
198

Nonlinearity

On the length and area spectrum of 
analytic convex domains

Pau Martín1, Rafael Ramírez-Ros2 and Anna Tamarit-Sariol2

1 Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,  
Ed. C3, Jordi Girona 1–3, 08034 Barcelona, Spain
2 Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya,  
Diagonal 647, 08028 Barcelona, Spain

E-mail: Martin@ma4.upc.edu, Rafael.Ramirez@upc.edu  
and Anna.Tamarit@upc.edu

Received 6 October 2014, revised 30 July 2015
Accepted for publication 18 November 2015
Published 18 December 2015

Recommended by Professor Dmitry V Treschev

Abstract
Area-preserving twist maps have at least two different ( p, q)-periodic orbits 
and every ( p, q)-periodic orbit has its ( p, q)-periodic action for suitable couples 
( p, q). We establish an exponentially small upper bound for the differences 
of ( p, q)-periodic actions when the map is analytic on a (m, n)-resonant 
rotational invariant curve (resonant RIC) and p/q is ‘sufficiently close’ to m/n. 
The exponent in this upper bound is closely related to the analyticity strip 
width of a suitable angular variable. The result is obtained in two steps. First, 
we prove a Neishtadt-like theorem, in which the n-th power of the twist map 
is written as an integrable twist map plus an exponentially small remainder 
on the distance to the RIC. Second, we apply the MacKay–Meiss–Percival 
action principle.

We apply our exponentially small upper bound to several billiard problems. 
The resonant RIC is a boundary of the phase space in almost all of them. For 
instance, we show that the lengths (respectively, areas) of all the (1, q)-periodic 
billiard (respectively, dual billiard) trajectories inside (respectively, outside) 
analytic strictly convex domains are exponentially close in the period q.  
This improves some classical results of Marvizi, Melrose, Colin de Verdière, 
Tabachnikov, and others about the smooth case.
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1. Introduction

Billiards were introduced by Birkhoff [4]. Let Γ be a smooth strictly convex curve in the plane, 
oriented counterclockwise, and let Ω be the billiard table enclosed by Γ. Billiard trajectories 
inside Ω consist of polygonal lines inscribed in Γ whose consecutive sides obey to the rule ‘the 
angle of reflection is equal to the angle of incidence’. See [18, 20, 36] for a general description.

A ( p, q)-periodic billiard trajectory forms a closed polygon with q sides that makes p turns 
inside Γ. Birkhoff [4] proved that there are at least two different Birkhoff ( p, q)-periodic bil-
liard trajectories inside Ω for any relatively prime integers p and q such that ⩽ <p q1 .

Let ( )L p q,  be the supremum of the absolute values of the differences of the lengths of all 
such trajectories. The quantities ( )L p q,  were already studied by Marvizi and Melrose [25] and 
Colin de Verdière [6] for smooth tables. The former authors produced an asymptotic expan-
sion of the lengths for ( p, q)-periodic billiard trajectories approaching Γ when p is fixed and 

→+∞q . They saw that there exists a sequence ( ) ⩾lk k 1, depending only on p and Γ, such that, 
if L( p, q)is the length of any ( p, q)-periodic trajectory, then

  [ ] →( )

⩾
∑Γ + ∞�L p

l

q
qLength , ,p q

k

k
k

,

1
2 (1)

where l l p p s s, d1 1
1

24
2/3 3( ) ( ( ) )∫ κ= Γ = −

Γ
, and ( )κ s  is the curvature of Γ as a function of the 

arc-length parameter s. The symbol � means that the series in the right hand side is asymp-
totic to L p q,( ). The asymptotic coefficients ( )= Γl l p,k k  can be explicitly written in terms of 
the curvature ( )κ s . For instance, the explicit formulas for l1, l2, l3, and l4 can be found in [35]. 
Since the expansion of the lengths in powers of q−1 coincides for all these ( p, q)-periodic 
trajectories,  ( )( ) = −∞L qOp q,  for smooth strictly convex tables when p is fixed and →+∞q . 
Colin de Verdière studied the lengths of periodic trajectories close to an elliptic (1, 2)-periodic 
trajectory on a smooth axisymmetric billiard table, and found that the quantities ( )L p q,  are 
again beyond all order with respect to q.

These works suggest that the supremum length differences ( )L p q,  are exponentially small 
in the period q for analytic strictly convex tables. Indeed, we have proved that if Γ is analytic 
and p is a fixed positive integer, then there exist α>K , 0 such that

⩽( ) πα−L Ke ,p q q p, 2 / (2)

for all integer ⩾q 2 relatively prime with p. The exponent α is related to the width of a com-
plex strip where a certain 1-periodic angular coordinate is analytic. A more precise statement 
is given in theorem 5. The search for exponentially small asymptotic formulas is the natural 
challenge after obtaining the exponentially small upper bound (2). This problem has been 
numerically tackled in [24], where we have conjectured that, if Γ is a generic axisymmetric 
strictly convex algebraic curve, then

( ) →( ) +∞− −L � A q q qe , ,q rq1, 3

where the positive exponent r is half of the radius of convergence of the Borel transform of the 
asymptotic series (1) and A(q) is either a constant or an oscillating function. The proof of this 
asymptotic formula is a work in progress.

Similar exponentially small upper bounds hold in other billiard problems. We mention two 
examples. First, for ( p, q)-periodic billiard trajectories inside strictly convex analytic tables of 
constant width when →p q/ 1/2. Second, for ( p, q)-periodic billiard trajectories inside strictly 
convex analytic tables in surfaces of constant curvature when →p q/ 0.
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The billiard dynamics close to the boundary has also been studied from the point of view 
of KAM theory. Lazutkin [21] proved that there are infinitely many caustics inside any 
C555 strictly convex table. These caustics accumulate at the boundary of the table, and have 
Diophantine rotation numbers. Douady [11] improved the result to C7 billiard tables.

A special remark on the relevance of these results is the following. Kac [17] formulated the 
inverse spectral problem for planar domains. That is, to study how much geometric informa-
tion about Ω can be obtained from the Laplacian spectrum with homogeneous Dirichlet condi-
tions on Γ. Andersson and Melrose [1] gave an explicit relation between the length spectrum 
and the Laplacian spectrum. The length spectrum of Ω is the union of the lengths of all its  
( p, q)-periodic billiard trajectories and all the integer multiples of [ ]ΓLength . See also [6, 25].

Our results also apply to the dual billiards introduced by Day [9] and popularized by Moser 
[28] as a crude model for planetary motion. Some general references are [5, 15, 36, 37]. Let � 
be unbounded component of ΓR \2 . The dual billiard map →� �f :  is defined as follows: f(z) 
is the reflection of z in the tangency point of the oriented tangent line to Γ through z. Billiards 
and dual billiards are projective dual in the sphere [37].

A ( p, q)-periodic dual billiard trajectory forms a closed circumscribed polygon with q sides 
that makes p turns outside Γ. The area of a ( p, q)-periodic trajectory is the area enclosed by the 
corresponding polygon, taking into account some multiplicities if ⩾p 2. There are at least two 
different Birkhoff ( p, q)-periodic dual billiard trajectories outside Γ for any relatively prime 
integers p and q such that ⩾q 3 and ⩽ <p q1 .

Tabachnikov [36, 37] studied the supremum ( )A q1,  of the absolute value of the differences 
of the areas enclosed by all such (1, q)-periodic trajectories for smooth tables. He proved that 
there is a sequence ( ) ⩾ak k 1, depending only on Γ, such that, if A(1, q) is the area enclosed by any 
(1, q)-periodic dual billiard trajectory, then

[ ] →( )

⩾
∑Ω + ∞�A

a

q
qArea , ,q

k

k
k

1,

1
2 (3)

where ( ) ( )∫ κ= Γ =
Γ

a a s sd1 1
1

24
1/3 . Hence, the expansion of the areas in powers of q−1 coin-

cides for all these (1, q)-periodic trajectories, and so,  ( )( ) = −∞A qOq1,  for smooth strictly 
convex dual tables when →+∞q . Douady [11] found the existence of infinitely many invari-
ant curves outside any C7 strictly convex dual table. These invariant curves accumulate at the 
boundary of the dual table and have Diophantine rotation numbers.

In a completely analogous way to (classical) billiards, we have proved that, once fixed any 
positive integer p, if Γ is analytic, then there exist α>K , 0 such that

⩽( ) πα−A Ke ,p q q p, 2 / (4)

for all integer ⩾q 3 relatively prime with p. Once more, the exponent α is related to the width 
of a complex strip where a certain 1-periodic angular coordinate is analytic. The precise state-
ment is given in theorem 8.

Still in the context of dual billiards, the points at infinity can be seen as (1, 2)-periodic 
points, hence they form a (1, 2)-resonant RIC. Douady [11] found the existence of infinitely 
many invariant curves outside any C8 strictly convex dual table. These invariant curves accu-
mulate at infinity and have Diophantine rotation numbers. We have proved that, once fixed any 
constant ⩾L 1, if Γ is analytic, then there exist α>K , 0 such that

⩽( )
⎛
⎝
⎜

⎞
⎠
⎟πα

−
| − |

A K
p q

exp
/ 1/2

,p q, (5)

for all relatively prime integers p and q such that ⩽ ⩽| − |p q L1 2  and ⩾q 3. See theorem 9.
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The three exponents α that appear in the exponentially small upper bounds (2), (4) and (5) 
may be different, since each one is associated to a different analyticity strip width. Besides, 
all of these upper bounds follow directly from a general upper bound about analytic area-
preserving twist maps with analytic resonant RICs. Let us explain it.

Classical and dual billiard maps are exact twist maps defined on an open cylinder when 
written in suitable coordinates. Exact twist maps have been vastly studied. They satisfy a 
Lagrangian formulation and their orbits are stationary points of the action functional. See for 
instance [4, 18, 27].

Birkhoff [4] showed that the minima and minimax points of the ( p, q)-periodic action 
correspond to two different Birkhoff ( p, q)-periodic orbits of the twist map. A Birkhoff  
( p, q)-periodic orbit is an orbit such that, after q iterates, performs exactly p revolutions around 
the cylinder and its points are ordered in the base T as the ones following a rigid rotation of 
angle p/q. Since there exist at least two different Birkhoff ( p, q)-periodic orbits, we consider 
the supremum ( )∆ p q,  of the absolute value of the differences of the actions among all of them. 
The quantity ( )∆ p q,  coincides with ( )L p q,  and ( )A p q,  for classical and dual billiards, respectively.

Let ∆Wp q/  be the difference of actions between the minimax and minima ( p, q)-periodic 
orbits. Note that ( )∆ p q,  is an upper bound of ∆Wp q/ . Mather [26] used ∆Wp q/  as a criterion to 
prove the existence of RICs of given irrational rotation numbers. More concretely, he proved 
that there exists a RIC with irrational rotation number � if and only if → ∆ =� Wlim 0p q p q/ / .

Another criterion related to the destruction of RICs, in this case empirical, was proposed 
by Greene. The destruction of a RIC with Diophantine rotation number � under perturbation 
is related to a ‘sudden change from stability to instability of the nearby periodic orbits’ [13]. 
The stability of a periodic orbit is measured by the residue. MacKay [22] proved the criterion 
in some contexts. In particular, for an analytic area-preserving twist map, the residue of a 
sequence of periodic orbits with rotation numbers → �p q/  decays exponentially in | − |� p q/ . 
The same proof leads to a similar exponentially small bound of Mather’s ∆Wp q/  as → �p q/ . 
Delshams and de la Llave [10] studied similar problems for analytic area-preserving nontwist 
maps.

Generically RICs with a rational rotation number break under perturbation [31, 33]. 
Nevertheless, there are situations in which some distinguished resonant RICs always exist. 
See sections 3 and 4 for several examples related to billiard and dual billiard maps.

Let us assume that we have an analytic exact twist map with a (m, n)-resonant RIC. That 
is, a RIC whose points are (m, n)-periodic. Then there exist some variables (x, y) in which the 
resonant RIC is located at { y  =  0} and the n-th power of the exact twist map is a small pertur-
bation of the integrable twist map ( ) ( )= +x y x y y, ,1 1 . To be precise, it has the form

 ( )  ( )= + + = +x x y y y y yO , O .1
2

1
3

Since the n-th power map is real analytic, it can be extended to a complex domain of the form

{( ) }= ∈ × | | < | | <∗ ∗∗ ∗ C Z C ID x y x a y b: , / : , .a b,

The quantity a* plays a more important role than b*. To be precise, we have proved that, once 
fixed any ( )α∈ ∗a0,  and ⩾L 1, there exists K  >  0 such that

⩽( )
⎛
⎝
⎜

⎞
⎠
⎟πα

∆ −
| − |

K
q

np mq
exp

2
,p q,

for any relatively prime integers p and q such that ⩽ ⩽| − |np mq L1  and ⩾q 1. See theorem 
3 for a more detailed statement. This upper bound is optimal because ( )α∈ ∗a0, . That is, the 
exponent α can be taken as close to the analyticity strip width a* as desired. The constant K 
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may explode when α tends to a*, so, in general, we can not take α = ∗a . A similar optimal 
exponentially small upper bound was obtained in [12] in the setting of the splitting of separa-
trices of weakly hyperbolic fixed points of analytical area-preserving maps. The proof of this 
optimal bound adds some extra technicalities, but we feel that the effort is worth it.

The proof is based on two facts. First, we write the n-th power of the exact twist map 
as the integrable twist map ( ) ( )= +x y x y y, ,1 1  plus an exponentially small remainder on the 
distance to the RIC. See theorem 2. The size of the remainder is reduced by performing a 
finite sequence of changes of variables, but the number of such changes increases when we 
approach to the resonant RIC. This is a classical Neishtadt-like argument [29]. Second, we 
apply the MacKay–Meiss–Percival action principle [23], in which the difference of actions of 
( p, q)-periodic orbits is interpreted as an area on the phase space.

The structure of the paper is the following. Section 2 is devoted to state our results in the 
general context of analytic exact twist maps. In sections 3 and 4, we present the different billiard 
maps and show how the results in section 2 apply. Sections 5 and 6 contain the technical proofs.

2. Main theorems

2.1. Dynamics close to an analytic resonant RIC

We consider analytic maps defined on a neighbourhood (in the cylinder) of a resonant RIC. 
We also assume that these maps have the intersection property, at least in one side of the RIC. 
Our goal is to show that these maps are exponentially close to an integrable one in the distance 
to the resonant RIC. No exactness or area-preserving condition is required.

Let =T R Z/ . Let I be an interval of the real line.

Definition 1. A continuous map →× ×T T Rg I:  has the intersection property if the im-
age of any closed homotopically non trivial loop of the cylinder ×T I intersects the loop.

The intersection property is preserved under global changes of variables.

Definition 2. Let →× ×T T Rg I:  be a continuous map. A rotational invariant curve 
(RIC) of g is a closed loop ⊂ ×TC I homotopically non trivial such that g(C)  =  C. Let m  
and n be two relatively prime integers such that ⩾n 1. We say that C is (m, n)-resonant when 
Gn(s, r)  =  (s  +  m, r) for all ( )∈s r C, , where G(s, r) is a lift of g.

We want to study the dynamics of an analytic map g with the intersection property in a 
neighbourhood of an (m, n)-resonant RIC C. First, we note that all points on the RIC C remain 
fixed under the power map f  =  gn. Second, we recall a classical lemma that appears in several 
papers about billiards [21, 37]. We present the proof for completeness.

