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Abstract. The Poincaŕe–Melnikov–Arnold method for planar maps gives rise to a Melnikov
function defined by an infinite and (a priori) analytically uncomputable sum. Under an
assumption of meromorphicity, residues theory can be applied to provide an equivalent finite
sum. Moreover, the Melnikov function turns out to be an elliptic function and a general criterion
about non-integrability is provided.

Several examples are presented with explicit estimates of the splitting angle. In particular,
the non-integrability of non-trivial symmetric entire perturbations of elliptic billiards is proved,
as well as the non-integrability of standard-like maps.
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1. Introduction

From the works by Poincaré [Poi99], Melnikov [Mel63], and Arnold [Arn64], thePoincaré–
Melnikov–Arnold methodhas become the standard tool for detecting splitting of invariant
manifolds for systems of ordinary differential equations close to ‘integrable’ ones with
associated separatrices. This method gives rise to an integral known as theMelnikov
function (or Melnikov integral), whose zeros, if non-degenerate, imply the ‘splitting’ of
the former separatrices. (For a general background, see [GH83, Wig90].)

Nevertheless, the explicit computation of this function in the applications is performed
via residue theory, which requires suitable meromorphic properties for the functions
appearing in the Melnikov integral.

There exists a similar theory for maps [Eas84, Gam85, Gam87], and in this case the
Melnikov function is no longer an integral, but an infinite and (a priori) analytically
uncomputable sum. In general, the computation of such kinds of infinite sums requires
an excursion to the complex field, and in this way the first explicit computation of such an
infinite sum was done in [GPB89], using the Poisson summation formula, residues theory
and elliptic functions.

At first glance, their approach seemed very specific for the examples studied therein.
However, it turns out that a systematic and general theory for computing the Melnikov
function can be developed in the discrete case, under an adequate hypothesis of
meromorphicity, like in the continuous case.
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2 A Delshams and R Ram´ırez-Ros

To begin with, letF0 : R2 −→ R2 be an analytic area preserving diffeomorphism,
integrable and with a separatrix to a saddle point. Denote byH , 0 and P0, the first
integral, the separatrix and the saddle point, respectively.

SinceF0 is area preserving, one has Spec[DF0(P0)] = {λ, λ−1} for some realλ with
|λ| > 1. Replacing the map withF 2

0 if necessary, one can assume thatλ > 1.
SinceF0 is an analytic map with a separatrix to a saddle point, there exists anatural

parametrizationσ of 0 (with regard toF0), i.e. a bijective analytic mapσ : R −→ 0 such
that:

(i) F0(σ (t)) = σ(t + h), ∀ t ∈ R,
(ii) h = ln λ (normalization condition).
It turns out that, perhaps by multiplying the first integral by a suitable constant, the

above natural parametrization is asolutionof the Hamiltonian field associated toH , i.e.

σ̇ = J∇H ◦ σ where J =
(

0 1
−1 0

)
.

Notice that this condition is equivalent to saying that the time-h Hamiltonian flow associated
to H interpolatesthe map on the separatrix. This fact is very useful to obtain the natural
parametrization explicitly, as well as to simplify the expressions of the Melnikov function.
Henceforth it will be assumed that the first integral is chosen in order to verify this
interpolation condition.

Now, consider a family of analytic diffeomorphisms

Fε : R2 −→ R2 Fε = F0 + εF1 + O(ε2)

as a general perturbation of the above situation. Then, forε small enough,Fε has a saddle
point Pε ‘close’ to P0 and the local stable and unstable manifolds(Ws

ε )loc, (Wu
ε )loc of Pε

are ‘close’ to those of the unperturbed saddle pointP0.
Generically, the separatrix0 breaks, and our aim is to compute the first-order

approximation onε of the distance between the invariant manifolds along the normal
directions of the separatrix.

To this end, given a natural parametrizationσ : R −→ 0 of 0, σu(t, ε) (respectively
σ s(t, ε)) will denote the ‘first’ intersection ofWu

ε (respectivelyWs
ε ) with the normal to0

at σ(t); in particular,σu,s(t, 0) = σ(t) (see figure 1).

Figure 1. Perturbation of a separatrix consisting of homoclinic orbits. The chain curve is the
family of homoclinic orbits of the unperturbed map.



Poincaré–Melnikov–Arnold method for planar maps 3

Following Poincaŕe and Arnold [Poi99, Arn64], the measure of the distance between
these points is given by the difference of first integrals (‘energies’)

1(t, ε) = H(σu(t, ε)) − H(σ s(t, ε)) = εM(t) + O(ε2)

whereM is the so-calledMelnikov function, anh-periodic function given by an infinite sum

M(t) =
∑
n∈Z

g(t + hn) g(t) = 〈σ̇ (t), JF1(σ (t − h))〉 .

It is a commonplace to note that simple zeros of the Melnikov function give rise to
transversal homoclinic points and chaotic phenomena.

A very important case takes place whenFε is an area preserving map (a.p.m., from now
on) with generating functionL(x, X, ε) = L0(x, X) + εL1(x, X) + O(ε2).

In this case, the Melnikov function is given by

M = L̇ L(t) =
∑
n∈Z

f (t + hn) f (t) = L1(x(t), x(t + h))

wherex(t) is the first component ofσ(t) and, in order to get an (absolutely) convergent
sum,L1 is determined byL1(x0, x0) = 0, if P0 = (x0, y0). In this situation,M is actually
the derivative of anh-periodic function and not only anh-periodic one. Consequently, if
M is real analytic and not identically zero, it has real zeros of odd order, so the perturbed
invariant curves cross and the perturbed map [Cus78] is non-integrable.

To unify notation, consider6(t) = ∑
n∈Z q(t + hn), whereq(t) is eitherg(t) or f (t).

If q(t) is a meromorphicfunction (respectively, a function with only isolated singularities),
then6(t) is anelliptic function (respectively, a double-periodic function with only isolated
singularities) with periodsh andT i, where usuallyT = 2π , but if there is some symmetry
in the problem,T = π . The relation between elliptic functions and Melnikov functions for
maps goes back to [GPB89], although until [Lev93] it was not clearly shown.

It turns out that6(t) can be expressed as the followingfinite sum:

6(t) = −
∑

z∈S(q)

res(χtq, z)

whereS(q) = {z ∈ C : z is a singularity ofq, 0 < =z < T } andχt(z) = χ(z − t), χ being
the function determined (up to an additive constant) by the conditions:

(C1) χ is meromorphic onC,
(C2) χ ′ is h-periodic andχ is T i-periodic,
(C3) the set of poles ofχ is hZ + T iZ, all of them being simple and of residue 1.

It is worth noting thatχ can be explicitly computed in terms of the incomplete elliptic
integral of the second kind.

Both from a theoretical and a practical point of view, thissummation formulais one
of the main tools of this paper, as it provides explicit computations for the Melnikov
function M, assuming the hypothesis of meromorphicity for the functionsg or f .

The following powerful non-integrability criterion is easily obtained. LetFε be a
family of analytic a.p.m. with a generating function whereF0 verifies the above-mentioned
hypothesis and suppose that the functionf has only isolated singularities. LetS(f ) = {zs`},
wherezs` − zs ′`′ ∈ hZ iff s = s ′ (the singularities off have been classified moduloh), and
introduce thenon-integrability coefficientsof the problem:dsj = ∑

` a−(j+1)(f, zs`), where
a−j (f, z0) denotes the coefficient of(z − z0)

−j in the Laurent expansion off around an
isolated singularityz0. Then, it turns out that if some of these non-integrability coefficients
is non-zero, the Melnikov function is not identically zero andFε is non-integrable forε
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small enough. (For the continuous case, a related criterion that also takes advantage of the
structure of the singularities in the complex field can be found in [Zig82].)

The power of this criterion lies in the following two facts:

• The non-integrability coefficients can be computed explicitly, so it can be easily checked.
• This criterion detects intersections of arbitrary finite order (and not only transversal

ones, as is usual in the literature).

As a first application, consider the problem of the ‘convex billiard table’ [Bir27]: let
C be an (analytic) closed convex curve of the planeR2, and suppose that a material point
moves insideC and collides withC according to the law ‘the angle of incidence is equal to
the angle of reflection’. Following Birkhoff, this discrete dynamical system can be modelled
by an (analytic) a.p.m. in the annulus. WhenC is an ellipse this map is called anelliptic
billiard and is an integrable map, [Bir27].

Several authors [Lev93, Tab93, LT93, Tab94, Lom94], have devoted their efforts to
the study of perturbed elliptic billiards. All the cases where explicit computations have
been performed reduce tosymmetric and reversible quartic perturbations, i.e. the billiard in
curves like

Cε =
{
(x, y) ∈ R2 :

x2

a2
+ y2

b2
+ εP (x, y, ε) = 1

}
where 0< b < a are constants,ε is a small perturbative parameter,Cε is an analytic
curve depending in aC2 way on ε, symmetric with respect to the axis of coordinates and
P1 = P(·, ·, 0) is a four-degree polynomial inx, y.

As a generalization, we focus our attention onsymmetric entire perturbations of elliptic
billiards, i.e. the billiard in curves like the above-mentioned ones, but symmetric only with
respect to the origin andP1 being an entire function.

A family of perturbed ellipses{Cε} will be called trivial if there exists a family of
ellipses{Eε} such thatCε = Eε + O(ε2). Using the above non-integrability criterion, it
turns out that when{Cε} is any non-trivial symmetric entire perturbation, the billiard inCε

is non-integrable forε small enough. This result supports Birkhoff’s conjecture that elliptic
billiards are the only integrable analytic billiards in the plane.

