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Abstract
Billiard trajectories inside an ellipsoid of Rn are tangent to n − 1 quadrics
of the pencil of confocal quadrics determined by the ellipsoid. The quadrics
associated with periodic trajectories verify certain algebraic conditions. Cayley
found them for the planar case. Dragović and Radnović generalized them to
any dimension. We rewrite the original matrix formulation of these generalized
Cayley conditions as a simpler polynomial one. We find several algebraic
relations between caustic parameters and ellipsoidal parameters that give rise to
non-singular periodic trajectories. These relations become remarkably simple
when the elliptic period is minimal. We study the caustic types, the winding
numbers and the ellipsoids of such minimal periodic trajectories. We also
describe some non-minimal periodic trajectories.
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1. Introduction

One of the best-known discrete integrable systems is the billiard inside ellipsoids. All the
segments (or their continuations) of a billiard trajectory inside an ellipsoid of Rn are tangent
to n − 1 quadrics of the pencil of confocal quadrics determined by the ellipsoid [1–3]. This
situation is fairly exceptional. Quadrics are the only smooth hypersurfaces of Rn, n � 3,
that have caustics [4, 5]. A caustic is a smooth hypersurface with the property that a billiard
trajectory, once tangent to it, stays tangent after every reflection. Caustics are a geometric
manifestation of the integrability of billiards inside ellipsoids.
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Periodic trajectories are the most distinctive trajectories, so their study is the first task.
There exist two remarkable results concerning periodic billiard trajectories inside ellipsoids:
the generalized Poncelet theorem and the generalized Cayley conditions.

A classical geometric theorem of Poncelet [6,7] implies that if a billiard trajectory inside an
ellipse is periodic, then all the trajectories sharing its caustic are also periodic. Its generalization
to the spatial case was proved by Darboux [8]. The extension of this result to arbitrary
dimensions can be found in [9–12]. The generalized Poncelet theorem can be stated as follows.
If a billiard trajectory inside an ellipsoid is closed after m0 bounces and has length L0, then
all trajectories sharing the same caustics are also closed after m0 bounces and have length L0.
Thus, a natural question arises. Which caustics give rise to periodic trajectories? The planar
case was solved by Cayley [13,14] in the 19th century. Still for the planar case, Halphen [15]
gave explicit algebraic conditions for the periodic caustics up to period 11. Dragović and
Radnović [16,17] found some generalized Cayley conditions for billiards inside ellipsoids 15
years ago. They have also stated similar conditions for other billiard frameworks; see [18–23].

For simplicity, let us focus on the spatial case. Let Q : x2/a + y2/b + z2/c = 1 be the
triaxial ellipsoid with ellipsoidal parameters 0 < c < b < a. Any billiard trajectory inside Q

has as caustics two elements of the family of confocal quadrics

Qλ =
{
(x, y, z) ∈ R3 :

x2

a − λ
+

y2

b − λ
+

z2

c − λ
= 1

}
.

We restrict our attention to non-singular trajectories, that is, trajectories with two different
caustics which are ellipsoids: 0 < λ < c, hyperboloids of one sheet: c < λ < b, or
hyperboloids of two sheets: b < λ < a. The singular values λ ∈ {a, b, c} are discarded.
There exist some restrictions on the caustics Qλ1 and Qλ2 . The only feasible caustic types are
EH1, H1H1, EH2 and H1H2; see [24, 25]. The meaning of this notation is obvious.

The generalized Cayley condition in this context can be expressed as follows. The billiard
trajectories inside the triaxial ellipsoid Q sharing the caustics Qλ1 and Qλ2 are periodic with
elliptic period m � 3 if and only if

rank

 fm+1 · · · f4

...
...

f2m−1 · · · fm+2

 < m − 2,

where f (t) = ∑l�0 flt
l :=

√∏5
i=1(1 − γit), {γ1, . . . , γ5} = {1/a, 1/b, 1/c, 1/λ1, 1/λ2}.

We deal with non-singular trajectories inside triaxial ellipsoids, so the inverse quantities
γ1, . . . , γ5 are pairwise distinct, and we can assume that 0 < γ5 < · · · < γ1. Most results
related to generalized Cayley conditions become simpler when expressed in terms of the inverse
quantities γi , instead of the original ellipsoidal parameters a, b, c, and the caustic parameters
λ1, λ2. Proposition 12 is a paradigmatic sample.