Lemma 1 (See [37]). Let β> 0. Let ( ) →β β× − ×T T Rf : , , ( ) ( )=f s r s r, ,1 1 , be a real 
analytic map with the intersection property of the form

( )  ( ) ( )  ( )ϕ ψ= + + = + +s s s r r r r s r rO , O ,1
2

1
2 3 (6)

for some real analytic 1-periodic functions ( )ϕ s  and ( )ψ s , and ( )ϕ s  has no zeros. Then there 
exist some new analytic coordinates (x, y) in which f has the form ( ) ( )=x y f x y, ,1 1 , with

 ( )  ( )= + + = +x x y y y y yO , O .1
2

1
3 (7)

Besides, there exist some analyticity strip width a*  >  0 and some analyticity radius b*  >  0 
such that f is real analytic on ( )× − ∗ ∗T b b,  and can be analytically extended to the domain

{( ) ( )   }= ∈ × | | < | | <∗ ∗∗ ∗ C Z C ID x y x a y b, / : , .a b, (8)
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The same result holds when [ ) →β× ×T T Rf : 0,  or when f : , 0( ] →β× − ×T T R is a real 
analytic map with the intersection property of the form (6).

Proof. The intersection property implies that the quotient ( ) ( )ψ ϕs s/  has zero average. Let 

us prove this claim. Set ( ( ) ( ))∫µ ψ ϕ= s s s/ d
0

1
. We consider the coordinates (x, y) defined by

( ) ( )= =x a s y b s r, , (9)

where the real analytic functions a(s) and b(s) have the form

( ) ( )
( )

( ) ( )
( )

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥∫ ∫ϕ

ν
ψ
ϕ

µ= = − −a s
b t

t
t b s

t

t
td , exp d

s s

0 0
 (10)

for some constant ν≠ 0. The function b(s) is 1-periodic and has no zeros. The constant ν is 
determined in such a way that a(s  +  1)  =  a(s)  +  1, so the new angular coordinate x is defined 
modulus one: ∈Tx . A straightforward computation shows that

 ( ) ( ) ( )  ( )µϕ= + + = + +x x y y y y s y b s yO , / O .1
2

1
2 3

If µ≠ 0, then the map ( ) ( )�x y x y, ,1 1  does not have the intersection property. Hence, µ = 0 
and the map f has the form (7) in the analytic variables (x, y). These coordinates (x, y) cover an 
open complex neighbourhood of { y  =  0 }. In particular, f can be analytically extended to the 
complex domain ∗ ∗Da b,  for some >∗ ∗a b, 0.

 
□

The map (7) can be viewed as a perturbation of the integrable twist map

= + =x x y y y, .1 1 (11)

We want to reduce the size of the nonintegrable terms  ( )yO 2  and  ( )yO 3  as much as possible. 
We can reduce them through normal form steps up to any desired order; see lemma 10. Thus, 
the nonintegrable part of the dynamics is beyond all order in y; that is, in the distance to C. A 
general principle in conservative dynamical systems states that beyond all order phenomena 
are often exponentially small in the analytic category. Our goal is to write the map as an expo-
nentially small perturbation in y of the integrable twist map (11). The final result is stated in 
the following theorem. If h is a real-valued smooth function, ∂ hi  denotes the derivative with 
respect to the i-th variable.

Theorem 2. Let >∗ ∗a b, 0. Let ( ) →× − ×∗ ∗T T Rf b b: , , ( ) ( )=x y f x y, ,1 1 , be a real  analytic 
map of the form (7) with the intersection property on [ )× ∗T b0,  or ( ]× − ∗T b , 0  that can 
be analytically extended to the complex domain (8). Let ⩾m 2 be an arbitrary order. Let 

( )α∈ ∗a0, . There exist constants K  >  0 and b b0,( )∈′∗ ∗  such that, if ( )∈ ′∗b b0, , then there exists 
an analytic change of variables ( ) ( )ξ η= Φx y, ,  such that:

 (i) It is uniformly (with respect to b) close to the identity on ( )× −T b b, . That is,

 ( )  ( ) [ ( )]  ( )ξ η η η ξ η η= + = + Φ = +x yO , O , det D , 1 O ,2

  for all ( ) ( )ξ η ∈ × −T b b, , , where the  ( )ηO  and  ( )ηO 2  terms are uniform in b; and
 (ii)  The transformed map ( ) ( )ξ η ξ η�, ,1 1  is real analytic on the cylinder ( )× −T b b, .  Besides, 

it has the form

( ) ( )ξ ξ η η ξ η η η η ξ η= + + = + +g g, , , ,m m
1 1 1

1
2 (12)

  where ( ) ⩽ξ η| | πα−g K, ej
b2 /  and ( ) ⩽ξ η|∂ | −g Kb,i j

2 for all ( ) ( )ξ η ∈ × −T b b, , .
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The proof can be found in section 5.

Remark 1. We require the intersection property on one side of the resonant RIC { }= ×TC 0  
only. This is useful to study the billiard (and dual billiard) maps considered later on, because 
the boundaries of the natural phase spaces of these maps can be viewed as resonant RICs.

Consider a perturbed Hamiltonian system which is close to an integrable system. It is 
known that, under the appropriate nondegeneracy conditions, the measure of the set of tori 
which decompose under the perturbation can be bounded from above by a quantity of order 
ε , ε being the perturbation parameter [29, 32]. Neishtadt [29] also considered a context 

where the perturbation becomes exponentially small in some parameter ε and hence the meas-
ure of the complementary set which is cut out from phase space by the invariant tori is of order 
− εe c/ , c being a positive constant. This argument could be applied to our context. First, any 

neighbourhood of an analytic RIC of fixed points of an analytic map contains infinitely many 
RICs. Second, the area of the complementary of the RICs in any of such neighbourhoods is 
exponentially small in the size of the neighbourhood. Third, the gaps between the RICs are 
exponentially small in their distance to the RIC of fixed points. The first result follows from 
the classical Moser twist theorem [34]. The others follow from the ideas explained above.

2.2. Difference of periodic actions

In this section we consider real analytic exact twist maps defined on open cylinders that can be 
extended as rigid rotations on the boundaries of the cylinder. This has to do with the fact that 
we look for a global result. See remark 2 below.

Let ⊂ ×T RD  be the open cylinder enclosed between two homotopically non trivial 
loops, C− and C+ . We assume that C− is strictly below C+ . Let ω λ= −d  be an exact sym-
plectic form on D. The symplectic form ω may be degenerate or not defined on the boundaries 
∂ = ∪− +D C C .

Definition 3. A smooth diffeomorphism →g D D:  is an exact twist map when it preserves 
the exact symplectic form ω λ= −d , has zero flux, and satisfies the classical twist condition 

( )∂ >s s r, 02 1 , where ( ) ( )=G s r s r, ,1 1  is a lift of g.

Henceforth, the exact symplectic form ω λ= −d  and the lift G remain fixed. We stress 
that, if →g D D:  is a diffeomorphism preserving ω and g has a RIC C, then both the zero flux 
condition and the intersection property are automatically satisfied.

If an exact twist map →g D D:  can be continuously extended as rigid rotations of angles −�  and 
+�  to the boundaries C− and C+ , then <− +� �  (due to the twist condition) and there exists a func-

tion {( ) } →∈ < − <− +� �R Rh s s s s: , :1
2

1 , determined modulo an additive constant, such that

λ λ− =∗G hd .

The function h is called the Lagrangian or generating function of g.
Let p and q be two relatively prime integers such that < <− +� �p q/  and ⩾q 1. A point 

( )∈ ×Rs r I,  is ( p, q)-periodic when Gq(s, r)  =  (s  +  p, r). The corresponding point 
( )∈ ×Ts r I,  is a periodic point of period q by g that is translated p units in the base by the 
lift. A ( p, q)-periodic orbit is Birkhoff when it is ordered around the cylinder in the same way 
that the orbits of the rigid rotation of angle p/q. See [18] for details. The Poincaré–Birkhoff 
theorem states that there exist at least two different Birkhoff ( p, q)-periodic orbits [18, 27].

Let {( )}= ∈ZO s r,k k k  be a ( p, q)-periodic orbit. Its ( p, q)-periodic action is

[ ] ( ) ( ) ( )( ) = + + + +−�W O h s s h s s h s s p, , , .p q
q

,
0 1 1 2 1 0

P Martín et alNonlinearity 29 (2016) 198



205

Our goal is to establish an exponentially small bound for the non-negative quantity

[ ¯] [ ]( )

¯

( ) ( )
( )

∆ = −
∈O

W O W Osup ,p q

O O

p q p q,

,

, ,

g
p q,

where ( )Og
p q,  denotes the set of all Birkhoff ( p, q)-periodic orbits of the map →g D D: . The 

difference of ( p, q)-periodic actions can be interpreted as the ω-area of certain domains.
Let us explain it.
Let {( )}= ∈ZO s r,k k k  and ¯ {(¯ ¯ )}= ∈ZO s r,k k k  be two ( p, q)-periodic orbits. We can assume, 

without loss of generality, that ¯< − <s s0 10 0 . Let L0 be a curve from ( )s r,0 0  to ( ¯ ¯ )s r,0 0  con-
tained in ×R I. Set ( )=L G Lk

k
0 . The curves L0 and Lq have the same endpoints in ×T I. Let 

us assume that these two curves have no topological crossing on the cylinder ×T I and let 
⊂ ×TB I be the domain enclosed between them.

Observe that ( ) ( ¯ ¯ ) ( )∫ ∫ ∫ ∫λ λ λ λ− = − = = −∗
+ +

+
G h h s s h s sd , ,

L L L L k k k k1 1
k k k k1

. Hence, 

( ( ¯ ¯ ) ( )) ∫ ∫ ∫ ∫λ λ λ ω∑ − = − = =±=
−

+ + −
h s s h s s, ,k

q
k k k k L L L L B0

1
1 1

q q0 0
, where the sign  ±  depends 

on the orientation of the closed path ( )−g L Lq
0 0, but we do not need it, because we take abso-

lute values in both sides of the previous relation:

[ ¯] [ ] [ ]( ) ( ) ∫ ω− = = ωW O W O B: Area .p q p q

B

, , (13)

These arguments go back to the MacKay–Meiss–Percival action principle [23, 27]. If the 
curves L0 and ( )g Lq

0  have some topological crossing, then the domain B has several connected 

components, in which case [ ¯] [ ] ⩽ [ ]( ) ( ) ∫ ω− = ωW O W O B: Areap q p q
B

, , , because the sign in 

front of the integral of the area form ω depends on the connected component.
If the analytic exact twist map g has a (m, n)-resonant RIC, then

( )∆ = 0.m n,

Indeed, we can take a segment of the RIC as the curve L0 used in the previous construction 
in such a way that ( ) =g L Ln

0 0 and [ ] =ω BArea 0. It turns out that the differences of ( p, q)- 
periodic actions of g are exponentially small when p/q is ‘sufficiently close’ to m/n. The mean-
ing of ‘sufficiently close’ is clarified in the following theorem. See also remark 3.

Theorem 3. Let →g D D:  be an analytic exact twist map that can be continuously  extended 
as rigid rotations of angles −�  and +�  to the boundaries C− and C+ , respectively. Let m and 
n be two relatively prime integers such that ⩾n 1. Let >∗ ∗a b, 0, ( )α∈ ∗a0, , and ⩾L 1. If 
=−� m n/ , g can be analytically extended to C−, and there exist some analytic coordinates  

(x, y) such that { }≡ =−C y 0  and the power map f  =  gn has the form (7) and can be analyti-
cally extended to the complex domain (8), then there exists K  >  0 such that

⩽( )
⎛
⎝
⎜

⎞
⎠
⎟πα

∆ −
| − |

K
q

np mq
exp

2
,p q, (14)

for all relatively prime integers p and q with ⩽ ⩽−np mq L1  and ⩾q 1. The same upper 
bound holds interchanging the roles of C+ and C−, but in this case ⩽ ⩽−mq np L1 .

The proof has been placed at section 6.

Remark 2. This theorem requires some global hypotheses because, by definition, the com-
putation of ( )∆ p q,  involves all ( p, q)-periodic orbits of the map →g D D:  and not only the 
ones close to the resonant boundary. The global twist condition and the continuous extension 
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as a rigid rotation to the other boundary imply that all ( p, q)-periodic orbits are close to the 
resonant boundary. Clearly, there exists a local version of the exponentially small upper bound 
(14) when the analytic exact twist map g is defined on a small neighbourhood of the resonant 
RIC.

Remark 3. Condition ⩽| − |np mq L implies that  ( )| − |=p q m n q/ / O 1/  as →+∞q .

Remark 4. In many applications, =−� 0, so C− is a RIC of fixed points. Then theorem 3 
implies that ( )∆ p q,  is exponentially small in the period q when p remains uniformly bounded. 
To be precise, if ( )α∈ ∗a0,  and ⩾L 1, there exists K  >  0 such that

⩽( )∆ πα−Kep q q p, 2 /

for all relatively prime integers p and q with ⩾q 1 and ⩽ ⩽p L1 .

3. On the length spectrum of analytic convex domains

3.1. Convex billiards

We recall some well-known results about billiards that can be found in [18, 20, 36].
Let Γ be a closed strictly convex curve in the Euclidean plane R2. We assume, without 

loss of generality, that Γ has length one. Let ∈Ts  be an arc-length parameter on Γ. Let 
( ) → ( )π π× ×T Tf : 0, 0, , ( ) ( )=s r f s r, ,1 1 , be the map that models the billiard dynamics 

inside Γ using the Birkhoff coordinates (s, r), where ∈Ts  determines the impact point on the 
curve, and ( )π∈r 0,  denotes the impact angle.

The map f preserves the exact symplectic form ω = ∧r s rsin d d  and has the intersec-
tion property. Indeed, ( ) → ( )π π× ×T Tf : 0, 0,  is an exact twist map with boundary rota-
tion numbers =−� 0 and =+� 1. Besides, its Lagrangian is the distance between consecutive 
impact points. Finally, f is analytic when Γ is analytic.

Any ( p, q)-periodic orbit on the billiard map forms a closed inscribed polygon with q sides 
that makes p turns inside Γ. Since the Lagrangian of the billiard map is the distance between 
consecutive impact points, the periodic action of a periodic orbit is just the total length of the 
corresponding polygon. Therefore, the supremum action difference among ( p, q)-periodic 
billiard orbits is the supremum length difference among inscribed billiard ( p, q)-polygons.

3.2. Study close to the boundary of the billiard table

We note that → +r 0  when a billiard trajectory approaches Γ. Thus, in order to study the billiard 
dynamics close to Γ, we must study the billiard map ( ) → ( )π π× ×T Tf : 0, 0,  in a neigh-
bourhood of the lower boundary { }×T 0 . We want to apply theorem 3 to this lower boundary, 
so we need to check that f can be analytically extended to [ )π×T 0, . We prove a stronger 
result in the following proposition. To be precise, the billiard map can be considered as a real 
analytic diffeomorphism of a torus by identifying the upper boundary { }π×T  and the lower 
boundary { }×T 0  and considering the impact angles on the projective line.