From a quantitative point of view, the first coefficient of the Taylor expansion of the
splitting anglein powers ofε is easily computed in several concrete examples. Moreover,
under very general perturbations, this coefficient turns out to be exponentially small in the
eccentricity, when the unperturbed ellipse is near to a circle.

As a second application, considerstandard-like maps, i.e. planar maps of the form
F(x, y) = (y, −x + g(y)) for some functiong.

The analytic standard-like maps given by the formula

F0(x, y) =
(

y, −x + 2y
µ + βy

1 − 2βy + y2

)
− 1 < β < 1 < µ

are integrable (see [Sur89], where several families of integrable standard-like maps are
introduced), with a separatrix to the origin. Forβ = 0, this is the McMillan map [McM71]
considered in [GPB89], where the Melnikov function was computed explicitly under the
linear perturbationsF1(x, y) = (0, ax+by) with a, b constants. Fora = 0, as a consequence
of the cumbersome computations of [GPB89], the non-integrability of the standard-like map
F0 + εF1 follows, for ε small enough.

This result of non-integrability is generalized to the standard-like maps

Fε(x, y) =
(

y, −x + 2y
µ + βy

1 − 2βy + y2
+ εp(y)

)
− 1 < β < 1 < µ ε ∈ R
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where p is an entire function, not identically zero. Moreover, in the framework of the
developed theory, the computation of the Melnikov function and estimates of splitting
angles become almost trivial, whenp is a polynomial.

To finish this introduction, let us make two remarks:

• The meromorphicity off or g is only needed for the explicit computation of the
Melnikov function. To prove non-integrability, it is sufficient to assume thatf is a real
analytic function with only isolated singularities onC.

• The topic of splitting of separatrices consists of two subclasses: the ‘simple’ and the
‘difficult’ one. The first one is characterized by the following property: the splitting
quantities are of finite order with respect to the small parameter, so that they may be
computed by means of the usual theory of perturbations (i.e. Melnikov techniques are
valid). In the second subclass the main quantities are exponentially small with respect
to the small parameter (recall the case of an ellipse near to a circle). Thus, more
sophisticated analytical tools are required (see, for instance, [FS90, DS92, GLS94]).
A priori , Melnikov techniques cannot be applied to this subclass. However, we feel
that the ‘Melnikov prediction’ holds in several (not all) of the ‘difficult’ cases. This
feeling is supported by numerical experiments performed with some of the maps studied
here [DR95]. This topic is currently being researched.

The rest of the paper is devoted to the rigorous formulation and proof of the above claims
and results. It is organized as follows. In section 2 the Melnikov function is introduced
and its relationship with quantitative and qualitative aspects of the splitting of separatrices
is given. Section 3 contains the summation formulae and the criterion of non-integrability
is formulated. The final part is devoted to the study of the perturbed elliptic billiards
(section 4) and standard-like maps (section 5). These sections contain the non-integrability
results, as well as examples of explicit computation of Melnikov functions and estimates of
splitting angles.

2. Melnikov functions

2.1. Initial set-up

Let F0 : R2 −→ R2 be an analytic a.p.m. On the one hand, we suppose thatF0 has a
separatrix to a saddle point: there exists a saddle pointP0 of F0 such that one branch of
its stable manifold,Ws

0 , coincides with one branch of its unstable one,Wu
0 , giving rise to

a separatrix0 ⊂ (Ws
0 ∩ Wu

0 ) \ {P0}. On the other hand, we assume thatF0 is integrable:
there exists an analytic functionH : R2 −→ R, such thatH ◦ F0 = H and∇H(z) 6= 0 for
all z ∈ 0 (this is a non-degeneracy condition ofH over 0).

Remark 2.1. WhenP0 is a hyperbolick-periodic point we can consider the mapFk
0 to get

a hyperbolic fixed point.

Without loss of generality, we can assume thatF0 is orientation preserving, considering
the square of the map if necessary. Thus, Spec[DF0(P0)] = {λ, λ−1}, whereλ > 1. Let
h = ln λ be the associated characteristic exponent.

First we prove the existence of natural parametrizations, as well as the existence of first
integrals verifying the interpolation condition of the introduction.

Lemma 2.1. Under the above notations, letF0 be an analytic a.p.m., integrable and with a
separatrix to a saddle point.
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(i) Let z0 be a point in0. Then there exists a unique natural parametrizationσ of 0 (with
regard toF0), such thatσ(0) = z0. Moreover, there exists an analytic mapϕ : R −→ R2

such thatσ(t) = ϕ(et ), ∀ t ∈ R.
(ii) There exists a constantθ such that the time-h Hamiltonian flow associated toθH

interpolates the map on the separatrix.

Proof. SinceP0 is a hyperbolic fixed point of an analytic a.p.m.F0, there exists a canonical
change of variables80 : (x, y) −→ (X , Y), analytic on a neighbourhood ofP0, that
transformsF0 in its Birkhoff normal formF0 = 80 ◦ F0 ◦ 8−1

0 :

F0(X , Y) := (XG0(XY), Y/G0(XY))

whereG0(I) = λ + O(I). For a proof of this fact see [Mos56].
Now introducingK0(I) = h−1

∫ I
0 ln G0(s) ds (i.e. G0 = exp(hK′

0), K0(0) = 0), it turns
out thatF0 is theh-time Hamiltonian flow associated toH0(X , Y) := K0(XY).

In particular,σ(t) = 8−1
0 (X0et , 0) =: ϕ(et ) satisfiesσ(t + h) = F0(σ (t)) for −t large

enough, and, consequently,∀t ∈ R, using the analyticity ofF0. Now ϕ(1) = z0 determines
X0 uniquely, and, consequently,ϕ, and (i) is proved.

On the other hand,H0 := H0 ◦ 80 is a (local) first integral ofF0, and thusH0, H are
functionally dependent maps. Hence, as a consequence of the non-degeneracy ofH over0,
there exists a real-analytic function2, defined in a neighbourhood ofH(P0), such that
H0 = 2 ◦ H . This relation allows us to extendH0 to a neighbourhood of the separatrix0,
since it is contained in the energy levelH−1(P0). Now, by analytic continuation, we find
that theh-time Hamiltonian flow associated toH0 interpolatesF0 on 0. Finally, we observe
that ∇H0(z) = 2′(H(P0))∇H(z), for all z ∈ 0. Consequently, if we takeθ = 2′(H(P0)),
the Hamiltonian flows associated toH0 andθH coincide on0, and (ii) follows. �
Remark 2.2. Let XH = J ·∇H be the Hamiltonian field associated withH , A = DXH(P0),
B = DF0(P0), andθ the constant given by lemma 2.1. ThenB and eθhA have the same
eigenvectors and eigenvalues. Thus we can determineθ from the equalityB = eθhA. We
remark that the eigenvalues ofB are e±h, so the eigenvalues ofθA must be±1 and this
determinesθ up to the sign.

In the rest of this section it will be assumed that the first integralH is chosen in order to
verify this interpolation condition. Therefore, for allz0 ∈ 0, σ(t) = 9t(z0) is the (unique)
natural parametrization of0 such thatσ(0) = z0, where{9t }t∈R is the Hamiltonian flow
associated toH . Thus we can compute the natural parametrizations explicitly simply solving
the Hamiltonian equations

σ̇ = J · ∇H ◦ σ where J =
(

0 1
−1 0

)
, (2.1)

with initial conditions on the separatrix.
In this paperh and σ will be the logarithm of the eigenvalue greater than one of the

saddle point and a natural parametrization of the separatrix verifying (2.1) respectively,
when it has sense.

For the sake of brevity, if a map satisfies all the previous assumptions we will say that
it verifies (H).

2.2. Melnikov functions

Let us consider a family of analytic diffeomorphismsFε = F0 + εF1 + O(ε2), and we
introduce the Melnikov function of the problem like the functionM(t) determined by

1(t, ε) = H(σu(t, ε)) − H(σ s(t, ε)) = εM(t) + O(ε2) (2.2)
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whereσu,s are defined in the introduction (see figure 1). With the foregoing notation, we
now prove the following proposition.

Proposition 2.1. Suppose thatF0 verifies (H). Then:
(i) The Melnikov function is given by

M(t) =
∑
n∈Z

g(t + hn) (2.3)

with

g(t) = 〈∇H(σ(t)), F1(σ (t − h))〉 = 〈σ̇ (t), JF1(σ (t − h))〉 . (2.4)

(ii) If Fε is an a.p.m. with generating function

L(x, X, ε) = L0(x, X) + εL1(x, X) + O(ε2) (2.5)

the Melnikov function is given by

M = L̇ L(t) =
∑
n∈Z

f (t + hn) (2.6)

with

f (t) = L1(x(t), x(t + h)) (2.7)

wherex(t) is the first component ofσ(t) and, in order to get an (absolutely) convergent
sum,L1 is determined byL1(x0, x0) = 0, if P0 = (x0, y0).

Proof. These results seem to be very well known (along these lines see, for instance,
[GPB89, Lev93, Lom94]), but we prefer to include the proof for the convenience of the
reader. The key point is to expressM(t) in terms ofH ◦ Fε − H .

