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Abstract. The Poincag—Melnikov—Arnold method for planar maps gives rise to a Melnikov
function defined by an infinite anda(priori) analytically uncomputable sum. Under an
assumption of meromorphicity, residues theory can be applied to provide an equivalent finite
sum. Moreover, the Melnikov function turns out to be an elliptic function and a general criterion
about non-integrability is provided.

Several examples are presented with explicit estimates of the splitting angle. In particular,
the non-integrability of non-trivial symmetric entire perturbations of elliptic billiards is proved,
as well as the non-integrability of standard-like maps.
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1. Introduction

From the works by PoincarfP0i99], Melnikov [Mel63], and Arnold [Arn64], thBoincag—
Melnikov—Arnold methodhas become the standard tool for detecting splitting of invariant
manifolds for systems of ordinary differential equations close to ‘integrable’ ones with
associated separatrices. This method gives rise to an integral known adethixov
function (or Melnikov integral), whose zeros, if non-degenerate, imply the ‘splitting’ of
the former separatrices. (For a general background, see [GH83, Wig90].)

Nevertheless, the explicit computation of this function in the applications is performed
via residue theory, which requires suitable meromorphic properties for the functions
appearing in the Melnikov integral.

There exists a similar theory for maps [Eas84, Gam85, Gam87], and in this case the
Melnikov function is no longer an integral, but an infinite aral griori) analytically
uncomputable sum. In general, the computation of such kinds of infinite sums requires
an excursion to the complex field, and in this way the first explicit computation of such an
infinite sum was done in [GPB89], using the Poisson summation formula, residues theory
and elliptic functions.

At first glance, their approach seemed very specific for the examples studied therein.
However, it turns out that a systematic and general theory for computing the Melnikov
function can be developed in the discrete case, under an adequate hypothesis of
meromorphicity, like in the continuous case.
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2 A Delshams and R Rarmmz-Ros

To begin with, letF, : R> — R? be an analytic area preserving diffeomorphism,
integrable and with a separatrix to a saddle poinDenote byH, I" and Py, the first
integral, the separatrix and the saddle point, respectively.

Since Fy is area preserving, one has Speeép(Py)] = {r, A~1} for some real. with
|A] > 1. Replacing the map witli?o2 if necessary, one can assume that 1.

Since Fyp is an analytic map with a separatrix to a saddle point, there exintstaal
parametrizationo of I (with regard toFp), i.e. a bijective analytic map : R — I' such
that:

(i) Folo(t)) =0 (t+h),Vt €R,

(i) 2 =InA (normalization condition).

It turns out that, perhaps by multiplying the first integral by a suitable constant, the
above natural parametrization issalutionof the Hamiltonian field associated #, i.e.

. 0 1
6d=JVHoo where J_(_l O)'

Notice that this condition is equivalent to saying that the timtdamiltonian flow associated
to H interpolatesthe map on the separatrix. This fact is very useful to obtain the natural
parametrization explicitly, as well as to simplify the expressions of the Melnikov function.
Henceforth it will be assumed that the first integral is chosen in order to verify this
interpolation condition.

Now, consider a family of analytic diffeomorphisms

F.:R? — R? F. = Fo+ ¢F1 + O(¢?)

as a general perturbation of the above situation. Thens fmall enoughF, has a saddle
point P, ‘close’ to Py and the local stable and unstable manifol®%’)ioc, (W)ioc Of P
are ‘close’ to those of the unperturbed saddle pdint

Generically, the separatriX’ breaks, and our aim is to compute the first-order
approximation one of the distance between the invariant manifolds along the normal
directions of the separatrix.

To this end, given a natural parametrization R — I of ', o“(z, &) (respectively
a*(t, €)) will denote the ‘first’ intersection o#? (respectivelyW;) with the normal toI
at o (¢); in particular,o™*(¢t, 0) = o (¢) (see figure 1).

Figure 1. Perturbation of a separatrix consisting of homoclinic orbits. The chain curve is the
family of homoclinic orbits of the unperturbed map.
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Following Poincag and Arnold [P0i99, Arn64], the measure of the distance between
these points is given by the difference of first integrals (‘energies’)

At e) = H(c"(t,€)) — H(c" (1, 8)) = eM(t) + O(e?)
whereM is the so-calledMelnikov function an-periodic function given by an infinite sum
M(t)=Zg(t+hn) g(t) = (o (1), JF1(o(t — h))).

nez
It is a commonplace to note that simple zeros of the Melnikov function give rise to
transversal homoclinic points and chaotic phenomena.
A very important case takes place whEnis an area preserving map (a.p.m., from now
on) with generating functioif (x, X, &) = Lo(x, X) + eL1(x, X) + O(?).
In this case, the Melnikov function is given by

M=L L(t) = Zf(t—}—hn) f@t) = La(x(1), x(t + h))
nez

wherex(¢) is the first component of (r) and, in order to get an (absolutely) convergent
sum, L1 is determined by ;(xg, xo) = 0, if Py = (xo, yo). In this situation,M is actually
the derivative of am-periodic function and not only ah-periodic one. Consequently, if
M is real analytic and not identically zero, it has real zeros of odd order, so the perturbed
invariant curves cross and the perturbed map [Cus78] is non-integrable.

To unify notation, consideE (1) = ), _, ¢(t + hn), whereq(t) is eitherg(r) or f(r).
If g(¢) is ameromorphidunction (respectively, a function with only isolated singularities),
thenX(¢) is anelliptic function (respectively, a double-periodic function with only isolated
singularities) with period& andTi, where usuallyl' = 2, but if there is some symmetry
in the problem,T = x. The relation between elliptic functions and Melnikov functions for
maps goes back to [GPB89], although until [Lev93] it was not clearly shown.

It turns out thatX(r) can be expressed as the followifigite sum:

D) =— ) res(xq.z)

z€8(q)

whereS(q) = {z € C: z is a singularity ofg, 0 < 3z < T} and x,(z) = x(z — 1), x being
the function determined (up to an additive constant) by the conditions:

(C1) x is meromorphic orC,
(C2) x’ is h-periodic andy is Ti-periodic,
(C3) the set of poles of is hZ + TiZ, all of them being simple and of residue 1.

It is worth noting thaty can be explicitly computed in terms of the incomplete elliptic
integral of the second kind.

Both from a theoretical and a practical point of view, tsismmation formulds one
of the main tools of this paper, as it provides explicit computations for the Melnikov
function M, assuming the hypothesis of meromorphicity for the functigres f.

The following powerful non-integrability criterionis easily obtained. LetF, be a
family of analytic a.p.m. with a generating function whefgverifies the above-mentioned
hypothesis and suppose that the functjohas only isolated singularities. L& f) = {zy¢},
wherez,, — zy¢ € hZ iff s = s’ (the singularities off have been classified moduk), and
introduce thenon-integrability coefficientsf the problem:d; = )", a_j+1)(f, z5¢), Where
a_;(f,zo) denotes the coefficient dk — zo)~/ in the Laurent expansion of around an
isolated singularityo. Then, it turns out that if some of these non-integrability coefficients
is non-zero, the Melnikov function is not identically zero afgdis non-integrable for
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small enough. (For the continuous case, a related criterion that also takes advantage of the
structure of the singularities in the complex field can be found in [Zig82].)
The power of this criterion lies in the following two facts:

e The non-integrability coefficients can be computed explicitly, so it can be easily checked.
e This criterion detects intersections of arbitrary finite order (and not only transversal
ones, as is usual in the literature).

As a first application, consider the problem of the ‘convex billiard table’ [Bir27]: let
C be an (analytic) closed convex curve of the pl&fe and suppose that a material point
moves insideC and collides withC according to the law ‘the angle of incidence is equal to
the angle of reflection’. Following Birkhoff, this discrete dynamical system can be modelled
by an (analytic) a.p.m. in the annulus. Wheénis an ellipse this map is called ailiptic
billiard and is an integrable map, [Bir27].

Several authors [Lev93, Tab93, LT93, Tab94, Lom94], have devoted their efforts to
the study of perturbed elliptic billiards. All the cases where explicit computations have
been performed reduce symmetric and reversible quartic perturbatione. the billiard in

curves like
2

2 Xy
C. = {(x,y) eR° : 2+2+8P(x,y,8)=1}
a b
where 0< b < a are constantsg is a small perturbative parametef, is an analytic
curve depending in & way one, symmetric with respect to the axis of coordinates and
P, = P(, -, 0) is a four-degree polynomial in, y.