Proposition 4. Let Γ be an analytic strictly convex curve in the Euclidean plane. Let ( )ρ s  
be the radius of curvature of  Γ as a function of the arc-length parameter s. The billiard  
map ( ) → ( )π π× ×T Tf : 0, 0,  associated to Γ satisfies the following properties:
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 (i) It extends analytically to ×T R;
 (ii) Its analytic extension has the reversibilities and the periodicity

f R f R f T f T P f f P, , ,1 1= = =− −� � � � � �

  where R(s, r)  =  (s,−r), ( ) ( )π= −T s r s r, , , and ( ) ( )π= +P s r s r, , ;
 (iii) It can be considered as a real analytic diffeomorphism of the torus ( )π×T R Z/ ; and
 (iv) The first terms of its Taylor expansion for small impact angles are

( ) ( ) ( )  ( )
( ) ( ( ( )) ( ) ( ) )  ( )″
ρ ρ ρ
ρ ρ ρ ρ

= + + +
= − + − +

′

′ ′

⎧
⎨
⎩

s s s r s s r r

r r s r s s s r r

2 4 /3 O ,

2 /3 4 /9 2 /3 O .
1

2 3

1
2 2 3 4

Proof. Let → ΓTm : , → ( )κ +∞T: 0, , and →T Rn : 2 be an arc-length parametrization, 
the curvature, and a unit normal vector of the analytic strictly convex curve linked by the rela-
tion ( ) ( ) ( )″ κ=m s s n s . In what follows, we consider these functions as real analytic 1-periodic 
functions defined on the universal cover R of T. We also consider the set

{( ) }= ∈ | − | < = ∪∆∪− +RU s s s s U U, : 1 ,1
2

1

where {( ) }= ∈ − < <− RU s s s s s, : 11
2

1 , {( ) }= ∈ < < ++ RU s s s s s, : 11
2

1 , and ∆ is the di-
agonal {( ) }∈ =Rs s s s, :1

2
1 . Next, we write both impact angles as functions of consecutive 

impact points. To be precise, there exist two analytic functions ¯ ¯ → ( )π+r r U, : 0,1  such that

( )     ( ) ( ) ⟺ ¯( )    ¯ ( )∈ = = =+s s U f s r s r r r s s r r s s, and , , , and , .1 1 1 1 1 1 1

Let us study what happens when → +s s1 . We note that ¯( )=r r s s, 1  is the angle between ( )′m s  
and m(s1)  −  m(s). Hence,

r s s
m s m s m s

m s m s m s

m s m s t s s t

m s m s t s s t
tan ,

det ,

,

det , d

, d
,1

1

1

0

1
1

0

1
1

¯( ) ( ( ) ( ) ( ))
⟨ ( ) ( ) ( )⟩

( ( ) ( ( )))

⟨ ( ) ( ( ))⟩

∫

∫
=

−
−

=
+ −

+ −

′
′

′ ′

′ ′
 (15)

so the function ¯( )r s s, 1  can be analytically extended to the diagonal ∆, ¯( )≡r s s, 0, and

¯( ) ¯( ) ¯( ) ¯( ) ( )
→ →

κ∂ = ∂ = ∂ =
+ +

r s s r s s r s s r s s s, lim , lim cos , tan , /2,
s s s s

2 2 1
2

1 2 1
1 1

for all ∈Rs . The function ¯ ( )r s s,1 1  can also be extended analytically to ∆ by using an analo-
gous argument. Since ¯( ) ( )κ∂ = >r s s s, /2 02  for all ∈Rs , there exists a function ¯ ( )s s r,1  ana-
lytic on { }×R 0  such that ¯( ¯ ( )) =r s s s r r, ,1  and ¯ ( ) =s s s, 01 . Thus, we can write the billiard map 
as ( ) ( ) ( ¯ ( ) ¯ ( ¯ ( )))= =f s r s r s s r r s s s r, , , , , ,1 1 1 1 1 , which proves that f can be analytically extended 
to a complex neighbourhood of { }×R 0 .

Let us describe the meaning of this extension for small negative impact angles. To be-
gin with, we model the billiard dynamics as a map that acts on consecutive impact points. 
That is, we consider the new billiard map ˜ →+ +f U U:  such that ˜ ( ) ( )=−f s s s s, ,1 1 . The pre-
vious arguments show that f̃  can be analytically extended to a complex neighbourhood of 
∆. It is geometrically clear that relation ˜ ( ) ( )= −f s s s s, ,1 1  holds for this extension. That is, 
˜ ˜ ˜ ˜= −� �f R f R1 , where ˜ →R U U:  is the reversor ˜( ) ( )=R s s s s, ,1 1 .

Next, we come back to the Birkhoff coordinates (s, r). Let R(s, r)  =  (s, −r). Since 
¯ ( ) ¯( )= −r s s r s s, ,1 1 1 , the reversor R̃ becomes R R f 1ˆ = −�  in the Birkhoff coordinates. 
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Hence,  relations ˆ ˆ= −� �f R f R1  and f R f R1= −� �  hold, at least in a neighbourhood of 
{ }×R 0 . Thus, we can analytically extend f to ( )π π× −R ,  by using the reversor R. We note 

that = �P T R, where ( ) ( )π= −T s r s r, ,  is a well-known reversor of f. This implies that 
P f f P=� � , so we can analytically extend f to the whole space ×R R by periodicity. Finally, 
we recall that s is an angular variable, so the billiard map f is analytic in the infinite cylinder 
×T R.
This ends the proof of the first two items. The third item is a trivial consequence of them. 

The Taylor expansion given in the last item was obtained by Lazutkin [21]. □

From the Taylor expansion given in the previous proposition, Lazutkin deduced that the 
billiard map takes the form

 ( )  ( )= + + = +x x y y y y yO , O1
3

1
4

in the analytic Lazutkin coordinates (x, y) defined by

( ) ( ) ( ) ( )∫ ∫ρ ρ ρ= = =− − −x k t t y k s r k t td , 4 sin /2 , d .
s

0

2/3 1/3 1

0

1
2/3

The constant k is determined in such a way that the new angular coordinate x is defined 
modulus one. Lazutkin’s results are more refined than the ones in lemma 1, he wrote the 
billiard map as a smaller perturbation of the integrable twist map ( ) ( )= +x y x y y, ,1 1 , but we 
do not need it. Our coordinates (9)–(10) and the Lazutkin coordinates are directly related. 

Namely, ( ) ( )ϕ ρ=s s2  and ( ) ( )ψ ρ= − ′s s2 /3 imply that ( ) ( )∫ ρ= ν −a s t td
s

2 0
2/3 , ( ) ( )νρ=b s s1/3 , 

and ν = k2 .
Let ( )π= ×TD 0, , { }= ×− TC 0 , and { }π= ×+ TC . Set m  =  0 and n  =  1. The bil-

liard map →f D D:  satisfies the hypotheses required in theorem 3. Only one hypothesis can 
rise doubts at this point. Namely, the existence of some analytic coordinates (x, y) such that 

{ }≡ =−C y 0  and f has the form (7) and can be analytically extended to the complex domain 
(8) for some >∗ ∗a b, 0. This existence follows directly from lemma 1 since f has the form (6) 
with ( ) ( )ϕ ρ= >s s2 0 and s s2 /3( ) ( )ψ ρ= − ′ . See proposition 4. Therefore, we get the expo-
nentially small upper bound of the quantities ( )L p q,  defined in the introduction.

Theorem 5. Let Γ be an analytic strictly convex curve in the Euclidean plane. Let a*  >  0 be 
the analyticity strip width of the lower boundary C− . Let ( )α∈ ∗a0,  and ⩾L 1. There exists a 
constant K  >  0 such that

⩽( ) πα−L Ke ,p q q p, 2 /

for all relatively prime integers p and q with ⩾q 2 and ⩽< p L0 .

The same exponentially small upper bound holds for analytic geodesically strictly convex 
curves on surfaces of constant curvature, where the billiard trajectories are just broken geo-
desics. Billiard maps on the Klein model of the hyperbolic plane H2 and on the positive hemi-
sphere +S2  have been studied, for instance, in [7], where it is shown that they are exact twist 
maps with the same boundary rotation numbers as in the Euclidean case. Therefore, by local 
isometry arguments, we can write a version of theorem 5 on any surface of constant curvature.

3.3. Billiard tables of constant width

Definition 4. A smooth closed convex curve is of constant width if and only if it has a chord 
in any direction perpendicular to the curve at both ends.
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Billiards inside convex curves of constant width have a nice property [14, 19]. Let us 
explain it.

The billiard map associated to a smooth convex curve of constant width has the horizontal 
line { }π×T /2  as a (1, 2)-resonant RIC. Any trajectory belonging to that RIC is orthogonal to 
the curve at its two endpoints. Due to the variational formulation, all the (1, 2)-periodic orbits 
are extrema of the (1, 2)-periodic action and, thus, all (1, 2)-periodic trajectories have the same 
length, which is the reason we refer to them as constant width curves.

Another characterization of constant width curves is the following. We reparametrize the 
curve by using the angle ( )ϕ π∈ 0, 2  between the tangent vector at a point in the curve and 
some fixed line. Let ( )ρ ϕ  be the radius of curvature at this point. The curve has constant 
width if and only if the Fourier series of ( )ρ ϕ  contains no other even coefficients than the 
constant term. Thus, the space of analytic constant width curves has infinite dimension and 
codimension.

Next, we apply theorem 3 twice in order to get the exponentially small upper bound of 
( )L p q,  in both sides of the (1, 2)-resonant RIC { }π×T /2 . Namely, we apply it to the cylinders 

( )π π×T /2,  and ( )π×T 0, /2 . Since { }π×T /2  is a (1, 2)-resonant RIC of the biliard map 
( ) → ( )π π× ×T Tg : 0, 0, , the square billiard map f  =  g2 has the form

( )  ( ) ( )  ( )ϕ ψ= + + = + +s s s v v v v s v vO , O ,1
2

1
2 3

for some real analytic 1-periodic functions ( )ϕ s  and ( )ψ s , where π= −v r /2 measures the 
distance to the resonant RIC. The function ( )ϕ s  is positive because g satisfies the twist condi-
tion on the whole phase space ( )π×T 0, . Therefore, we can apply lemma 1, so all hypotheses 
of theorem 3 are satisfied.

Theorem 6. Let ( ) → ( )π π× ×T Tg : 0, 0,  be the billiard map of an analytic strictly convex 
curve of constant width. Let a*  >  0 be the analyticity strip width of the (1, 2)-resonant RIC of g.  
Let ( )α∈ ∗a0,  and ⩾L 1. There exists a constant K  >  0 such that

⩽( )
⎛
⎝
⎜

⎞
⎠
⎟πα

−
| − |

L K
p q

exp
/ 1/2

,p q,

for all relatively prime integers p and q such that ⩽ ⩽| − |p q L1 2  and ⩾q 3.

One could try to generalize constant width billiards, where { }π×T /2  is a (1, 2)- resonant 
RIC, to constant angle tables, where { }×T r0  is assumed to be a (m, n)-resonant RIC. 
However, the only table such that { }×T r0  is a (m, n)-resonant RIC, with ( ) ( )≠m n, 1, 2 , is the 
circle. See [8, 14]. By the way, theorem 3 applies to this case but, since the circular billiard is 
integrable, ( )≡L 0m n, , for all (m, n). In fact, the circular billiard map is globally conjugated to 
the integrable twist map (11).

There are more billiard tables with resonant RICs, but their RICs are not horizontal. For 
instance, the elliptic table has all possible (m, n)-resonant RICs, but the (1, 2)-resonant one. 
Hence, in this case, ( ) =L 0m n, . Baryshnikov and Zharnitsky [3] proved that an ellipse can be 
infinitesimally perturbed so that any chosen resonant RIC will persist. Innami [16] found a 
condition on the billiard table that guarantees the existence of a (1, 3)-resonant RIC. However, 
theorem 3 can not be applied in such cases, because both the Baryshnikov-Zharnitsky and the 
Innami constructions are done in the smooth category, where we can only claim that ( )L p q,  is 
beyond all order in the difference between rotation numbers.
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4. On the area spectrum of analytic convex domains

4.1. Dual billiards

We recall some well-known facts about dual billiards that can be found in [5, 15, 36].
Let Γ be a strictly convex closed curve in the Euclidean plane R2. Let � be the unbounded 

component of ΓR \2 . The dual billiard map →� �f :  is defined as follows: f(z) is the reflec-
tion of z in the tangency point of the oriented tangent line to Γ through z. This map is area-pre-
serving. Next, we introduce the envelope coordinates ( ) ( )α ∈ × +∞�Tr, 0,  of a point ∈�z . 
In this section, π=�T R Z/2 . We recall that =T R Z/ .

Given a point ∈�z , let α∈ �T  be the angle made by the positive tangent line to Γ in the 
direction of z with a fixed direction of the plane, and let ( )∈ +∞r 0,  be the distance along this 
line from Γ to z. See figure 1.

The dual billiard map preserves the exact symplectic form ω α= ∧r rd d  and has the inter-
section property. Indeed, ( ) → ( )× +∞ × +∞� �T Tf : 0, 0, , ( ) ( )α α=r f r, ,1 1 , is an exact twist 
map with boundary rotation numbers =−� 0 and π=+� . Its Lagrangian is the area enclosed 
by Γ and the tangent lines through the points on Γ with coordinates α and α1.

Any ( p, q)-periodic orbit on the dual billiard map forms a closed circumscribed polygon 
with q sides that makes p turns outside Γ. Since the Lagrangian of the dual billiard map is 
the above-mentioned area, the periodic action of a periodic orbit is just the area enclosed 
between the corresponding polygon and Γ, taking into account some multiplicities when 

⩾p 2. Therefore, the supremum action difference among ( p, q)-periodic dual billiard orbits is 
the supremum area difference among circumscribed dual billiard ( p, q)-polygons.

4.2. Study close to the curve

We note that → +r 0  when the point ∈�z  approaches to the curve Γ. Therefore, in order to 
study the dual billiard dynamics close to Γ, we must study the dual billiard map f in a neigh-
bourhood of the lower boundary { }= ×− �TC 0  of ( )× +∞�T 0, .

Figure 1. The envelope coordinates ( )α r,  and the dual billiard map →� �f : .
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Let us check that the dual billiard map ( ) → ( )× +∞ × +∞� �T Tf : 0, 0,  satisfies the 
hypotheses required in theorem 3. Only two of these hypotheses remain to be checked. The 
first one is that f can be analytically extended to the lower boundary { }= ×− �TC 0 . The sec-
ond one is that there exist some analytic coordinates (x, y) such that { }≡ =−C y 0  and f has 
the form (7) and can be analytically extended to the complex domain (8) for some >∗ ∗a b, 0. 
This second part will follow directly from lemma 1 once we check that

r r r r r r2 O , 2 /3 O ,1
2

1
2 3( )  ( ) ( )  ( )α α κ α κ α= + + = − +′ (16)

where ( )κ α  is the curvature of Γ as a function of the envelope parameter α. We prove these 
results (and a stronger extension one) in the following proposition.

Proposition 7. Let Γ be an analytic strictly convex curve in the Euclidean plane. The dual 
billiard map ( ) → ( )× +∞ × +∞� �T Tf : 0, 0,  associated to Γ satisfies the following proper-
ties:

 (i) It extends analytically to ×�T R;
 (ii) Its analytic extension has the reversibility f R f R1= −� � , with ( ) ( )α α= −R r r, , ; and
 (iii) It has the form (16) for small distances r.

Proof. Following the proof of proposition 4, we consider the coordinate α in the universal 
cover R, we write both distances as functions of consecutive tangent points: ¯( )α α=r r , 1  and 
r r ,1 1 1¯ ( )α α= , and then we repeat the steps of the previous proof. There are only three remark-
able differences between the two proofs.

First, {( ) }α α α α α π= ∈ < < ++ RU , :1
2

1  is the open set where we directly know that 
the functions ¯( )α αr , 1  and ¯ ( )α αr ,1 1  are analytic. We note that tangent lines through points with 
coordinates α and α π+  are parallel, so ¯( )→( ) α α = +∞α α π+ − rlim , 11

.
Second, to study what happens when →α α+1 , let ( )ρ α  be the radius of curvature of Γ in the 

envelope parameter α and set α α δ= +1 . From Boyland [5], we know that

¯( )
( ) ( )

( )
( ) ( )∫

∫
α α

α ρ

α α
δ
δ

δ ρ α δ=
−

−
= +α

α

r
v v v

t t t,
sin d

sin sin
sin d ,1

1 0

1
1

so the function ¯( )α αr , 1  can be analytically extended to {( ) }α α α α∆ = ∈ =R, :1
2

1 , 
¯( )α α =r , 0, and ¯( ) ( )α α ρ α∂ = >r , /2 02  for all α∈R.

