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1 Introduction

Seventy-five years ago, thmlliard ball problem was introduced by G. Birkhoff to
describe the motion of a billiard ball inside a convex billiard talilesVI1.6]. Since

then, billiards have become paradigmatic models for many questions in dynamical
systems. The monography pnd [17] present a good overview of the current state-
of-the-art in billiard problems.

Integrability is a classical subject in dynamical systems. Integrable billiards seem
to be very rare. Indeed, in the famoBskhoff's conjecturdt is stated that among
all the convex smooth billiard tables, only ellipses are integrable§2.4]. Several
attempts have been made to prove this conjecture, but, so far, it remains open.

One of these attempts relies on the phenomenon dofphiging of separatrices
discovered a century ago by Henry Poiricar his celebrated memoir on the three-
body problem 14]. In our context, it can be described as follows. The major axis
of an ellipse is a hyperbolic 2-periodic trajectory whose stable and unstable invariant
curves coincide, giving rise to several bi-asymptotic connections (cstiearatrice}
between the two points of the periodic trajectory. Although the hyperbolic periodic
trajectory persists under small perturbations of the ellipse, its stable and unstable
invariant curves generically do not coincide, but give rise to a complicated web whose
existence is an obstruction for the integrability. From a more dynamical point of view,
according to thairkhoff-Smale theorerfiL5], the billiard ischaoticif the invariant
curves have transverse intersections. Chaotic means that the restriction of the billiard
to some invariant Cantor set is conjugated to a transitive topological Markov chain.

Several authors have analyzed the splitting of separatrices in that frame. This
approach began with the works of Taband@][ Lomeli [11], and Levallois L0].

For instance, Tabanov proved that the stable and unstable invariant curves become
transverse under the quartic perturbation

T = acoso y = b(1 + ecos? $) sin ¢

for small enoughe. This implies that the perturbed billiard is non-integrable and
chaotic.

Up to our knowledge, the best result on this problem was obtained by two of the
authors (A.D. and R.R.-R.) in6], where it was shown that the perturbation

T = acos ¢ y=">b(1+en(¢))sing



becomes non-integrable for any non-constant entiperiodic function, : R — R.
Moreover, if the unperturbed ellipse is narrow enoulgkk( a), the invariant curves
become transverse for any non-constant anatyperiodic function; : R — R. The
basic tool to prove these results is a discrete version of the Melnikov method.

From a physical point of view, it is natural to consider spatial billiards instead
of planar ones. That is, to study the motion of a particle inside regions enclosed by
closed convex surfaces of the three-dimensional Euclidean space.

Billiards inside ellipsoids are the only known examples of integrable billiards
inside convex smooth surfaces, so there is a spatial version of the Birkhoff conjecture.
The major axis of a generic ellipsoid is also a hyperbolic periodic trajectory whose
stable and unstable invariant surfaces coincide. These invariant surfaces form a bi-
asymptotic set with a richer topology than in the planar case. It is a CW-complex
with two zero-dimensional cells (the periodic points), eight one-dimensional cells
(calledloopg and eight two-dimensional cells (callequare$, see figure2.

The goal of this lecture is to review some recent results obtained by the authors
on billiards inside perturbed ellipsoids. The results have a similar flavor to those
above-mentioned on billiards inside perturbed ellipses: non-integrability, splitting of
separatrices, chaotic behavior, persistence of bi-asymptotic orbits, etc. Full details
and many additional results can be found5hdnd [4].

Billiards inside perturbed ellipsoids are significantly harder than billiards inside
perturbed ellipses. Before to tackle their study, it has been necessary to solve some
technical problems and to develop new tools. The most important prerequisites of
this work are listed below:

¢ To linearize explicitly the billiard dynamics on the bi-asymptotic set by means
of a suitable parameterization. Such a parameterization (ca#ladal) was
found recently by one of the authors (Yu.F.) in terms of tau-functips [

e To obtain some high-dimensional symplectic discrete versions dfltirikov
method This was accomplished independently by LonjigP] for twist maps
defined on the cotangent bundle of a torus and by two of the authors (A.D. and
R.R.-R.) for exact symplectic maps defined on exact symplectic manifglds [
For billiards inside perturbed generic ellipsoids, these methods can deal with
the squares, but, at a first glance, they could not with the loops.

e To find a way to study the loops. The variational ideas contained in the works
of one of the authors (S.B)—se# pnd [3]—have been essential for this point.