The elliptic period is defined in section 2. Roughly speaking, the difference between
the period m0 and the elliptic period m of the periodic billiard trajectories sharing two given
caustics is that all of those trajectories close in Cartesian (respectively, elliptic) coordinates
after exactly m0 (respectively, m) bounces. We will see that either m = m0/2 or m = m0.

The previous matrix formulation is nice from a theoretical point of view, but it has strong
limitations from a computational point of view. We will see in section 3 that it can be written
as a system of two homogeneous symmetric polynomial equations with rational coefficients of
degrees m2 − 2 and m2 − 1 in the variables γ1, . . . , γ5. Thus, both degrees grow quadratically
with the elliptic period m, which turns this approach into a tough challenge. In particular, to
our knowledge, the caustic parameters λ1, λ2 have never been explicitly expressed in terms of
the ellipsoidal parameters a, b, c for any m � 3.
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We will rewrite this matrix formulation as a computationally more appealing one which
gives rise to (non-symmetric) homogeneous polynomial equations whose degrees are smaller
than the elliptic period m. We will find the following remarkable algebraic relations between
caustic and ellipsoidal parameters using the polynomial formulation. The billiard trajectories
inside the ellipsoid Q sharing the caustics Qλ1 and Qλ2 are periodic with:

• elliptic period 3 if and only if γ1 + γ4 + γ5 = γ2 + γ3 and γ 2
1 + γ 2

4 + γ 2
5 = γ 2

2 + γ 2
3 ;

• elliptic period 3 and caustic type H1H1 if and only if λ1, λ2 are the roots of t3 − (t −
a)(t − b)(t − c);

• elliptic period 4 if (but not only if) ∃d ∈ R such that a, b, c are the roots of
t4 − (t − d)2(t − λ1)(t − λ2);

• elliptic period 5 if (but not only if) the roots of t5 − (t − c)(t − b)(t − a)(t − λ1)(t − λ2)

are double.

Thus, it is easy to find simple examples of periodic trajectories with elliptic period 3. For
instance, since 1 + 2 + 6 = 4 + 5 and 12 + 22 + 62 = 42 + 52, the billiard trajectories:

• inside the ellipsoid Q : x2 + 2y2 + 5z2 = 1 with caustic parameters λ1 = 1
6 and λ2 = 1

4 ;

• inside the ellipsoid Q : x2 + 2y2 + 6z2 = 1 with caustic parameters λ1 = 1
5 and λ2 = 1

4 ;

• inside the ellipsoid Q : x2 + 4y2 + 5z2 = 1 with caustic parameters λ1 = 1
6 and λ2 = 1

2 ;

• inside the ellipsoid Q : x2 + 4y2 + 6z2 = 1 with caustic parameters λ1 = 1
5 and λ2 = 1

2

are periodic with elliptic period 3, and caustic types EH1, H1H1, EH2 and H1H2, respectively.
Let us compare the matrix and polynomial formulations when the elliptic period is equal

to 5: m = 5. Then the two homogeneous symmetric polynomial equations obtained from the
matrix formulation have degrees 23 and 24 in the variables γ1, . . . , γ5. On the other hand,
t5 − (t − c)(t − b)(t − a)(t − λ1)(t − λ2) is a polynomial of degree 4 in a single variable.
The polynomial formulation leads to a simpler problem. Nevertheless, the matrix formulation
determines all periodic billiard trajectories with elliptic period m = 5, whereas we find just
some of such trajectories using the polynomial t5 − (t − c)(t − b)(t − a)(t − λ1)(t − λ2).

Another natural question concerning periodic billiard trajectories is the following one.
Which are the triaxial ellipsoids of R3 that display periodic billiard trajectories with a fixed
caustic type and a fixed (elliptic) period? A numerical approach to that question was considered
in [26], where the authors computed several bifurcations in the space of ellipsoidal parameters.
We will find the algebraic relations that define the bifurcations associated with small elliptic
periods. For instance, we will see that there exist periodic billiard trajectories with elliptic
period m = 3 and caustic type EH1 if and only if c < ab/(a + b +

√
ab).

For brevity, we will not depict billiard trajectories inside triaxial ellipsoids of R3. The
reader interested in 3D graphical visualizations is referred to [27], where several periodic
billiard trajectories with small periods are displayed from different perspectives.