(i) For each fixedt we first we observe that for allm > 0:

1(t, ε) = H(F−m
ε (σ u(t, ε))) − H(Fm

ε (σ s(t, ε)))

+
m∑

n=1−m

H(Fn
ε (σ α(t, ε))) − H(Fn−1

ε (σ α(t, ε)))

where α = α(n) is given by α = u if n 6 0, and α = s if n > 0. Since
H(F−m

ε (σ u(t, ε))) − H(Fm
ε (σ s(t, ε))) −→ H(Pε) − H(Pε) = 0 when m → +∞, we

obtain by passing to the limit

1(t, ε) =
∑
n∈Z

(H ◦ Fε − H)
(
Fn−1

ε (σ α(t, ε))
)
. (2.8)

Now, sinceσα(t, ε) is an invariant curve ofFε that is O(ε)-close toσ(t), it turns out
thatFn−1

ε (σ α(t, ε)) = Fn−1
0 (σ (t))+ O(ε) = σ(t +h(n− 1))+ O(ε), uniformly in n, where

we have used thatσ is a natural parametrization. Moreover,

H ◦ Fε − H = ε〈∇H ◦ F0, F1〉 + O(ε2) (2.9)

and putting all this together in (2.8), we obtain (2.3).
(ii) It is sufficient to prove thatḟ (t) = g(t + h), since a shift in the index does not

change the sum. First we look for the expression ofH ◦ Fε − H .
We introduce the notation(Xε, Yε) = Fε(x, y) = (X0, Y0) + ε(X1, Y1) + O(ε2). Since

L is the generating function ofFε, it satisfies the equations

y = −∂1L(x, Xε, ε) Yε = ∂2L(x, Xε, ε) .
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Now, by straightforward expansion inε, it follows that

(H ◦ Fε − H) (x, y) = H (Xε, ∂2L(x, Xε, ε)) − H (x, −∂1L(x, Xε, ε))

= ε
[
∂2H(x, y)∂1L1(x, X0) + ∂2H(F0(x, y))∂2L1(x, X0)

] + O(ε2) ,

so, using (2.9), we get forz = (x, y):

〈∇H(F0(z)), F1(z)〉 = ∂2H(z)∂1L1(x, X0) + ∂2H(F0(z))∂2L1(x, X0) .

Finally, the proof is finished using this expression and (2.1):

ḟ (t) = ẋ(t)∂1L1(x(t), x(t + h)) + ẋ(t + h)∂2L1(x(t), x(t + h))

= ∂2H(σ(t))∂1L1(x(t), x(t + h)) + ∂2H(σ(t + h))∂2L1(x(t), x(t + h))

= 〈∇H(σ(t + h)), F1(σ (t))〉 = g(t + h).

�
Remark 2.3. The Melnikov functionM is h-periodic. Moreover, in the a.p.m. case, it is
the derivative of anh-periodic functionL (called theMelnikov potential), and thus it has
zero mean.

The area preserving property ofF0 and the analyticity ofFε are unnecessary to get
some formulae like the previous ones, see [GPB89], but they are needed in the following
theorem, so we have added these hypotheses directly. From a practical point of view, it
makes no difference, since, to our knowledge, all the integrable maps with a separatrix to
a saddle point for which there exist explicitly known expressions verify these hypotheses.

The desired qualitative and quantitative information is contained in the following
theorem.

Theorem 2.1. (i) If M has zeros of odd order then the perturbed invariant manifolds cross
at finite order, for 0< |ε| � 1.

(ii) In the a.p.m. case, ifM is not identically zero thenFε is non-integrable, for
0 < |ε| � 1.

(iii) If M has a simple zero att = t0 then the associated intersection is transversal and
the so-called splitting angle,α(ε), verifies

| tan(α(ε))| = |Ṁ(t0)ε|
‖ σ̇ (t0)‖‖∇H(σ(t0))‖ + O(ε2) = |Ṁ(t0)ε|

‖ σ̇ (t0)‖2
+ O(ε2) . (2.10)

Proof.
(i) It is a direct consequence of (2.2) and the non-degeneracy condition ofH over 0.
(ii) M = L̇ andL is analytic andh-periodic, so

∫ h

0 M(t)dt = 0. ThusM 6≡ 0 implies
that M changes the sign and has zeros of odd order. Now the non-integrability ofFε is a
consequence of (i), the analyticity and the area preserving character [Cus78].

(iii) The second equality is obvious, sinceσ̇ and∇H ◦σ have the same norm, see (2.1).
Thus we focus our attention on the first one. Let

v(t) = ∇H(σ(t))

‖∇H(σ(t))‖ dist(t, ε) = 〈σu(t, ε) − σ s(t, ε), v(t)〉

be the unit normal vector to0 at σ(t) and the (signed) distance betweenσu(t, ε) and
σ s(t, ε), respectively.

From proposition 2.1 and the definition of1 we get

dist(t, ε) = εM(t)

‖∇H(σ(t))‖ + O(ε2) .
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First we suppose, momentarily, thatt is an arc parameter of0, then:

|tan(α(ε))| =
∣∣∣∣ d

dt
[dist(t, ε)]∣∣t=t0

∣∣∣∣ + O(ε2) = |Ṁ(t0)ε|
‖ ∇H(σ(t0)) ‖ + O(ε2)

where we have used thatM(t0) = 0 and the geometric interpretation of the derivative.
To end the proof we need only to add the normalizing factor‖ σ̇ (t0)‖−1 to the previous

formula that comes of the rule chain whent is not an arc parameter. �
Remark 2.4. The splitting angleα(ε) approaches±π/2 whent0 → ±∞. For a.p.m., it is
better to use the area of the lobes formed by the invariant curves or the homoclinic invariant
(introduced firstly in [GLT91]) since they do not depend ont0. We have not used these
a.p.m. invariants, since we have not restricted ourselves to a.p.m. perturbations.

3. Summation formulae and non-integrability

3.1. Elliptic functions

We recall that an elliptic function is a meromorphic and doubly periodic one (that is, it has
two periodsT1, T2 not zero such thatT1/T2 6∈ R). The notations about elliptic functions
are taken from [AS72].

Given the parameterm ∈ [0, 1], we recall that

K = K(m) :=
∫ π/2

0
(1 − m sinθ)−1/2 dθ E = E(m) :=

∫ π/2

0
(1 − m sinθ)1/2 dθ

are thecomplete elliptic integrals of the first and second kindand that

E(u) = E(u|m) :=
∫ u

0
dn2(v|m) dv

is the incomplete elliptic integral of the second kindwhere dn is one of the well known
Jacobian elliptic functions.

Moreover,K ′ = K ′(m) := K(1− m), E′ = E′(m) := E(1− m), and we also note that
if any one of the numbersm, K, K ′ or K ′/K is given, all the rest are determined. We will
not write explicitly the parameterm when no confusion is possible.

We introduce the function3(z) := (E′/K ′ − 1)z + E(z + K ′i). This function is
meromorphic onC, 2K ′i-periodic, its derivative is 2K-periodic and the set of its poles is
2KZ + 2K ′iZ all being the poles simple and of residue 1.

Indeed, the periodicities of3 are consequence of the periodicities ofE:

E(z + 2K) = E(z) + 2E E(z + 2K ′i) = E(z) + 2(K ′ − E′)i

and besides3′(z) = E′/K ′ − 1 + dn2(z + K ′i), where dn2 is an even elliptic function, the
set of its poles is 2KZ + 2K ′iZ + K ′i, all being double and of residue zero, and leading
coefficient−1, so the claim about3 is proved.

Given T , h > 0, we determine the parameterm by the relation

K ′

K
= K ′(m)

K(m)
= T

h
(3.1)

and we consider the functions

χ(z) = 2K

h
3

(
2Kz

h

)
χt(z) = χ(z − t) . (3.2)

From the properties of3, one easily checks that:
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(C1) χ is meromorphic onC.
(C2) χ is T i-periodic andχ ′ is h-periodic.
(C3) The set of poles ofχ is hZ + T iZ, all of them being simple and of residue 1.

The properties ofχt are the same, except that the poles aret +hZ + T iZ. Moreover, using
that E(z + 2K) = E(z) + 2E and the Legendre’s relationEK ′ + E′K − KK ′ = π/2, we
obtain

χ(z + h) − χ(z) = 2π/T . (3.3)

Remark 3.1. Conditions (C1)–(C3) determineχ up to an additive constant: ifχ1 satisfies
(C1)–(C3),(χ − χ1)

′ is an entire doubly periodic function, and it must be a constant; thus,
χ(z) − χ1(z) = az + b, but a = 0 due to theT i-periodicity. In terms of the Weierstrass
℘-function,χ ′(z) = −℘(z) + constant sinceχ(z) = −z−2 + O(1).

Now, we introduce the function that will play an important role when we compute
Melnikov functions

ψ(t) = χ ′
(

T

2
i − t

)
−

(
2K

h

)2 (
E′

K ′ − 1

)
=

(
2K

h

)2

dn2

(
2Kt

h

∣∣∣∣ m)
. (3.4)

Thus,ψ is an elliptic function of order 2, with periodsh andT i. Moreover, it is symmetric
with regard tot = 0 andt = h/2. Finally, we show some asymptotic expressions that will
be of interest in the following sections. From approximations given in [AS72] and using
relation (3.1), we have

m = 16 e−πK ′/K [1 + O(e−πK ′/K)] = 16 e−T π/h[1 + O(e−T π/h)]

K(m) = π

2
+ O(m)

dn(z|m) = 1 + O(m) and dn(j)(z|m) = O(m) j > 1 (3.5)

cn(j)(z|m) = cos(j)(z) + O(m) j > 0

sn(j)(z|m) = sin(j)(z) + O(m) j > 0

for 0 < h � 1 andz ∈ R. Thus, using the expressions of the derivatives of the Jacobian
elliptic functions we get, fort ∈ R and 0< h � 1

ψ(2j−1)(t) = (−1)j
(

2π

h

)2j+1

2 e−T π/h

[
sin

(
2πt

h

)
+ O(e−T π/h)

]
j > 1 . (3.6)

Remark 3.2. It is important to bear in mind that the functionsχ , χt andψ are determined
by the quotientT/h, through the parameterm and the relation (3.1).