Third, the dual billiard map has no periodicity in the coordinate r, which is geometrically 
obvious since r is no longer an angle, but a distance, in dual billiards.

The rest of the proof of the analyticity and reversibility is completely analogous. We omit 
the details.

Finally, the Taylor expansion (16) of the dual billiard map around r  =  0 was obtained by 
Tabachnikov in [37]. To be precise, Tabachnikov wrote this Taylor expansion in coordinates 
(s, r), where s is an arc-length parameter, but his result can be easily adapted. □

From the Taylor expansion given in the previous proposition, Tabachnikov deduced that 
the billiard map takes the form (7) in the analytic Tabachnikov coordinates (x, y) defined by

( ) ( ) ( )∫ ∫κ κ α κ= = =
α π
− − −x k v v y k r k v vd , 2 , d .

0

2/3 1/3 1

0

2
2/3
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The constant k has been determined in such a way that x is defined modulus one: ∈Tx . The 
coordinates (9)–(10) coincide with the Tabachnikov coordinates. Concretely, ( ) ( )ϕ α κ α= 2  

and 2 /3( ) ( )ψ α κ α= − ′  imply that ( ) ( )∫α κ= ν α −a t td
2 0

2/3 , ( ) ( )α νρ α=b 1/3 , and ν = k2 .

We get the following exponentially small upper bound of the quantities ( )A p q,  defined in the 
introduction by direct application of proposition 7, lemma 1 and theorem 3.

Theorem 8. Let Γ be an analytic strictly convex curve in the Euclidean plane. Let a*  >  0 be 
the analyticity strip width of the lower boundary C−. Let ( )α∈ ∗a0,  and ⩾L 1. There exists a 
constant K  >  0 such that

⩽( ) πα−A Ke ,p q q p, 2 /

for all relatively prime integers p and q with ⩾q 3 and ⩽< p L0 .

Tabachnikov [38] studied the dual billiard map in the hyperbolic plane H2, and extended 
the asymptotic expansion (3) to that new setting. He also claimed that there exists an analo-
gous formula for dual billiards on the unit sphere S2. Therefore, by local isometry arguments, 
we can write a version of theorem 8 on any surface of constant curvature.

4.3. Study far away from the curve

We note that →+∞r  when the point ∈�z  moves away from the curve Γ. We use the coor-
dinates ( )α v,  to work at infinity, where v  =  1/r and ( ) ( )α ∈ × +∞�Tr, 0,  are the coordinates 
introduced in section 4.1. Tabachnikov [37] realized that the dual billiard map at infinity can 
be seen as a map defined in a neighbourhood of the (1, 2)-resonant RIC { v  =  0 }. To be pre-
cise, he saw that the dual billiard map can be analytically extended to ⩾v 0, and its square has 
the form

( )  ( ) ( )  ( )α α ϕ α ψ α= + + = + +v v v v v vO , O ,1
2

1
2 3

for some real analytic 1-periodic functions ( )ϕ α  and ( )ψ α , and ( )ϕ α  is negative. This is all we 
need to state the following theorem.

Theorem 9. Let Γ be an analytic strictly convex curve in the Euclidean plane. Let a*  >  0 be 
the analyticity strip width of the (1, 2)-resonant RIC {v  =  0}. Let ( )α∈ ∗a0,  and ⩾L 1. There 
exists a constant K  >  0 such that

⩽( )
⎛
⎝
⎜

⎞
⎠
⎟πα

−
| − |

A K
p q

exp
/ 1/2

,p q,

for all relatively prime integers p and q such that ⩽ ⩽| − |p q L1 2  and ⩾q 3.

5. Proof of theorem 2

5.1. Spaces, norms, and projections

Let Xa b, , with a  >  0 and b  >  0, be the space of all analytic functions g defined on the open set

{( ) ( ) }= ∈ × | | < | | <C Z C ID x y x a y b, / : ,a b,

with bounded Fourier norm
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g g e ,a b
k

k b
k a

,
2∥ ∥ ˆ∑= | | π

∈

| |

Z

where ˆ ( )g yk  denotes the k-th Fourier coefficient of the 1-periodic function ( )⋅g y,  and

ˆ { ˆ ( ) }| | = | | ∈g g y y Bsup :k b k b

denotes its sup-norm on the complex open ball { }= ∈ | | <CB y y b:b . Let

{ ( ) ( ) }| | = | | ∈g g x y x y Dsup , : ,a b a b, ,

be the sup-norm on Da,b.
Let Xa b m, ,  be the space of all vectorial functions →CG D: a b,

2 of the form

( ) ( ( ) ( ))= +G x y y g x y y g x y, , , ,m m
1

1
2

such that ∈Xg g, a b1 2 , . The space Xa b m, ,  is a Banach space with the Fourier norm 
∥ ∥ {∥ ∥ ∥ ∥ }=G g gmax , .a b m a b a b, , 1 , 2 ,  The sup-norm |⋅|a b m, ,  on Xa b m, ,  is defined analogously.

Let ( ) ( )∫=∗g y g x y x, d2 0

1
2  be the average of g2(x, y). Let a b m a b m a b m, , , , , ,

•= ⊕∗X X X  be the 

direct decomposition where ∗X a b m, ,  is the vectorial subspace of the elements of the form 

( ) ( ( ))=∗ + ∗G x y y g y, 0, m 1
2 , whereas •X a b m, ,  is the one of the elements with ( ) =∗g y 02 . Let 

→π∗ ∗X X: a b m a b m, , , ,  and →• •π X X: a b m a b m, , , ,  be the associated projections. Thus, any ∈XG a b m, ,  
can be decomposed as G G G•= +∗ , where

( ) ( ( )) ( )• • •π π= = ∈ = ∈∗ ∗ + ∗ ∗X XG G y g y G G0, , .m
a b m a b m

1
2 , , , ,

Obviously, ∥ ∥ ⩽ ∥ ∥∗G Ga b m a b m, , , ,  and G Ga b m a b m, , , ,∥ ∥ ⩽ ∥ ∥•

We will always denote the scalar functions in Xa b,  with lower-case letters, and the vecto-
rial functions in Xa b m, ,  with upper-case letters. Asterisk and bullet superscripts in upper-case 
letters stand for the π∗-projections and •π -projections of vectorial functions in Xa b m, , , respec-
tively. Asterisk superscripts in lower-case letters denote averages of scalar functions in Xa b, . 
We will always write the couple of scalar functions associated to any given vectorial function 
of Xa b m, ,  with the corresponding lower-case letter and the subscripts j  =  1, 2. Hat symbols 
denote Fourier coefficients.

5.2. The averaging and the iterative lemmas

Henceforth, let A(x, y)  =  (x  +  y, y) be the integrable twist map introduced in (11). Let F  =  F2 
be a map satisfying the properties listed in lemma 1, so = +F A G2 2 for some ∈XG a b2 , ,22 2 , 
where = ∗a a2  is the analyticity strip width in the angular variable x, and = ∗b b2  is the analyti-
city radius in y. Hence, F2 is a perturbation of A of order two. The following lemma allows us 
to increase that order as much as we want by simply losing as little analyticity strip width as 
we want. It is based on classical averaging methods. In particular, we see that F is a perturba-
tion beyond all order of A.

Lemma 10 (Averaging lemma). Let = +F A G2 2, with ∈XG a b2 , ,22 2  and a2  >  0 and b2  >  0, 
be a real analytic map with the intersection property on the cylinder ( )× −T b b,2 2 . Let ⩾m 3 
be an integer. Let am be any analyticity strip width such that ( )∈a a0,m 2 .

There exist an analyticity radius ( )∈b b0,m 2  and a change of variables of the form 
Φ = + ΨIm m for some Ψ ∈Xm a b, ,1m m  such that the transformed map = Φ Φ− � �F Fm m m

1
2  is 

real analytic, has the intersection property on the cylinder ( )× −T b b,m m , and has the form 
= +F A Gm m for some ∈XGm a b m, ,m m .
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Besides, the change of variables Φm is close to the identity on ( )× −T b b,m m . That is,

( ) (  ( )  ( )) [ ( )] ( )Φ = + + Φ = +x y x y y y x y y, O , O , det , 1 O ,m m
2 (17)

uniformly for all ( ) ( )∈ × −Tx y b b, ,m m .

Proof. The change Φm is the composition of m  −  2 changes of the form

˜ ˜ ˜ ⩽Φ = + Ψ Ψ ∈ <−X l mI , , 2 ,l l l a b l, , 1l l

where ( )= − − εa a l 2l 2 , ( ) ( )= − −ε a a m/ 2m2 , ( ) ⩽ <bl l m2  is a positive decreasing sequence, 
and Ψ̃l is constructed as follows to increase the order of the perturbation from l to l  +  1.

Let us suppose that we have a real analytic map with the intersection property on 
( )× −T b b,l l  of the form = +F A Gl l, for some ∈XGl a b l, ,l l  with >a b, 0l l  and ⩾l 2.

We begin with a formal computation. We write

( ) ( ( )  ( ) ( )  ( ))= + + + + ++ + +F x y x y y h x y y y h x y, O , O ,l
l l l l

1
1 1

2
2

where the functions h1(x) and h2(x) are 1-periodic and analytic on the open complex strip 
{ }∈ | | <C Z Ix x a/ : l . We will see, by using an a posteriori reasoning, that the intersection 

property implies that h2(x) has zero average; that is, ( )∫= =∗h h x xd 02 0

1
2 . Nevertheless, we 

can not prove it yet. Thus, we will keep an eye on ∗h2 in what follows.

If we take the change of variables

˜ ( ) ( ( ) ( ))ψ ψΦ = + +−x y x y x y y x, ,l
l l1

1 2 (18)

for some functions ( )ψ x1  and ( )ψ x2 , then, after a straightforward computation, the map 
F Fl l l l1

1( ˜ ) ˜= Φ Φ+
− � �  has the form

( ) ( ( )  ( ) ( )  ( ))= + + + + ++
+ + +F x y x y y k x y y y k x y, O , O ,l

l l l l
1 1

1 1
2

2

with k h1 2 1 1ψ ψ= + − ′ and k h2 2 2ψ= − ′ . Therefore, we take

( ) ( ( ) ) ( ) ( ( ) ( ))∫ ∫ψ ψ ψ= − − = +∗ ∗x h s h s h x s h s sd , d ,
x x

2
0

2 2 1 1
0

2 1

so that k1(x)  =  0 and ( ) = ∗k x h2 2. These functions ( )ψ x2  and ( )ψ x1  are 1-periodic, because 
( )− ∗h x h2 2 and ( ) ( )ψ +x h x2 1  have zero average. Besides, ( )ψ x1  and ( )ψ x2  are analytic in the 

open complex strip { }∈ | | <C Z Ix x a/ : l . Indeed, ˜ ˜Φ = + ΨIl l with Ψ̃ ∈ −Xl a b l, , 1l l .
Next, we control the domain of definition of the map Fl+1. The inverse change is

( ˜ ) ( ) ( ( )  ( ) ( )  ( ))ψ ψΦ = − + − +− − +x y x y x y y y x y, O , O .l
l l l l1 1

1 2
1

Thus, the maps Φ̃l, Fl, and ( ˜ )Φ −l
1 have the form ( ) (  ( )  ( ))+ +�x y x y y y, O , O 2 , since ⩾l 2. 

Consequently, if ⩽+b b /2l l1  is small enough, then

⟶
˜

⟶ ⟶
(˜ ) ⊂Φ Φ

− −

−

+ + + + +ε εD D D D D ,
F

a b
l

a b
l

a b
l

a b a b, 2 /3,4 /3 /3,5 /3 ,2 ,

1

l l l l l l l l l l1 1 1 1 1
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so ( )= Φ Φ+
− � �F Fl l l l1

1  is well-defined on + +Da b,l l1 1. Now, let us check that =∗h 02 . At this 
moment, we only know that

( ) (  ( )  ( ))= + + + ++
+ + ∗ +F x y x y y y y h y, O , O ,l

l l l
1

1 1
2

2

since the change of variables has not eliminated the average ∗h2. We recall that Fl+1 has the 
intersection property on the cylinder ( )× − + +T b b,l l1 1 . This implies that =∗h 02 . On the con-
trary, the image of the loop { }×T y0  does not intersect itself when < �y0 10 .

Finally, properties (17) follow directly from the fact that we have performed a finite num-
ber of changes, all of them satisfying these same properties. □

Next, the following theorem provides the exponentially small bound for the •π -projection 
of the residue provided an initial order m big enough. It is the main tool to prove theorem 2.

Theorem 11. Let ⩾m 6 be an integer, ¯>a 0, ¯>d 0, and ( )∈r 0, 1 . There exist constants 
¯ ¯( ¯ ¯ )= >b b m a d r, , , 0 and ( )= >c c r 0j j , j  =  1, 2, 3, such that, if

¯ ¯ ¯ ¯ ∥ ( ¯ )∥ ¯ ∥ ( ¯ )∥¯ ¯ ¯ ¯
• •

¯ ¯π π= + ∈ = =∗ ∗XF A G G d G d G, , , ,a b m a b m a b m, , , , , , (19)

and

˘ ¯ ˘ ⩽ ¯ ¯ ( ) ¯ ⩽ ¯•< < < + +∗a a b b r d c d d0 , 0 , 1 ,2

then there exists a change of variables ˘ ˘Φ = + ΨI  satisfying the following properties:

 (i) ˘
˘ ˘Ψ∈ −Xa b m, , 1 with ˘ ⩽ ¯

˘ ˘
•|Ψ| − c da b m, , 1 1 ; and

 (ii)  The transformed map F F
1˘ ˘ ¯ ˘= Φ Φ− � �  is real analytic, has the intersection property on 

the cylinder ( ˘ ˘)× −T b b, , and has the form ˘ ˘= +F A G, ˘
˘ ˘∈XG a b m, , ,

G d c d G c d, e .a b m a b m
r a a b

, , 2 , , 3
2 /∥ ( ˘ )∥ ⩽ ¯ ¯ ∥ ( ˘ )∥ ⩽ ¯

˘ ˘
• •

˘ ˘
( ¯ ˘) ˘ •π π+ π∗ ∗ − −

Theorem 11 is proved in section 5.5.
In order to present the main ideas of the proof, let us try to completely get rid of the remain-

der of the map of the form F  =  A  +  G, for some ∈XG a b m, , , with a change of variables of the 
form Φ = + ΨI , for some Ψ∈ −Xa b m, , 1. Concretely, we look for Φ such that A F1= Φ Φ− � � , 
or, equivalently, we look for Ψ such that

A A G I .( )Ψ − Ψ = + Ψ� �

It is not possible to solve this equation in general. Instead, we consider the linear equation

A A G.Ψ − Ψ =�

This vectorial equation reads as

( ) ( ) ( ( ) ( ))
( ) ( ) ( )

⎧
⎨
⎩
ψ ψ ψ
ψ ψ
+ − = +
+ − =

x y y x y y x y g x y

x y y x y yg x y

, , , , ,
, , , .

