cells (the periodic points), eight one-dimensional cells
(calledloops) and eight two-dimensional cells (calledsquares), see figure2.

The goal of this lecture is to review some recent results obtained by the authors
on billiards inside perturbed ellipsoids. The results have a similar flavor to those
above-mentioned on billiards inside perturbed ellipses: non-integrability, splitting of
separatrices, chaotic behavior, persistence of bi-asymptotic orbits, etc. Full details
and many additional results can be found in [5] and [4].

Billiards inside perturbed ellipsoids are significantly harder than billiards inside
perturbed ellipses. Before to tackle their study, it has been necessary to solve some
technical problems and to develop new tools. The most important prerequisites of
this work are listed below:

• To linearize explicitly the billiard dynamics on the bi-asymptotic set by means
of a suitable parameterization. Such a parameterization (callednatural) was
found recently by one of the authors (Yu.F.) in terms of tau-functions [8].

• To obtain some high-dimensional symplectic discrete versions of theMelnikov
method. This was accomplished independently by Lomelı́ [12] for twist maps
defined on the cotangent bundle of a torus and by two of the authors (A.D. and
R.R.-R.) for exact symplectic maps defined on exact symplectic manifolds [7].
For billiards inside perturbed generic ellipsoids, these methods can deal with
the squares, but, at a first glance, they could not with the loops.
• To find a way to study the loops. The variational ideas contained in the works

of one of the authors (S.B)—see [2] and [3]—have been essential for this point.

We finish this introduction with the organization of the paper. We first need
to introduce convex billiards in section 2. Afterwards, in section 3 we present the
main properties of billiards inside generic ellipsoids. The set formed by the orbits
bi-asymptotic to the diameter inside a generic ellipsoid is studied from a dynamical,

1 This CW-complex resembles the ones listed in the topological classification of the energy levels
of saddle points of four-dimensional integrable Hamiltonians obtained by Lerman and Umanskiı̆ [13].
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geometrical and topological point of view. Next, a Melnikov method is applied to
very general perturbations of generic ellipsoids in section 4. Some results about the
splitting of separatrices, non uniform integrability, and chaotic behavior are briefly
commented. Section 5 is devoted to the persistence of (not necessarily transverse)
bi-asymptotic orbits. These persistence results have nothing to do with Melnikov
methods. The last section deals with a degenerate case: the study of prolate ellipsoids.
Finally, in the appendix it is stated a theorem on the persistence of bi-asymptotic
orbits for twist maps, which is the key point of the persistence results obtained in this
work. This result generalizes a previous one by Xia [18], whose proof is only valid
when the unperturbed invariant manifolds arecompletely doubled(see the appendix
for the definition).

2 Billiards inside convex surfaces

Let Q be a closed convex smooth surface ofR3. A material point moves insideQ
and collides elastically withQ. This billiard motion can be modeled by means of
a diffeomorphismf defined on a phase spaceM consisting of positionsq on the
surfaceQ and unitary velocitiesp directed outwardQ at q:

M =
{
m = (q, p) ∈ Q× S2 : p is directed outwardQ at q

}
.

Thebilliard mapf : M →M , f(q, p) = (q′, p′), is defined as follows:

• The new velocityp′ is the reflection ofp with respect to the tangent planeTqQ.
• The new impact pointq′ ∈ Q is determined byp′ = (q′ − q)/|q′ − q|.

A billiard orbit is a bi-infinite sequence(mk)k ∈MZ such thatf(mk) = mk+1.
A billiard configuration is a bi-infinite sequence of impact points(qk)k ∈ QZ such
thatf(qk, pk) = (qk+1, pk+1) for pk+1 = (qk+1 − qk)/|qk+1 − qk|. Billiard orbits
and billiard configurations are in one-to-one correspondence.

It is well known thatf : M →M is a twist map withLagrangian

l : {(q, q′) ∈ Q2 : q 6= q′} → R l(q, q′) = |q − q′|

so that the billiard configurations are just the critical points of the (formal)action

QZ 3 (qk)k 7→
∑
k∈Z

l(qk, qk+1) ∈ R.