As a generalization, we focus our attentionsymmetric entire perturbations of elliptic
billiards, i.e. the billiard in curves like the above-mentioned ones, but symmetric only with
respect to the origin ané; being an entire function.

A family of perturbed ellipseqC.} will be called trivial if there exists a family of
ellipses{E,} such thatC, = E, + O(¢?). Using the above non-integrability criterion, it
turns out that wherdC,} is any non-trivial symmetric entire perturbation, the billiardGn
is non-integrable foe small enough. This result supports Birkhoff's conjecture that elliptic
billiards are the only integrable analytic billiards in the plane.

From a quantitative point of view, the first coefficient of the Taylor expansion of the
splitting anglein powers ofe is easily computed in several concrete examples. Moreover,
under very general perturbations, this coefficient turns out to be exponentially small in the
eccentricity, when the unperturbed ellipse is near to a circle.

As a second application, considstandard-like mapsi.e. planar maps of the form
F(x,y) = (y, —x + g(y)) for some functiorg.

The analytic standard-like maps given by the formula

w+ By
Fo(x,y) = <y, —Xx + 2y1—25y+yz>

are integrable (see [Sur89], where several families of integrable standard-like maps are
introduced), with a separatrix to the origin. F®r= 0, this is the McMillan map [McM71]
considered in [GPB89], where the Melnikov function was computed explicitly under the
linear perturbationg’ (x, y) = (0, ax+by) with a, b constants. Faz = 0, as a consequence
of the cumbersome computations of [GPB89], the non-integrability of the standard-like map
Fo + ¢ F, follows, for ¢ small enough.

This result of non-integrability is generalized to the standard-like maps

u+ By
1—28y+y2

-1<B8<l<ypu

Fe(x,y)z(y,—x—i—Zy +8p(y)) —-1<B8<l<pu celR
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where p is an entire function, not identically zero. Moreover, in the framework of the
developed theory, the computation of the Melnikov function and estimates of splitting
angles become almost trivial, whenis a polynomial.

To finish this introduction, let us make two remarks:

e The meromorphicity off or g is only needed for the explicit computation of the
Melnikov function. To prove non-integrability, it is sufficient to assume tfias a real
analytic function with only isolated singularities @h

e The topic of splitting of separatrices consists of two subclasses: the ‘simple’ and the
‘difficult’ one. The first one is characterized by the following property: the splitting
quantities are of finite order with respect to the small parameter, so that they may be
computed by means of the usual theory of perturbations (i.e. Melnikov techniques are
valid). In the second subclass the main quantities are exponentially small with respect
to the small parameter (recall the case of an ellipse near to a circle). Thus, more
sophisticated analytical tools are required (see, for instance, [FS90, DS92, GLS94]).
A priori, Melnikov techniques cannot be applied to this subclass. However, we feel
that the ‘Melnikov prediction’ holds in several (not all) of the ‘difficult’ cases. This
feeling is supported by numerical experiments performed with some of the maps studied
here [DR95]. This topic is currently being researched.

The rest of the paper is devoted to the rigorous formulation and proof of the above claims
and results. It is organized as follows. In section 2 the Melnikov function is introduced
and its relationship with quantitative and qualitative aspects of the splitting of separatrices
is given. Section 3 contains the summation formulae and the criterion of non-integrability
is formulated. The final part is devoted to the study of the perturbed elliptic billiards
(section 4) and standard-like maps (section 5). These sections contain the non-integrability
results, as well as examples of explicit computation of Melnikov functions and estimates of
splitting angles.

2. Melnikov functions

2.1. Initial set-up

Let Fp : R> — R? be an analytic a.p.m. On the one hand, we suppose Ffdtas a
separatrix to a saddle pointthere exists a saddle poify of Fy such that one branch of
its stable manifold W3, coincides with one branch of its unstable ofi&;, giving rise to
a separatrix™ C (W5 N Wg) \ {Po}. On the other hand, we assume tlfatis integrable
there exists an analytic functiol : R? — R, such thatH o Fo = H and VH(z) # 0 for
all z € T (this is a non-degeneracy condition Hf over I').

Remark 2.1. When Py is a hyperbolick-periodic point we can consider the m&j to get
a hyperbolic fixed point.

Without loss of generality, we can assume thats orientation preserving, considering
the square of the map if necessary. Thus, SPé6[Po)] = {r, A1}, wherer > 1. Let
h = In X be the associated characteristic exponent.

First we prove the existence of natural parametrizations, as well as the existence of first
integrals verifying the interpolation condition of the introduction.

Lemma 2.1. Under the above notations, |1 be an analytic a.p.m., integrable and with a
separatrix to a saddle point.
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(i) Let zo be a point inl". Then there exists a unique natural parametrizatiaf I" (with
regard toFp), such thatr (0) = zo. Moreover, there exists an analytic map R — R?
such thato (1) = ¢(€), Vi € R.

(ii) There exists a constamt such that the timé Hamiltonian flow associated ®H
interpolates the map on the separatrix.

Proof. Since Py is a hyperbolic fixed point of an analytic a.p.i#, there exists a canonical
change of variablesby : (x,y) — (X,)), analytic on a neighbourhood dfy, that
transformsFy in its Birkhoff normal formFy = ®go Fyo cI)gl:

Fo(X, V) = (XGo(XD), Y/Go(X)))
whereGo(Z) = 1 + O(Z). For a proof of this fact see [M0s56].

Now introducingKo(Z) = A2 [ InGo(s) ds (i.e. Go = exp(iKy), Ko(0) = 0), it turns
out thatFy is the h-time Hamiltonian flow associated g (X, )) = Ko(X)).

In particular,o () = d)gl(/‘\,’oe‘, 0) =: ¢(€) satisfieso (t + h) = Fy(o (r)) for —t large
enough, and, consequenthy, € R, using the analyticity offp. Now ¢ (1) = zo determines
Xb uniquely, and, consequently, and (i) is proved.

On the other handH, := Ho o ®g is a (local) first integral offp, and thusHy, H are
functionally dependent maps. Hence, as a consequence of the non-degendfaoyesf,
there exists a real-analytic functio®, defined in a neighbourhood df (Py), such that
Ho = ©® o H. This relation allows us to extenHly to a neighbourhood of the separatfix
since it is contained in the energy levEl1(Py). Now, by analytic continuation, we find
that theh-time Hamiltonian flow associated 1, interpolatesFy onT". Finally, we observe
that VHy(z) = ®'(H(Py))VH (z), for all z € I'. Consequently, if we take = ©'(H (FPp)),
the Hamiltonian flows associated #y and® H coincide onI", and (ii) follows. O

Remark 2.2. Let X = J-V H be the Hamiltonian field associated with A = DXy (Py),
B = DFy(Pp), andé the constant given by lemma 2.1. Th&nand €"4 have the same
eigenvectors and eigenvalues. Thus we can deterfiinem the equalityB = €4, We
remark that the eigenvalues &f are €, so the eigenvalues &fA must be+1 and this
determine® up to the sign.

In the rest of this section it will be assumed that the first integfas chosen in order to
verify this interpolation condition. Therefore, for alj € ', o (t) = ¥'(zo) is the (unique)
natural parametrization df' such thato (0) = zo, where{W¥'},.g is the Hamiltonian flow
associated téf/. Thus we can compute the natural parametrizations explicitly simply solving
the Hamiltonian equations

6=J-VHoo where J:(_cl) é) (2.1)

with initial conditions on the separatrix.

In this paperh and o will be the logarithm of the eigenvalue greater than one of the
saddle point and a natural parametrization of the separatrix verifying (2.1) respectively,
when it has sense.

For the sake of brevity, if a map satisfies all the previous assumptions we will say that
it verifies (H).

2.2. Melnikov functions

Let us consider a family of analytic diffeomorphisnis = Fy + ¢F; + O(¢?), and we
introduce the Melnikov function of the problem like the functidf(z) determined by

A(t, &) = H(o"(t,8)) — H(o*(t, €)) = eM (1) + O(£?) (2.2)



PoincaB—Melnikov—Arnold method for planar maps 7

wherec"* are defined in the introduction (see figure 1). With the foregoing notation, we
now prove the following proposition.

Proposition 2.1. Suppose thafy verifies (H). Then:
(i) The Melnikov function is given by

M(t) =gt + hn) (2.3)
nez

with

8@) =(VH(o (1)), Filo(t — h))) = (6(1), JFi(o (t — h))) . (2.4)

(ii) If F. is an a.p.m. with generating function

L(x,X, &)= Lo(x, X) +eLi(x, X) + O(e?) (2.5)
the Melnikov function is given by

M=L L(t)y=)_f(t+hn) (2.6)

nez

with

f (@) = La(x(0), x(t + h)) (2.7)

where x(¢) is the first component of (r) and, in order to get an (absolutely) convergent
sum, £, is determined byC;(xg, xo) = 0, if Py = (x0, yo).