3.2. The summation formulae

The key problem, in order to compute the Melnikov function explicitly, is to compute an
infinite sum like

∑
n∈Z q(t +hn), whereq is either the functiong in (2.4) or the functionf

in (2.7). Our aim now is to transform these kinds of infinite sums into finite ones. The idea
is to apply the residue theorem toχtq, with χt being the function defined above, first in
some rectangular regions. Afterward, by a pass to the limit, the initial sum can be expressed
as the sum of the residues of−χtq in the isolated singularities ofq in a certain complex
horizontal strip. In this subsection we will assume thatq is a function verifying:

(P1)q is analytic onR and has only isolated singularities onC.
(P2)q is T i-periodic for someT > 0.
(P3) |q(t)| 6 A e−c|<t | when |<t | → ∞ for some constantsA, c > 0.
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We denoteIT = {z ∈ C : 0 < =z < T }, S(q) = {z ∈ IT : z is a singularity ofq}
and we writeS(q) = {zs` : l = 1, . . . , ks , s = 1, . . . , k}, wherezs` − zs ′`′ ∈ hZ ⇔ s = s ′.
(We have classified the singularities ofq modulo h.) Finally, we introduce the numbers
dsj = ∑ks

`=1 a−(j+1)(q, zs`), for s = 1, . . . , k and j > 0, where the notationa−j (q, z) has
been defined in the introduction.

We are ready to give the followingsummation formulae.

Proposition 3.1 (Summation formulae).Let 6(t) := ∑
n∈Z q(t + hn). Then:

(i) 6 is analytic inR, has only isolated sigularities inC and is double periodic, with
periodsh andT i.

(ii) 6(t) can be expressed by the following finite sum:

6(t) = −
∑

z∈S(q)

res(χtq, z), (3.7)

or equivalently, as

6(t) = −
∑

z∈S(q)

∑
j>0

a−(j+1)(q, z)

j !
χ(j)(z − t) . (3.8)

(iii) Let bs ∈ {z ∈ C : |=z| < T/2}, determined moduloh by zs` ∈ bs + T i/2+ hZ for
all s, `. Then

6′(t) =
k∑

s=1

∑
j>0

(−1)j

j !
dsj ψ(j)(t − bs) . (3.9)

Proof.
(i) 6 is obviouslyT i-periodic and analytic inR. Because of (P3) the sum is absolutely,

unconditionally and uniformly convergent on compacts ofC without points in the set
S(q) + hZ + T iZ. Thus 6 is also h-periodic and has only isolated singularities, just
in the above-mentioned set.

(ii) The hypotheses onq imply that S(q) is a finite set, so the sum in (3.7) is finite.
Let Sα(q) = {z ∈ C : z is a singularity ofq, α < =z 6 α + T }, for α ∈ R. We note
that S(q) = S0(q). Futhermore,

∑
z∈Sα(q) res(χtq, z) does not depend onα, sinceχtq is

T i-periodic and so, to prove the formula (3.7) it is enough to check that

6(t) = −
∑

z∈Sα(q)

res(χtq, z)

for one value ofα.
We chooseα ∈ [−T/2, 0) such thatq has no singularities with imaginary partα, and

we consider the rectangle of verticesM+ +αi, M+ + (α +T )i, M− + (α +T )i andM− +αi,
whereM± = t ± (N + 1

2)h, N ∈ N. If N is large enough,χtp is analytic on the border
CN of the rectangle and has only isolated singularities on its interiorRN , so the residue
theorem gives

1

2π i

∮
CN

χtq =
∑

N
res(χtq, z)

where
∑

N indicates sum over the singularities{z = t + hn} ∪ Sα(q) of χtq in RN . Since
χtp is T i-periodic the horizontal integrals cancel and, on the other hand, the vertical ones
vanish whenN tends to infinity, using (P3) and (C2). Thus the sum of residues ofχtq in
{z ∈ C; α < =z 6 α + T } is zero and sinceχt , q have no common singularities by (C3)
and (P1), we get

6(t) =
∑
n∈Z

q(t + hn) =
∑
n∈Z

res(χtq, t + hn) = −
∑

z∈Sα(q)

res(χtq, z) .
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Finally, we note that res(χtq, z) = ∑
j>0

1
j ! a−(j+1)(q, z)χ(j)(z − t), for z ∈ S(q), and

this proves (3.8).
(iii) First, we observe thatq ′ verifies (P1)–(P3). The properties (P1), (P2) are obvious

and (P3) is a consequence of Cauchy’s inequalities. Thus, applying the summation
formula (3.7) toq ′ instead ofq and using theh-periodicity of χ ′, we get

6′(t) = −
∑
s,`

res(χtq
′, zs`) =

∑
s,`

res(χ ′
t q, zs`)

=
∑
s,`,j

1

j !
a−(j+1)(q, zs`)χ

(j+1) (bs + T i/2 − t) .

Now, notice that
∑

z∈S(q) res(χtq, z) does not change when replacingχ by χ+constant
(see remark 3.1), so it follows that

∑
z∈S(q) res(q, z) = 0. In consequence, we obtain∑

s,`

a−1(q, zs`)χ
′ (T i/2 + bs − t) =

∑
s,`

a−1(q, zs`)ψ(t − bs) .

Moreover, it turns out thatχ(j+1) (bs + T i/2 − t) = (−1)j ψ(j)(t − bs), for all j > 1.
Finally, (iii) follows from all the previous formulae. �
If q is meromorphic onC, 6 is elliptic. Moreover, in this case the sums in (3.8) are

finite. Thus, from a computational point of view, this is the interesting case, because then
6(t) can be computed explicitly.

Now, we will give necessary and sufficient conditions (in terms of the principal parts
of q in its singularities), so that the sum6(t) should be identically constant.

Lemma 3.1. Let 6(t) = ∑
n∈Z q(t + hn). Then 6 ≡ constant if and only if6 has no

singularities, or equivalently, if and only ifdsj = 0, for all s, j .

Proof. Using the Liouville theorem and from the double periodicity of6, we deduce that
6 is constant if and only if all its singularities are removable ones (i.e. with principal part
identically zero).

The set of singularities of6 is {zs1 : s = 1, . . . , k}+hZ+T iZ. Let z∗ ∈ zs1+hZ+T iZ
an arbitrary singularity of6. Directly from the definition of6, we see that the principal part
of 6 in z∗ is the sum of the principal parts ofq over the points of the set{zs` : ` = 1, . . . , ks}.
Thus, all the singularities of6 are removable ones if and only ifdsj = 0, for all s = 1, . . . , k

andj > 0. �

3.3. The hypothesis of isolated singularities

Formulae (3.7)–(3.9) give a way to compute the Melnikov function if either the function
g in (2.4) or the functionf in (2.7) verify (P1)–(P3). Here we show that if some of
these functions have only isolated singularities onC, it automatically verifies (P1)–(P3)
with T = 2π . Consequently, the Melnikov function has only isolated singularities onC
and is doubly periodic with periodsh and 2π i. Of course, whenf or g are meromorphic
functions, the Melnikov function is an elliptic one.

Lemma 3.2. Let {Fε}ε∈R be a family of analytic diffeomorphisms whereF0 verifies (H).
Moreover, assume that the functiong defined in (2.4) (respectively,f defined in (2.7)) has
only isolated singularities onC. Theng (respectively,f ) verifies (P1)–(P3) withT = 2π .

Proof. The proof is the same in both cases. Thus we prove only one case, for instance for
f .
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(P1) is obvious. Using lemma 2.1 and the definition off , it is clear that there exists a
function F : R −→ R analytic onR such thatf (t) = F(et ) for all t ∈ R. Thusf can be
expressed as a power series in the variables = et if |s| is small enough, or equivalently, if
−<t is large enough. This proves thatf (t) = f (t + 2π i) for −<t large enough and, by
an argument of analytic continuation, (P2), withT = 2π , is proved. ThereforeF can be
extended to a function with only isolated singularities by the relationF(s) = f (t).

Using that lim|<t |→∞ σ(t) = P0 it is easy to see, from the definition off , that
lim|<t |→∞ f (t) = 0. Thus the relationF(s) = f (t) implies thatF can be considered
as a function with only isolated singularities over the Riemann sphereC∞ = C ∪ {∞}, that
vanishes ats = 0 ands = ∞. (We note that iff is a meromorphic function, thenF is a
rational one.) To complete the proof of (P3) we need only to apply the mean-value theorem
to F at s = 0 ands = ∞ and the result follows, again from the relationF(s) = f (t). �
Remark 3.3. If there is some symmetry in the problemg and f can beπ i-periodic and
consequently the same happens to the Melnikov function. Thus, in practical cases, we will
use the summation formulae withT = 2π or T = π .

3.4. Non-integrability criterion

In order to simplify the computations in the examples of sections 4 and 5, we are going
to compute the Melnikov functionM given by (2.6) and (2.7), iff has only isolated
singularities or, equivalently, iff satisfies (P1)–(P3) withT = 2π or T = π . Moreover, a
non-integrability criterion is given.