Of course, this series can be divergent, but there are some kinds of orbits (for instance,
heteroclinic orbits between hyperbolic periodic orbits) for which it makes sense.
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3 Billiards inside generic ellipsoids

We explain here some properties of billiards inside generic ellipsoids following [5].
An ellipsoid is calledgenericwhen its three axes are different.

Let f : M →M be the billiard map associated to the generic ellipsoid

Q =

{
q = (x, y, z) ∈ R3 :

x2

a2
+
y2

b2
+
z2

c2
= 1

}
a > b > c > 0.

To begin with, we recall some basic concepts concerning ellipsoids. Let

Q(κ) =

{
q = (x, y, z) ∈ R3 :

x2

a2 − κ2
+

y2

b2 − κ2
+

z2

c2 − κ2
= 1

}

be the family of quadricsconfocal tothe ellipsoidQ. It is clear thatQ(κ) is an
ellipsoid for0 < κ < c, an one-sheet hyperboloid whenc < κ < b, and a two-sheet
hyperboloid ifb < κ < a. No real quadric exists forκ > a.

Forκ → c− (respectively,κ → c+), the quadricQ(κ) flattens into the region of
the xy-plane enclosed by (respectively, outside) thefocal ellipse

E =

{
q = (x, y, 0) ∈ R3 :

x2

a2 − c2
+

y2

b2 − c2
= 1

}
.

Forκ → b− (respectively,κ → b+), the quadricQ(κ) flattens into the region of
the xz-plane between (respectively, outside) the branches of thefocal hyperbola

H =

{
q = (x, 0, z) ∈ R3 :

x2

a2 − b2
− z2

b2 − c2
= 1

}
.

Finally, forκ→ a−, the quadric flattens into the yz-plane.
We shall use the termfocal conicswhen we refer to bothE andH. They are

represented in figure1.
The integrability of the billiard mapf is closely related to the following property:

any segment (or its prolongation) of a billiard trajectory insideQ = Q(0) is tangent2

to two fixed confocal quadricsQ(κ1) andQ(κ2), see [17, §2.3]. The quantitiesκ1

andκ2, regarded as functions defined on the phase spaceM , are first integrals off .
There is a simpler family of first integrals in involution, namely

Ix(m) =
(κ2

1(m)− a2)(κ2
2(m)− a2)

(a2 − b2)(a2 − c2)
= u2 +

(xv − yu)2

a2 − b2
+

(xw − zu)2

a2 − c2

Iy(m) =
(κ2

1(m)− b2)(κ2
2(m)− b2)

(b2 − a2)(b2 − c2)
= v2 − (yu− xv)2

a2 − b2
+

(yw − zv)2

b2 − c2

Iz(m) =
(κ2

1(m)− c2)(κ2
2(m)− c2)

(a2 − c2)(b2 − c2)
= w2 − (zu− xw)2

a2 − c2
− (zv − yw)2

b2 − c2

2Tangent in a projective sense; that is, the points of tangency can be proper or improper.
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Figure 1: The focal conics of a generic ellipsoid.

wherem = (q, p) ∈M , with q = (x, y, z) ∈ Q andp = (u, v, w) ∈ S2.
These first integrals are dependent:Ix(m)+Iy(m)+Iz(m) = u2 +v2 +w2 ≡ 1,

but skipping one of them the rest are independent almost everywhere. Therefore,
billiards inside generic ellipsoids are completely integrable. The above formulae can
also be used to compute the value ofκ1 andκ2 at any point of the phase space.

There exist some restrictions in the place where the quantitiesκ1 andκ2 range.
We can assume thatκ1 ≤ κ2. Thenκ1 > 0 andκ2 ≤ a. On the other hand, a line
can not be tangent to two different ellipsoids or to two different hyperboloids of two
sheets. Hence,κ1, κ2 < c andκ1, κ2 > b are impossible configurations. There are
no more restrictions.

The diameterof the ellipsoid is the chord joining the vertices(−a, 0, 0) and
(a, 0, 0). It gives rise to a couple of two-periodic points off , since

f(mh
±) = mh

∓ mh
± = (qh

±, p
h
±) = ((±a, 0, 0), (±1, 0, 0)).