Proof. These results seem to be very well known (along these lines see, for instance,
[GPB89, Lev93, Lom94]), but we prefer to include the proof for the convenience of the
reader. The key point is to expreds(r) in terms of H o F, — H.

(i) For each fixedr we first we observe that for ath > 0:

A(t,e) = H(F, " (0"(t,8))) — H(F"(0°(t, £)))

+ H(F] (0% (t,€)) — H(F/"}(c"(t, £)))

n=1-m

where o = a(n) is given bya = u if n < 0, anda = s if n > 0. Since
H(F ™(c"(t,¢))) — H(F"(c*(t,¢))) — H(P.) — H(P,) = 0 whenm — +o0, we
obtain by passing to the limit

At g) = Z (HoF, — H) (F' Y0t ¢))). (2.8)

nez
Now, sincec®(t, ¢) is an invariant curve of, that is Q¢)-close too (¢), it turns out

that F'~* (0°(t, £)) = F§ *(o (1)) +O(e) = o (t + h(n — 1)) + O(e), uniformly in n, where
we have used that is a natural parametrization. Moreover,

HoF,— H =¢(VH o Fy, F1) + O(&?) (2.9)

and putting all this together in (2.8), we obtain (2.3).

(i) It is sufficient to prove thatf () = g(t + h), since a shift in the index does not
change the sum. First we look for the expressiorHo$ F, — H.

We introduce the notationX,, ¥,) = F.(x, y) = (Xo, Yo) + (X1, Y1) + O(&?). Since
L is the generating function af,, it satisfies the equations

y = _all:(x’ stg) YS = azl:(an£7‘9)'
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Now, by straightforward expansion i it follows that
(HoF,—H)(x,y) = H (X, 02L(x, X¢, 6)) — H (x, —01L(x, X¢, €))
=& [02H (x, y)91L1(x, Xo) + 02H (Fo(x, ))92L1(x, Xo)] + O(e?),
s0, using (2.9), we get far = (x, y):
(VH (Fo(2)), F1(2)) = 92H (2)01L1(x, Xo) + 92H (Fo(2))32L1(x, Xo) -
Finally, the proof is finished using this expression and (2.1):

F@) = x()3L1(x (1), x(t + h)) + % (t + h)32L1(x (1), x(t + h))
= 02H (0 (1))01L1(x (1), x(t + h)) + 02H (o (t + 1)) 92L1(x (1), x(t + 1))
=(VH(o(t + h)), F1i(c (1)) = gt + h).

O

Remark 2.3. The Melnikov functionM is h-periodic. Moreover, in the a.p.m. case, it is
the derivative of ark-periodic functionL (called theMelnikov potentia), and thus it has
zero mean.

The area preserving property ¢ and the analyticity ofF, are unnecessary to get
some formulae like the previous ones, see [GPB89], but they are needed in the following
theorem, so we have added these hypotheses directly. From a practical point of view, it
makes no difference, since, to our knowledge, all the integrable maps with a separatrix to
a saddle point for which there exist explicitly known expressions verify these hypotheses.

The desired qualitative and quantitative information is contained in the following
theorem.

Theorem 2.1.(i) If M has zeros of odd order then the perturbed invariant manifolds cross
at finite order, for O< |¢| « 1.
(i) In the a.p.m. case, ifM is not identically zero thenF, is non-integrable, for
O< el x 1.
(iii) If M has a simple zero at= 1, then the associated intersection is transversal and
the so-called splitting angley(¢), verifies
|M (to)e| |M (t0)e|

t = 0(E?) = ——"L 4+ 0O(e?). 2.10
e = s o 1V EG T T O = etz T (2-10)

Proof.

(i) It is a direct consequence of (2.2) and the non-degeneracy conditibhfer I".

(i) M = L and L is analytic and:-periodic, sofé’ M(t)dt = 0. ThusM = 0 implies
that M changes the sign and has zeros of odd order. Now the non-integrabilRy isfa
consequence of (i), the analyticity and the area preserving character [Cus78].

(iii) The second equality is obvious, sinéeandV H oo have the same norm, see (2.1).
Thus we focus our attention on the first one. Let

VH(o (1)) . u s
v(t) INHOo )] dist(z, &) = (" (t, &) — o°(t, &), v(¢))

be the unit normal vector td" at o(¢) and the (signed) distance betweefi(z, ¢) and
a’(t, ), respectively.

From proposition 2.1 and the definition of we get

eM(t)

dist(t, ) = —————— O(s?).
S0 = V@) T
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First we suppose, momentarily, thats an arc parameter df, then:

|M (10)]
| VH (o (1)) |l
where we have used thaf (1p) = 0 and the geometric interpretation of the derivative.

To end the proof we need only to add the normalizing fagid(ro) | * to the previous
formula that comes of the rule chain wheis not an arc parameter. d

[tan(a(s))| = %[dist(r, 8)]|t=t0 +0(e?) = + 0(e?)

Remark 2.4. The splitting anglex(¢) approachestzr/2 whentg — +oo. For a.p.m., it is
better to use the area of the lobes formed by the invariant curves or the homoclinic invariant
(introduced firstly in [GLT91]) since they do not depend @n We have not used these
a.p.m. invariants, since we have not restricted ourselves to a.p.m. perturbations.

3. Summation formulae and non-integrability

3.1. Elliptic functions

We recall that an elliptic function is a meromorphic and doubly periodic one (that is, it has
two periodsTy, T> not zero such thaly/ 7T, ¢ R). The notations about elliptic functions
are taken from [AS72].

Given the parametern € [0, 1], we recall that

/2 /2
K = K(m) := / (1—msing)"Y2do E = E(m) = / (1— msing)?do
0 0
are thecomplete elliptic integrals of the first and second kamtl that
E) = E(ulm) := / dré(v|m) dv
0

is the incomplete elliptic integral of the second kinehere dn is one of the well known
Jacobian elliptic functions

Moreover,K' = K'(m) .= K(1—m), E' = E'(m) := E(1 —m), and we also note that
if any one of the numbera, K, K’ or K'/K is given, all the rest are determined. We will
not write explicitly the parameter when no confusion is possible.

We introduce the functiom(z) := (E'/K’ — 1)z + E(z + K'i). This function is
meromorphic onC, 2K’i-periodic, its derivative is R -periodic and the set of its poles is
2K7 + 2K'iZ all being the poles simple and of residue 1.

Indeed, the periodicities ok are consequence of the periodicities fif

E(z+2K)=E(z) +2E E(z+2K'l)) = E(zx) + 2(K' — E')i

and besides\'(z) = E'/K' — 1+ drf(z + K'i), where df is an even elliptic function, the
set of its poles is RZ + 2K'iZ + K'i, all being double and of residue zero, and leading
coefficient—1, so the claim aboud is proved.

GivenT, h > 0, we determine the parameterby the relation

K' K@ T

= =_ 3.1
K K (m) h (3.1)
and we consider the functions
2K 2Kz
x (@) = TA (h) (@) = x(—1). (3.2)

From the properties of\, one easily checks that:
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(C1) x is meromorphic orC.
(C2) x is Ti-periodic andy’ is h-periodic.
(C3) The set of poles of is hZ + TiZ, all of them being simple and of residue 1.
The properties of; are the same, except that the polesratehZ + TiZ. Moreover, using
that E(z + 2K) = E(z) + 2E and the Legendre’s relatioB K’ + E'K — KK' = 7 /2, we
obtain

x(@+h)—x(@ =2r/T. (3.3)

Remark 3.1. Conditions (C1)—(C3) determing up to an additive constant: jf; satisfies
(C1)—(C3),(x — x1)’ is an entire doubly periodic function, and it must be a constant; thus,
x () — x1(z) = az + b, buta = 0 due to theTi-periodicity. In terms of the Weierstrass
p-function, x'(z) = —g (z) + constant since (z) = —z =2 + O(1).