We finish this introduction with the organization of the paper. We first need
to introduce convex billiards in section 2. Afterwards, in section 3 we present the
main properties of billiards inside generic ellipsoids. The set formed by the orbits
bi-asymptotic to the diameter inside a generic ellipsoid is studied from a dynamical,

! This CW-complex resembles the ones listed in the topological classification of the energy levels
of saddle points of four-dimensional integrable Hamiltonians obtained by Lerman and Unjagkki



geometrical and topological point of view. Next, a Melnikov method is applied to
very general perturbations of generic ellipsoids in section 4. Some results about the
splitting of separatrices, non uniform integrability, and chaotic behavior are briefly
commented. Section 5 is devoted to the persistence of (not necessarily transverse)
bi-asymptotic orbits. These persistence results have nothing to do with Melnikov
methods. The last section deals with a degenerate case: the study of prolate ellipsoids.
Finally, in the appendix it is stated a theorem on the persistence of bi-asymptotic
orbits for twist maps, which is the key point of the persistence results obtained in this
work. This result generalizes a previous one by Xig [ whose proof is only valid

when the unperturbed invariant manifolds acnpletely double¢see the appendix

for the definition).

2 Billiards inside convex surfaces

Let Q be a closed convex smooth surfaceRdf A material point moves insid@
and collides elastically witld). This billiard motion can be modeled by means of
a diffeomorphismf defined on a phase spadé¢ consisting of positiong on the
surface() and unitary velocitiep directed outward) atg:

M= {m = (¢q,p) € Q x S%: pis directed outward) atq} .
Thebilliard map f : M — M, f(q,p) = (¢, p), is defined as follows:

e The new velocity' is the reflection op with respect to the tangent plafigQ.
e The new impact poing’ € @ is determined by’ = (¢’ — ¢)/|¢' — q|-

A billiard orbit is a bi-infinite sequenceny, ), € MZ such thatf (my) = my1.
A billiard configurationis a bi-infinite sequence of impact poirfig.)r € Q% such

that f(qx, pr) = (qk+1,Pr+1) fOr Py = (@r+1 — qr)/lar+1 — gx|. Billiard orbits
and billiard configurations are in one-to-one correspondence.

It is well known thatf : M — M is a twist map withLagrangian
{(ad) €@ ¢#dY =R Ug,q)=la—{
so that the billiard configurations are just the critical points of the (foretipn

Q" > (qr)k — Y 1(aqrs qre1) € R
kez

Of course, this series can be divergent, but there are some kinds of orbits (for instance,
heteroclinic orbits between hyperbolic periodic orbits) for which it makes sense.



3 Billiards inside generic ellipsoids

We explain here some properties of billiards inside generic ellipsoids follovidhg [
An ellipsoid is calledgenericwhen its three axes are different.
Let f : M — M be the billiard map associated to the generic ellipsoid
SU2 y2 22
Q—{q—(w,y,z)eR?’:ﬁ—&-b—Q—Fg—l a>b>c>0.
To begin with, we recall some basic concepts concerning ellipsoids. Let

z Y z

2 2 2
Q(ﬁ)—{q—(w,y,Z)ERB: tm st —1}

a2 — 2 2 _ 2

be the family of quadricgonfocal tothe ellipsoid@. It is clear thatQ(x) is an
ellipsoid for0 < x < ¢, an one-sheet hyperboloid wher< x < b, and a two-sheet
hyperboloid ifb < x < a. No real quadric exists fot > a.

Forx — ¢~ (respectivelyx — c*), the quadriaQ(x) flattens into the region of
the xy-plane enclosed by (respectively, outside)ftival ellipse

2 2
_ ) _ 3._% vy _
E-{q-(x,y,O)ER.a2_62+b2_62—1}-

Forx — b~ (respectivelyx — b™), the quadria)(x) flattens into the region of
the xz-plane between (respectively, outside) the branches &d¢hehyperbola

2 2
_ _ 3. 7 o _

Finally, for x — a~, the quadric flattens into the yz-plane.

We shall use the terrfocal conicswhen we refer to botlE and H. They are
represented in figuré,

The integrability of the billiard mag is closely related to the following property:
any segment (or its prolongation) of a billiard trajectory insi@e= Q(0) is tangent
to two fixed confocal quadrioQ(x1) and Q(k2), see L7, §2.3]. The quantities:;
andks, regarded as functions defined on the phase spacare first integrals of.