We complete this introduction with a note on the organization of the article. In section 2
we review briefly some well-known results concerning billiards inside ellipsoids, recalling the
matrix formulation of the generalized Cayley conditions obtained by Dragović and Radnović.
We also introduce the concept of elliptic period. The practical limitations of the matrix
formulation are exposed in section 3. We present the polynomial formulation in section 4.
In section 5 we carry out a detailed analysis for minimal elliptic periods, and the study of more
general elliptic periods is postponed to section 6. The previous results are adapted to billiards
inside ellipses of R2 and inside triaxial ellipsoids of R3 in sections 7 and 8, respectively.
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2. Preliminaries

In this section we recall several classical results and their modern generalizations for billiards
inside ellipsoids that go back to Jacobi, Chasles, Poncelet, Darboux and Cayley.

We consider the billiard dynamics inside the ellipsoid

Q =
{

x = (x1, . . . , xn) ∈ Rn :
n∑

i=1

x2
i

ai

= 1

}
, 0 < a1 < · · · < an. (1)

The degenerate cases in which the ellipsoid has some symmetry of revolution are not considered
here. This ellipsoid is an element of the family of confocal quadrics

Qλ =
{

x = (x1, . . . , xn) ∈ Rn :
n∑

i=1

x2
i

ai − λ
= 1

}
, λ ∈ R.

We note that Qλ = ∅ for λ > an. Thus, there are exactly n different geometric types of
non-singular quadrics in this family, which correspond to the cases

λ ∈ (−∞, a1), λ ∈ (a1, a2), . . . , λ ∈ (an−1, an).

For instance, the confocal quadric Qλ is an ellipsoid if and only if λ ∈ (−∞, a1). On the other
hand, the meaning of Qλ in the singular cases λ ∈ {a1, . . . , an} is

Qaj
= Hj = {x = (x1, . . . , xn) ∈ Rn : xj = 0

}
.

The following theorems of Jacobi and Chasles can be found in [1–3].

Theorem 1 (Jacobi). Any generic point x ∈ Rn belongs to exactly n distinct non-singular
quadrics Qµ0 , . . . , Qµn−1 such that µ0 < a1 < µ1 < a2 < · · · < an−1 < µn−1 < an.

We denote by µ = (µ0, . . . , µn−1) ∈ Rn the Jacobi elliptic coordinates of the point
x = (x1, . . . , xn). Cartesian and elliptic coordinates are linked by relations

x2
j =

∏n−1
i=0 (aj − µi)∏
i �=j (aj − ai)

, j = 1, . . . , n.

Hence, a point has the same elliptic coordinates as its orthogonal reflections with respect to
the coordinate subspaces of Rn. A point is generic, in the sense of theorem 1, if and only if
it is outside all coordinate hyperplanes. When a point tends to the coordinate hyperplane Hj ,
some of its elliptic coordinates tend to aj .

Theorem 2 (Chasles). Any line in Rn is tangent to exactly n − 1 confocal quadrics
Qλ1 , . . . , Qλn−1 .

It is known that if two lines obey the reflection law at a point x ∈ Q, then both lines are
tangent to the same confocal quadrics. Thus, all lines of a billiard trajectory inside the ellipsoid
Q are tangent to exactly n − 1 confocal quadrics Qλ1 , . . . , Qλn−1 , which are called caustics
of the trajectory, whereas λ1, . . . , λn−1 are the caustic parameters of the trajectory. We will
say that a billiard trajectory inside Q is non-singular when it has n − 1 distinct non-singular
caustics. We only deal with non-singular billiard trajectories in this paper.

The caustic parameters cannot take arbitrary values. For instance, a line cannot be tangent
to two different confocal ellipsoids, and all caustic parameters must be positive. The following
complete characterization was given in [24, 25].
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Proposition 3. Let λ1 < · · · < λn−1 be some real numbers such that

{a1, . . . , an} ∩ {λ1, . . . , λn−1} = ∅.

Set a0 = 0. Then there exist non-singular billiard trajectories inside the ellipsoid Q sharing
the caustics Qλ1 , . . . , Qλn−1 if and only if

λk ∈ (ak−1, ak) ∪ (ak, ak+1), k = 1, . . . , n − 1. (2)

Definition 1. The caustic type of a non-singular trajectory is the vector ς = (ς1, . . . , ςn−1) ∈
Zn−1 such that

λk ∈ (aςk
, aςk+1), k = 1, . . . , n − 1.