Now, we introduce the function that will play an important role when we compute
Melnikov functions

o= (1) (2] (£~ (o (). s

Thus, is an elliptic function of order 2, with periodsandT'i. Moreover, it is symmetric
with regard tor = 0 andr = i /2. Finally, we show some asymptotic expressions that will
be of interest in the following sections. From approximations given in [AS72] and using
relation (3.1), we have

m =16€ /X1 4 O™ /)] = 16e T [1 + O ™/")]

K(m) = % +O(m)

dn(zlm) = 14 O(m) and di’ (z|m) = O(m) ji>1 (3.5)
cn (zlm) = cos”(z) + O(m) j>0
s’ (z|m) = sin’(z) + O(m) j=0

for 0 < h « 1 andz € R. Thus, using the expressions of the derivatives of the Jacobian
elliptic functions we get, for e R and O< 7 <« 1

) /2 2j+1 ] 2wt
W& () = (-1 (Z) 2gT/h [sm(Z) + o<e-T”/h)] jz1. (36
Remark 3.2. It is important to bear in mind that the functiogs x, and{ are determined
by the quotientT’/ i, through the parameter and the relation (3.1).

3.2. The summation formulae

The key problem, in order to compute the Melnikov function explicitly, is to compute an
infinite sum like)_, _, ¢ (¢ +hn), whereg is either the functiorg in (2.4) or the functionf

in (2.7). Our aim now is to transform these kinds of infinite sums into finite ones. The idea
is to apply the residue theorem jgg, with x, being the function defined above, first in
some rectangular regions. Afterward, by a pass to the limit, the initial sum can be expressed
as the sum of the residues ofy,q in the isolated singularities af in a certain complex
horizontal strip. In this subsection we will assume thas a function verifying:

(P1) g is analytic onR and has only isolated singularities @h
(P2)q is Ti-periodic for someT > O.
(P3) g ()| < Ae ™l when|%t| — oo for some constantd, ¢ > 0.
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We denoteZ; = {z €e C: 0 < Jz < T}, S(q) = {z € Iy : z is a singularity ofg}
and we writeS(g) = {zge : Il =1,..., ks, s =1,...,k}, wherezyy — zgp € hZ & 5 = 5.
(We have classified the singularities ¢fmodulo #.) Finally, we introduce the numbers
dsj = Z’g;la_(jﬂ)(q, zse), fors = 1,...,k andj > 0, where the notatioa_;(g, z) has
been defined in the introduction.

We are ready to give the followingummation formulae

Proposition 3.1 (Summation formulae).Let X(r) := )", _, ¢(t + hn). Then:

(i) = is analytic inR, has only isolated sigularities i@ and is double periodic, with
periodsh andT'i.

(i) X (r) can be expressed by the following finite sum:

D) =— Y resxq.z). (3.7)
2€5(q)
or equivalently, as

0 =— ) Z‘L‘Lﬁ(‘””xﬁ)&—n. (3-8)
ze€8(q) j=0 ’

(i) Let by, € {z € C : |3z| < T/2}, determined modulé by z,, € by + Ti/2+ hZ for
all s, £. Then

(1) = - -’ )
O=> > W= (3.9)

s=1 j>0

Proof.

(i) X is obviouslyTi-periodic and analytic ifiR. Because of (P3) the sum is absolutely,
unconditionally and uniformly convergent on compacts fwithout points in the set
S(g) + hZ + TiZ. Thus X is also h-periodic and has only isolated singularities, just
in the above-mentioned set.

(i) The hypotheses o imply that S(g) is a finite set, so the sum in (3.7) is finite.
Let S,(q) = {z € C : z is a singularity ofg, ¢ < Iz < a + T}, for « € R. We note
that S(g) = So(q)- Futhermore,zzesu(q) reqx,q,z) does not depend oa, since x,q is
Ti-periodic and so, to prove the formula (3.7) it is enough to check that

D) =— Y resxq.z)
2€8a(q)
for one value ofx.

We choosex € [-T/2,0) such thatg has no singularities with imaginary part and
we consider the rectangle of verticds, +ai, M, + (¢ +T)i, M_+ (¢ + T)i and M_ + «i,
whereMy =t = (N + %)h, N € N. If N is large enoughy; p is analytic on the border
Cy of the rectangle and has only isolated singularities on its inteRipr so the residue
theorem gives

1
27Ti Cn
where ), indicates sum over the singulariti¢s = ¢ + hn} U S (q) of x,q in Ry. Since
x:p 1S Ti-periodic the horizontal integrals cancel and, on the other hand, the vertical ones
vanish whenN tends to infinity, using (P3) and (C2). Thus the sum of residueg ¢fin
{z€eC; a <3Jz<a+T}is zero and since,, ¢ have no common singularities by (C3)
and (P1), we get

D) =) qt+hn)=) resxg.t +hn)=— Y resxq.z).

nez nez 2€8a(q)

Xiq = ZN res(x.q, z)
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Finally, we note that resq,z) = 3", jila_(ﬁl)(q, DxP(z —1), for z € S(g), and
this proves (3.8).

(iii) First, we observe thay’ verifies (P1)—(P3). The properties (P1), (P2) are obvious
and (P3) is a consequence of Cauchy’'s inequalities. Thus, applying the summation
formula (3.7) tog’ instead ofg and using the:-periodicity of x’, we get

21 =—) resixq', ze) = Y resx,q, zsc)
s.L st

1 ; .
=2 @ z0x T b+ Ti/2= 1),
s.8,j 7"

Now, notice thatzzes(q) reqx,q, z) does not change when replacigdoy x +constant
(see remark 3.1), so it follows that __s ., resq, z) = 0. In consequence, we obtain

Y aalg z)x (Ti/24bs —1) =Y a1(q, z)W(t — by) .
st 5.0

Moreover, it turns out thag V9 (b, + Ti/2 — t) = (=1)/ PP (t — by), for all j > 1.
Finally, (iii) follows from all the previous formulae. O

If ¢ is meromorphic orC, X is elliptic. Moreover, in this case the sums in (3.8) are
finite. Thus, from a computational point of view, this is the interesting case, because then
3(t) can be computed explicitly.

Now, we will give necessary and sufficient conditions (in terms of the principal parts
of ¢ in its singularities), so that the subi(z) should be identically constant.

Lemma 3.1.Let X(r) = ) ,., q(t + hn). ThenX = constant if and only ifx has no
singularities, or equivalently, if and only i;; = 0, for all s, j.

Proof. Using the Liouville theorem and from the double periodicity3f we deduce that
3 is constant if and only if all its singularities are removable ones (i.e. with principal part
identically zero).
The set of singularities of is{z;1: s =1, ..., k} +hZ+TiZ. Letz, € z1+hZ+TiZ
an arbitrary singularity ok. Directly from the definition o, we see that the principal part

of ¥ in z, is the sum of the principal parts gfover the points of the sé¢t,, : ¢ =1, ..., k,}.
Thus, all the singularities af are removable ones if and onlydf; = 0, foralls = 1,...,k
andj > 0. O

3.3. The hypothesis of isolated singularities

Formulae (3.7)—(3.9) give a way to compute the Melnikov function if either the function
g in (2.4) or the functionf in (2.7) verify (P1)—(P3). Here we show that if some of
these functions have only isolated singularities @nit automatically verifies (P1)—(P3)
with T = 2x. Consequently, the Melnikov function has only isolated singularitie€on
and is doubly periodic with periods and 2ri. Of course, whenf or g are meromorphic
functions, the Melnikov function is an elliptic one.

Lemma 3.2.Let {F.}.cg be a family of analytic diffeomorphisms whet® verifies (H).
Moreover, assume that the functigrdefined in (2.4) (respectively; defined in (2.7)) has
only isolated singularities oft. Theng (respectively,f) verifies (P1)—(P3) withl' = 2.

Proof. The proof is the same in both cases. Thus we prove only one case, for instance for

I
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(P1) is obvious. Using lemma 2.1 and the definitionfofit is clear that there exists a
function F : R — R analytic onR such thatf (+) = F(¢€) for all r € R. Thus f can be
expressed as a power series in the variabie€ if |s| is small enough, or equivalently, if
—9r is large enough. This proves th#(r) = f(t + 2xi) for —Nz large enough and, by
an argument of analytic continuation, (P2), with= 2, is proved. Therefore~ can be
extended to a function with only isolated singularities by the relafian) = f(z).

Using that limy, o (t) = Py it is easy to see, from the definition of, that
lim g~ f(t) = 0. Thus the relationF(s) = f(r) implies thatF can be considered
as a function with only isolated singularities over the Riemann spligre= C U {oco}, that
vanishes at = 0 ands = co. (We note that iff is a meromorphic function, thef is a
rational one.) To complete the proof of (P3) we need only to apply the mean-value theorem
to F ats = 0 ands = oo and the result follows, again from the relatigi(s) = f(t). O

Remark 3.3. If there is some symmetry in the problegnand f can beri-periodic and
consequently the same happens to the Melnikov function. Thus, in practical cases, we will
use the summation formulae with= 27 or T = x.