1 1 2 1

2 2 2

Therefore, we need to solve two linear equations of the form

( ) ( ) ( )ψ ψ+ − =x y y x y yg x y, , , , (20)

where ∈Xg a b,  is known. If the average of g(x, y) is different from zero: ( ) ˆ ( )= ≠∗g y g y 00 , 
then this equation can not be solved. Besides, it is a straightforward computation to check that, 
if ˆ ( ) =g y 00 , the formal solution of this equation in the Fourier basis is
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ˆ ( ) ˆ ( )ψ =
−

∀ ≠πy
y

g y k
e 1

, 0,k ky k2 i (21)

whereas the zero-th coefficient ˆ ( )ψ y0  can be chosen arbitrarily. From (21), it is clear that (20) 
can not be solved unless g has only a finite number of harmonics and zero average. For this 
reason, given a function g(x, y) with zero average, we define its K-cut off as

( ) ˆ ( )∑= π<

| |<

g x y g y, e .K

k K
k

kx2 i
 (22)

Let K be such that π π| | <ky2 2  for all | | <y b and | | <k K. Hence, we will take K  =  s/b for 
some fixed ( )∈s 0, 1 , and we will actually solve truncated linear equations of the form

( ) ( ) ( )ψ ψ+ − = <x y y x y yg x y, , , .K (23)

The Fourier norm is specially suited to analyze this kind of equations; see lemma 14.
Summarizing these ideas, we look for a change of variables of the form Φ = + ΨI , where 

Ψ satisfies the truncated linear vectorial equation

A A G ,K( )•Ψ − Ψ = <� (24)

where ( )• <G K denotes the K-cut off of ( )• •π=G G . The average of the first component of 
( )• <G K may be non-zero. Equation  (24) is studied in lemma 15. This close to the identity 
change of variables Φ = + ΨI  does not completely eliminate the remainder. However, if b is 
small enough, it reduces the size of the •π -projection of the remainder as the following lemma 
shows.

Lemma 12 (Iterative lemma). Let ⩾m 6 be an integer, ¯>a 0, ¯>d 0, µ> 0, and ( )ρ∈ 0, 1 . 
There exist a constant ¯>b 0 such that if

F A G G d G d G, , , ,a b m a b m a b m, , , , , ,∥ ( )∥ ∥ ( )∥• •π π= + ∈ = =∗ ∗X

with

a a b b a d d d0 , 0 min , /6 , ,⩽ ¯ ⩽ { ¯ } ⩽ ¯•< < +∗

then there exists a change of variables Φ = + ΨI  satisfying the following properties:

 (i) Ψ∈ −Xa b m, , 1 is a solution of the truncated linear equation (24) such that

d ,a b m a b m, , 1 , , 1⩽ ∥ ∥ ⩽ •|Ψ| Ψ Ω− −

  where ( )ρΩ = Ω  is defined in lemma 15; and

 (ii)  The transformed map F F1˜ = Φ Φ− � �  is real analytic, has the intersection property on 
the cylinder ( ˜ ˜)× −T b b, , and has the form ˜ ˜= +F A G, ˜

˜ ˜∈XG a b m, , ,

G d d G de , e ,a b m a b m, ,
12

, ,
12∥ ( ˜ )∥ ⩽ ∥ ( ˜ )∥ ⩽˜ ˜ • •

˜ ˜ •π π+ πρ πρ∗ ∗ − −

  where ˜ = −a a b6  and ˜ µ= −b b b2.

Remark 5. If ˜ = −a a b6 , then ( ˜) =πρ πρ− − −e ea a b2 / 12 .

The proof of this lemma is found in section 5.4. Some technicalities in the proof require 
the use of the sup-norm, which forces us to deal with both the Fourier norm and the sup-norm. 
The relations between them are stated in lemma 13.

P Martín et alNonlinearity 29 (2016) 198



217

Finally, theorem 11 is obtained by means of a finite sequence of changes of variables like 
the ones described in the iterative lemma. We want to perform as many of such changes as pos-
sible because each change reduces the size of the •π -projection of the remainder by the factor 

πρ−e 12 . Since the loss of analyticity in the angular variable is  ( )=b b6 O , then we can at most 
perform a number  ( )bO 1/  of such changes. This idea goes back to Neishtadt [30].

The intersection property is used neither in the proof of the iterative lemma nor in the proof 
of theorem 11, but will be essential to control the size of the π∗-projections of the remainders 
in terms of the size of their •π -projections later on.

5.3. Technical lemmas

Lemma 13. Let { }α π< < a0 min , 1/2 , b  >  0, and ∈Xg a b, . Let ⩾ = − <g g gK K, with g<K 
the K-cut off of g, defined in (22). Then:

 (i) ∥ ∥ ⩽ ∥ ∥<g gK
a b a b, , ,

 (ii) ∥ ∥ ⩽ ∥ ∥⩾
α

π α
−

−g geK
a b

K
a b,

2
, ,

 (iii) ⩽ ∥ ∥| |g ga b a b, , , and
 (iv) ∥ ∥ ⩽α | |α−

−g ga b a b,
1

, .

If ∈Nm , then these bounds also hold for any vectorial function ∈XG a b m, , .

Proof. First, the Fourier norm of g<K is a partial sum of the Fourier norm of g. Second, 

g g g ge e e eK
a b k K k b

k a K
k K k b

k a K
a b,

2 2 2 2
,∥ ∥ ˆ ˆ ⩽ ∥ ∥⩾

⩾
( )

⩾= ∑ | | = ∑ | |α
π α π α π π α

− | |
| | − −

| |
| | − . Third, g x y,( ) ⩽| |  

g y g ge ek k
kx

k k b
k a

a b
2 i 2

,ˆ ( ) ⩽ ˆ ∥ ∥∑ | || | ∑ | | =π π
∈ ∈

| |
Z Z , for all ( )∈x y D, a b, . Fourth, we recall that the 

Fourier coefficients of the analytic function g satisfy the inequality ˆ ⩽| | | |π− | |g gek b
k a

a b
2

,  for all 
∈Zk . Hence,

∥ ∥ ˆ ⩽ ⩽( )

⩾
∑ ∑ α= | | | | | |α

π α π α
−

∈

| | − − −

Z
g g g ge 2 e ,a b

k
k b

k a
a b

k

k
a b,

2
,

0

2 1
,

where we have used that ( ) ⩽⩾ π∑ = − <− − − t te 1 e e/ /k
kt t

0
1  for all ( )∈t 0, 1 . The last part fol-

lows from the definition of the norms ∥ ∥⋅ a b m, ,  and |⋅|a b m, , . □

Lemma 14. If ( )∈s 0, 1 , K  =  s/b, and ∈Xg a b,  is a function with zero average, then the 
truncated linear equation  (23) has a unique solution ψ∈Xa b,  with zero average and 
∥ ∥ ⩽ ∥ ∥ψ ω ga b a b, , , where

( )
⩽

ω ω
π

= = ⋅
−π| |

s
z1

2
max

e 1
.

z s z2
 (25)

Proof. The Fourier coefficients of ψ must satisfy (21). We note that ω<∞ for all ( )∈s 0, 1 , 
since the function ( )−z/ e 1z  is analytic on the open ball π| | <z 2 . Moreover,

ˆ ⩽ ˆ ⩽ ˆ ⩽ ˆ
⩽

⎛
⎝
⎜

⎞
⎠
⎟ψ

ω
ω| |

−
| |

| |
| | | |π| |

y
g

k
g gmax

e 1
,k b

y b ky k b k b k b2 i

for all < | | < =k K s b0 / . Finally, we recall that ˆ ( )ψ ≡y 00 . Then we obtain that 

∥ ∥ ˆ ⩽ ˆ ∥ ∥ψ ψ ω ω= ∑ | | ∑ | | =π π
<| |<

| |
∈

| |
Z g ge ea b k K k b

k a
k k b

k a
a b, 0

2 2
, . □
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Remark 6. We will denote by ( )ψ = <G gK
K  the linear operator that sends the independent 

term g<K of the truncated linear equation (23) to the solution ψ with zero average. Note that 
the solution ψ has no harmonics of order ⩾ K.

Lemma 15. If ⩾m 1, ( )∈s 0, 1 , K  =  s/b, and ∈XG a b m, , , then the truncated linear equa-
tion (24) has a solution Ψ∈ −Xa b m, , 1 such that

∥ ∥ ⩽ ∥ ∥•Ψ Ω− G ,a b m a b m, , 1 , ,

where ( )• •π=G G , ( ) ( ( ) ) { ( )}ω ωΩ = Ω = +s s s1 max 1, , and ( )ω s  is defined in (25).

Proof. Let ( )= +G y g y g,m m
1

1
2  and ( )ψ ψΨ = −y y,m m1

1 2 . Then the vectorial equa-
tion  A A G K( )•Ψ − Ψ = <�  reads as

( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))⎪

⎪
⎧
⎨
⎩

ψ ψ ψ

ψ ψ

+ − = +

+ − = −

<

< ∗

x y y x y y x y g x y

x y y x y y g x y g y

, , , , ,

, , , .

K

K

1 1 2 1

2 2 2 2

Let ( )ψ = − −< ∗ ∗G g g gK
K

2 2 2 1 and ( )ψ ψ= + <G gK
K

1 2 1 . These operations are well-defined since 
both − ∗g g2 2 and ψ + g2 1 have zero average. As for the bounds,

∥ ∥ ⩽ ∥ ∥ ∥ ∥ ⩽ ∥ ∥

∥ ∥ ⩽ ∥ ∥

⩽ ∥ ∥ ∥ ∥
⩽ ∥ ∥ ∥ ∥ ⩽ ∥ ∥

•

•

ψ ω

ψ ω ψ

ω ψ ω

ω ω

− + Ω

+

+ + −

− + Ω

∗

<

∗ < ∗

∗

g g g G

g

g g g

g g g G

,

,

a b a b a b a b m

a b
K

a b

a b
K

a b

a b a b a b m

2 , 2 2 , 1 , , ,

1 , 2 1 ,

2 1 , 1 1 ,

2
2 2 , 1 , , ,

where we have used lemma 14. □

Lemma 16. Let ∈Nl n, , { }α π< < a0 min /3, 1/2 , β< < b0 /2, >c c, 01 2 , and = +c c c1 2, 
such that

α β β+ < + <+b b c b c, .n n 1 (26)

Let ( ) ( ) ( )α β α β= = + + + ++ − − −M M b c c l n b c b b l, , , , , , 1 1n l l
1 2

1 1 1 1 . Let ∆∈Xa b l, , . Let 
Γ Γ ∈ α β− −X, a b n1 2 2 , 2 ,  with ∥ ∥ ⩽Γ α β− − cj a b n j2 , 2 , . Let ( ) ( )η= +L x y x y y, ,  with ⩽η| | 1. Then,

 (i) ( ) ( )∆ + Γ −∆ + Γ ∈ α β− − +� � XL L a b n l1 2 3 , 2 , ,
 (ii) ( ) ( ) ⩽|∆ + Γ −∆ + Γ | |∆| |Γ − Γ |α β α β− − + − −� �L L Ma b n a b l a b n1 2 2 , 2 , 1 , , 1 2 2 , 2 , , and

 (iii) L L Ma b n a b l a b n1 2 3 , 2 , 1
1

, , 1 2 2 , 2 ,∥ ( ) ( )∥ ⩽ ∥ ∥ ∥ ∥α∆ + Γ −∆ + Γ ∆ Γ − Γα β α β− − +
−

− −� � .

Proof. Let Γ = Γ − Γ1 2. Then ⩽ ∥ ∥ ⩽|Γ| Γα β α β− − − − ca b n a b n2 , 2 , 2 , 2 ,  and

( ) ( ) ( ( ))  ∫∆ + Γ −∆ + Γ = ∆ + Γ ⋅ Γ� � �L L L t tD d .1 2
0

1

Let ( ) ( )( ) ( ( ) ( ))η γ γ= + Γ = + + + +x y L t x y x y ty x y y ty x y, , , , ,t t
n n

1
1

2 , with [ ]∈t 0, 1  
fixed. We deduce from conditions (26) that ( )x y,0 0  and ( )x y,1 1  belong to α β− −Da b,  for all 
( )∈ α β− −x y D, a b2 , 2 . Therefore, ( )∈ α β− −x y D,t t a b,  by convexity of the domain, and so, the com-
position ( )∆ + Γ� L t  is well-defined on the domain α β− −Da b2 , 2 .

P Martín et alNonlinearity 29 (2016) 198



219

A simple computation shows that the product ( ) ( )∆ ⋅ Γx y x yD , ,t t  is equal to

( ( ) ( ) ( ( ) ( )) ( ))

( ( ) ( ) ( ( ) ( ) ( )) ( ))

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

δ γ δ δ γ

δ γ δ δ γ

∂ + ∂ +

∂ + ∂ + +

− + −

+ −

y y y y x y x y y x y l x y x y

y y y y x y x y y x y l x y x y

, , , , ,

, , , 1 , ,
.t

l n
t t t t t t t t

t
l n

t t t t t t t t

1 1 1
1 1 1 2 1 1 2

1 1
1 2 1 2 2 2 2

Let us bound the elements above. On the one hand, ( ) ⩽ ⩽γ| | |Γ| α β− −x y c,i a b n2 , 2 , , 
( ) ⩽ ( )γ| | = | + | + | |+y y ty x y b c y, 1t

n n1
2 , and | | <y b for all ( )∈ α β− −x y D, a b2 , 2 . On the other 

hand, ( ) ⩽δ| | |∆|x y,i s s a b l, ,  and the Cauchy estimates imply that

( ) ⩽ ( ) ⩽δ α δ β|∂ | |∆| |∂ | |∆|− −x y x y, , , .i t t a b l i t t a b l1
1

, , 2
1

, ,

From the previous bounds and the definitions of both norms, we deduce that

L t MD ,a b n l a b l a b n2 , 2 , , , 2 , 2 ,( ( )) ⩽| ∆ + Γ ⋅ Γ| |∆| |Γ|′α β α β− − + − −�

for all [ ]∈t 0, 1 , where ( ) ( )α β= + + + +′ + − −M b c b l1 1n l 1 1 1 . Thus,

L L M

L L M

,

.

a b n l a b l a b n

a b n l a b l a b n

1 2 2 , 2 , , , 2 , 2 ,

1 2 3 , 2 ,
1

, , 2 , 2 ,

( ) ( ) ⩽

∥ ( ) ( )∥ ⩽ ∥ ∥ ∥ ∥α

|∆ + Γ −∆ + Γ | |∆| |Γ|

∆ + Γ −∆ + Γ ∆ Γ

′

′
α β α β

α β α β

− − + − −

− − +
−

− −

� �

� �

This proves the first item. The other items follow from the bounds ⩽|⋅| |⋅|+
−

+ba b n
l

a b n l, , 1
1

, ,  and 
∥ ∥ ⩽ ∥ ∥⋅ ⋅+

−
+ba b n

l
a b n l, , 1

1
, , , since M M bl 1= ′ − . □

Lemma 17. Let ∈Nn , { }α π< < a0 min /3, 1/2 , β< < b0 /2, and p  >  0 such that con-
ditions (26) hold with c  =  2p. Let Φ = + ΨI , with Ψ∈Xa b n, ,  and ∥ ∥ ⩽Ψ pa b n, , . Then 

D Da b a b, ,( )⊂Φ α β+ +′ ′ ′ ′  for all ⩽< ′a a0  and ⩽< ′b b0 .
Let ( )α β=∗M M b p p n n, , , , , , , where M is defined in lemma 16. If M*bp  <  1, then Φ is 

invertible and the inverse change Φ−1 satisfies the following properties:

 (i) Φ = + ϒ− I1  for some ϒ∈ α β− −Xa b n2 , 2 ,  such that ⩽|ϒ| |Ψ|α β− −a b n a b n2 , 2 , , , ,
 (ii) D Da b a b

1
, ,( )⊂Φ α β

−
+ +′ ′ ′ ′  for all ⩽ α< −′a a0 2  and ⩽ β< −′b b0 2 , and

 (iii) ∥ ∥ ⩽ ∥ ∥αϒ + Ψ Ψα β− − + ∗
−Ma b n a b n3 , 2 , 1

1
, ,

2 .