Let {Fε}ε∈R be a family of analytic a.p.m. with generating function (2.5) whereF0

verifies (H). Moreover, assume that the functionf in (2.7) has only isolated singularities.
By lemma 3.2,f verifies (P1)–(P3) withT = 2π or T = π .

Let S(f ) = {zs` : l = 1, . . . , ks , s = 1, . . . , k} be the singularities off in the complex
strip IT classified moduloh, like in subsection 3.2. Finally, let bebs ∈ C such that
|=bs | < T/2 andzs` ∈ bs + T i/2 + hZ for all s and`, like in proposition 3.1.

Theorem 3.1 (Non-integrability criterion). With this notation and assumptions, the
Melnikov function is given by

M(t) =
k∑

s=1

∑
j>0

(−1)j

j !
dsj ψ(j)(t − bs) (3.10)

wheredsj are the so-called non-integrability coefficients

dsj =
ks∑

`=1

a−(j+1)(f, zs`) s = 1, . . . , k j > 0 . (3.11)

Finally, if some of the non-integrability coefficients are non-zero,Fε is non-integrable,
for 0 < |ε| � 1.

Proof. The first part follows from the summation formula (3.9). The non-integrability
follows from theorem 2.1 and lemma 3.1. �

4. Perturbed elliptic billiards

4.1. Convex billiards

Consider the problem of the ‘convex billiard table’ [Bir27]: letC be an (analytic) closed
convex curve of the planeR2, parametrized byγ : T −→ C, whereT = R/2πZ and C
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Figure 2. T (ϕ, v) = (8, V ), wherev = |γ̇ (ϕ)| cosϑ andV = |γ̇ (8)| cos2.

is travelled counterclockwise. Suppose that a material point moves insideC and collides
with C according to the law ‘the angle of incidence is equal to the angle of reflection’. In
the annulusA = {(ϕ, v) ∈ T × R : |v| < |γ̇ (ϕ)|}, the coordinateϕ is the parameter onC
andv = |γ̇ (ϕ)| cosϑ , whereϑ ∈ (0, π) is the angle of incidence-reflection of the material
point. In this way, we obtain a mapT : A −→ A that models the billiard (see figure 2).

The functionS : {(ϕ, 8) ∈ T2 : ϕ 6= 8} −→ R defined byS(ϕ, 8) = |γ (ϕ) − γ (8)|
is a generating function ofT :

∂S

∂ϕ
(ϕ, 8) = 〈γ (ϕ) − γ (8), γ̇ (ϕ)〉

|γ (ϕ) − γ (8)| = −|γ̇ (ϕ)| cosϑ = −v

∂S

∂8
(ϕ, 8) = 〈γ (8) − γ (ϕ), γ̇ (8)〉

|γ (ϕ) − γ (8)| = |γ̇ (8)| cos2 = V .

ThusT is an a.p.m. and(ϕ, v) are canonical conjugated coordinates.
This map has no fixed points but is geometrically clear that it has periodic orbits of

period 2. In these orbits the angle of incidence-reflection isπ/2 and thusv = 0.
Suppose now thatC is symmetric with regard to a point (without loss of generality we

can assume that this point is the origin, see remark 4.2). Then it is possible to work with
a parametrizationγ of C such thatγ (ϕ + π) = −γ (ϕ) and the 2-periodic orbits are of the
form (ϕ0, 0), (ϕ0 + π, 0), that is, two opposite points overC. Let R : A −→ A be the
involution R(ϕ, v) = (ϕ+π, v), thenT andR commute and it is a commonplace to use this
symmetry to convert the 2-periodic points into fixed points. Concretely, we define a new
mapF : A −→ A by F = R ◦T . SinceF 2 = T 2, the dynamics ofF andT are equivalent.
Moreover,F is an a.p.m. and its generating function, using thatγ (8 + π) = −γ (8), is

L(ϕ, 8) = S(ϕ, 8 + π) = |γ (ϕ) + γ (8)| . (4.1)

Remark 4.1. We can consider the variableϕ defined moduloπ in the symmetric case. This
idea goes back to [Tab93, Tab94].

Remark 4.2. Let C and C ′ two closed convex curves such that one is the image of the
other by a similarity. Then the two associated a.p.m. have an equivalent dynamics since
the angle of incidence–reflection remains unchanged by the similarity.
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4.2. Elliptic billiards

The simplest examples of convex curves are the elipses. It is clear that the case of a
circumference is very degenerated for a billiard, since it only consists of 2-periodic orbits.
So, let us consider now a non-circular ellipse

C0 =
{
(x, y) ∈ R2 :

x2

a2
+ y2

b2
= 1

}
= {γ0(ϕ) = (a cosϕ, b sinϕ) : ϕ ∈ T}

with a2 6= b2. Without loss of generality we can assume thata2 − b2 = 1 (we change the
ellipse using a similarity, if necessary). Thusa > 1, b > 0 and the foci of the ellipse are
(±1, 0).

Let us recall that a caustic is a smooth curve with the following property: if at least one
of the segments (or its prolongation) of the polygonal trajectory of the point is a tangent to
the curve, then all the other segments (or their prolongations) are tangent to the curve. It is
a very well known fact that all the orbits of an elliptic billiard have a caustic, and actually
the caustics are just the family of confocal conics toC0 (little Poncelet’s theorem, [KT91]).

This property indicates the integrability of elliptic billiards since the existence of caustics
reflects some stability in the system. In fact, it is not difficult to obtain an explicit expression
for a first integral of the elliptic billiard in(ϕ, v) coordinates, under the assumption
a2 − b2 = 1. In [LT93] the following first integral is given in(ϕ, ϑ) coordinates:

I (ϕ, ϑ) = a2 cos2 ϑ + cos2 ϕ sin2 ϑ = a2 cos2 ϑ − cos2 ϕ cos2 ϑ − sin2 ϕ + 1 .

Moreover, using thata2 − b2 = 1, we get

v2 = |γ̇0(ϕ)|2 cos2 ϑ = a2 cos2 ϑ − cos2 ϕ cos2 ϑ

and the integralI in (ϕ, v) coordinates becomesI (ϕ, v) = v2 − sin2 ϕ + 1. This integral
can be found in [Lom94] in a slightly different manner. As a consequence, the curves
{I = c}0<c<b2+1 are invariant forT0 and F0 whereT0 : A −→ A is the analytic a.p.m.
associated toC0 and F0 = R ◦ T0. In connection with the little Poncelet’s theorem, the
caustics of the points on one of these invariant curves are: a confocal hyperbola if 0< c < 1,
a confocal ellipse if 1< c < b2 + 1, and the foci(±1, 0) whenc = 1. Obviously, the foci
are not smooth curves, but if some segment of the trajectory goes through a focus then the
same happens to all the other segments.

Besides, the points(0, 0) and (π, 0) form a 2-periodic orbit forT0 that corresponds to
the vertexes(±a, 0) of the ellipse, and hence(0, 0) is a fixed point forF0.

Let R∗ : A −→ A be the involution given byR∗(ϕ, v) = (π − ϕ, v), then
F−1

0 = R∗ ◦ F0 ◦ R∗ and thusF0 is reversible.
The dynamics ofF0 is drawn in figure 3 where the resemblance with the phase portrait

of a pendulum shows up clearly.
The main properties ofF0 are listed in the following lemma.

Lemma 4.1. (i) P0 = (0, 0) is a saddle point ofF0 and Spec [DF0(P0)] = {λ, λ−1}, with
λ = (a + 1)(a − 1)−1 > 1. Moreover, ifh = ln λ the following expressions hold:

a = coth(h/2) b = cosech(h/2). (4.2)

(ii) 0± = {(ϕ, ± sinϕ) : 0 < ϕ < π} are the separatrices ofF0.
(iii) The time-h Hamiltonian flow associated to

H(ϕ, v) = − 1
2I (ϕ, v) = (sin2 ϕ − v2 − 1)/2

interpolatesF0 on the separatrices.
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Figure 3. Phase portrait ofF0; 0± are the separatrices ofF0..

(iv) If σ±(t) = (ϕ(±t), ±v(t)), where ϕ(t) = arccos(tanht) = arcsin(secht) and
v(t) = secht , thenσ± are natural parametrizations of0± (with regard toF0).

(v) Let be8(t) = ϕ(t + h). Then

b
sinϕ(t) + sin8(t)

|γ0(ϕ(t)) + γ0(8(t))| = sech(t + h/2) . (4.3)

Proof.
(i) We know thatP0 is fixed byF0. Let

L0(ϕ, 8) = |γ0(ϕ) + γ0(8)| = 2a + [(a2 − 1)ϕ8 − (a2 + 1)(ϕ2 + 82)/2]/2a + O3(ϕ, 8)

be the generating function ofF0 : (ϕ, v) 7→ (8, V ), where we have used thata2 − b2 = 1.
From the implicit equations ofF0 generated byL0 we get

trace[DF0(P0)] = ∂18(0, 0) + ∂2V (0, 0) = −[∂11L0(0, 0) + ∂22L0(0, 0)]/∂12L0(0, 0)

and a straightforward calculus yields trace[DF0(P0)] = 2(a2 + 1)/(a2 − 1). Moreover,
det[DF0] ≡ 1. Thusλ = (a + 1)(a − 1)−1 > 1 is an eigenvalue ofDF0(P0). From eh = λ,
one getsa = coth(h/2) andb = √

a2 − 1 = cosech(h/2).
(ii) This is a direct consequence of the conservation of the first integralI .
(iii) Using lemma 2.1 there exists a constantθ such thatH = θI verifies (iii). We need

only to check thatθ = − 1
2. Let XI = J∇I be the Hamiltonian field associated toI , then

A = DXI(P0) =
(

0 2
−2 0

)
.