3.4. Non-integrability criterion

In order to simplify the computations in the examples of sections 4 and 5, we are going
to compute the Melnikov functionM given by (2.6) and (2.7), iff has only isolated
singularities or, equivalently, if satisfies (P1)—(P3) witd = 27 or T = 7. Moreover, a
non-integrability criterion is given.

Let {F.}.cr be a family of analytic a.p.m. with generating function (2.5) whéte
verifies (H). Moreover, assume that the functigrin (2.7) has only isolated singularities.
By lemma 3.2,f verifies (P1)—(P3) wit' =2r or T = x.

LetS(f) ={zee:l=1,..., ks, s =1,...,k} be the singularities of in the complex
strip Z7 classified modulok, like in subsection 3.2. Finally, let b, € C such that
|Sbg| < T/2 andzy, € by + Ti/2+ hZ for all s and ¢, like in proposition 3.1.

Theorem 3.1 (Non-integrability criterion). With this notation and assumptions, the
Melnikov function is given by

k J—
mo=3y

s=1 ;>0 ]
whered,; are the so-called non-integrability coefficients

J

dyj W (t — by) (3.10)

ks
dyj =Y a4 (f 250) s=1,...,k j>0. (3.11)
=1

Finally, if some of the non-integrability coefficients are non-zdrpjs non-integrable,
for 0 < || « 1.

Proof. The first part follows from the summation formula (3.9). The non-integrability
follows from theorem 2.1 and lemma 3.1. O

4. Perturbed elliptic billiards

4.1. Convex billiards

Consider the problem of the ‘convex billiard table’ [Bir27]: I€tbe an (analytic) closed
convex curve of the plan&?, parametrized by : T — C, whereT = R/277Z and C
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Figure 2. T (¢, v) = (®, V), wherev = |y (¢)|cos? andV = |y (P)| coseO.

is travelled counterclockwise. Suppose that a material point moves igsaied collides
with C according to the law ‘the angle of incidence is equal to the angle of reflection’. In
the annulusA = {(p,v) e T x R : |v| < |y(¢)|}, the coordinatey is the parameter o
andv = |y (¢)| cos?, whered € (0, ) is the angle of incidence-reflection of the material
point. In this way, we obtain a map : A — A that models the billiard (see figure 2).

The functions$ : {(¢, ®) € T? : ¢ # ®} —> R defined byS(¢, ®) = |y (¢) — y (D)
is a generating function of':

N (@) —y(®), 7(9) .

e ’CD = = — l?:—

8<p(¢ ) [y (@) — v ()] Ivig)icos ’
N (Y (®) — y(), y(P)) )

"2 (@, ) = = |y (® O=V.
3¢((p ) ly (@) — v(D)| Iy (@] cos

ThusT is an a.p.m. andg, v) are canonical conjugated coordinates.

This map has no fixed points but is geometrically clear that it has periodic orbits of
period 2. In these orbits the angle of incidence-reflection /8 and thusv = 0.

Suppose now thaf is symmetric with regard to a point (without loss of generality we
can assume that this point is the origin, see remark 4.2). Then it is possible to work with
a parametrizatiory of C such thaty (¢ + 7) = —y (¢) and the 2-periodic orbits are of the
form (¢o, 0), (o + 7, 0), that is, two opposite points over. Let R : A — A be the
involution R(¢, v) = (p+m, v), thenT and R commute and it is a commonplace to use this
symmetry to convert the 2-periodic points into fixed points. Concretely, we define a new
mapF : A — Aby F = RoT. SinceF? = T2, the dynamics of andT are equivalent.
Moreover, F is an a.p.m. and its generating function, using th&d + =) = —y (®), is

Lp,®)=S(p, P+7m)=y(p) +y(®)]. (4.1)

Remark 4.1. We can consider the variabfedefined modulor in the symmetric case. This
idea goes back to [Tab93, Tab94].

Remark 4.2. Let C and C’ two closed convex curves such that one is the image of the
other by a similarity. Then the two associated a.p.m. have an equivalent dynamics since
the angle of incidence—reflection remains unchanged by the similarity.
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4.2. Elliptic billiards

The simplest examples of convex curves are the elipses. It is clear that the case of a
circumference is very degenerated for a billiard, since it only consists of 2-periodic orbits.
So, let us consider now a non-circular ellipse

2 2
Co= {(x,y) eR?: % + % = 1} = {yo(p) = (acosp, bsing) : ¢ € T}
with a? # b2. Without loss of generality we can assume that- b> = 1 (we change the
ellipse using a similarity, if necessary). Thus> 1, b > 0 and the foci of the ellipse are
(£1, 0).

Let us recall that a caustic is a smooth curve with the following property: if at least one
of the segments (or its prolongation) of the polygonal trajectory of the point is a tangent to
the curve, then all the other segments (or their prolongations) are tangent to the curve. Itis
a very well known fact that all the orbits of an elliptic billiard have a caustic, and actually
the caustics are just the family of confocal conic<io(little Poncelet’s theorem, [KT91]).

This property indicates the integrability of elliptic billiards since the existence of caustics
reflects some stability in the system. In fact, it is not difficult to obtain an explicit expression
for a first integral of the elliptic billiard in(gp, v) coordinates, under the assumption
a? — b? = 1. In [LT93] the following first integral is given irip, ¥) coordinates:

I(p,9) = a®cog ¥ + cof g si ¥ = a®cog ¥ — cog g cogy —sirfg + 1.
Moreover, using that? — b = 1, we get
V2 = |30(9)|2 cog 9 = a? cod ¥ — coS ¢ cos ¥

and the integral in (¢, v) coordinates becomel(p, v) = v — sirf ¢ + 1. This integral
can be found in [Lom94] in a slightly different manner. As a consequence, the curves
{I = c}o<c<p241 are invariant for7y and Fo whereTy : A — A is the analytic a.p.m.
associated ta@Cg and F; = R o Tp. In connection with the little Poncelet’s theorem, the
caustics of the points on one of these invariant curves are: a confocal hyperbelait01,
a confocal ellipse if < ¢ < b?> + 1, and the foci(+1, 0) whenc¢ = 1. Obviously, the foci
are not smooth curves, but if some segment of the trajectory goes through a focus then the
same happens to all the other segments.

Besides, the pointd), 0) and (;r, 0) form a 2-periodic orbit forT, that corresponds to
the vertexeg+a, 0) of the ellipse, and henc@®, 0) is a fixed point forFy.

Let R* : A — A be the involution given byR*(p,v) = (& — ¢,v), then
Fy' = R* o Fyo R* and thusF, is reversible.

The dynamics offy is drawn in figure 3 where the resemblance with the phase portrait
of a pendulum shows up clearly.

The main properties ofy are listed in the following lemma.

Lemma 4.1. (i) Py = (0, 0) is a saddle point oy and Spec P Fo(Po)] = {1, A7}, with
L= (a+1)(a—-1"t> 1. Moreover, ifh = InA the following expressions hold:

a = coth(h/2) b = coseclin/2). (4.2)

(i) T* = {(¢, £sing) : 0 < ¢ < 7} are the separatrices @b.
(iii) The time-» Hamiltonian flow associated to

H(p,v) = —11(p,v) = (sifp —v* — 1)/2

interpolatesFy on the separatrices.
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Figure 3. Phase portrait ofp; I'* are the separatrices @b..

(iv) If o%(t) = (p(F1), 2v(2)), wherep(t) = arccogtanhr) = arcsin(sech) and
v(t) = sech, theno* are natural parametrizations Bft (with regard toFy).
(V) Let be ®(t) = ¢(¢t + h). Then
sing(t) + sin®(¢)

= h/2). 4.3
ole@) T 0] — SeCt +h/2) (4.3)

Proof.
(i) We know thatPy is fixed by Fy. Let

Lo(p, @) = |yo(p) + vo(P)| = 2a + [(@®* — Dp® — (a* + 1)(¢? + D?)/2]/2a + Os(p, D)

be the generating function df : (¢, v) — (P, V), where we have used that — »% = 1.
From the implicit equations of generated by, we get

trace[D Fo(Po)] = 919 (0, 0) + 92V (0, 0) = —[911L0(0, 0) + 322L0(0, 0)]/912L0(0, 0)

and a straightforward calculus yields trabéy(Po)] = 2(a® + 1)/(a® — 1). Moreover,
det[DFo] = 1. Thusi = (a+1)(a — 1)~ > 1 is an eigenvalue ob Fy(Py). From é = 2,
one getsz = coth(z/2) andb = +/a? — 1 = coseclih/2).