The two-periodic setP h = {mh
+,m

h
−} is hyperbolic: the spectrum of the differential

of f at its points does not intersect the unit circumference. In fact, the spectrum has
the form{λ1, λ2, 1/λ1, 1/λ2} for someλ1, λ2 > 1 which are called thecharacteris-
tic multipliersof P h, namely

λj =
1 + ej
1− ej

e1 =
√

1− b2/a2 e2 =
√

1− c2/a2.

Note thate1 (respectively,e2) is theeccentricityof the elliptic section of the ellipsoid
Q with the horizontal plane{z = 0} (respectively, the vertical plane{y = 0}).
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Moreover, theunstable and stable invariant surfaces

W u := W u(P h) =
{
m ∈M : lim

k→−∞
dist

(
fk(m), P h

)
= 0

}
W s := W s(P h) =

{
m ∈M : lim

k→+∞
dist

(
fk(m), P h

)
= 0

}
of P h aredoubled: W u = W s = W , where

W :=

{
m ∈M : lim

|k|→∞
dist

(
fk(m), P h

)
= 0

}

is thebi-asymptotic set. This fact follows from a geometric characterization of these
invariant surfaces contained in the following theorem.

Theorem 1 W u = {m = (q, p) ∈ M : q + 〈p〉 intersectsE andH} = W s, where
q + 〈p〉 denotes the line passing byq with directionp.

We remark two consequences of the above geometric characterization.
On the one hand, when a segment (or its prolongation) of a billiard trajectory

inside a generic ellipsoid intersects both focal conics of the ellipsoid, all the other
segments (or their prolongations) also do the same. On the other hand, a billiard
trajectory inside a generic ellipsoid is bi-asymptotic to the diameter if and only if all
the segments (or their prolongations) of the trajectory intersect both focal conics.

Now, we describe the billiard dynamics on the bi-asymptotic setW . To be more
precise, we shall linearize the billiard motion on the invariant surfaces

W u
± := W u(mh

±) =
{
m ∈M : lim

k→−∞
dist

(
fk(m), fk(mh

±)
)

= 0
}

W s
± := W u(mh

±) =
{
m ∈M : lim

k→+∞
dist

(
fk(m), fk(mh

±)
)

= 0
}
.

That is, we shall compute a conjugation between the restrictionsf :W u
± → W u

∓
(respectively,f :W s

± → W s
∓) and the linear mapr 7→ Λr (respectively,r 7→ Λ−1r),

where the entries of the matrixΛ = diag(λ1, λ2) are the characteristic multipliers.
Such conjugations are callednatural parameterizations. In our setting, they have

a rational character due to the algebraic integrability of billiards inside ellipsoids. In
fact, they can be expressed as quotients of the tau-polynomials

τ(r1, r2) = 1 + r2
1r

2
2 + α2(r2

1 + r2
2)

τx(r1, r2) = 1 + r2
1r

2
2 − α2(r2

1 + r2
2)

τy(r1, r2) = 2αr1(1− r2
2)

τz(r1, r2) = 2αr2(1 + r2
1)

whereα2 = (e2 + e1)/(e2 − e1) with α > 1.
To define these natural parameterizations, we introduce the following notations.
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• The rational mapχ : R2 → S
2 defined byχ = (τx/τ, τy/τ, τz/τ).

• The diagonal matrixD = diag(a, b, c).
• Given any reals and any mapg defined onR2, we denote byg ◦ Λs the map
r = (r1, r2) 7→ g(Λsr) = g(λ s

1 r1, λ
s

2 r2).
• The mapsq : R2 → Q, p : R2 → S

2, andm : R2 → M defined byq = Dχ,
p = χ ◦ Λ−1/2, andm = (q, p).

• The involutionI(r1, r2) = (1/r1, 1/r2), where1/0 =∞ and1/∞ = 0.
• The mapsmu,s

± : R2 →M defined bymu
± = ±m andms

± = ±m ◦ I.

Theorem 2 The mapsmu,s
± : R2 →M are natural parameterizations of the invariant

surfacesW u,s
± . That is,mu,s

± are analytic diffeomorphisms ontoW u,s
± such that

mu,s
± (0) = mh

± f ◦mu
± = mu

∓ ◦ Λ f ◦ms
± = ms

∓ ◦ Λ−1.