Thus |θ | = 1
2, according to remark 2.2. Finally, the sign is determined in order to get the

right sense over the separatrices, see again figure 3.
(iv) It is enough to prove it for0+ by symmetry. We observe thatσ+ is a solution

of the Hamiltonian equations associated toH andσ+(0) ∈ 0+. Thus (iv) is an immediate
consequence of (iii).

(v) Let be(ϕ, sinϕ) ∈ 0+ and(8, sin8) = F0(ϕ, sinϕ). The pointsγ0(ϕ), −γ0(8) =
γ0(8 − π) and the focus(−1, 0) are aligned, since(8 − π, sin(8 − π)) = T0(ϕ, sinϕ) and
the foci are the ‘caustic’ of the points in0+. Moreover, the vectorsγ0(ϕ) + γ0(8) and
γ0(ϕ) + (1, 0) are parallel with the same sense (see figure 4), and hence

γ0(ϕ) + γ0(8)

|γ0(ϕ) + γ0(8)| = γ0(ϕ) + (1, 0)

|γ0(ϕ) + (1, 0)| . (4.4)
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Figure 4. (ϕ, sinϕ) ∈ 0+ , (8, sin8) = F0(ϕ, sinϕ).

Sinceγ0(ϕ) = (a cosϕ, b sinϕ), using equation (4.2), and the expressions ofϕ(t) in (iv),
we obtain

γ0(ϕ) + (1, 0) = 1

sinhh/2 cosht
(sinh(t + h/2), 1)

and thus
γ0(ϕ) + (1, 0)

|γ0(ϕ) + (1, 0)| = (tanh(t + h/2), sech(t + h/2)) .

Now, the second components of (4.4) give (4.3). �
At this stage, it is important to point out that the mapF0 verifies (H) and we have

explicit expressions for the natural parametrizations of the separatrices with regard toF0.
Thus a complete computation of the Melnikov functions, angles of splitting, etc and a deep
study about non-integrability, using the tools developed in sections 2 and 3, is possible for
a huge class of perturbations. Due to the symmetry between0+ and 0−, we restrict our
study to0 = 0+, σ(t) = σ+(t) = (ϕ(t), v(t)).

4.3. Non-integrability of symmetric entire billiards

Let {Cε} be an arbitrary family of perturbations of the ellipseC0, consisting of analytic
curves depending on aC2 way on ε and symmetric with regard to a pointOε. Let us
denote byQ±

ε the two furthest (and opposite) points overCε with Q±
0 = (±a, 0). Using a

similarity that takesOε andQ±
ε to (0, 0) and(±a, 0) respectively, the initial family can be

put in the following form:

C ′
ε =

{
(x, y) ∈ R2 :

x2

a2
+ y2

b2
+ εP (x, y, ε) = 1

}
(4.5)

where
(I) P is analytic inx, y and at leastC1 in ε,
(II) P(x, y, ε) = P(−x, −y, ε),
(III) P(a, 0, ε) = ∂yP (a, 0, ε) = 0,
or equivalently, like

C ′
ε = {γ (ϕ, ε) = (a cosϕ, sinϕ [b + εη(ϕ, ε)]) : ϕ ∈ T} (4.6)

where
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(i) η is analytic inϕ and at leastC1 in ε,
(ii) η is π -periodic inϕ.

Remark 4.3. This kind of perturbation preserves the reversibilityR∗ of the system if and
only if η is even inϕ. In this particular caseC ′

ε has two axial symmetries (given by the
two axis) and the Melnikov function is odd. This has been the standard case studied until
now [Tab93, Tab94].

From (III), it follows that P(a cosϕ, b sinϕ, ε) = p(a cosϕ, b sinϕ, ε) sin2 ϕ, with p

also satisfying (I) and (II). It is easy to check that, in first order inε, the relation between
η and P is given byP(a cosϕ, b sinϕ, 0) = −2bη(ϕ, 0) sin2 ϕ. Thus, if P(·, ·, 0) is an
entire function (respectively, a polynomial) in thex, y variables,η1 := η(·, 0) is an entire
function (respectively, a trigonometric polynomial). It is clear that ifη1 = constant,C ′

ε is,
in first order, a family of ellipses.

Definition 4.1. Let {Cε} be a perturbation of the ellipseC0. We say that{Cε} is anon-trivial
symmetric entire(respectively,polynomial) perturbationof the ellipse when it can be put,
using similarities, in the form (4.6) and moreover,η1 := η(·, 0) is a non-constant entire
function (respectively, polynomial).

Let Tε be the map in the annulus associated to the billiard inCε, where the perturbation
considered is a symmetric entire one and letFε = R ◦ Tε. If ε is small enough,Cε is
an analytic convex closed curve, and thus{Fε}|ε|�1 is a family of analytic a.p.m. with
generating functionL(ϕ, 8, ε) = |γ (ϕ, ε) + γ (8, ε)|, see equation (4.1), and

L1(ϕ, 8) = ∂L
∂ε

(ϕ, 8, 0) = b
sinϕ + sin8

|γ0(ϕ) + γ0(8)| [sinϕ η1(ϕ) + sin8 η1(8)].

Now using formula (4.3) we find the following expression for the functionf in (2.7)

f = vh/2(δ + δh) v = sech δ = v(η1 ◦ ϕ)

where, henceforth, given a functionv and a numberx, vx stands for the function
vx(t) = v(t + x).

Sinceη1 is an entireπ -periodic function, there exists anevenfunction ζ analytic in
C\{0}, such thatη1(ϕ) = ζ(eiϕ). Moreover, using lemma 4.1, eiϕ(t) = (i + sinht) secht , so
the following properties of the functionη1 ◦ ϕ are easily obtained:

(i) For all η1 entire andπ -periodic, the functionη1 ◦ ϕ has only isolated singularities
in C. Its singularities are the points of the setπ i/2 + π iZ, since just in these points eiϕ(t)

reaches the values 0 and∞.
(ii) A singularity of η1 ◦ ϕ is removable if and only ifη1 (i.e. ζ ) is constant.
(iii) Moreover, η1 ◦ ϕ is symmetric with regard to these singularities.
By (i), f has only isolated singularities for any symmetric entire perturbation, and a

study about non-integrability can be performed. However, before starting this and further
studies, it is very convenient to arrange the sum

∑
n∈Z f (t + hn) and express the Melnikov

potentialL asL(t) = ∑
n∈Z q(t + hn), where

q = [vh/2 + v−h/2]δ = (2a/b)vh/2v−h/2(η1 ◦ ϕ) . (4.7)

(Relations (4.2) and the addition formulae for the hyperbolic cosines have been used to
obtain the second equality.)

Theorem 4.1.Let {Cε} be any non-trivial symmetric entire perturbation of an ellipse. Then
the billiard in Cε is non-integrable for 0< |ε| � 1.
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Proof. It is enough to prove thatFε is non-integrable, since the dynamics of the symmetric
billiard is equivalent to the dynamics ofFε.

Since q also satisfies properties (P1)–(P3), theorem 3.1 can be applied toL(t) =∑
n∈Z q(t + hn). By this theorem, it is enough to prove that there existssomenon-

integrability coefficient not zero. Looking at the expression (4.7) and using property (i) of
η1 ◦ ϕ, the only possible singularities ofq with =t = π/2 arez11 := π i/2, z21 := z11 − h/2
and z22 := z11 + h/2. In particular, we note thatq is analytic in z11 + hn for all
integer n 6= 0. Thus, the non-integrability coefficients associated to the singularityz11

ared1j = a−(j+1)(q, z11), j > 0.
Using the fact thatvh/2 andv−h/2 are analytic and not zero inz11 together with property

(i) of η1 ◦ ϕ, it turns out thatz11 is a non-removable singularity ofq. Consequently, the
non-integrability coefficientsd1j cannot all be zero. �
Remark 4.4. The same proof works for the point 3π i/2 (instead ofπ i/2). The assumption
of the entire function onη1 has only been used to ensure that fortp = π i/2 or tp = 3π i/2,
η1 ◦ ϕ has an isolated singular point attp but is analytic ontp + hn for n 6= 0.

4.4. Reversible polynomial examples

4.4.1. The general case.In order to perform explicit computations of Melnikov
functions we must restrict ourselves to symmetricpolynomial perturbations. Moreover,
following [Tab93, Tab94], we focus our attention onreversibleperturbations. Therefore,η1

is an even (see remark 4.3) andπ -periodic trigonometrical polynomial that we can write in
the following wayη1(ϕ) = ∑N

n=0 cn sin2n(ϕ). Now, using thatv(t) = sin(ϕ(t)) = sech(t),
η1(ϕ(t)) = ∑N

n=0 cn sech2n(t). Thus q = (2a/b)vh/2v−h/2(η1 ◦ ϕ) is π i-periodic (i.e.
T = π ) and has exactly three poles inIπ . These poles arez11 = π i/2 (of order 2N )
andz21 = z11 + h/2, z22 = z11 − h/2 (simple ones).

The non-integrability coefficients (3.11) of the problem, that may be different from zero,
are

d1j = a−(j+1)(q, z11) (j = 0, . . . , 2N − 1) d20 = res(q, z21) + res(q, z22) .