(i) This is a direct consequence of the conservation of the first intdgral

(iif) Using lemma 2.1 there exists a constansuch thatH = 61 verifies (iii). We need
only to check that = —%. Let X; = JVI be the Hamiltonian field associated kpthen

A:DX,(PO):< _g é)

Thus|0| = % according to remark 2.2. Finally, the sign is determined in order to get the
right sense over the separatrices, see again figure 3.

(iv) It is enough to prove it fol't by symmetry. We observe that™ is a solution
of the Hamiltonian equations associatedHoando ™ (0) € I'". Thus (iv) is an immediate
consequence of (iii).

(v) Let be(g, sing) € '™ and (®, sin®) = Fy(g, sing). The pointsys(¢), —yo(P) =
yo(® — 7r) and the focug—1, 0) are aligned, sincéd — x, sin(® — )) = To(gp, Sing) and
the foci are the ‘caustic’ of the points ii*. Moreover, the vectorsy(p) + yo(®) and
yo(p) + (1, 0) are parallel with the same sense (see figure 4), and hence

vo(@) + yo(P) _ vo(e) + (1,0)
1Yo(@) +y(®)|  |role) + (1,0

(4.4)
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Figure 4. (p, sing) e T't, (®, sin®) = Fy(gp, Sing).

Sinceyo(p) = (a cosp, bsing), using equation (4.2), and the expressionsg@f) in (iv),
we obtain

1 .
Yo(p) +(1,0) = m(smml +h/2),1)
and thus
vo(e) + (1, 0)
= (tanh(t + h/2), secl{t + h/2)) .
lvo(p) + (1, 0)] (tanh /2 " /2)
Now, the second components of (4.4) give (4.3). O

At this stage, it is important to point out that the méap verifies (H) and we have
explicit expressions for the natural parametrizations of the separatrices with regagd to
Thus a complete computation of the Melnikov functions, angles of splitting, etc and a deep
study about non-integrability, using the tools developed in sections 2 and 3, is possible for
a huge class of perturbations. Due to the symmetry betWweemand ', we restrict our
study tol' =T'F, o () = o7 (t) = (p(1), v(1)).

4.3. Non-integrability of symmetric entire billiards

Let {C.} be an arbitrary family of perturbations of the ellipég, consisting of analytic
curves depending on @ way one and symmetric with regard to a poi@,. Let us
denote byQF the two furthest (and opposite) points ow@r with Q§ = (+£a, 0). Using a
similarity that takesO, and O to (0, 0) and (+a, 0) respectively, the initial family can be
put in the following form:

2

2
X
C;:{(x,y)e]Rz:z—i—y

P 12 +eP(x,y,¢&)= l} (4.5)

where
() P is analytic inx, y and at leas€? in ¢,
() P(x,y,e) = P(—x,—y,ée),
() P(a,0.£) = d,P(a,0,) =0,
or equivalently, like
C. ={y(p, &) = (acosy,sing[b+en(p,e)]) : ¢ €T} (4.6)
where
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(i) n is analytic ing and at least’® in ¢,
(ii) n is w-periodic ing.

Remark 4.3. This kind of perturbation preserves the reversibilRy of the system if and

only if n is even ing. In this particular cas€; has two axial symmetries (given by the
two axis) and the Melnikov function is odd. This has been the standard case studied until
now [Tab93, Tab94].

From (Il), it follows that P(a cosg, bsing, ) = p(a coseg, bsing, €) sirf ¢, with p
also satisfying (I) and (ll). It is easy to check that, in first ordet jrthe relation between
n and P is given by P(a cosy, bsing, 0) = —2bn(p, 0)sirf . Thus, if P(-, -, 0) is an
entire function (respectively, a polynomial) in the y variables,n; := n(-, 0) is an entire
function (respectively, a trigonometric polynomial). It is clear thadsif= constant,C; is,
in first order, a family of ellipses.

Definition 4.1. Let {C.} be a perturbation of the ellipgg,. We say tha{C,} is anon-trivial
symmetric entirgrespectively,polynomia) perturbationof the ellipse when it can be put,
using similarities, in the form (4.6) and moreoves, := n(-, 0) is a non-constant entire
function (respectively, polynomial).

Let 7, be the map in the annulus associated to the billiar@inwhere the perturbation
considered is a symmetric entire one and #gt= R o T,. If ¢ is small enough(C, is
an analytic convex closed curve, and thius}«1 is a family of analytic a.p.m. with
generating functiorC(p, @, ¢) = |y (¢, €) + y (P, )|, see equation (4.1), and

sing 4 sin®
170(¢) + o ()]
Now using formula (4.3) we find the following expression for the functjpim (2.7)

oL ) .
Li(p, @) = g(so, ®,0)=»b [sing n1(@) + SIN® n1(P)].

f =208 +6p) v = sech §=v(nioo)

where, henceforth, given a functiom and a numberx, v, stands for the function
v () = vt + x).

Sincen; is an entirerr-periodic function, there exists asvenfunction ¢ analytic in
C\{0}, such thatyi(¢) = £(€¢). Moreover, using lemma 4.1 = (i + sinhr) sechy, so
the following properties of the functiomn, o ¢ are easily obtained:

(i) For all n; entire andr-periodic, the functiom; o ¢ has only isolated singularities
in C. Its singularities are the points of the sat/2 + 7iZ, since just in these points/&
reaches the values 0 and.

(i) A singularity of n; o ¢ is removable if and only ify; (i.e. ¢) is constant.

(iii) Moreover, n1 o ¢ is symmetric with regard to these singularities.

By (i), f has only isolated singularities for any symmetric entire perturbation, and a
study about non-integrability can be performed. However, before starting this and further
studies, it is very convenient to arrange the syiy_, f(t +hn) and express the Melnikov
potentialL asL(t) =), _, q(t + hn), where

q = [vnj2 + v_p218 = (2a/b)vpv_p2(n1 0 @) . 4.7)

(Relations (4.2) and the addition formulae for the hyperbolic cosines have been used to
obtain the second equality.)

Theorem 4.1.Let {C.} be any non-trivial symmetric entire perturbation of an ellipse. Then
the billiard in C, is non-integrable for G< |¢| « 1.



PoincaB—Melnikov—Arnold method for planar maps 19

Proof. It is enough to prove thak, is non-integrable, since the dynamics of the symmetric
billiard is equivalent to the dynamics ;.

Since ¢ also satisfies properties (P1)-(P3), theorem 3.1 can be appliddrjo=
Y nez4(t + hn). By this theorem, it is enough to prove that there existene non-
integrability coefficient not zero. Looking at the expression (4.7) and using property (i) of
n1 o ¢, the only possible singularities qf with It = 7/2 arezy; '= wi/2, 721 := 711 — h/2
and z»> = zi1 + h/2. In particular, we note thay is analytic inz;; + An for all
integern # 0. Thus, the non-integrability coefficients associated to the singulayity
aredy; = a_¢jy1(q, 211, j = 0.

Using the fact thaty,,» andv_;,, are analytic and not zero in, together with property
(i) of n1 0 ¢, it turns out thatz11 is a non-removable singularity @f. Consequently, the
non-integrability coefficientd;; cannot all be zero. O

Remark 4.4. The same proof works for the poinz8/2 (instead ofri/2). The assumption
of the entire function om; has only been used to ensure thatdpe= 7i/2 or ¢, = 3ri/2,
n1 o ¢ has an isolated singular point gtbut is analytic orr, 4+ hn for n # 0.

4.4. Reversible polynomial examples

4.4.1. The general caseln order to perform explicit computations of Melnikov
functions we must restrict ourselves to symmefmynomial perturbations. Moreover,
following [Tab93, Tab94], we focus our attention mversibleperturbations. Therefore;
is an even (see remark 4.3) aneperiodic trigonometrical polynomial that we can write in
the following wayni(¢) = Z,’,V:O cn SIP" (¢). Now, using thatv(r) = sin(¢(r)) = sechy),
@) = YN jeasecl'(r). Thusgq = (2a/b)vy2v_n/2(n o @) is wi-periodic (i.e.
T = 7) and has exactly three poles #f;. These poles are;; = wi/2 (of order 2V)
andzor = z11+ h/2, 722 = z11 — h/2 (Simple ones).

The non-integrability coefficients (3.11) of the problem, that may be different from zero,
are

dij = a_(j+1(q, z11) (j=0,....,2N =1 dyo = redq, z21) +redq, z22) .