There is a simpler family of first integrals in involution, namely

k2(m) — a?)(k2(m) — a? xv — yu)? xw — zu)?
Lim) = ( 1((@)2_62;§ 2(_22) ):u2+ ( i _be) ( a2—c2)
— b)) (k2(m) — b? u— zv)? w — zv)?
IY(m) - ( ((bz)_aziib;(_ 6)2) )_,02_ (ya2_b2) +(yb2_62)
homy = LR =Bm) =)y Gu—aw)? (0= yw)?
z ( )(b2 ) a2 — c2 b2 — 2

2Tangent in a projective sense; that is, the points of tangency can be proper or improper.
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Figure 1: The focal conics of a generic ellipsoid.

wherem = (q,p) € M, with ¢ = (z,y,2) € Q andp = (u,v,w) € S

These first integrals are dependehtim) + Iy (m) + I,(m) = u* +v? +w? = 1,
but skipping one of them the rest are independent almost everywhere. Therefore,
billiards inside generic ellipsoids are completely integrable. The above formulae can
also be used to compute the valuesefandxs at any point of the phase space.

There exist some restrictions in the place where the quantitiesd <, range.
We can assume that < ko. Thenk; > 0 andks < a. On the other hand, a line
can not be tangent to two different ellipsoids or to two different hyperboloids of two
sheets. Hences1, ko < c andky, ke > b are impossible configurations. There are
Nno more restrictions.

The diameterof the ellipsoid is the chord joining the verticés-a,0,0) and
(a,0,0). It gives rise to a couple of two-periodic points fifsince

f(m?t) :ml:}: m?t = (qg7pli> = ((ia,0,0),(il,0,0)).

The two-periodic seP" = {m};, m" } is hyperbolic the spectrum of the differential
of f at its points does not intersect the unit circumference. In fact, the spectrum has
the form{A;, A2, 1/A1, 1/A2} for someA;, Ay > 1 which are called theharacteris-
tic multipliersof P, namely

1+e
)\jzl—ej e1 =4/1—b%/a? es =/1—c?/a.

Note thate; (respectivelyges) is theeccentricityof the elliptic section of the ellipsoid
Q@ with the horizontal plang¢z = 0} (respectively, the vertical plarfe) = 0}).
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Moreover, thaunstable and stable invariant surfaces

WU o= WYPh = {m e M: kEIEloo dist (fk(m),Ph> = O}
WS = WS(PY) = {m €M: lim_dist (£¥(m), P) = o}

of P" aredoubled W" = W*s = W, where

W= {m € M : lim dist (fk(m),Ph> = O}
|k|—o00

is thebi-asymptotic setThis fact follows from a geometric characterization of these

invariant surfaces contained in the following theorem.

Theorem 1 W" = {m = (¢,p) € M : q + (p) intersectsy andH } = W*, where
q + (p) denotes the line passing pywith directionp.

We remark two consequences of the above geometric characterization.

On the one hand, when a segment (or its prolongation) of a billiard trajectory
inside a generic ellipsoid intersects both focal conics of the ellipsoid, all the other
segments (or their prolongations) also do the same. On the other hand, a billiard
trajectory inside a generic ellipsoid is bi-asymptotic to the diameter if and only if all
the segments (or their prolongations) of the trajectory intersect both focal conics.

Now, we describe the billiard dynamics on the bi-asymptotidBeflo be more
precise, we shall linearize the billiard motion on the invariant surfaces

WY o= WY(mh) = {m €M: lim dist (¥ (m), fF(mlt)) = o}
Wi = WYmb) = {m eM: kEToodiSt (fk(m),fk(mi)) = 0}.

That is, we shall compute a conjugation between the restrictfodE} — W2

(respectivelyf: Wi — WZ) and the linear map — Ar (respectivelyy — A~1r),

where the entries of the matrix = diag(A1, A2) are the characteristic multipliers.
Such conjugations are callegdtural parameterizationdn our setting, they have

a rational character due to the algebraic integrability of billiards inside ellipsoids. In

fact, they can be expressed as quotients of the tau-polynomials

7(ri,re) = 14723 +a?(r? +1rd)
rmra) = 147k - a2t 1 1d)
Ty(ri,re) = 2ari(1—1r3)
T(r1,m2) = 2ara(1417?)

wherea? = (ex +e1)/(e2 — e1) with a > 1.
To define these natural parameterizations, we introduce the following notations.

6



The rational magy : R? — S? defined byy = (7/7, 7y /7, 72 /7).

The diagonal matriD = diag(a, b, c).

Given any reak and any mapy defined onR?, we denote by o A® the map
r=(ri,r2) — g(A°r) = g(A°r1, AS°ra).