Finally, the topology of the bi-asymptotic set is described below.

Theorem 3 The bi-asymptotic set is a two-dimensional CW-complex with two zero-
dimensional cells (the periodic points), eight one-dimensional cells (theloops) and
eight two-dimensional cells (thesquares).

To describe the cells, we note that the bi-asymptotic set is the disjoint union
W = W u

+ ∪ W u
−, whereW u

± = mu
±(R2) andmu

± = ±m. SetR− = (−∞, 0),
R0 = {0}, andR+ = (0,+∞). Then the eighteen cells are

Cσ1,σ2
ς = ςm(Rσ1 × Rσ2), ς ∈ {−,+}, σ1, σ2 ∈ {−, 0,+}.

The eight cells withσ1, σ2 ∈ {−,+} are the squares. The two cells withσ1 = σ2 = 0
are the periodic points. The others are the loops. The cells are represented in figure2.
Points and loops with equal labels are identified. All the cells are invariant under the
square mapf2. The arrows show the dynamics in the loops. In the squares the
dynamics is compatible with the dynamics in the loops. Hence, the points on the
loops areheteroclinicpoints off2, whereas the points on the squares arehomoclinic.

There is another difference between loops and squares. The billiard trajectories
corresponding to points of the loops areplanar, that is, they are contained in a plane:
the vertical plane{y = 0} for the loops withσ1 = 0 and the horizontal plane{z = 0}
for the loops withσ2 = 0. This has to do with the fact that the tau-polynomialsτy(r)
andτz(r) vanish forr1 = 0 andr2 = 0, respectively.

For further reference, let us introduce the setsS, N , N1, andN2 formed by
the 8 squares, the 8 loops, the 4 loops withσ2 = 0, and the 4 loops withσ1 = 0,
respectively. Obviously,N = N1∪N2. Following [7], we say thatS is theseparatrix
of the unperturbed system, whereasB := W \ S = N ∪ P h is thebifurcation set.
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Figure 2: Topological representation of the bi-asymptotic setW .

Once presented the unperturbed setup, we can begin the study of billiards inside
perturbed ellipsoids. Before exposing the main results, some comments are in order.

Firstly, we suppose that the perturbed ellipsoids are at leastC3, although for some
results it is required a greater regularity.

Secondly, any Melnikov method can only detectprimary bi-asymptotic orbits.
A perturbed bi-asymptotic orbit is called primary when it depends smoothly on the
perturbative parameterε and it isO(ε)-close to an unperturbed bi-asymptotic orbit.
The orbits obtained in this work are primary.

Finally, there are two kinds of unperturbed bi-asymptotic orbits: heteroclinic on
the squares and homoclinic on the loops. The unstable and stable surfaces have a
non-degenerate intersection along the loops, that is, at the loops the intersection of
the planes tangent to the invariant surfaces coincides with the line tangent to the loop.
On the contrary, the invariant surfaces have the same tangent planes at the squares.
Thus, loops and squares must be studied separately.

4 The Melnikov potential for perturbed generic ellipsoids

Following [7] and [4], we introduce a function (theMelnikov potential) which gives
information about the splitting of separatrices in problems like this one.

In the first paper [7], the Melnikov potential was defined only on the separatrixS,
since it is generically discontinuous at the bifurcation setB = W \ S. Nevertheless,
it became soon clear that it should be considered as a function defined over the whole
bi-asymptotic set, although its restrictions to the set of loops and to the set of squares
must be studied separately [4].

Henceforth,L : W → R stands for the Melnikov potential (to be defined at the
end of next page), whereasLS : S → R, LN : N → R, LN1 : N1 → R, and
LN2 : N2 → R denote its restrictions to the setsS, N , N1, andN2. Finally, given
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any cellC of the bi-asymptotic set,LC : C → R is the restriction of the Melnikov
potential toC.

In the current frame of billiards inside perturbed generic ellipsoids, the main
properties of the Melnikov potential are listed below.

L1 It is invariant under the unperturbed billiard map:L ◦ f = L.
L2 Its restrictions inherit the regularity from the perturbation of the ellipsoid.
L3 If LS is not locally constant, then:

– the separatrixS splits; that is, it cannot be continued smoothly forε 6= 0.