Proof. Note that ⩽ ∥ ∥ ⩽|Ψ| Ψ pa b n a b n, , , , . Conditions (26) imply that α<b pn  and 
β<+b pn 1 . Therefore, ( )⊂Φ α β+ +′ ′ ′ ′D Da b a b, ,  for all ⩽< ′a a0  and ⩽< ′b b0 . Analo-

gously, if ϒ∈ α β− −Xa b n2 , 2 ,  and ⩽|ϒ| α β− − pa b n2 , 2 , , then ( )( )⊂+ϒ α β+ +′ ′ ′ ′D DI a b a b, ,  for all 
a a0 2⩽ α< −′ , b b0 2⩽ β< −′ .

We denote by B the closed ball in α β− −Xa b n2 , 2 ,  of radius p in the sup-norm. Let us prove 
that the functional →P B B: , I( ) ( )ϒ = −Ψ + ϒ�P , is a well-defined contraction with Lip-
schitz constant

⩽ ⩽|Ψ| <∗ ∗P M b M bpLip 1.a b n, , (27)

First, we observe that

( ) ⩽ ⩽| ϒ | |Ψ| ∀ϒ ∈α β− −P Bp, ,a b n a b n2 , 2 , , , (28)

so ( )⊂P B B. Second, we bound ( ) ( ) ( ) ( )ϒ − Ξ = Ψ + Ξ − Ψ + ϒ� �P P I I  as follows:

P Martín et alNonlinearity 29 (2016) 198



220

( ) ( ) ⩽ ( ) ( )
⩽

| ϒ − Ξ | | ϒ − Ξ |

|Ψ| |Ξ − ϒ|
α β α β

α β

− − − − +

∗ − −

P P P Pb

M b .
a b n a b n

a b n a b n

2 , 2 , 2 , 2 , 1

, , 2 , 2 ,
 

(29)

The first inequality is direct, and the second comes from lemma 16 with ∆ = Ψ, Γ = Ξ1 , 
Γ = ϒ2 , =L I, cj  =  p, and l  =  n. This proves that P is a contraction with Lipschitz constant 
(27). Thus, P has a unique fixed point ϒ∈B which satisfies that

( ) ( ) ( ) ( )+ Ψ + ϒ = + ϒ+ Ψ + ϒ = + ϒ− ϒ =� � PI I I I I I

on α β− −Da b2 , 2 . Therefore, the inverse map Φ−1 exists and equals + ϒI . Furthermore, 
⩽|ϒ| |Ψ|α β− −a b n a b n2 , 2 , , ,  follows from (28). Finally,

∥ ∥ ⩽

⩽ ( ) ( )

⩽

⩽ ⩽ ∥ ∥

α

α

α

α α

ϒ + Ψ |ϒ + Ψ|

| ϒ − |

|Ψ| |ϒ|

|Ψ | Ψ

α β α β

α β

α β

− − +
−

− − +

−
− − +

∗
−

− −

∗
−

∗
−

P P

M

M M

0

.

a b n a b n

a b n

a b n a b n

a b n a b n

3 , 2 , 1
1

2 , 2 , 1

1
2 , 2 , 1

1
, , 2 , 2 ,

1
, ,

2 1
, ,

2

We have used the second inequality of equation (29) with Ξ = 0. □

5.4. Proof of lemma 12

We recall that F  =  A  +  G with ( ) ( )• •π π= + = + ∈∗ ∗ XG G G G G a b m, , , d G a b m, ,∥ ∥=∗ ∗ , 

d G a b m, ,∥ ∥• •= , d d d⩽ ¯•+∗ , and ⩾m 6. Let ( )ρ ρ= ∈s , 1 . Let ( ) ( )ρΩ = Ω = Ω >s 0 be 

the constant introduced in lemma 15 and σ = + Ω1 2 . Let Φ = + ΨI  be the change of vari-
ables where Ψ∈ −Xa b m, , 1 is the solution given in lemma 15 of the truncated linear equa-
tion  ( )•Ψ − Ψ = <� A A G K with K  =  s/b, so that

⩽ ∥ ∥ ⩽ ∥ ∥ ⩽• •|Ψ| Ψ Ω Ω− −′ ′ ′ ′ ′ ′G d ,a b m a b m a b m, , 1 , , 1 , , (30)

for all ⩽< ′a a0  and ⩽< ′b b0 . Let Φ = + ϒ− I1  be the inverse change studied in lemma 17. 
Let F F1˜ = Φ Φ− � �  be the transformed map. Let ˜ ˜= −G F A be the new remainder.

Henceforth, we will assume that α, b, and β are some positive constants such that

⩽ { } ¯ ¯ ( )α π β σ α β σ α β< < < + < + <−b a b b b d b dmin /6, 1/2 , 0 /4, , min , .m m1

 
(31)

We split the proof in four steps.
Step 1: Control of the domains. Note that ˜( )⊂ α β+ +′ ′ ′ ′F D Da b a b, 4 , 3  for all ⩽ α< −′a a0 4  and 

b b0 4⩽ β< −′ . Indeed,

F D D D D: .F
a b a b a b a b, , 3 , 2 4 , 3

1
˜ ⟶ ⟶ ⟶Φ Φ

α β α β α β+ + + + + +′ ′ ′ ′ ′ ′ ′ ′

−

The behaviours of the changes Φ and Φ−1 follow directly from lemma 17, which can be applied 
since conditions (31) are more restrictive than the ones required in lemma 17 when ¯= Ωp d 
and n  =  m  −  1. We also need that ⩽α α+ −′a a2 2  and b b2 2⩽β β+ −′  in order to control 
the inverse Φ−1, which explains the restrictions on ′a  and b′.

The behaviour of the map F  =  A  +  G follows from the bound

G G G G d d da b m a b m a b m a b m, , , , , , , ,⩽ ∥ ∥ ⩽ ∥ ∥ ∥ ∥ ⩽ ¯• •| | + = +∗ ∗
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and conditions ¯ α+ <b b d 2m  and ¯ β<+b dm 1 , which are also a consequence of (31).

Step 2: Decomposition of the new remainder. It turns out that ˜ ˜= +∑∗
=G G Gj j1

4 , where

G G G G G G G

G A F G F

, ,

, .

K K
1 2

3 4

˜ ( ) ( ) ˜
˜ ˜ ( ) ( )

• ⩾ • •= = − = Φ−
= Ψ − Ψ Φ = ϒ+ Ψ Φ

< �

� � � � �
 

(32)

Indeed, ˜ ˜ ( )•+ + = Φ−∗ <�G G G G G K
1 2  and ˜ ˜ ( )+ = Ψ + ϒ Φ� � �G G A F3 4 , so

˜ ( )

( ) ( ) ( ) ( )
˜

∑+ = Φ+ Ψ+ ϒ Φ

= − Φ+ Φ− + Φ − Φ
= Φ Φ− =

∗

=

−

−

� � �

� � �

� �

G G G A F

F A A F

F A G

I I

.

j
j

1

4

1

1

Finally, let ˜ ( ˜ ) ( )π π= = +∑∗ ∗ ∗
=

∗G G G Gj j2
4  and G G Gj j1

4˜ ( ˜ ) ( )• • •π π= = ∑ = .
Step 3: Bounds of the projections of the new remainder. Lemma 13 and the bound (30) will be 
used several times in what follows. Below, we apply lemma 16 (twice) and lemma 17 (once). 
The required hypotheses in each case are satisfied due to conditions (31).

 • If ˜<a a and ˜ ⩽b b, then

G G G de e .a b m
K

a b m
K a a

a b m
K a a

1 , , , ,
2

, ,
2∥ ˜ ∥ ∥( ) ∥ ⩽ ∥ ∥ ⩽˜ ˜ • ⩾

˜ ˜ ( ˜) • ˜ ( ˜) •= π π− − − −

 • If ˜ ⩽ α−a a 3  and ˜ ⩽ β−b b 2 , then

∥ ˜ ∥ ⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ∥ ∥

⩽ ¯

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ •
˜ ˜

•

α

α

α

Ψ

Ω

Ω

α β α

α β α

−
+ + + −

−
+ + +

−

G M G

M G G

M dd .

a b m a b m a b m

a b m a b m

2 , , 2
1

3 , 2 , , , 1

2
1

3 , 2 , , ,

2
1

  The first inequality follows from lemma 16 with ∆ = G, =L I, Γ = Ψ1 , Γ = 02 , l  =  m, 
and n  =  m  −  1, so that ( ¯ )α β= Ω −M M b d m m, , , , 0, , 12 .

 • If ˜ ⩽ α−a a 2  and ˜ ⩽ β−b b , then F A Ga b m a b m, , 1 , ,∥ ∥ ⩽ ∥ ∥˜ ˜ σΦ− −� . Indeed, F AΦ− =�  
Ψ+ Φ�A G  and

A G d d

G G G

G b G

b G G d

2 2 2 2 ,

.

a b m a b m a b m

a b m a b m a b m

a b m a b m

a b m a b m

, , 1 , , 1 , ,

, , 1
1

, , 1
1

2 , , 1

1
2 , , 1

1
2 , ,

1
, , , ,

∥ ∥ ⩽ ∥ ∥ ⩽ ∥ ∥ ⩽ ⩽ ¯

∥ ∥ ⩽ ⩽

⩽ ∥ ∥ ⩽ ∥ ∥

⩽ ∥ ∥ ⩽ ∥ ∥ ⩽ ¯

˜ ˜ ˜ ˜ •
˜ ˜ •

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

α α

α α

α

Ψ Ψ Ω Ω Ω

Φ | Φ| | |α α β

α β α β

− −

−
−

+ −
−

+ + −

−
+ + −

−
+ +

−

� �

  We have used that ( )˜ ˜ ˜ ˜⊂Φ α α β+ + +D Da b a b, 2 ,  to bound G a b m, , 1˜ ˜| Φ| −� .

 • If ˜ ⩽ α−a a 3  and ˜ ⩽ β−b b 2 , then

G M F A

M G d

M dd .

a b m a b m a b m

a b m

3 , , 3
1

3 , 2 , 1 , , 1

3
1

3 , 2 ,

3
1

∥ ˜ ∥ ⩽ ∥ ∥ ∥ ∥

⩽ ∥ ∥ ¯

⩽ ¯

˜ ˜ ˜ ˜ ˜ ˜

•
˜ ˜

•

α

α σ

σ α

Ψ Φ−

Ω

Ω

α β α

α β

−
+ + − + −

−
+ +

−

�

  The first inequality follows from lemma 16 with ∆ = Ψ, L  =  A, Γ = 01 , F A2Γ = Φ−� , 
l  =  m  −  1, and n  =  m  −  1, so that ( ¯ )α β σ= − −M M b d m m, , , 0, , 1, 13 .
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 • If ˜ ⩽ α−a a 6  and ˜ ⩽ β−b b 4 , then

∥ ˜ ∥ ⩽ ( ) ( ) ⩽

⩽ ∥ ∥ ⩽ ∥ ∥

⩽ ( ∥ ∥ )

⩽ ( ) ⩽ ¯

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

•
˜ ˜

• •

α α

α α

α

α α

| ϒ + Ψ Φ | |ϒ + Ψ|

ϒ + Ψ Ψ

Ω

Ω Ω

α α β

α α β

α β

−
+

−
+ +

−
+

−
+ + −

−
+ +

− −

� �G F

M

M G

M d M dd .

a b m a b m a b m

a b m a b m

a b m

4 , ,
1

, ,
1

3 , 2 ,

1
, , 4

2
6 , 4 , 1

2

4
2

6 , 4 ,
2

2
4

2 2 2
4

2

  The second inequality uses the inclusion F D Da b a b, 3 , 2( )( )˜ ˜ ˜ ˜⊂Φ α α β+ + +� . The fourth one 
follows from lemma 17 with ( ¯ ¯ )α β= Ω Ω − −M M b d d m m, , , , , 1, 14 . We need to verify 
the hypothesis M*bp  <  1 in this last lemma. It turns out that ¯  ( )= Ω =∗

−M bp M b d bO m
4

2 , 
so it suffices to take ⩽ ¯< b b0 , with b̄ small enough.

 • If ˜ ⩽ α−a a 6  and ˜ ⩽ β−b b 4 , then

∥ ˜ ∥ ⩽ ∥ ∥ ∥ ˜ ∥ ⩽ ˜ ¯

∥ ˜ ∥ ⩽ ∥ ˜ ∥ ⩽ ( ˜ ¯)

˜ ˜ ˜ ˜ ˜ ˜ •

•
˜ ˜ ˜ ˜ ( ˜) •

∑

∑

+ +

+π

∗ ∗

=

∗

=

− −

G G G d Mdd

G G Md d

,

e ,

a b m a b m
j

j a b m

a b m
j

j a b m
K a a

, , , ,
2

4

, ,

, ,
1

4

, ,
2

  where ˜ ( )α σ α= Ω + +Ω− −M M M M1
2 3

1
4  and the constants Mj, j  =  2, 3, 4, have been 

defined previously.

Step 4: Choice of the loss of analyticity domain. We set α = b and β µ= b /42 . If ¯>b 0 is small 
enough, then conditions (31) hold for all ⩽ ¯< b b0 . In addition,

( )  ( )     →α β= = − +M M b c c l n b b, , , , , , O as 0 ,l
1 2

2

where M is the expression introduced in lemma 16. If we take ˜ α= −a a 6  and ˜ β= −b b 4 , 
then the bounds of the previous step imply that

∥ ˜ ∥ ⩽ ˜ ¯ ∥ ˜ ∥ ⩽ ( ˜ ¯)˜ ˜ • •
˜ ˜ •+ +π∗ ∗ −G d Mdd G Md d, e ,a b m a b m

Kb
, , , ,

12

where ˜ ˜ ( ) ( )  ( )σ= = Ω + +Ω =− − −M M b d m s b M M b M b; , , O m1
2 3

1
4

5 . We recall that ⩾m 6, 
ρ< < <s0 1, and K  =  s/b. Hence, if ⩽ ¯< b b0  and b̄ is small enough, then

G d d G de , e .a b m a b m, ,
12

, ,
12∥ ˜ ∥ ⩽ ∥ ˜ ∥ ⩽˜ ˜ • •

˜ ˜ •+ πρ πρ∗ ∗ − −

Indeed, ˜ ¯ ⩽ ⩽−πρ π πρ− − −Md e e es12 12 12  if we take a small enough value of b̄.
This ends the proof of the iterative lemma.

5.5. Proof of theorem 11

Set ( )ρ = ∈r 0, 1 , ( ) ( ¯ ˘)µ ρ= − −a a6 1 / , and ( )ρΩ = Ω , where the function ( )Ω s  is 
defined in lemma 15. Let b̄ be the positive constant associated to the integer ⩾m 6 in lemma 
12, the numbers ¯ ¯ µ>a d, , 0, and the exponent ( )ρ∈ 0, 1 . Let ( ) ⩾= = Ω∑ πρ−c c r en

n
1 1 0

12 , 
( ) ⩾= = ∑ πρ−c c r en

n
2 2 1

12 , and ( )= = πρc c r e3 3
12 .