The maps; : R?2 — Q, p : R? — S?, andm : R? — M defined byg = Dy,
p=xo A~Y2 andm = (¢,p)-

The involutionI(ry,r2) = (1/r1,1/r2), wherel/0 = oo and1 /oo = 0.

The mapsn}® : R? — M defined bym% = +m andms. = +mo L.

Theorem 2 The mapsn® : R? — M are natural parameterizations of the invariant
surfacegV.*. Thatis,mY" are analytic diffeomorphisms ont®’}"" such that

mY®(0) = mh fomi=mioA fomizmioA_l.
Finally, the topology of the bi-asymptotic set is described below.

Theorem 3 The bi-asymptotic set is a two-dimensional CW-complex with two zero-
dimensional cells (the periodic points), eight one-dimensional cellsl@thE and
eight two-dimensional cells (thequare$.

To describe the cells, we note that the bi-asymptotic set is the disjoint union
W = Wl u W, whereW} = m4(R?) andm} = +m. SetR_ = (—o0,0),
Rp = {0}, andRy = (0, +oc0). Then the eighteen cells are

Cghm = §m(R01 X R02)7 S € {_7+}7 01,02 € {_70’+}‘

The eight cells witlr, 09 € {—, +} are the squares. The two cells with= o5 = 0
are the periodic points. The others are the loops. The cells are represented i.figure
Points and loops with equal labels are identified. All the cells are invariant under the
square mapf?. The arrows show the dynamics in the loops. In the squares the
dynamics is compatible with the dynamics in the loops. Hence, the points on the
loops areheteroclinicpoints of f2, whereas the points on the squaresramoclinic
There is another difference between loops and squares. The billiard trajectories
corresponding to points of the loops ganar, that is, they are contained in a plane:
the vertical plandy = 0} for the loops witho; = 0 and the horizontal plangz = 0}
for the loops withry = 0. This has to do with the fact that the tau-polynomiglé-)
andr,(r) vanish forr; = 0 andry = 0, respectively.
For further reference, let us introduce the s&tsiV, Ny, and N, formed by
the 8 squares, the 8 loops, the 4 loops with= 0, and the 4 loops witler; = 0,
respectively. Obviouslyy = N1 U Ns. Following [7], we say thafS is theseparatrix
of the unperturbed system, wherdas= W \ S = N U P" is thebifurcation set
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Figure 2: Topological representation of the bi-asymptotidBet

Once presented the unperturbed setup, we can begin the study of billiards inside
perturbed ellipsoids. Before exposing the main results, some comments are in order.

Firstly, we suppose that the perturbed ellipsoids are at{egsilthough for some
results it is required a greater regularity.

Secondly, any Melnikov method can only detpcimary bi-asymptotic orbits.

A perturbed bi-asymptotic orbit is called primary when it depends smoothly on the
perturbative parameterand it isO(¢)-close to an unperturbed bi-asymptotic orbit.
The orbits obtained in this work are primary.

Finally, there are two kinds of unperturbed bi-asymptotic orbits: heteroclinic on
the squares and homoclinic on the loops. The unstable and stable surfaces have a
non-degenerate intersection along the loops, that is, at the loops the intersection of
the planes tangent to the invariant surfaces coincides with the line tangent to the loop.
On the contrary, the invariant surfaces have the same tangent planes at the squares.
Thus, loops and squares must be studied separately.

4 The Melnikov potential for perturbed generic ellipsoids

Following [7] and [4], we introduce a function (th®elnikov potentigl which gives
information about the splitting of separatrices in problems like this one.

In the first paperT], the Melnikov potential was defined only on the separatix
since it is generically discontinuous at the bifurcationBet W \ S. Nevertheless,
it became soon clear that it should be considered as a function defined over the whole
bi-asymptotic set, although its restrictions to the set of loops and to the set of squares
must be studied separatel].[

Henceforth,L : W — R stands for the Melnikov potential (to be defined at the
end of next page), wheredss : S — R, Ly : N — R, Ly, : N; — R, and
Ly, : No — R denote its restrictions to the sefs V, Vi, andN,. Finally, given



any cellC of the bi-asymptotic set, : C — R is the restriction of the Melnikov
potential toC'.

In the current frame of billiards inside perturbed generic ellipsoids, the main
properties of the Melnikov potential are listed below.

L1 Itis invariant under the unperturbed billiard mapo f = L.
L2 Its restrictions inherit the regularity from the perturbation of the ellipsoid.
L3 If Lg is not locally constant, then:

— the separatri splits; that is, it cannot be continued smoothly éc£ 0.

— the perturbed billiard is not uniformly integrable; that is, the first integrals
cannot be continued smoothly fer# 0.