– the perturbed billiard is not uniformly integrable; that is, the first integrals
cannot be continued smoothly forε 6= 0.

L4 If LN is not locally constant, then the perturbed unstable and stable invariant
surfaces cross topologically.

L5 LetC ⊂ W be a cell. IfLC is not constant,C breaks out; that is, it cannot be
continued smoothly forε 6= 0.

L6 The non-degenerate critical points of the restrictionLS give rise to (primary)
transverse homoclinic orbits, and hence, to chaotic behavior.

L7 The non-degenerate critical points of the restrictionLN give rise to (primary)
transverse heteroclinic orbits.

In order to find an explicit expression for the Melnikov potential, we need an
explicit expression for the perturbations. There are many ways to do that. When one
is confronted to the choice, it must be taken into account that the more general is the
perturbation, the harder will be the study.

In this section, we have restricted ourselves to global perturbations of the form

x2

a2
+
y2

b2
+
z2

c2
= 1 + εP (y/b, z/c)

for some functionP : R2 → R such thatP (0, 0) = ∂1P (0, 0) = ∂2P (0, 0) = 0.
This means that the diameter of the ellipsoid (and so, the two-periodic setP h) is
preserved by the perturbation.

These perturbations are symmetric with regard to the changex 7→ −x, so that
not all of the perturbations fit into this frame, but they suffice for our purposes.

We said that the bi-asymptotic set is the disjoint unionW = W u
− ∪W u

+, where
W u
± = mu

±(R2) andmu
± = ±m are the parameterizations of theorem2. Hence, it

is natural to define the Melnikov potentialL : W → R by means of some functions
L± : R2 → R and the relationsL(±m(r)) = L±(r).

Using results of [5], it can be shown thatL±(r) = a
∑
k∈Z `±(Λkr) where

`±(r) =
τ2(r)

τ(Λ−1/2r) · τ(Λ1/2r)
P

(
±τy(r)
τ(r)

,±τz(r)
τ(r)

)
.
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The series
∑
k∈Z `±(Λkr) is absolutely convergent for anyr ∈ R2, so the Melnikov

potential is well defined on the whole bi-asymptotic set.
Nevertheless, as we have already mentioned, the Melnikov potentialL can be

discontinuous at the bifurcation setB = W \S = N ∪P h = N1∪N2∪{mh
+,m

h
−}.

For instance,

L(mh
±) = 0 LNj ≡ a(1/ej − ej) LS ≡ a(1/e1 + 1/e2 − e1 − e2).

for the quadratic perturbationP (y/b, z/c) = y2/b2 + z2/c2.
For this example, the restrictionsLC are constant for any cellC ⊂ W . Taking

into account properties L3–L5, the first step in our study should be to characterize
for which perturbations some of these restrictions is not locally constant. The result
is summarized in the following theorem.

Theorem 4 Assume thatP : C2 → C is an entire function and letC ⊂W be a cell.

• If C ⊂ S, LC is constant iffP (y/b, z/c) is a polynomial of degree two.
• If C ⊂ N1, LC is constant iffP (y/b, 0) is a polynomial of degree two iny.
• If C ⊂ N2, LC is constant iffP (0, z/c) is a polynomial of degree two inz.

Proof. We explain briefly the proof of the first claim. The others are simpler.
If C ⊂ S, thenC = Cσ1,σ2

ς for someς, σ1, σ2 ∈ {−,+}. The key point is to
realize that the restrictions

Lς |(Rσ1 × Rσ2) : Rσ1 × Rσ2 → R

can be analytically extended to the whole complex bi-planeC
2 and to study their

complex singularities. Constant functions do not have singularities.
Setr∗ := (1, i), wherei is the imaginary unit. It can be shown that the complex

extensions are analytic atr∗ if and only ifP is a polynomial of degree two. 2

This characterization has important consequences. For instance, the separatrix
splits and the perturbed billiard is not uniformly integrable under any non-quadratic
entire perturbation of the form here considered, see L3. (For symmetric perturbations,
this result was obtained in [5, §5.6].) Similar results can be obtained using L4 and
L5. We skip the details.