Let us check that b̄, c1, c2, and c3 satisfy the properties given in theorem 11.
Let ¯=a a0 , ¯=∗ ∗d d0 , d d0

¯• •= , ˘ ⩽ ¯ρ< =b b b0 /0 , ¯ ¯= = +F F A G0  be the map given in (19), 
( ¯ )π=∗ ∗G G0 , and ( ¯ )• •π=G G0 . By recursively applying lemma 12, we obtain a sequence of 
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changes of variables Φ = + ΨIn n, with Ψ ∈ −− −Xn a b m, , 1n n1 1 , and a sequence of maps = +F A Gn n, 
with •= +∗G G Gn n n, ∈∗ ∗XGn a b m, ,n n

 and Gn a b m, ,n n

• •∈X , such that

∥ ∥ ⩽ ∥ ∥ ⩽ ∥ ∥ ⩽• • •Ψ Ω− −
∗ ∗

− − d G d G d, , ,n a b m n n a b m n n a b m n, , 1 1 , , , ,n n n n n n1 1

with = −+a a b6n n n1 , µ= −+b b bn n n1
2, d d den n n1

12 •= + πρ
+
∗ ∗ − , and • •= πρ

+
−d den n1

12 .
Let N be the biggest integer satisfying ⩽ ( ¯ ˘)−Nb a a /60 . The sequences ( ) ⩽ ⩽an n N0 , ( ) ⩽ ⩽bn n N0 , 

and ( )•
⩽ ⩽dn n N0  are decreasing. The sequence ( ) ⩽ ⩽

∗dn n N0  is increasing. Indeed,

⩾ ⩾ ⩾ ⩾ ˘
⩾ ⩾ ⩾ ( ) ⩾ ˘

⩽ ⩽ ⩽ ⩽ ¯

⩽ ⩽ ⩽ ⩽ ¯ ¯

• • • ( ¯ ˘) ˘ •

• • •∑

µ µ µ ρ

= − − −

= − − − =

+ + +

πρ πρ π

πρ πρ

− − −

− − −

−
−

− − −

∗
−
∗ −

−
∗

=

− ∗

�

�

�

�
⎛

⎝
⎜

⎞

⎠
⎟

a a b a b a Nb a

b b b b b Nb b b b

d d d c d

d d d d d d c d

6 6 6 ,

1 ,

e e e ,

e e ,

N N N N

N N N N

N N
N r a a b

N N N
n

N
n

1 1 1 0 0 0

1 1
2

1 0
2

0 0 0

12
1

12
0 3

2 /

1
12

1 0
1

12
0 2

and ⩽ ⩽ ¯ ( ) ¯ ⩽ ¯• • •+ + + +∗ ∗ ∗d d d d d c d d1n n N 0 2  for all = …n N0, , .
We can apply N times the iterative lemma. Let ˘ ˘= + = + =F A G A G FN N be the map 

obtained after those N steps. Then

∥ ( ˘ )∥ ⩽ ∥ ( )∥ ⩽ ⩽ ¯ ¯

∥ ( ˘ )∥ ⩽ ∥ ( )∥ ⩽ ⩽ ¯
˘ ˘

•

•
˘ ˘

• • ( ¯ ˘) ˘ •

π π

π π

+
π

∗ ∗ ∗ ∗

− −

G G d d c d

G G d c d

,

e .

a b m N a b m N

a b m N a b m N
r a a b

, , , , 2

, , , , 3
2 /

N N

N N

Finally, let N 1Φ̆ = Φ Φ�� �  be the change of variables such that ˘ ˘ ¯ ˘= Φ Φ− � �F F
1

. We want 

to check that ˘ ˘Φ = + ΨI  for some ˘
˘ ˘Ψ∈ −Xa b m, , 1 such that ˘ ⩽ ¯

˘ ˘
•|Ψ| − c da b m, , 1 1 . We note that

Ψ̆ = Ψ + + Ψ� ,N1

where each term of the above summation is evaluated at a different argument. Nevertheless, 
those arguments are not important when computing the sup-norm:

˘ ⩽ ⩽ ⩽ ¯
˘ ˘

• • •∑ ∑ ∑|Ψ| |Ψ | Ω Ω =πρ
−

=
−

=

−

=

−
−

− −
d d c de .a b m

n

N

n a b m
n

N

n
n

N
n

, , 1
1

, , 1
0

1

0
0

1
12

1n n1 1

This ends the proof of theorem 11.

5.6. Proof of theorem 2

Let us begin with a simple, but essential, chain of inequalities associated to certain analyticity 
strip widths that will appear along the proof. If ( )α∈ ∗a0, , then there exists ( )∈r 0, 1 , ¯>b 0, 
and some analyticity strip widths a2, ¯ =a am, and ˘ ¯=a b, such that

¯ ˘ ¯ ( ¯) ¯α< = = − + < = < < ∗b a a b r a a a a0 : : 1 / : .m 2 (33)

The first two reductions (that is, from a* to a2 and from a2 to am) are as small as we want. The 
third reduction (from ¯ =a am to ˘ ¯ ( ¯)α= − +a a b r1 / ) should be a little bigger than α in order 
to get the desired exponentially small upper bound with the exponent α. The fourth reduction 
(that is, from ˘ ¯=a b to 0) is also small, since b̄ can be taken as small as necessary.

This decreasing positive sequence of analyticity strip widths is associated to a similar 
sequence of analyticity radii. To be precise, we will construct a sequence of the form

˘ ¯ ⩽ ˘ ¯< < < < = + <∗b b b b b b b b b b r, : .m 2
2
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The inequality ¯ ⩽b bm does not correspond to a true reduction, but to a restriction on the size 
of b̄. Note that we have consumed all the analyticity strip width after the last reduction, but we 
still keep a positive analyticity radius b.

We split the proof into eight steps.
Step 1: Control of the Fourier norm. If the analytic map f satisfies the properties (i)–(iii) listed 
in lemma 1, then the map = + =F A G f:2 2  is real analytic and has the intersection property 
on the cylinder ( )× − ∗ ∗T b b, , can be extended to the complex domain ∗ ∗Da b, , and has the form 
(7). The Fourier norm ∥ ∥ ∗ ∗G a b2 , ,2 may be infinite, but ∥ ∥ <∞G a b2 , ,22 2  for any ( )∈ ∗a a0,2  and 

( )∈ ∗b b0,2 .
Step 2: Application of the averaging lemma. Once fixed an integer ⩾m 6 and any ( )∈a a0,m 2 , 
we know from lemma 10 that there exist an analytical radius ( )∈b b0,m 2  and a change of 
variables of the form Φ = + ΨIm m for some Ψ ∈Xm a b, ,1m m  such that the transformed map 
= Φ Φ− � �F Fm m m

1
2  is real analytic, has the intersection property on the cylinder ( )× −T b b,m m , 

and has the form = +F A Gm m for some ∈XGm a b m, ,m m .
Step 3: Application of theorem 11. Let ( )∈r 0, 1  be the number that appears in (33). Set 
¯ ¯= + = +F A G A Gm, ¯ =a am, and d G c r G1a b m a b m, , 2 , ,m m

¯ ∥ ( ¯ )∥ ( ( ))∥ ( ¯ )∥¯
•

¯π π= + +∗ .
Let ¯ ¯( ¯ ¯ )= >b b m a d r, , , 0 be the constant stated in theorem 11. We can assume that 

¯ ⩽b bm and the condition (33) holds, by taking a smaller ¯>b 0 if necessary. Let b b0,( )∈′∗ ∗  
be defined by b b b r2( ) ¯+ =′ ′∗ ∗ . Fix any ( )∈ ′∗b b0, . Set ˘ ¯ ( ¯)α= − +a a b r1 /  and 
b b b b b b r2 2˘ ⩽ ( ) ¯= + + =′ ′∗ ∗ .

If ¯∗d  and ¯•d  are the norms defined in (19), then ¯ ( ¯ ) ⩽ ¯•+ +∗d c d d1 2 . Hence,  

we can apply theorem 11 to obtain a change of variables ˘ ˘Φ = + ΨI , with ˘
˘ ˘Ψ∈Xa b m, ,  

and ˘ ⩽ ¯ ⩽ ¯
˘ ˘

•|Ψ| − c d c da b m, , 1 1 1 , and a transformed map F A G F
1˘ ˘ ˘ ¯ ˘= + = Φ Φ− � � , with 

˘
˘ ˘∈XG a b m, , , G G c d c d c de e ea b m a b m

r a a b b b b
, , , , 3

2 /
3

2 1 /
3

2 /( ˘ ) ⩽ ∥ ( ˘ )∥ ⩽ ¯ ⩽ ¯ ⩽ ¯•
˘ ˘

•
˘ ˘

( ¯ ˘) ˘ • ( ¯) ˘π π| | π πα πα− − − + − , and 

( ˘ ) ⩽ ∥ ( ˘ )∥ ⩽ ¯
˘ ˘ ˘ ˘π π| |∗ ∗G G da b m a b m, , , , .

Step 4: Uniform estimates on the change ˘Φ = Φ Φ�m . By construction, ˘ ˘Φ = + ΨI , with 
˘

˘ ˘Ψ∈ −Xa b m, , 1 and ˘ ⩽ ˘
˘ ˘|Ψ| − Ma b m, , 1 , where the constant ˘ ¯=M c d: 1  does not depend on b. Thus,

˘ ( ) ( ˘ ( ) ˘ ( ))ψ ψΦ = + +−x y x y x y y y x y, , , ,m m1
1 2

for some functions ˘ ( )ψ x y,j  analytic on ˘ ˘ ¯= +D Da b b b b, , 2 such that ˘ ⩽ ˘¯ψ| | + Mj b b b, 2 . The Cauchy 
estimates imply that

˘ ( ) ⩽ ˘ ˘ ( ) ⩽ ¯ ˘ ˘ ( ) ⩽ ˘ψ ψ ψ| | |∂ | |∂ |− −x y M x y b M x y b M, , , , , ,j j j1
1

2
2

for all ( )∈ ×Tx y B, b and, in particular, for all ( ) ( )∈ × −Tx y b b, , . Hence,

˘ ( ) (  ( )  ( )) [ ˘ ( )]  ( )Φ = + + Φ = +− −x y x y y y x y y, O , O , det , 1 O ,m m m1 2

for all ( ) ( )∈ × −Tx y b b, , , where the  ( )−yO m 2 ,  ( )−yO m 1 , and  ( )yO m  terms are uniform in b.  
We recall that ⩾m 6 and the change Φm satisfies properties (17), so the complete change 

m
˘Φ = Φ Φ�  satisfies the properties stated in theorem 2.

Step 5: Exponentially small bound on the remainder G. After all these changes of vari-

ables, we have the map ˘= + =F A G F: , with ˘
˘ ˘= ∈XG G: a b m, , , ( ) ⩽ ¯

˘ ˘π| |∗ G da b m, ,  and 

G c dea b m
b

, , 3
2 /( ) ⩽ ¯•

˘ ˘π| | πα− . We can bound ( )π=∗ ∗G G  by using the bound on G G( )• •π=  and 
the intersection property of F on the cylinder ( )× −T b b, . We recall that if

( ) ( ( ) ( ))ξ η η ξ η η ξ η= +G g g, , , , ,m m
1

1
2
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for some ∈Xg g, a b1 2 , , then

( ) ( ( )) ( ) ( ( ) ( ))• •ξ η η η ξ η η ξ η η ξ η= =∗ + ∗ +G g G g g, 0, , , , , , ,m m m1
2 1

1
2

where ( )η∗g2  is the average of ( )ξ ηg ,2  and • = − ∗g g g2 2 2. Fix any ( )η ∈ −b b,0 . We know that

( { }) ( { })η η× ∩ × ≠∅T TF .0 0

Therefore, there exists ξ ∈T0  such that g g , 02 0 2 0 0( ) ( )•η ξ η+ =∗ , and so

( ) ⩽ ⩽ ⩽ ¯ ( )• •
˘ ˘η η| | | | | | ∀ ∈ −πα∗

×

−

T
g g G c d b bsup e , , .

B
a b m

b
2 2 , , 3

2 /

b

This implies that g G G G c d, 2 ej a b m a b m a b m
b

, , , , , , 3
2 /( ) ⩽ ⩽ ⩽ ¯

˘ ˘ ˘ ˘
•

˘ ˘ξ η| | | | | | +| | πα∗ −  for all 
( ) ( )ξ η ∈ × −T b b, , .
Step 6: Exponentially small bounds on some derivatives of the remainder. We recall that

{ ( ) ( ) } ⩽ ⩽ ¯• •
˘ ˘ξ η ξ η| | | | | | πα−g g G c dmax , , , ea b m

b
1 2 , , 3

2 /

for all ( ) ˘ ˘ ¯ξ η ∈ = +D D, a b b b b, , 2. Thus, we get from •∂ = ∂g g1 2 1 2 and the Cauchy estimates that

( ) ⩽ ¯  ¯

{ ( ) ( ) } ⩽ ¯•

ξ η

ξ η ξ η

|∂ |

|∂ | |∂ |

πα

πα

− −

− −

g c d b

g g c db

, e ,

max , , , e ,

j
b

b

1 3
1 2 /

2 1 2 2 3
2 2 /

for all ( ) ( )ξ η ∈ × −T b b, , .
Step 7: A crude bound on the derivative of ∗g2. We recall that ( ) ( ( ))ξ η η η=∗ + ∗G g, 0, m 1

2 , so

( ) ⩽ ⩽ ¯
˘ ˘ ˘η η| | | | ∀ ∈ =∗ ∗

+g G d B B, .a b m b b b2 , , 2

Therefore, the Cauchy estimates imply that ( ) ( ) ⩽ ¯η| |′∗ −g b d
2

2  for all η∈ Bb and, in particular, 
for all ( )η∈ −b b, .
Step 8: Computation of the constant K. By combining the inequalities obtained in Steps 5–7, 

we get that ( ) ⩽ξ η| | πα−g K, ej
b2 /  and ( ) ⩽ξ η|∂ | −g Kb,i j

2 for all ( )× −T b b, , provided

¯ { }= +K d c cmax 2 , 1 .3 3

This ends the proof of theorem 2.

6. Proof of theorem 3

6.1. A space of matrix functions

Henceforth, let ( )⊂= − RI b b,b  and = ×TS Ib b with b  >  0. Let S be any compact subset of 
Sb. Let µ∈N. Let µMS,  be the set of all matrix functions → ( )Γ ×M RS: 2 2  of the form

( )
( ) ( )
( ) ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ξ η

η γ ξ η η γ ξ η

η γ ξ η η γ ξ η
Γ =

µ µ

µ µ

−

+
,

, ,

, ,
,11

1
12

1
12 22

for some continuous functions →γ RS:ij . The set µMS,  is a Banach space with the norm

∥ ∥ { ( ) ( )   ⩽ ⩽ }γ ξ η ξ ηΓ = | | ∈µ S i jmax , : , , 1 , 2 .S ij,

Lemma 18. Let ⊂S Sb, Γ∈ µMS, , ∆∈ νMS, , and ( )=A 1 1
0 1

. Let ∈Nk  and ∈Zj . Let 

→f S S:  be a map of the form (12) with ( ) ⩽ξ η| |g K,2 0 for all ( )ξ η ∈ S, . Then:
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 (i) Γ∆∈ µ ν+MS,  and ∥ ∥ ⩽ ∥ ∥ ∥ ∥Γ∆ Γ ∆µ ν µ ν+ 2S S S, , , .

 (ii) Γ∈ µMAk
S,  and ∥ ∥ ⩽ ( )∥ ∥Γ + Γµ µA bk1k

S S, , .

 (iii) Γ ∈ µMAk
S,  and ∥ ∥ ⩽ ( )∥ ∥Γ + Γµ µA bk1k

S S, , .

 (iv) f j
S,Γ ∈ µ� M  and f K b1j

S
m j

S, 0
1

,∥ ∥ ⩽ ( ) ∥ ∥( )Γ + Γµ
µ

µ
+ | |� .

Proof. It is a straightforward computation. □

6.2. A technical lemma

Let f be an analytic map of the form (12). Let p and q be two relatively prime integers. There 
exist two curves ζ=R graph  and ˆ ζ̂=R graph  and two RICs ζ=± ±R graph  with Diophantine 
rotation numbers ω ω< <− +p q/ , all four contained in a small neighbourhood of { }×T p q/ , 
such that fq projects R onto R̂ along the vertical direction and R and R̂ are contained in the strip 
of the cylinder enclosed by the RICs ±R . Following Birkhoff [4, section VI] and Arnold [2, 
section 20], all ( p, q)-periodic points of f are contained in ˆ∩R R. Besides, we will see later on 
that the (geometric) area enclosed between R and R̂ is an upper bound of the quantities ( )∆ p q, . 
These are the reasons for the study of R and R̂.