L4 If Ly is not locally constant, then the perturbed unstable and stable invariant
surfaces cross topologically.

L5 LetC ¢ W be a cell. IfL¢ is not constant’ breaks out; that is, it cannot be
continued smoothly fo¢ # 0.

L6 The non-degenerate critical points of the restrictigngive rise to (primary)
transverse homoclinic orbits, and hence, to chaotic behavior.

L7 The non-degenerate critical points of the restrictlon give rise to (primary)
transverse heteroclinic orbits.

In order to find an explicit expression for the Melnikov potential, we need an
explicit expression for the perturbations. There are many ways to do that. When one
is confronted to the choice, it must be taken into account that the more general is the
perturbation, the harder will be the study.

In this section, we have restricted ourselves to global perturbations of the form

2 2 2
% + ‘Z—Q + z_Q =1+4¢€P(y/b,z/c)

for some functionP : R? — R such thatP(0,0) = 9, P(0,0) = 9,P(0,0) = 0.
This means that the diameter of the ellipsoid (and so, the two-periodiPSeis
preserved by the perturbation.

These perturbations are symmetric with regard to the change —z, so that
not all of the perturbations fit into this frame, but they suffice for our purposes.

We said that the bi-asymptotic set is the disjoint unibn= W U W}, where
Wi = m4(R?) andmy = +m are the parameterizations of theorémHence, it
is natural to define the Melnikov potential: W — R by means of some functions
L+ : R? — R and the relationg (£m(r)) = L+ (r).

Using results of§], it can be shown thak. (r) = a 3.5, (+ (A*r) where

_ 73(r) 7y(r)
Cr(ATY2r) L (AY2r) F (i 7(r)

ly(r)
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The series" ., ¢+ (AFr) is absolutely convergent for anye R2, so the Melnikov
potential is well defined on the whole bi-asymptotic set.

Nevertheless, as we have already mentioned, the Melnikov poténtiah be
discontinuous at the bifurcation sBt= W\ .S = NUP" = NyUN, U {mh,m2 }.
For instance,

L(mi)=0 Ly, =a(l/e; —¢;) Ls=a(l/e; +1/es — €1 — e2).

for the quadratic perturbatioR(y /b, z/c) = y? /b + 22/c2.

For this example, the restrictiods- are constant for any cell' C W. Taking
into account properties L3-L5, the first step in our study should be to characterize
for which perturbations some of these restrictions is not locally constant. The result
is summarized in the following theorem.

Theorem 4 Assume thaP : C2 — C is an entire function and l&t ¢ T be a cell.

o If C C S, L¢is constantiffP(y /b, z/c) is a polynomial of degree two.
e If C C Ny, L¢ is constant iffP(y/b,0) is a polynomial of degree two in.
e If C C Ny, L¢ is constant iffP(0, z/c) is a polynomial of degree two in.

Proof. We explain briefly the proof of the first claim. The others are simpler.
If C C S, thenC = CZ72 for someg, 01,00 € {—,+}. The key point is to
realize that the restrictions

Lg‘(Ro'l % R0_2) . Ro-l X Ro‘g — R

can be analytically extended to the whole complex bi-pl@deand to study their
complex singularities. Constant functions do not have singularities.

Setr, := (1, 1), wherei is the imaginary unit. It can be shown that the complex
extensions are analytic at if and only if P is a polynomial of degree two. O

This characterization has important consequences. For instance, the separatrix
splits and the perturbed billiard is not uniformly integrable under any non-quadratic
entire perturbation of the form here considered, see L3. (For symmetric perturbations,
this result was obtained irb] §5.6].) Similar results can be obtained using L4 and
L5. We skip the details.

In [5] it is also analyzed the quartic symmetric perturbation

?fa® + P /0 + 22 )P = 1+ (P /07) (27 ).
For that quartic perturbation, L7 gives no information sitige = 0. Nevertheless,
L6 can be applied and the perturbed billiard turns out to be chaotic for almost all the
triples of semi-lengthéa, b, ¢). It suffices to note thak s has non-degenerate critical
points for an open set of the parameter spfeeb,c) : a > b > ¢ > 0} whose
complementary has zero measure. Finally, the number of non-degenerate critical

points undergoes infinitely many ciclic bifurcations wher+ b~. See b, §5.9] for
the details.
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5 Persistence of bi-asymptotic orbits inside perturbed generic ellipsoids

The following theorem is contained id][

Theorem 5 Inside any small enough perturbation of a generic ellipsoid there exist at
least sixteen (primary) heteroclinic billiard orbits close to the unperturbed loops.