In [5] it is also analyzed the quartic symmetric perturbation

x2/a2 + y2/b2 + z2/c2 = 1 + ε(y2/b2)(z2/c2).

For that quartic perturbation, L7 gives no information sinceLN ≡ 0. Nevertheless,
L6 can be applied and the perturbed billiard turns out to be chaotic for almost all the
triples of semi-lengths(a, b, c). It suffices to note thatLS has non-degenerate critical
points for an open set of the parameter space{(a, b, c) : a > b > c > 0} whose
complementary has zero measure. Finally, the number of non-degenerate critical
points undergoes infinitely many ciclic bifurcations whenc → b−. See [5, §5.9] for
the details.
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5 Persistence of bi-asymptotic orbits inside perturbed generic ellipsoids

The following theorem is contained in [4].

Theorem 5 Inside any small enough perturbation of a generic ellipsoid there exist at
least sixteen (primary) heteroclinic billiard orbits close to the unperturbed loops.

Proof. The eight loops of the unperturbed billiard map are non-degenerate and the
perturbed hyperbolic two-periodic sets have the same action, see the appendix.2

This lower bound is optimal. There are exactly sixteen (primary) heteroclinic
billiard orbits for the quartic perturbation

x2/a2 + y2/b2 + z2/c2 = 1 + ε(y4/b4 + z4/c4).

We note that, generically, the perturbed heteroclinic trajectories are not contained
in a plane, although the unperturbed ones are.

The rest of the section is taken from [5]. It deals with the persistence of some
bi-asymptotic orbits when the perturbation preserves the symmetries of the ellipsoid.

A surface inR3 will be calledsymmetricwhen it is symmetric with regard to the
three coordinate axis ofR3. A billiard orbit inside a symmetric surface will be called
central (respectively,axial) (respectively,specular) when its billiard configuration
is symmetric with regard to the origin (respectively, to some axis of coordinates)
(respectively, to some plane of coordinates). We shall say that an orbit issymmetric
when it is central, axial or specular.

Inside an ellipsoid there are several kinds of symmetric trajectories bi-asymptotic
to the diameter. On the one hand, in the squares of the bi-asymptotic set there are
eight xz-specularones and eighty-axial ones, which are symmetric with regard to
the xz-plane and the y-axis, respectively. The y-axial trajectories are characterized as
follows: the prolongation of some of their segments intersects the focal hyperbola at
an improper point and the focal ellipse at a vertex of its minor axis. The xz-specular
trajectories have an umbilical impact point. In [5] there are some figures to visualize
them better. On the other hand, there are sixteen symmetric bi-asymptotic orbits more
in the loops. All of them are preserved under symmetric perturbations.

Theorem 6 Inside any small enough symmetric perturbation of a generic ellipsoid
there exist at least thirty-two (primary) bi-asymptotic billiard orbits close to the bi-
asymptotic set. Sixteen are homoclinic and arise from the squares, and sixteen are
heteroclinic and arise from the loops.

We end this section with a couple of remarks. First, the perturbed heteroclinic
orbits are always planar under symmetric perturbations (compare with the general
case). Second, to obtain the persistence of the 8 xz-specular (respectively, y-axial)
homoclinic orbits it would suffice to assume that the perturbed ellipsoid is symmetric
with regard to the xz-plane (respectively, y-axis).
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6 Persistence of bi-asymptotic orbits inside perturbed prolate ellipsoids

In this section we present some results concerning billiards inside perturbed prolate
ellipsoids that can be found in [4]. An ellipsoid is calledprolatewhen it is an ellipsoid
of revolution around its major axis. It is instructive to compare the prolate case with
the generic one already considered.

Let f : M →M be the billiard map associated to the prolate ellipsoid

Q =

{
q = (x, y, z) ∈ R3 :

x2

a2
+
y2 + z2

b2
= 1

}
a > b > 0.

The diameter of a prolate ellipsoid gives also rise to a two-periodic hyperbolic set.
The invariant surfacesW u,s = W u,s(P h) are defined in the same way that for generic
ellipsoids. Since we are confronted with the degenerationc = b, the characteristic
multipliers of the hyperbolic two-periodic set coincide:λ1 = λ2 = λ where

λ =
1 + e

1− e
e =

√
1− b2/a2.