By property (iii) of η1 ◦ ϕ, it is easy to check thatq is symmetric with regard to
z11 = (z21 + z22)/2, henced1j = 0, for odd j , and d20 = 0. Moreover, because of
the symmetry ofv with regard toz11, the even coefficients in the Taylor expansion of the
functionsvh/2 andv−h/2 aroundz11 are equal. Thus,a−j (vh/2δ, z11) = a−j (v−h/2δ, z11), for
all evenj , and

d1,2j−1 = 2a−2j (vh/2δ, z11) j = 1, . . . , N .

Consequently, using the formulae (3.10) and (3.11) one gets the Melnikov function

M(t) = −2
N∑

j=1

a−2j (vh/2δ, π i/2)

(2j − 1)!
ψ(2j−1)(t) (4.8)

where the parameter of the elliptic functions has been determined by relation (3.1) with
T = π , see remark 3.2. (For the notations about elliptic functions and the definition ofψ
we refer to subsection 3.1.) We note thatt = 0 andt = h/2 are zeros ofM, because of the
symmetries ofψ.

This formula allows us to compute the Melnikov function in a finite number of steps.
We need only to compute the numbersa−2j (vh/2δ, π i/2), j = 1, . . . , N , in each concrete
case. For instance, it is easy to computea−2N(vh/2δ, π i/2) = (−1)NabcN .
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4.4.2. A particular case. For N = 1 formula (4.8) reads

M(t) = 2abc1ψ′(t) = −4abc1m

(
2K

h

)3

(dn· sn· cn)

(
2Kt

h

∣∣∣∣ m)
.

This particular case (η1(ϕ) = c0 sinϕ + c1 sin3 ϕ) is already studied in [Lev93, Tab93,
LT93, Tab94, Lom94]. It corresponds to symmetric and reversiblequartic perturbations of
the ellipse (see the introduction for the definition). In this caseM has just two (simple)
zeros in the period [0, h): t = 0 and t = h/2, thus (see theorem 2.1) there exist exactly
two (transversal) primary homoclinic orbits for the perturbed billiard and the splitting
angle α(ε) of the intersection nearσ(0) = (π/2, 1), using the formula (2.10), verifies
| tan[α(ε)]| = A(h)|ε| + O(ε2), where

A(h) = |M ′(0)|
‖ σ̇ (0) ‖2

= |M ′(0)| = 4ab|c1|m
(

2K

h

)4

.

4.4.3. Ellipse close to a circle: a particular case.Let ρ = √
a2 − b2/a = 1/a = tanh(h/2)

be the eccentricity of the ellipse. If the ellipse is close to the circle (i.e. ifρ is close to
zero), thenh is also close to zero and the formulae (3.5), withT = π , give

M(t) = −32π3abc1h
−3e−π2/h

[
sin

(
2πt

h

)
+ O(e−π2/h)

]
A(h) = 64π4ab|c1|h−4e−π2/h

[
1 + O(e−π2/h)

]
. (4.9)

The results can be expressed in terms ofρ instead of h, but we refer to the
works [Tab93, LT93, Tab94] for the sake of brevity.

Remark 4.5. It is worth mentioning that we have to assume,h is fixed (although small) and
ε → 0. When these two parameters are dependent by a potential relation likeε = ε(h) = hp,
p > 0, andh → 0, then one is confronted with the difficult problem of justifying the
asymptotic ‘Melnikov prediction’| tan[α(ε)]| ∼ hpA(h), as we have already mentioned in
the introduction.

4.4.4. Ellipse close to a circle: the general case.Coming back to a generalN , we give a
generalization of the asymptotic expressions (4.9), that is, for ellipses close to a circle.

Since δ(t) = v(t)η1(ϕ(t)) = ∑N
n=0 cn sech2n+1(t), we can rewrite the Melnikov

function (4.8) like

M(t) = −2
N∑

n=1

n∑
j=1

[cnBn,j (t, h)/(2j − 1)!] (4.10)

whereBn,j (t, h) = a−2j (vh/2 sech2n+1, z11)ψ(2j−1)(t). To get the dominant term of (4.10),
we must study the order inh of Bn,j (t, h), for j = 1, . . . , n andn = 1, . . . , N .

First, we split the functionvh/2 in the principalvp
h/2 and regularvr

h/2(= vh/2 − v
p
h/2)

parts around its singularityz22 = z11 − h/2. It turns out thatvp
h/2(t) = −i(t − z22)

−1. From
the Cauchy inequalities, the coefficients in the Taylor expansion ofvr

h/2 aroundz11 are O(1),
sincevr

h/2 is uniformly (whenh is small) bounded in a ball of fixed radius centred atz11.
Thus,

a`(vh/2, z11) = a`(v
p
h/2, z11) + a`(v

r
h/2, z11) = (−2/h)`+1i + O(1) ∀` > 1 .
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Besides, the principal part of sech2n+1 around z11 is O(1) and, in particular,
a−(2n+1)(sech2n+1, z11) = (−1)n+1i. Finally, we use the asymptotic expression (3.6), taking
into account thatT = π , and we deduce that

Bn,j (t, h) = ψ(2j−1)(t)

n−j∑
`=0

a2`+1(vh/2, z11)a−(2j+2`+1)(sech2n+1, z11)

= (−1)n+j 22n+4π2j+1h−(2n+3)e−π2/h[sin(2πt/h) + O(h2)]

so the dominant terms of (4.10) are attained whenn = N , and the general asymptotic
expressions that we were looking for are

M(t) = (−1)N+122N+5cN

{
N∑

j=1

[
(−1)j

π2j+1

(2j − 1)!

]}
h−(2N+3)e−π2/h

[
sin

(
2πt

h

)
+ O(h2)

]

A(h) = |M ′(0)| = 22N+6|cN |
∣∣∣∣∣ N∑
j=1

[
(−1)j

π2j+2

(2j − 1)!

]∣∣∣∣∣ h−(2N+4)e−π2/h[1 + O(h2)] .

We note that the sum
∑N

j=1[(−1)jπ2j+1/(2j − 1)!] is never zero (π is a transcendental
number), soM has exactly two zeros in the period [0, h): t = 0 andt = h/2, if h is small
enough. Therefore, for 0< h � 1, there are exactly two (transversal) primary homoclinic
orbits. Moreover, the splitting angleα(ε) admits the asymptotic approximations, whenh

is small butfixed, | tan[α(ε)]| = A(h)|ε| + O(ε2), as before. The remark 4.5 also holds in
this case.

5. Standard-like maps

5.1. Integrable standard-like maps with separatrices

A planar map is called a standard-like map if it has the formF(x, y) = (y, −x + g(y)) for
some functiong. If g is odd,F is R-reversible, whereR is the involutionR(x, y) = (y, x).
Wheng is analytic onR, F is an analytic a.p.m. and its generating function is

L(x, X) = −xX +
∫ X

g(s) ds . (5.1)

If g is entire, the same happens toF , and therefore it has no separatrices [Laz88]. Suris,
weakening the regularity ofg, gives three families of integrable standard-like maps in
[Sur89]. The first integrals of these three families are, respectively, polynomials of degree
four in x and y, functions involving exponential terms, and functions with trigonometric
terms. For the sake of brevity we focus our attention on the first case, but exactly the same
study can be carried out for the other two ones.

It is easy to see that all the maps of the polynomial family with a separatrix to the origin
can be written, after rescaling, normalizations, etc, like

F0(x, y) =
(

y, −x + 2y
µ + βy

1 − 2βy + y2

)
− 1 < β < 1 < µ (5.2)

and the corresponding first integral given by Suris is

I (x, y) = 1
2[x2 − 2µxy + y2 − 2βxy(x + y) + x2y2] .

The map (5.2) withβ = 0 is called McMillan map and is studied in [GPB89] under a linear
perturbation. The map (5.2) has two separatrices0± = 0±

µ,β contained in the energy level
{I = 0}, as shown in figure 5.
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Figure 5. The separatrices0± of F0 for β = 0.1 andµ = cosh(0.5).

DenotingP0 = (0, 0), the eigenvalue greater than 1 ofDF0(P0) is λ = µ+
√

µ2 − 1, so
if h = ln λ, as usual, then coshh = µ. Using lemma 2.1, there exists a constantθ such that
the time-h Hamiltonian flow associated toH = θI interpolates the map on the separatrices.
Let XI = J∇I be the Hamiltonian field associated toI ; then

A = DXI(P0) =
( −µ 1

−1 µ

)
B = DF0(P0) =

(
0 1

−1 2µ

)
.

Thus relationA = eθhB givesθ = (µ2−1)−1/2 (see remark 2.2). Therefore, the first integral
that we will use is

H(x, y) = 1

2
√

µ2 − 1
[x2 − 2µxy + y2 − 2βxy(x + y) + x2y2] .

Now, solving the Hamiltonian equations associated withH in the energy level{H = 0},
we obtain the natural parametrizations of the separatrices0±

0± = {
σ±(t) = (x±(t − h), x±(t)) : t ∈ R

}
where

x±(t) = ±c

1 cosht ∓ b
a = β2 − 1 b = β(µ + 1)

c = µ2 − 1 1 =
√

b2 − ac .

(5.3)

We note that0−
µ,β = −0+

µ,−β (in particular, the caseβ = 0 is symmetric since then
0− = −0+), so we study only0 = 0+, σ = σ+ andx = x+.