Proof. The eight loops of the unperturbed billiard map are non-degenerate and the
perturbed hyperbolic two-periodic sets have the same action, see the apperdix.

This lower bound is optimal. There are exactly sixteen (primary) heteroclinic
billiard orbits for the quartic perturbation

x2/a2+y2/b2+22/62:1+6(y4/b4+z4/c4).

We note that, generically, the perturbed heteroclinic trajectories are not contained
in a plane, although the unperturbed ones are.

The rest of the section is taken frorb] [ It deals with the persistence of some
bi-asymptotic orbits when the perturbation preserves the symmetries of the ellipsoid.

A surface inR? will be calledsymmetriovhen it is symmetric with regard to the
three coordinate axis @3. A billiard orbit inside a symmetric surface will be called
central (respectivelyaxial) (respectivelyspeculay when its billiard configuration
is symmetric with regard to the origin (respectively, to some axis of coordinates)
(respectively, to some plane of coordinates). We shall say that an oglyitnisetric
when it is central, axial or specular.

Inside an ellipsoid there are several kinds of symmetric trajectories bi-asymptotic
to the diameter. On the one hand, in the squares of the bi-asymptotic set there are
eight xz-speculaones and eighy-axial ones, which are symmetric with regard to
the xz-plane and the y-axis, respectively. The y-axial trajectories are characterized as
follows: the prolongation of some of their segments intersects the focal hyperbola at
an improper point and the focal ellipse at a vertex of its minor axis. The xz-specular
trajectories have an umbilical impact point. B} fhere are some figures to visualize
them better. On the other hand, there are sixteen symmetric bi-asymptotic orbits more
in the loops. All of them are preserved under symmetric perturbations.

Theorem 6 Inside any small enough symmetric perturbation of a generic ellipsoid
there exist at least thirty-two (primary) bi-asymptotic billiard orbits close to the bi-
asymptotic set. Sixteen are homoclinic and arise from the squares, and sixteen are
heteroclinic and arise from the loops.

We end this section with a couple of remarks. First, the perturbed heteroclinic
orbits are always planar under symmetric perturbations (compare with the general
case). Second, to obtain the persistence of the 8 xz-specular (respectively, y-axial)
homoclinic orbits it would suffice to assume that the perturbed ellipsoid is symmetric
with regard to the xz-plane (respectively, y-axis).
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6 Persistence of bi-asymptotic orbits inside perturbed prolate ellipsoids

In this section we present some results concerning billiards inside perturbed prolate
ellipsoids that can be found id]. An ellipsoid is calledprolatewhen it is an ellipsoid
of revolution around its major axis. It is instructive to compare the prolate case with
the generic one already considered.

Let f : M — M be the billiard map associated to the prolate ellipsoid

{ x2 y2+z2

_ ). _ 3. _

Q= q—(a;,y,z)ER.ﬁ—F 72 —l} a>b>0.

The diameter of a prolate ellipsoid gives also rise to a two-periodic hyperbolic set.
The invariant surfaced s = Ws(Ph) are defined in the same way that for generic
ellipsoids. Since we are confronted with the degeneratien b, the characteristic

multipliers of the hyperbolic two-periodic set coincidg: = Ao = A where

_1+te _ 5/ o
/\—1_6 e=4/1-0b%/a?.

Here, e is the eccentricity of the elliptic sections of the prolate ellipsoid with any
plane containing the x-axis. All of these elliptic sections have the same set of foci:

F={(+7,0,0),(=,0,0)} v = Va2 - b

The setF plays here the saméle that focal conics played in generic ellipsoids (see
Theoreml), namelyW" = {m = (¢,p) € M : ¢+ (p) intersectsF'} = W*.
Therefore, in this degenerate case the invariant manifolds case are also doubled.

The billiard dynamics on the bi-asymptotic $&t can be written as follows. Let
A = (0,+00) x T be acilynder. Ifg : A — Q andp : A — S? are the maps

1—r2 2br 2br .
q(?", 9) = (am, WCOSG, mSlDQ)

A —r2 2\1/2p oANV2p
p(r,0) = <A+T2,)\+T2c059,/\+r2sm9

thenmy = +(g,p) : A — W\ {ml.} are analytic diffeomorphisms such that
m(0,0) = mh = m= (00, 0) f(ma(r,0)) = mx(Ar,0).