We know from proposition 3 that ςk ∈ {k − 1, k} for k = 1, . . . , n − 1. Hence, there are
exactly 2n−1 different caustic types. The two caustic types in the planar case correspond to
ellipses: ς1 = 0, and hyperbolas: ς1 = 1. The four caustic types in the spatial case correspond
to EH1: ς = (0, 1), H1H1: ς = (1, 1), EH2: ς = (0, 2) and H1H2: ς = (1, 2). The EH1,
H1H1, EH2, H1H2 notation was described in the introduction.

Next, we recall a result concerning periodic billiard trajectories inside ellipsoids.

Theorem 4 (The generalized Poncelet theorem). If a non-singular billiard trajectory is
closed after m0 bounces and has length L0, then all trajectories sharing the same caustics are
also closed after m0 bounces and have length L0.

Poncelet proved this theorem for conics [6]. Darboux generalized it to triaxial ellipsoids
of R3; see [8]. Later on, this result was generalized to any dimension in [9–12].

The periodic billiard trajectories sharing the same caustics also have the same winding
numbers. In order to introduce these numbers, we set

{c1, . . . , c2n−1} = {a1, . . . , an} ∪ {λ1, . . . , λn−1} , (3)

andf (t) =
√∏2n−1

i=1 (1 − t/ci). We deal with non-singular billiard trajectories inside ellipsoids
without symmetries of revolution, so the parameters c1, . . . , c2n−1 are pairwise distinct, and
we can assume that c0 := 0 < c1 < · · · < c2n−1.

Theorem 5 (Winding numbers). The non-singular billiard trajectories inside the ellipsoid
Q sharing the caustics Qλ1 , . . . , Qλn−1 are periodic with period m0 if and only if there exist
some positive integer numbers m1, . . . , mn−1 such that

n−1∑
j=0

(−1)jmj

∫ c2j+1

c2j

t i

f (t)
dt = 0, ∀i = 0, . . . , n − 2. (4)

Each of these periodic billiard trajectories has mj points at Qc2j
and mj points at Qc2j+1 .

Besides this, {c2j , c2j+1}∩{a1, . . . , an} �= ∅ ⇒ mj even. Finally, gcd(m0, . . . , mn−1) ∈ {1, 2}.
Let L0 be the common length of these periodic billiard trajectories. Let x(t) be an arc-

length parameterization of any of these trajectories. Let µ(t) = (µ0(t), . . . , µn−1(t)) be the
corresponding parameterization in elliptic coordinates. Then:

(i) c2j � µj(t) � c2j+1 for all t ∈ R.
(ii) Functions µj(t) are smooth everywhere, except µ0(t), which is non-smooth at impact

points—that is, when x(t�) ∈ Q—in which case µ′
0(t�+) = −µ′

0(t�−) �= 0.
(iii) If µj(t) is smooth at t = t�, then µ′

j (t�) = 0 ⇔ µj(t�) ∈ {c2j , c2j+1}.
(iv) µj(t) makes exactly mj complete oscillations (round trips) inside the interval [c2j , c2j+1]

along one period 0 � t � L0.
(v) µ(t) has period L = L0/ gcd(m0, . . . , mn−1).

1007



Nonlinearity 27 (2014) 1003 R Ramı́rez-Ros

Definition 2. The numbers m0, . . . , mn−1 are called winding numbers. Theorem 5 contains
three equivalent definitions for them: by means of the property regarding hyperelliptic integrals
given in (4), as a geometric description of how the periodic billiard trajectories fold in Rn,
and as the number of oscillations of the elliptic coordinates along one period.

Most of the statements of theorem 5 can be found in [19, 21], except the one concerning
the even character of some winding numbers and the ones regarding gcd(m0, . . . , mn−1). The
first statement is trivial; it suffices to realize that a periodic billiard trajectory can only have an
even number of crossings with any coordinate hyperplane. The second ones follow from the
oscillating behavior of elliptic coordinates along billiard trajectories described in theorem 5;
it suffices to note that all elliptic coordinates make an integer number of complete oscillations
inside their corresponding intervals along one half-period L0/2 when gcd(m0, . . . , mn−1) = 2.