Here,e is the eccentricity of the elliptic sections of the prolate ellipsoid with any
plane containing the x-axis. All of these elliptic sections have the same set of foci:

F = {(+γ, 0, 0), (−γ, 0, 0)} γ =
√
a2 − b2.

The setF plays here the same rôle that focal conics played in generic ellipsoids (see
Theorem1), namelyW u = {m = (q, p) ∈ M : q + 〈p〉 intersectsF} = W s.
Therefore, in this degenerate case the invariant manifolds case are also doubled.

The billiard dynamics on the bi-asymptotic setW can be written as follows. Let
A = (0,+∞)× T be a cilynder. Ifq : A→ Q andp : A→ S

2 are the maps

q(r, θ) =

(
a

1− r2

1 + r2
,

2br
1 + r2

cos θ,
2br

1 + r2
sin θ

)

p(r, θ) =

(
λ− r2

λ+ r2
,
2λ1/2r

λ+ r2
cos θ,

2λ1/2r

λ+ r2
sin θ

)

thenm± = ±(q, p) : A→W u
± \ {mh

±} are analytic diffeomorphisms such that

m±(0, θ) = mh
± = m∓(∞, θ) f(m±(r, θ)) = m∓(λr, θ).

The angular variableθ ∈ T does not change under the billiard dynamics due to the
continuous symmetry of the prolate ellipsoid around its diameter. This is related to
the fact that all of these bi-asymptotic billiard trajectories areplanar. In fact, they are
contained in planes passing by the x-axis. The variableθ labels this pencil of planes.

There is a fundamental difference in the topology of the bi-asymptotic setW .
It is a CW-complex with two zero-dimensional cells (the periodic points), and two
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two-dimensional cells given byCς = mς(A) for ς ∈ {−,+}. The points on the cells
C− andC+ are heteroclinic points off2, sincem±(0, θ) 6= m±(∞, θ).

The invariant surfacesW u andW s are not only doubled, butcompletely doubled
(see the appendix for the definition), so that corollary9 (see again the appendix) can
be applied to obtain the following theorem.

Theorem 7 Inside any small enough perturbation of a prolate ellipsoid there exist at
least six (primary) heteroclinic billiard orbits close to the separatrix.

We note that, generically, the perturbed heteroclinic trajectories are not contained
in a plane, although the unperturbed ones are.

Concerning optimality, there are exactly 8 (primary) heteroclinic billiard orbits
(which moreover are transverse) for the quartic perturbation

x2/a2 + (y2 + z2)/b2 = 1 + εx(y + z)(y2 + z2).

Appendix. A theorem for twist maps

We are going to present a theorem about the persistence of heteroclinic orbits for
twist maps. This theorem is the key point of theorems5 and7. It can be found in [4],
although its statement has been slightly modified to avoid unnecessary technicalities.
Before stating this theorem, a description of the related framework is necessary.

Letf : M →M be a twist3 diffeomorphism defined on an open set of a cotangent
bundleT ∗Q. Let us assume thatf has two hyperbolics-periodic sets

P h
± =

{
mh
±, f(mh

±), . . . , fs−1(mh
±)
}

fs(mh
±) = mh

±

whose unstable and stable invariant manifolds

W− := W u(P h
−) =

{
m ∈M : lim

k→−∞
dist

(
fk(m), P h

−

)
= 0

}
W+ := W s(P h

+) =
{
m ∈M : lim

k→+∞
dist

(
fk(m), P h

+

)
= 0

}
have anon-degenerateintersection along an invariant submanifoldN ⊂M , that is,

N ⊂W− ∩W+ f(N) = N TNW− ∩ TNW+ = TN.

ThenN consists of heteroclinic orbits fromP h
− to P h

+. We look for sufficient
conditions for the persistence of some of these heteroclinic orbits under perturbations.

The perturbation must be exact. On the contrary, one can construct very simple
perturbations without heteroclinic orbits. For simplicity, we have restricted our study
to the frame of twist maps instead of exact maps. Therefore, letfε : M → M be a
twist perturbation off .