In this situation the functiong in (2.4) has only isolated singularities (respectively, is
a meromorphic function) for all entire (respectively, vectorial polynomial) perturbationF1.
In consequence, for a family of analytic diffeomorphisms likeFε = F0 + εF1 + O(ε2), with
F1 a vectorial polynomial inx and y, it is possible to compute explicitly the Melnikov
function. Moreover, ifFε is an a.p.m. andF1 is an entire function, then theorem 3.1 can
be applied directly to study the non-integrability.
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5.2. Non-integrable standard-like maps

We now consider the family of standard-like maps

Fε(x, y) =
(

y, −x + 2y
µ + βy

1 − 2βy + y2
+ εp(y)

)
− 1 < β < 1 < µ ε ∈ R .

(5.4)

Let δ be the primitive ofp such thatδ(0) = 0. Using equation (5.1), the generating
function L(x, X, ε) of Fε has the form (2.5) withL1(x, X) = δ(X). Thus f (t) =
L1(x(t − h), x(t)) = δ(x(t)) has only isolated singularities for any entire functionδ and
hence{Fε} verifies the hypothesis of theorem 3.1 ifp is an entire function. This allows us
to prove the following result.

Theorem 5.1. If p is an entire function not identically zero, the map (5.4) is non-integrable
for 0 < |ε| � 1.

Proof. It is sufficient to see that the non-integrability coefficients of the problem cannot all
be zero.

The poles ofx in I2π are it±p , wheret−p ∈ (0, π) and t+p ∈ (π, 2π) are determined by
cost±p = b/1 ∈ (−1, 1). Sincef = δ ◦ x and δ is an entire function, it±p are exactly the
singularities off in I2π . Consequently, there are not different singularities whose difference
is a multiple ofh (in fact a real number), and thus each one of the sums in (3.11) have
only one term. Hence, the coefficients of non-integrability (3.11) are all zero if and only
if f is analytic onI2π or, equivalently (using the 2π -periodicity of f ), if and only if f

is an entire function. Butf cannot be an entire function, sinceδ is a non-constantentire
function. This finishes the proof. �
Remark 5.1. In order to apply the non-integrability criterion, we simply need thatf = δ◦x

have only isolated singularities inC. Thus, it is not absolutely necessary thatδ would be
an entire function, although it is the simplest case to study, since then the singularities are
easily found.

5.3. Examples

5.3.1. Reversible polynomial standard-like perturbations.To show the simplicity of the
explicit computations, we focus our attention onR-reversible and polynomial standard-like
perturbations. Due to the reversibility,β = 0, p is odd, and these maps have a primary
homoclinic point on the bisectrix of the first quadrant. We give expressions for the splitting
angle at this point.

Since the perturbation is polynomial and odd, we writep(y) = ∑N
n=1 cny

2n−1, so
δ(y) = ∑N

n=1 cny
2n/2n. Using thatβ = 0 in (5.3), we getx(t) = sinh(h) sech(t). Thus

f (t) = δ(x(t)) is π i-periodic (i.e.T = π ) and has only a polez11 = π i/2 (of order 2N )
in Iπ . Moreover,a−j (f, π i/2) = 0 for odd j , sincef is symmetric with regard toπ i/2.
Now the formulae (3.10) and (3.11) give the Melnikov function

M(t) = −
N∑

j=1

a−2j (f, π i/2)

(2j − 1)!
ψ(2j−1)(t) (5.5)

where the parameter of the elliptic functions have been determined by relation (3.1) with
T = π , see remark 3.2. We note thatt = 0 and t = h/2 are zeros ofM, because of the
symmetries ofψ. This formula allows to compute the Melnikov function in a finite number
of steps. We need only to compute the numbersa−2j (f, π i/2), j = 1, . . . , N , in each
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concrete case. For instance, it is easy to computea−2N(f, π i/2) = (−1)NcN sinh2N(h)/2N ,
and, in particular, forp(y) = y (N = 1 andc1 = 1) we get

M(t) = sinh2 h

2
ψ′(t) = −

(
2K

h

)3

m sinh2 h (dn cn sn)

(
2Kt

h

∣∣∣∣ m)
.

This particular case has already been studied in [GPB89]. Our result coincides with the
one given there except for a multiplicative factor (due to the difference between the first
integrals used) and a sign (due to the different sense used in the natural parametrization,
sinceM is odd). In this caseM has just two (simple) zeros in the period [0, h): t = 0 and
t = h/2, thus there exist exactly two transversal primary homoclinic orbits for the map (5.4)
with β = 0 andp(y) = y, if |ε| is non-zero but small enough. The zerot = h/2 is related
with the homoclinic point on the bisectrix of the first quadrant nearσ(h/2) and using (2.10),
the splitting angleα(ε) in this point verifies that| tan[α(ε)]| = A(h)|ε| + O(ε2), where

A(h) = |M ′(h/2)|
‖ σ̇ (h/2) ‖2

=
(

2K

h

)4 cosh4(h/2)

2 sinh2(h/2)
m (1 − m) .

5.3.2. Weakly hyperbolic examples.When the origin is aweaklyhyperbolic fixed point for
the unperturbed map (i.e. when 0< h � 1), formulae (3.5) applied withT = π give:

M(t) = −8π3h−3 sinh2 he−π2/h

[
sin

(
2πt

h

)
+ O(e−π2/h)

]
A(h) =

(
2π

h

)4 cosh4(h/2)

2 sinh2(h/2)
e−π2/h

[
1 + O(e−π2/h)

]
.

Coming back to a generalN , we can give a generalization of the previous asymptotic
expressions. Sincex(t) = sinh(h) sech(t), the principal part ofx2n(t) aroundπ i/2 is O(h2n)

and, in particular,a−2n(x
2n, π i/2) = (−1)n sinh2n(h). From these results and formula (3.6)

also applied withT = π , it is easy to get the dominant term of the Melnikov function (5.5),
and the general asymptotic expressions are

M(t) = −2

[
N∑

n=1

cn(2π)2n+1

(2n)!

]
h−1e−π2/h

[
sin

(
2πt

h

)
+ O(h2)

]

A(h) = |M ′(h/2)|
‖ σ̇ (h/2) ‖2

= 4

∣∣∣∣∣ N∑
n=1

cn(2π)2n+2

(2n)!

∣∣∣∣∣ h−6e−π2/h
[
1 + O(h2)

]
.

The error O(h2) in these last formulae is bigger than the error O(e−π2/h) in the former
ones. However, it is possible to obtain formulae with exponentially small error in any case,
but it involves a cumbersome computations ifN is large. For instance, whenp(y) = y3, it
is not difficult to derive the following formula forA(h):

A(h) =
(

2π

h

)4
[

1 +
(

π

h

)2
]

sinh2(h) cosh4(h/2)

6 sinh2(h/2)
e−π2/h

[
1 + O(e−π2/h)

]
.

As in the billiard, the discussion or remark 4.5 is still valid.

5.3.3. A dissipative example.We have seen several examples where the Melnikov function
is exponentially small inh = ln λ, whenh → 0. This is a typical phenomenon for area-
preserving perturbations, but if the conservative character is destroyed by the perturbation
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then this kind of phenomena, in general, does not take place. As a sample of this claim we
choose the following case (studied in [GPB89]):

Fε(x, y) =
(

y, −x + 2µy

1 + y2
+ εx

)
µ > 1 . (5.6)

The Jacobian of (5.6) isJ (ε) = 1 − ε, so (5.6) becomes dissipative forε > 0 and we can
not expect to find a generating function of it. In spite of this, an explicit computation of
the Melnikov function is still possible using the formulae (2.3) and (2.4), and we obtain

M(t) =
∑
n∈Z

g(t + hn) g(t) = ẋ(t)x(t − h) x(t) = sinh(h) sech(t) .

First, we note thatg is π i-periodic (i.e.T = π ) and we study the complex singularities of
g in Iπ , beingπ i/2 (a double pole) andh + π i/2 (a simple pole) with

a−1(g, h + π i/2) = −a−1(g, π i/2) = coshh a−2(g, π i/2) = − sinhh .

Now, using equation (3.3) withT = π and the summation formula (3.8), we get the
Melnikov function

M(t) = − coshh[χ(h + π i/2 − t) − χ(π i/2 − t)] + sinhhχ ′(π i/2 − t)

=
(

2K

h

)2

sinhh dn2

(
2Kt

h

)
− 2 coshh + 2 sinhh

h

(
1 − 2KE

h

)
.

This result coincides with the one given in [GPB89] except for a multiplicative factor, as
before, and a small mistake in the final formula (B.12) of this reference. The sign is the
same sinceM is even.

If h is small enough,M has no real zeros, and consequently the perturbed invariant
curves do not intersect, for fixed smallh and small enoughε.

We split M into mean and oscillatory parts:M(t) = Mmean+ Moscill(t). It is easy to
obtain their expressions:

Mmean= h−1
∫ h

0
M(t) dt = 2

(
sinhh

h
− coshh

)
Moscill(t) = M(t) − Mmean=

(
2K

h

)2

sinhh

[
dn2

(
2Kt

h

)
− E

K

]
.

It is not hard to verify thatMoscill is exponentially small inh but Mmean is not, thus we have
given a example of a Melnikov function not exponentially small inh.

Remark 5.2. In fact, under the usual hypothesis of meromorphicity, the oscillatory part is
alwaysexponentially small inh. The same happens to the Melnikov function in the a.p.m.
case, since then its mean is zero.

Acknowledgments

Research by Amadeu Delshams is partially supported by the EC grant ER-BCHRXCT-
940460, the Spanish grant DGICYT PB94–0215 and the Catalan grant CIRIT GRQ93–1135.
Research by Rafael Ramı́rez-Ros is supported by the UPC grant PR9409. The authors are
indebted to V Gelfreich, A Neishtadt, C Simó and D Treschev for very useful discussions,
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