The angular variablé € T does not change under the billiard dynamics due to the

continuous symmetry of the prolate ellipsoid around its diameter. This is related to

the fact that all of these bi-asymptotic billiard trajectories@emar. In fact, they are

contained in planes passing by the x-axis. The variélédels this pencil of planes.
There is a fundamental difference in the topology of the bi-asymptoti¢tiset

It is a CW-complex with two zero-dimensional cells (the periodic points), and two
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two-dimensional cells given by. = m.(A) for¢ € {—, +}. The points on the cells
C_ andC, are heteroclinic points of?, sincem.(0, ) # m4 (oo, ).

The invariant surfaced’™ andW* are not only doubled, butompletely doubled
(see the appendix for the definition), so that corollafgee again the appendix) can
be applied to obtain the following theorem.

Theorem 7 Inside any small enough perturbation of a prolate ellipsoid there exist at
least six (primary) heteroclinic billiard orbits close to the separatrix.

We note that, generically, the perturbed heteroclinic trajectories are not contained
in a plane, although the unperturbed ones are.

Concerning optimality, there are exactly 8 (primary) heteroclinic billiard orbits
(which moreover are transverse) for the quartic perturbation

2?/a* + (y* + 22)/0* =1+ ex(y + 2)(y° + 22).

Appendix. A theorem for twist maps

We are going to present a theorem about the persistence of heteroclinic orbits for
twist maps. This theorem is the key point of theorénasd?. It can be found in4],
although its statement has been slightly modified to avoid unnecessary technicalities.
Before stating this theorem, a description of the related framework is necessary.

Let f : M — M be atwist diffeomorphism defined on an open set of a cotangent
bundleT*@Q. Let us assume thgthas two hyperbolic-periodic sets

Ph={ml, fml).... 7 )} fml) = mh

whose unstable and stable invariant manifolds

W_ = WYWPhH = {m €M: lim dist (f’f(m),PE) = o}
W, = WP = {m €M: lim dist (£*(m), PY) = o}

have anon-degeneratatersection along an invariant submanifdldc M, that is,
NcW_nWg f(N)=N TNW_NTyW, =TN.

Then N consists of heteroclinic orbits frof?" to P'. We look for sufficient
conditions for the persistence of some of these heteroclinic orbits under perturbations.
The perturbation must be exact. On the contrary, one can construct very simple
perturbations without heteroclinic orbits. For simplicity, we have restricted our study
to the frame of twist maps instead of exact maps. Thereforg, letV/ — M be a
twist perturbation off .

3There are many almost equivalent definitions of twist maps. &der{the one used here.
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From the Implicit Function Theorem, we know thAt has also two perturbed
hyperbolics-periodic setsPi,E = P! + O(e), for small enough. We will assume
that they have the same actfondy, [P" ] = A [P} ]. (This hypothesis always
holds in the homaoclinic case.)

Now we are ready to state the theorem about the persistence of heteroclinic orbits
close to the unperturbed heteroclinic connection

Theorem 8 For small enough, f. has at leastat(N/ f*) primary heteroclinic orbits
from P! to P! _close toN, provided that:

Cl N U PMu Pl is compact.
C2 Given anys > 0, there existg = j(d) > 0 such that for allkc € Z such that
|k| > j and and for alln € N such thatlist(m, P2 U PR) > ¢, it follows that

dist (f*(m), P U PR) <6,

Conditions C1 and C2 deserve some remarks. For instance, one can ask whether
they are necessary or can be weakened. We do not know that, but they are essential
in our proof, which, roughly speaking, goes as follows.

The heteroclinic orbits of. are the critical points of a function&l. defined on
a Hilbert manifold.X. Using that the invariant manifoldd’_ and W, have a non-
degenerate intersection alof it can be deduced th&f has a finite-dimensional
non-degenerate critical maniféld ¢ X. The conditions of theorer@ are used to
check that certain quotient manifold = Z/t of this critical manifold iscompact
The proof is finished with a standard Lyapunov-Schmidt reduction &vend the
Lusternik-Schnirelmann category &f ~ N/ f*. Thus, compactness é&f—and so,
conditions C1 and C2—seems unavoidable in our scheme of proof.

Once accepted this fact, it is useful to find some cases in which the conditions of
theorem3 always hold. A couple of simple cases is presented below.

As a first example, we consider the completely doubled case. The manifolds
W_ = WY (Pt) andW, = Ws(Ph) are saicdoubledif W_\ P! = W, \ P!. They
are saidcompletely doubled they are doubled and, in additiofiy W_ = Ty W,
for N:= W_\ Ph =W, \ Ph.