By property (iii) of 1 o ¢, it is easy to check that is symmetric with regard to
z11 = (z21 + 222)/2, henced;; = 0, for odd j, andd,y = 0. Moreover, because of
the symmetry ofv with regard toz;;, the even coefficients in the Taylor expansion of the
functionsv; > andv_;» aroundzy; are equal. Thusy_;(vy/28, z11) = a—;(v_p28, z11), for

all evenj, and

di2j—1 = 2a_2;(vy26, 211) j=1...,N.

Consequently, using the formulae (3.10) and (3.11) one gets the Melnikov function

. _
_ o3 4 Wn2d 7/ oy
M(t) = 2; Qi1 Yo (4.8)

where the parameter of the elliptic functions has been determined by relation (3.1) with
T =, see remark 3.2. (For the notations about elliptic functions and the definitign of
we refer to subsection 3.1.) We note that O and: = h/2 are zeros oM, because of the
symmetries of.

This formula allows us to compute the Melnikov function in a finite number of steps.
We need only to compute the numbersy; (v4,28, 7i/2), j = 1,..., N, in each concrete
case. For instance, it is easy to compatey (vs28, 7i/2) = (—L)Nabcy.
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4.4.2. A particular case. For N = 1 formula (4.8) reads

3
M(t) = 2aber ' (1) = —4abeym (25) (dn-sn-cn) (tht|m> )

This particular caseng(¢) = coSing + c1sin°g) is already studied in [Lev93, Tab93,
LT93, Tab94, Lom94]. It corresponds to symmetric and reversiolgrtic perturbations of
the ellipse (see the introduction for the definition). In this casehas just two (simple)
zeros in the period [1): r = 0 andt = h/2, thus (see theorem 2.1) there exist exactly
two (transversal) primary homoclinic orbits for the perturbed billiard and the splitting
angle x(e) of the intersection neas (0) = (x/2, 1), using the formula (2.10), verifies
|tanfx(e)]| = A(h)|e| + O(e?), where

|M'(0)]

Ah) = ————5
" I 5(0) [I2

2K \*
= |M'(0)| = 4ab|ci|m (h) .

4.4.3. Ellipse close to a circle: a particular caseLet p = /a2 — b?2/a = 1/a = tanh(h/2)
be the eccentricity of the ellipse. If the ellipse is close to the circle (i.@. i close to
zero), them: is also close to zero and the formulae (3.5), with= =, give

2
M(t) = —3273abeyh 3™/ [sm( . ) +0@E™ /”)}

A(h) = 64r%ablci|h e /" [1 + o™/ h)] . (4.9)

The results can be expressed in terms wfinstead of z, but we refer to the
works [Tab93, LT93, Tab94] for the sake of brevity.

Remark 4.5. It is worth mentioning that we have to assumas fixed (although small) and
¢ — 0. When these two parameters are dependent by a potential relatiendikgéh) = h?,

p > 0, andh — 0, then one is confronted with the difficult problem of justifying the
asymptotic ‘Melnikov prediction] tanje(e)]| ~ h” A(h), as we have already mentioned in
the introduction.

4.4.4. Ellipse close to a circle: the general cas€Coming back to a generd¥, we give a
generalization of the asymptotic expressions (4.9), that is, for ellipses close to a circle.

Since §(r) = v(O)ni(e@®)) = Z;V:O c, secl1(r), we can rewrite the Melnikov
function (4.8) like

N n
M(t)==2) > [caBy(t, h)/(2j — D] (4.10)

n=1 j=1

where B, ;(t,h) = a_zj(va)2 sech"*?, z10W@V(¢). To get the dominant term of (4.10),
we must study the order i of B, j(t h),forj=1,...,nandn=1,...,N.

First, we split the functiorv, > in the principal vh/2 and regularvh/z(_ Vnj2 — Uh/z)
parts around its singularityo, = z11 — k/2. It turns out thatv (1) = —i(t — z22)~%. From
the Cauchy inequalities, the coefficients in the Taylor expansm{) gfaroundzy; are (1),
sincev{l/2 is uniformly (when# is small) bounded in a ball of fixed radius centred: at
Thus,

ag(Vpy2, 211) = az(vﬁ/z, z11) + ae(vy p, 211) = (—2/m)*™ i+ 0D Ve 1.
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Besides, the principal part of séth®' around zy; is O(1) and, in particular,
a,(z,,H)(secﬁ”“, z11) = (=1"*1i. Finally, we use the asymptotic expression (3.6), taking
into account thaf’" = =, and we deduce that
n—j
B, ;(t,h) = YD) Zazul(vh/z, 210d_j+20+1)(S€CH™, 219)
=0
— (_1)n+j22n+47_[2j+lh7(2n+3)efﬂz/h[Sin(zn,t/h) 4 O(hz)]

so the dominant terms of (4.10) are attained whers- N, and the general asymptotic
expressions that we were looking for are

N 2j+1
M) = (_1)N+122N+5CN {Z |:(_1)jnj:| } h—(2N+3)e—n2/h |:Sin<27;t> + O(h2)1|

o P TIY
.A(l’l) _ |M,(0)| — 22N+6|CN| XN: |:(_1)j 2i+2 i| h,(2N+4)e—n2/h[l + O(hz)] )
2 @j - D!

We note that the sulﬁ:j-vzl[(—l)/'nzf“/(Zj —1)!] is never zero £ is a transcendental
number), saM has exactly two zeros in the period, [): t = 0 ands = k/2, if h is small
enough. Therefore, for & h « 1, there are exactly two (transversal) primary homoclinic
orbits. Moreover, the splitting angle(¢) admits the asymptotic approximations, whien
is small butfixed |tanje(e)]| = A(h)|e| + O(s?), as before. The remark 4.5 also holds in
this case.

5. Standard-like maps

5.1. Integrable standard-like maps with separatrices

A planar map is called a standard-like map if it has the fdttw, y) = (v, —x + g(y)) for
some functiorg. If g is odd, F is R-reversible, wher& is the involutionR (x, y) = (y, x).
Wheng is analytic onR, F is an analytic a.p.m. and its generating function is

X
L(x,X)=—xX +/ g(s)ds. (5.1)

If ¢ is entire, the same happens kg and therefore it has no separatrices [Laz88]. Suris,
weakening the regularity of, gives three families of integrable standard-like maps in
[Sur89]. The first integrals of these three families are, respectively, polynomials of degree
four in x and y, functions involving exponential terms, and functions with trigonometric
terms. For the sake of brevity we focus our attention on the first case, but exactly the same
study can be carried out for the other two ones.

It is easy to see that all the maps of the polynomial family with a separatrix to the origin
can be written, after rescaling, normalizations, etc, like

n+ By )

1-2By +y?

and the corresponding first integral given by Suris is
I(x,y) = 3[x% = 2uxy + y* — 2Bxy(x + y) + x*y7.

The map (5.2) withB = 0 is called McMillan map and is studied in [GPB89] under a linear
perturbation. The map (5.2) has two separatricés= Fi s contained in the energy level
{I = 0}, as shown in figure 5.

Fo(x,y)=<y,—x+2y —1<B<l<u (5.2)
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~-0.4 U] 0.4 0.8

Figure 5. The separatriceE* of Fy for § = 0.1 andu = cosh0.5).

Denoting Py = (0, 0), the eigenvalue greater than 1Bf(Po) isA = w++/ 12— 1, so
if » =InA, as usual, then cogh= . Using lemma 2.1, there exists a constarguch that
the time# Hamiltonian flow associated tH = 61 interpolates the map on the separatrices.
Let X; = JVI be the Hamiltonian field associated kpthen

A:DX,(P0)=<__L1 j) B:DFO(Po)z(_g 2;)

Thus relationd = € givesd = (u?—1)1/2 (see remark 2.2). Therefore, the first integral
that we will use is

H(x,y) = [x —2uxy+y —Zﬁxy(X—i-y)—i—xzyz]

1
2/ u? —
Now, solving the Hamiltonian equations associated within the energy levelH = 0},
we obtain the natural parametrizations of the separatiices

I ={o*@t)= "t —h),x*1): t € R}

where
+c
+ 2
HN=——" =p°-1 b= 1
0= Sy =P Bl +1) 53)
c=u’-1 A =+vb2—ac.
We note thatl", p (in particular, the cas@ = 0 is symmetric since then

~=-r"),so we study onI;F =T*, 0 =0 andx =x™.