3There are many almost equivalent definitions of twist maps. See [4] for the one used here.
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From the Implicit Function Theorem, we know thatfε has also two perturbed
hyperbolics-periodic setsP h

±,ε = P h
± + O(ε), for small enoughε. We will assume

that they have the same action4: Afε [P
h
−,ε] = Afε [P

h
+,ε]. (This hypothesis always

holds in the homoclinic case.)
Now we are ready to state the theorem about the persistence of heteroclinic orbits

close to the unperturbed heteroclinic connectionN .

Theorem 8 For small enoughε, fε has at leastcat(N/fs) primary heteroclinic orbits
from P h

−,ε to P h
+,ε close toN , provided that:

C1 N ∪ P h
− ∪ P h

+ is compact.
C2 Given anyδ > 0, there existsj = j(δ) > 0 such that for allk ∈ Z such that
|k| > j and and for allm ∈ N such thatdist(m,P h

− ∪P h
+) > δ, it follows that

dist
(
fk(m), P h

+ ∪ P h
−

)
< δ.

Conditions C1 and C2 deserve some remarks. For instance, one can ask whether
they are necessary or can be weakened. We do not know that, but they are essential
in our proof, which, roughly speaking, goes as follows.

The heteroclinic orbits offε are the critical points of a functionalSε defined on
a Hilbert manifoldX. Using that the invariant manifoldsW− andW+ have a non-
degenerate intersection alongN , it can be deduced thatS0 has a finite-dimensional
non-degenerate critical manifold5 Z ⊂ X. The conditions of theorem8 are used to
check that certain quotient manifoldK = Z/t of this critical manifold iscompact.
The proof is finished with a standard Lyapunov-Schmidt reduction overK and the
Lusternik-Schnirelmann category ofK ' N/fs. Thus, compactness ofK—and so,
conditions C1 and C2—seems unavoidable in our scheme of proof.

Once accepted this fact, it is useful to find some cases in which the conditions of
theorem8 always hold. A couple of simple cases is presented below.

As a first example, we consider the completely doubled case. The manifolds
W− = W u(P h

−) andW+ = W s(P h
+) are saiddoubledif W− \P h

− = W+ \P h
+. They

are saidcompletely doubledif they are doubled and, in addition,TNW− = TNW+,
for N := W− \ P h

− = W+ \ P h
+.

In the completely doubled case, it can be checked thatN verifies the conditions of
theorem8 with cat(N/fs) = 3s. Hence, we have obtained the following corollary.

Corollary 9 (Xia) If the unperturbed invariant manifolds are completely doubled
and the perturbeds-periodic sets have the same action, the perturbed map has at
least3s primary heteroclinic orbits close toN .

4Theactionof as-periodic setP of a twist mapf with Lagrangianl isAf [P ] =
∑s−1

k=0
l(qk, qk+1),

whereqk is the canonical projection offk(m) onto the configuration spaceQ andm is any point inP .
5Z is anon-degenerate critical manifoldof a functionS : X → R if, for any x ∈ Z, S′(x) = 0,

the operatorS′′ : TxX → T ∗xX has a closed range andTxZ = kerS′′.
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Xia [18] studied this problem in the frame of exact maps, but he missed the
conditionTNW− = TNW+. To be more precise, he stated the persistence result for
the (general) doubled case, but his proof works only in the completely doubled case.

As a second example, we consider heteroclinic orbits coming from unperturbed
loops. A curveC ⊂ (W− \ P h

−) ∩ (W+ \ P h
+) from a point inP h

− to another point in
P h

+ is anon-degenerate loopwhen

dim(TmW− ∩ TmW+) = 1 ∀m ∈ C.

It turns out that the setN of non-degenerate loops verifies the conditions of theorem8
with cat(N/fs) = 2n, wheren is the number of non-degenerate loops.

Corollary 10 If the unperturbed map hasn non-degenerate loops and the perturbed
periodic sets have the same action, then the perturbed map has at least2n primary
heteroclinic orbits close to the loops.

On the other hand, the conditions of theorem8 fail whenN is, for instance, a set
formed bysquaressimilar to the ones of the billiard map inside a generic ellipsoid.
Both conditions fail at the borders of these squares.
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