In the completely doubled case, it can be checkednhegrifies the conditions of
theorem8 with cat(N/f*) = 3s. Hence, we have obtained the following corollary.

Corollary 9 (Xia) If the unperturbed invariant manifolds are completely doubled
and the perturbed-periodic sets have the same action, the perturbed map has at
least3s primary heteroclinic orbits close td/.

“Theactionof a s-periodic setP of a twist mapf with Lagrangiari is A ;[P] = Zi;é gk, qe+1),
wheregy, is the canonical projection gf* (m) onto the configuration spacg andm is any point inP.

5Z is anon-degenerate critical manifoldf a functionS : X — R if, foranyz € Z, §'(z) = 0,
the operatoSs” : T, X — Ty X has a closed range afig Z = ker S”.

14



Xia [18] studied this problem in the frame of exact maps, but he missed the
conditionTyW_ = TyW_,. To be more precise, he stated the persistence result for
the (general) doubled case, but his proof works only in the completely doubled case.

As a second example, we consider heteroclinic orbits coming from unperturbed
loops. A curveC' C (W_\ P*)n (W, \ P}) from a point inP" to another point in
P}; is anon-degenerate loowhen

dim(T,W_nT,Wi)=1 vm € C.

It turns out that the s&V of non-degenerate loops verifies the conditions of thedem
with cat(N/ f*) = 2n, wheren is the number of non-degenerate loops.

Corollary 10 If the unperturbed map hasnon-degenerate loops and the perturbed
periodic sets have the same action, then the perturbed map has &rlgasnary
heteroclinic orbits close to the loops.

On the other hand, the conditions of theor&fiail when N is, for instance, a set
formed bysquaressimilar to the ones of the billiard map inside a generic ellipsoid.
Both conditions fail at the borders of these squares.

Acknowledgments. This work has been partially supported by the INTAS grant 00-221. One of the
authors (S. B.) has also been partially supported by the RFBR grant 99-01-00953. Two of the authors
(A. D. and R. R.-R.) have also been partially supported by the Spanish grant DGICYT BFM2000-0805
and the Catalan grant CIRIT 2000SGR-00027. This paper was finished while A. D. was a visitor of the
Centre de Recerca Mateéitica, for whose hospitality he is very grateful.

References

[1] G. Birkhoff, Dynamical System#mer. Math. Soc., Providence, 19217.
[2] S. Bolotin,Regul. Chaotic Dyn2000,5(2), 139-156.2
[3] S. Bolotin,Nonlinearity, 2001,14(5), 1123-1140.2
[4] S. Bolotin, A. Delshams, and R. Ramaz-Ros, in progress2, 8, 8, 11, 12, 13,13
[5] A.Delshams, Yu. Fedorov, and R. Raez-RosNonlinearity; 2001,14(5), 1141-1195.
2,4,9,10, 10,1011, 11
[6] A.Delshams, and R. Rdnez-RosNonlinearity, 1996,9(1), 1-26. 1
[7] A.Delshams, and R. Ranez-RosComm. Math. Phys1997,19(0(1), 213-245. 2, 7,
8,8
[8] Yu.FedorovActa Appl. Math.1999,55(3), 251-301.2
[9] V. Kozlov, and D. Treshokw, Billiards: a Genetic Introduction to the Dynamics of Sys-
tems with ImpactsAmer. Math. Soc., Providence, 1991.
[10] P. Levallois,Ergodic Theory Dynam. Systeyd997,17(2), 435-444.1
[11] H. Lomel, Physica D 1996,99(1), 59-80. 1
[12] H. Lomel, Ergodic Theory Dynam. Systepd®99717(2), 445-462.2
[13] L. Lerman, and Ya. UmanskiRussian Acad. Sci. Sh. Matti994,78(2), 479-506. 2
[14] H. Poincag,Acta Math, 1890,13, 1-271. 1
[15] S. SmaleDifferential and Combinatorial Topology.S. Cairns (Ed.), Princeton, 1965,
63-80. 1
[16] M. TabanovChaos 1994,4(4), 595-606. 1
[17] S. TabachnikowBilliards, Panor. Synth., Paris, 1995, 1, 4
[18] Z. Xia, Discrete Contin. Dynam. Systen2€00,6(1), 243-253.3, 15

15



	1 Introduction
	2 Billiards inside convex surfaces
	3 Billiards inside generic ellipsoids
	4 The Melnikov potential for perturbed generic ellipsoids
	5 Persistence of bi-asymptotic orbits inside perturbed generic ellipsoids
	6 Persistence of bi-asymptotic orbits inside perturbed prolate ellipsoids