In this situation the functiory in (2.4) has only isolated singularities (respectively, is
a meromorphic function) for all entire (respectively, vectorial polynomial) perturbdfion
In consequence, for a family of analytic diffeomorphisms like= Fy + ¢ F1 + O(g?), with
F; a vectorial polynomial inx and y, it is possible to compute explicitly the Melnikov
function. Moreover, ifF, is an a.p.m. and; is an entire function, then theorem 3.1 can
be applied directly to study the non-integrability.
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5.2. Non-integrable standard-like maps

We now consider the family of standard-like maps

u+ By

R = (st Bt

+£p(y)> —1<B8<l<ypu e eR.

(5.4)

Let § be the primitive ofp such thats(0) = 0. Using equation (5.1), the generating
function L(x, X, e) of F, has the form (2.5) withl;(x, X) = 8(X). Thus f(r) =
Li(x(@ — h),x(@)) = §(x(r)) has only isolated singularities for any entire functirand
hence{ F,} verifies the hypothesis of theorem 3.1pifis an entire function. This allows us
to prove the following result.

Theorem 5.1.1If p is an entire function not identically zero, the map (5.4) is non-integrable
for 0 < |e] « 1.

Proof. It is sufficient to see that the non-integrability coefficients of the problem cannot all
be zero.

The poles ofx in Z,, are 'r;i, Wheretp‘ € (0, 7) and t;’ € (m, 2r) are determined by
cosr,,i =b/A € (-1,1). Sincef = 3§ ox and§ is an entire function,t}} are exactly the
singularities off in Z,,. Consequently, there are not different singularities whose difference
is a multiple of (in fact a real number), and thus each one of the sums in (3.11) have
only one term. Hence, the coefficients of non-integrability (3.11) are all zero if and only
if f is analytic onZ,, or, equivalently (using thes2-periodicity of f), if and only if f
is an entire function. Bulf cannot be an entire function, sindds a non-constanentire
function. This finishes the proof. O

Remark 5.1. In order to apply the non-integrability criterion, we simply need that sox

have only isolated singularities ii. Thus, it is not absolutely necessary tldatvould be

an entire function, although it is the simplest case to study, since then the singularities are
easily found.

5.3. Examples

5.3.1. Reversible polynomial standard-like perturbation$o show the simplicity of the
explicit computations, we focus our attention Bareversible and polynomial standard-like
perturbations. Due to the reversibilitg, = 0, p is odd, and these maps have a primary
homoclinic point on the bisectrix of the first quadrant. We give expressions for the splitting
angle at this point.

Since the perturbation is polynomial and odd, we wiitey) = YN ¢,y? 1, so
8(y) = YN c,y?/2n. Using thatg = 0 in (5.3), we getx(r) = sinh(k) sechir). Thus
f(@) = 8(x(¢)) is wi-periodic (i.e.T = =) and has only a pole;; = 7i/2 (of order 2V)
in Z,. Moreover,a_;(f, i/2) = 0 for odd j, since f is symmetric with regard teri/2.
Now the formulae (3.10) and (3.11) give the Melnikov function

N g i /2 a
S T

where the parameter of the elliptic functions have been determined by relation (3.1) with
T = 7, see remark 3.2. We note that= 0 andr = h/2 are zeros of\f, because of the
symmetries ofp. This formula allows to compute the Melnikov function in a finite number
of steps. We need only to compute the numbers; (f, 7i/2), j = 1,..., N, in each
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concrete case. For instance, it is easy to compuig (f, 7i/2) = (—=1)Vey sint?Y (h)/2N,
and, in particular, forp(y) = y (N = 1 andc; = 1) we get

: 3
smk?hw/(t) =— <2K> m sintf & (dncnsn (ZKt m) )
2 h h

This particular case has already been studied in [GPB89]. Our result coincides with the
one given there except for a multiplicative factor (due to the difference between the first
integrals used) and a sign (due to the different sense used in the natural parametrization,
sinceM is odd). In this cas@/ has just two (simple) zeros in the period [Q: : = 0 and
t = h/2, thus there exist exactly two transversal primary homaoclinic orbits for the map (5.4)
with 8 =0 andp(y) = y, if |¢| is non-zero but small enough. The zere- h/2 is related
with the homoclinic point on the bisectrix of the first quadrant negr/2) and using (2.10),
the splitting anglex(e) in this point verifies thattanfe(e)]| = A(h)|g| + O(?), where

IM'(h/2)| (21()4 cost(h/2)
I 6h/2) 112 2sint(h/2)

M(t) =

A(h) = m(l—m).

h

5.3.2. Weakly hyperbolic exampleswhen the origin is aveaklyhyperbolic fixed point for
the unperturbed map (i.e. when<Oh « 1), formulae (3.5) applied witll' = 7 give:

M(t) = —87T3h73 Sinh2 heﬁnz/h |:Sin <2;/Tlt> + O(enz/h)]
4
27[) Me‘”z/h[l + O(e—nz/h)] ]

Alh) = (h 2sinté(h/2)

Coming back to a generd¥, we can give a generalization of the previous asymptotic
expressions. Since(r) = sinh(h) sechr), the principal part ok?!(¢) aroundri/2 is O(h?")
and, in particularg_,, (x%', i/2) = (—1)" sini?*(h). From these results and formula (3.6)
also applied withl" = =, it is easy to get the dominant term of the Melnikov function (5.5),
and the general asymptotic expressions are

N 2n+1
M(t) = -2 [Z C"((zgn))l} hle [sin (2;7) + O(hz)]

n=1
|M'(h/2)| SN e (2m) 2] o e
Ah)y=——"-=4 ————1h */h 1+ O3] .
W= smpp =t @ | e o]

The error @h?) in these last formulae is bigger than the errc(eﬂz/") in the former
ones. However, it is possible to obtain formulae with exponentially small error in any case,
but it involves a cumbersome computationsvifis large. For instance, whem(y) = y3, it
is not difficult to derive the following formula foi(h):

4 2 .
A(h) = <Z”> [1 4 <”) } SNt () COS(/2) iy 4 i)

h h 6sintt(h/2)
As in the billiard, the discussion or remark 4.5 is still valid.
5.3.3. A dissipative exampleWe have seen several examples where the Melnikov function

is exponentially small il = InA, whenh — 0. This is a typical phenomenon for area-
preserving perturbations, but if the conservative character is destroyed by the perturbation
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then this kind of phenomena, in general, does not take place. As a sample of this claim we
choose the following case (studied in [GPB89]):

2uy
F.(x,y) = (y, —x + 11,2 —i—ax) w>1. (5.6)

The Jacobian of (5.6) ig(¢) = 1 — ¢, so (5.6) becomes dissipative for> 0 and we can
not expect to find a generating function of it. In spite of this, an explicit computation of
the Melnikov function is still possible using the formulae (2.3) and (2.4), and we obtain

M(t) = Zg(t + hn) g(t) = x(1)x(t — h) x(t) = sinh(h) secht) .
nez
First, we note thag is wi-periodic (i.e.T = ) and we study the complex singularities of
g inZ,, beingrwi/2 (a double pole) and + wi/2 (a simple pole) with
a_1(g, h +ni/2) = —a_1(g, mi/2) = coshn a_y(g, mi/2) = —sinhh.

Now, using equation (3.3) withh = 7 and the summation formula (3.8), we get the
Melnikov function

M(t) = —coshi[x (h +mi/2 —t) — x(mi/2 — t)] + sinhhy'(wi/2 —t)

2K \? 2Kt 2 sinhi 2KE
= (=) sinhhdr? [ =— ) — 2cost 1-=—"=).
(h > sinhi d ( h ) coshh + f ( I >

This result coincides with the one given in [GPB89] except for a multiplicative factor, as
before, and a small mistake in the final formula (B.12) of this reference. The sign is the
same sinceV is even.

If »is small enoughM has no real zeros, and consequently the perturbed invariant
curves do not intersect, for fixed smalland small enough.

We split M into mean and oscillatory parts¥ (t) = Mmean+ Moscin(t). It is easy to
obtain their expressions:

sinhh

h
Miean= h—1/ M) dt = 2(
0

2
Moscin(t) = M(t) — Mmean= <2£(> sinhh |:dnz <2th) - Ei| .

— coshh)

K

It is not hard to verify thatMgc is exponentially small ik but Mmeanis not, thus we have
given a example of a Melnikov function not exponentially smalhkin

Remark 5.2. In fact, under the usual hypothesis of meromorphicity, the oscillatory part is
alwaysexponentially small im:. The same happens to the Melnikov function in the a.p.m.
case, since then its mean is zero.
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