Let us prove that these four curves exist for big enough periods q. In this case, ‘big enough’ 
only depends on the size of the nonintegrable terms of f, the size of the neighbourhood of 

{ }×T p q/ , the exponent m, and the winding number p. On the contrary, it does not depend 
on the particular map at hand. Therefore, every time that we ask q to be ‘big enough’ along 
the proof of the following lemma, it only depends on the quantities K0  >  0, c  >  1, ⩾m 4, 

{ }∈Zp \ 0 , and q ∈′∗ N fixed at the first line of the next statement.

Lemma 19. Let K0  >  0, c  >  1, m 4⩾ , and ∈′∗ Np q, . Let ⩾ ′
∗q q  be an integer relatively prime with 

p. Set b  =  c2 p/q. Let → ×T Rf S: b  be an analytic map of the form (12) such that ( ) ⩽ξ η| |g K,j 0 
and ( ) ⩽ξ η|∂ | −g K b,i j 0

2 for all ( )ξ η ∈ S, b. Let ( ) ( )ξ η ξ η= f, ,q q
q . Let ( )=I p c q c p q/ , /2 2 , 

( )=−I p c q p cq/ , /2 , and ( )=+I cp q c p q/ , /2 . There exists ( ) ⩾″ ″= ′ ′∗ ∗ ∗ ∗q q K c m p q q, , , ,0  such that, 
if ⩾ ″∗q q , the following properties hold:

 (i)  The map f has two RICs ⊂ ⊂×± ±TR I Sb whose internal dynamics is conjugated to a 
rigid rotation of angles ω ∈± ±I , respectively;

 (ii) If S is the compact subset of Sb enclosed by R− and R+ , then

( ) ( )
ξ

η
ξ η ξ η

∂

∂
> ∀ ∈ S, 0, , ;

q
 (34)

 (iii) There exist two unique analytic functions →ζ T I:  and ˆ →ζ T I:  such that

( ( )) ( ˆ( ))ξ ζ ξ ξ ζ ξ ξ= ∀ ∈Tf , , , ,q (35)

  and all the ( p, q)-periodic points of the restriction |f S are contained in ζgraph .

The same statement holds if p is a negative integer, = | |b c p q/2 , ( )=I c p q p c q/ , /2 2 , 
( )=−I c p q cp q/ , /2 , and ( )=+I p cq p c q/ , / 2 .

Proof. Let us assume p  >  0. The case p  <  0 is analogous.

First, the existence of the RICs R− and R+ follows from some quantitative estimates in 
KAM theory established by Lazutkin [21, theorem 2]. To be precise, Lazutkin proved that 
there exists b b K 00( )= >′ ′∗ ∗  such that if ( )ω∈ − ′ ′∗ ∗b b,  satisfies the Diophantine condition
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⩾ω| − | | | −i j i j2 / 4 (36)

for all integers ⩾j 1 and i, then f has a RIC {  ( )}η ω ω= = +R O m  whose internal dynam-
ics is Cl-conjugated to a rigid rotation of angle ω, for a suitable ⩾l 1. The conjugation is 

 ( )−qO 1/ m 1 -close to the identity. Item (i) follows directly from this estimate, because there ex-
ist some real numbers ( )⊂ω ∈+ +c p q c p q I/ , /4/3 5/3  and ( )⊂ω ∈− −p c q p c q I/ , /5/3 4/3  satisfying 
the Diophantine condition (36), provided q is big enough.

Second, let us check that the power map f  q satisfies (34). The compact subset ⊂S Sb is 
invariant by f, because it is delimited by RICs. Thus, all powers ( ) ( )ξ η ξ η= f, ,j j

j  are well 
defined on S. We write ( ) ( )ξ η ξ η= + Γf AD , , , where A was introduced in lemma 18. Next, 
we compute the differential of the power map:

( ) ( )= + Γ + Γ = +∆ + +∆� �f A A AD ,q
q

q
q1 1 (37)

where fj
jΓ = Γ �  and ∆l is the sum of all the products of the form Γ Γ +�A A Ak

j
k

j
kl

l
l1

1
1, with 

⩾k 0i , ⩾ ⩾> > >�q j j j 1l1 2 , and = +∑ =
+q l ki

l
i1

1 . These products are elements of MS ml, , 
because Γ∈MS m, . Indeed, if C S m,∥ ∥= Γ , then

⎛

⎝
⎜

⎞

⎠
⎟

A A A A A A A

C bk K b

C bk m K b j

C C C

2

2 1 1

2 exp 1

2 e 2 ,

k
j

k
j

k
S ml

l k
j S m

k
j S m

k
j

k
S m

l l

i

l

i
i

l
m m j

l l

i

l

i
i

l
m

i

l l c p m K c p l

,
1

, , ,

1

1

1

1
0

1

1

1

1

1
0

1 1

l
l

l l
l

l
l

l

i

m m

1
1

1 1
1

1
1

1

2
0

2

∥ ∥ ⩽ ∥ ∥ ∥ ∥ ∥ ∥

⩽ ( ) ( )

⩽ ( )

⩽ ( )

( )

( )

∏ ∏

∑ ∑

Γ Γ Γ Γ Γ

+ +

+ +

= ′

−

−

=

+

=

+

−

=

+

=

− + +

+ −
−

+� �

where we have used lemma 18, inequality ⩽+ x1 ex for ⩾x 0, ⩽∑ =
+ k qi

l
i1

1 , ⩽l q, ⩽j qi , b  =  c2 
p/q, and ⩾m 4. We have also defined ( )=′ + +C e /2c p m K c p1 m m2

0
2

.
The matrix ∆l is the sum of the products with precisely l factors Γj. This shows that there 

are ( )q

l
 terms inside ∆l. Therefore, ∆ ∈Ml S ml,  and

∥ ∥ ⩽ ∥ ∥ ⩽ ( )∆ Γ Γ ′+�⎜ ⎟
⎛
⎝

⎞
⎠

q

l
A A A C Cq2 .l S ml

k
j

k
j

k
S ml

l
, ,

l
l

l1
1

1 (38)

The element of the first row and second column of Aq is equal to q, so

q C Cq b
C

b
K qb

C K qb C K c p

, 2 2

4 4 ,

q

l

q
l ml

l

q
m l

m m m

1

1

1
0

2

0
3

0
2 3 3

( ) ⩽ ( ) ⩽ ( )

⩽ ⩽ ( )

∑ ∑
ξ

η
ξ η

∂

∂
− ′

′

′ ′
=

−

=

−

− − −

for all ( ) ⊂ξ η ∈ S S, b, which implies the twist condition (34) provided that q is big enough. 
Here, we have used relation (37), bound (38), b  =  c2 p/q, and ⩾m 4. We have also used that 

⩽ −C K b0
2 and ⩽−K qb2 1/2m

0
2 , provided q is big enough.

Third, we establish the existence of the functions ˆ →ζ ζ T I, : . We know from Lazutkin [21] 
that R graph ζ=± ± for some differentiable functions →ζ± ±T I: . We work with the lifts F, Ξq, 
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and ±Z  of the objects f, ξq, and ζ±. The RICs are invariant, so ( ( )) ( ( ) ( ( )))ξ ξ ξ ξ= Ξ Ξ± ± ± ±F Z Z, ,q  
for some differentiable functions →Ξ± R R: . If we prove that there exist two unique analytic 
1-periodic functions ˆ →RZ Z I, :  such that

( ( )) ( ˆ( ))ξ ξ ξ ξ ξ= + + ∀ ∈RF Z p Z p, , , ,q (39)

then item (iii) follows. Since the dynamics of Fq on ±R  is Cl-conjugated to a rigid rotation of 
angle ω+q  through a  ( )−qO 1/ m 1 -close to the identity conjugation,

( )  ( ) ⩾  ( )ξ ξ ω ξ ξΞ = + + + + > ++ +
− −q q cp q pO 1/ O 1/m m1 1

provided that q is big enough. Analogously, we obtain ( )ξ ξΞ < +− p. That is,

( ( )) ( ) ( ) ( ( ))ξ ξ ξ ξ ξ ξ ξ ξΞ = Ξ < + <Ξ = Ξ ∀ ∈− − + + RZ p Z, , , .q q

Since ( )ξ ηΞ ,q  is analytic and strictly increasing for ( ( ) ( ))⊂η ξ ξ∈ − +Z Z I, , we deduce that 
there exists a unique function →RZ I:  such that ( ( ))ξ ξ ξΞ = +Z p,q .

The function ( ) ( ) ( )ξ η ξ η ξ η ξ= Ξ − −��S G p, , : ,q  is analytic and ( )ξ η >
η
∂
∂

, 0G , so Z is 

analytic by the implicit function theorem. The 1-periodicity of Z follows from the uniqueness 
and the property ( ) ( ) ( )ξ η ξ η+ = +F F1, , 1, 0q q . Function ˆ →RZ I:  is defined by means of 
relation (39). Finally, functions ˆ →ζ ζ T I, :  are the projections of ˆ →RZ Z I, : . □

6.3. Proof of theorem 3: case (m, n)  =  (0, 1)

If (m, n)  =  (0, 1), by hypothesis, the map →× ×T Tg I I: , ( ) ( )�s r s r, ,1 1 , is an analytic 
exact twist map with a ( )∗ ∗a b, -analytic (0, 1)-resonant RIC, such that ⩽ ⩽− +� �0 . The map 
f  =  gn  =  g satisfies the properties (i)–(iii) listed in lemma 1 in some suitable coordinates (x, y). 
Let ( ) ˜ ( )= Φs r x y, ,  be the associated change of variables. Let f f1˜ ˜ ˜= Φ Φ− � �  be the new map 
defined in the domain (8). Note that the ( )∗ ∗a b, -analytic (0, 1)-resonant RIC is { }≡ =C y 0  in 
the (x, y) coordinates.

Let p be an integer such that ⩽ ⩽| |p L1 . Let ( )∈c 1, 2  such that α α< < ∗c a2 . We take αc2  
as the α appearing in theorem 2, m  =  4, and = | |b c p q/2 , provided that q is relatively prime 
with p and is large enough so that ( )α| | < =′ ′∗ ∗c p q b b/2 . That is, > = | |′ ′

∗ ∗q q c p b: /2 .
Hence, there exist >K K, 00 1 , both independent of q, and a change of coordinates 

( ) ( )ξ η= Φx y, ,  such that ¯ ˜ →= Φ Φ ×− � � T Rf f S: b
1  is an analytic map of the form 

(12) such that ( ) ⩽ ⩽ξ η| | =π α πα− − | |g K K K, e ej
c b q p

0
2 /

0
2 /

0
2

, ( ) ⩽ξ η|∂ | −g K b,i j 0
2, and 

{ }[ ( )] ⩽ξ ηΦ Ksup det D , 1 for all ( )ξ η ∈ S, b.
The map ¯ → ×T Rf S: b  satisfies the hypotheses of lemma 19 for any q q⩾ ′

∗. Let q* be the 
maximum value of q″∗  among the integers ⩽< | |p L0 . Let ±R  be the RICs with rotation num-
bers ω± given in lemma 19. Let S be the compact subset of Sb enclosed by R− and R+ . Since 
f is globally twist and ω ω< < < <− − + +� �p q/ , all the Birkhoff ( p, q)-periodic orbits of f are 
contained in S. By lemma 19, any ( p, q)-periodic orbit in S lies on ζ=R graph . Let ⊂Ω S be 
the domain enclosed by the curves ζ=R graph  and ˆ ζ̂=R graph . Let ( ˜ )( )= Φ Φ Ω�B . Let K2 
be the supremum of [ ˜ ]| Φ |det D  in the compact set b b,[ ]× − ′ ′∗ ∗T . Let K K K K L b4 0 1 2

3( )= ′∗ . Then, 
following the arguments contained in section 2.2 about the difference of periodic actions, we 
get that
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⩽ [ ] ⩽ [ ] ˆ( ) ( )

⩽ ⩽

( ) ∫ ζ ξ ζ ξ ξ∆ Ω = | − |

πα πα− | | − | |
T

B K K K K

K K qb K K

Area Area d

e e ,

p q

q p q p

,
1 2 1 2

1 2
4

0
2 / 2 /

 (40)

for all relatively prime integers p and q with ⩽ ⩽| |p L1  and ⩾ ∗q q . We have used expression 
(12), b c p q b/2 ⩽= | | ′∗, c

2  <  4, the bounds on the nonintegrable terms ( )ξ ηg ,j , and the bounds 
on the Jacobians of the changes of variables Φ and Φ̃.

This ends the proof of theorem 3 when (m, n)  =  (0, 1) and ⩾ ∗q q . By redefining the con-
stant K, the same bound holds for all ⩾q 1.

6.4. Proof of theorem 3: general case

We reduce the general case to the previous one. We split the argument in four steps.
Step 1: About the rational rotation numbers. If C is a (m, n)-resonant RIC and (s, r) is a  
( p, q)-periodic point of g, then C is a (m, 1)-resonant RIC and (s, r) is a ( )′ ′p q, -periodic  
point of the power map f  =  gn, where

p
np

n q
q

q

n qgcd ,
,

gcd ,
.

( ) ( )
= =′ ′

By taking the suitable lift F of f, we can assume that C is a (0, 1)-resonant RIC and (s, r) is a 
p q,( )″ ″ -periodic point of f, with ″ ″ = −′ ′p q p q m/ / . That is,

( ) ( )
″ ″= − =

−
= =′ ′ ′p p mq

np mq

n q
q q

q

n qgcd ,
,

gcd ,
. (41)

If p and q are relatively prime integers such that ⩽ ⩽| − |np mq L1  and ⩾ ∗q q , p″ and q″ are 
relatively prime integers such that p L n q L/gcd ,⩽ ( ) ⩽″| |  and q q n q q n/gcd , /⩾ ( ) ⩾″ ∗ ∗ .
Step 2: About the Lagrangians. Let G and F  =  Gn be the lifts of g and f  =  gn we are dealing 
with. If λ λ− =∗G hd , then

[( ) ( ) ] ( )∑ ∑ ∑λ λ λ λ− = − = =∗

=

−
+ ∗ ∗

=

−

=

−

� �
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟F G G h G h Gd d ,

j

n
j j

j

n
j

j

n
j

0

1
1

0

1

0

1

so ℓ( ) ( ) ( ) ( )= + + + −�s s h s s h s s h s s, : , , ,n n n0 0 1 1 2 1  is a Lagrangian of f. This Lagrangian is 
well defined in a neighbourhood of the resonant RIC C, because f is twist on C.
Step 3: About the periodic actions. Let O be the ( p, q)-periodic orbit of g through the point (s, r),  
being W( p, q)[O] its ( p, q)-periodic action. Let O″ be the ( )″ ″p q, -periodic orbit of f through 
the same point, being [ ]( )″ ″″ ″W Op q,  its p q,( )″ ″ -periodic action. We deduce from the previous 
steps and a straightforward computation that

[ ]
( )

[ ]( ) ( )″ ″ =″ ″W O
n

n q
W O

gcd ,
.p q p q, ,

 (42)

Step 4: Final bound. The result follows directly from the bound (40) taking into account rela-
tions (41) and (42). We just note that

⎛
⎝
⎜

⎞
⎠
⎟q

np mq
e exp

2
.q p2 / πα

= −
| − |

″ ″πα− | |

This ends the proof of theorem 3.
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