The following conjecture was stated in [26], where it was numerically tested.

Conjecture 1. Winding numbers are always ordered in a strictly decreasing way; that is,

2 � mn−1 < · · · < m1 < m0.

It is known that the conjecture holds in the planar case. If this conjecture holds, then
any non-singular periodic billiard trajectory inside Q has period at least n + 1. By the way,
there are periodic billiard trajectories of smaller periods, but all of them are singular—they are
contained in some coordinate hyperplane or in some ruled quadric of the confocal family.

In light of the last item of theorem 5, we present the following definitions.

Definition 3. The elliptic period m and the elliptic winding numbers m̃0, . . . , m̃n−1 of the non-
singular periodic billiard trajectories with period m0 and winding numbers m0, . . . , mn−1 are

m = m0/d, m̃j = mj/d,

where d = gcd(m0, . . . , mn−1).

Roughly speaking, the difference between the period m0 and the elliptic period m is that
periodic billiard trajectories close in Cartesian (respectively, elliptic) coordinates after exactly
m0 (respectively, m) bounces. In order to clarify this difference, let us consider the six planar
periodic trajectories shown in figure 1; see section 7. Only the trajectory in figure 1(c) verifies
that m = m0. In contrast, the trajectories in figures 1(a), (b) and (e) (respectively, figure 1(d),
figure 1(f )) have even period m0 and any of their impact points becomes its reflection with
respect to the origin (respectively, the vertical axis, the horizontal axis) after m0/2 bounces,
so they have elliptic period m = m0/2.

It turns out that given any ellipsoid of the form (1) and any proper coordinate subspace of
Rn, there exist infinitely many sets of n−1 distinct non-singular caustics such that their tangent
trajectories are periodic with even period, say m0, and any of their impact points becomes its
reflection with respect to that coordinate subspace after m0/2 bounces. We will not prove this
claim, since the proof requires some convoluted ideas developed in [26, 27].

It is natural to look for caustics giving rise to periodic billiard trajectories inside that
ellipsoid. Such caustics can be found by means of certain algebraic conditions, called
generalized Cayley conditions. They are found by working in elliptic coordinates, so they
depend on the elliptic period m, not on the (Cartesian) period m0.

Theorem 6 (Generalized Cayley conditions). The non-singular billiard trajectories inside
the ellipsoid Q sharing the caustics Qλ1 , . . . , Qλn−1 are periodic with elliptic period m if and
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only if m � n and

rank


fm+1 · · · fn+1

...
...

f2m−1 · · · fm+n−1

 < m − n + 1,

where f (t) =∑l�0 flt
l :=

√∏2n−1
i=1 (1 − t/ci).

Cayley proved this theorem for conics [13]. Later on, this result was generalized to any
dimension by Dragović and Radnović in [16,17]. These authors have also given similar Cayley
conditions in many other billiard frameworks; see [18–23].

Definition 4. C(m, n) denotes the generalized Cayley condition that characterizes billiard
trajectories of elliptic period m inside ellipsoids of Rn given in theorem 6.

3. On the matrix formulation of the generalized Cayley conditions

The matrix formulation of the generalized Cayley condition stated in theorem 6 is nice from
a theoretical point of view, but has limitations from a practical point of view. Let us describe
them.

The function f (t) is symmetric in the inverse quantities γi = 1/ci . In order to exploit
it, we introduce some notation for symmetric polynomials. Let Q

hom,sym
l [x1, . . . , xs] be the

vectorial space over Q of all homogeneous symmetric polynomials with rational coefficients of
degree l in the variables x1, . . . , xs . Let el(x1, . . . , xs) be the elementary symmetric polynomial
of degree l in the variables x1, . . . , xs . That is,

∏s
i=1(1 + xit) = ∑l�0 el(x1, . . . , xs)t

l , so

el(x1, . . . , xs) = 0 for all l > s. Clearly, el = el(x1, . . . , xs) ∈ Q
hom,sym
l [x1, . . . , xs].

We stress that fl = fl(γ1, . . . , γ2n−1) ∈ Q
hom,sym
l [γ1, . . . , γ2n−1], which is one of

the reasons for the introduction of the inverse quantities γi = 1/ci . Indeed, using that
f 2(t) =∏2n−1

i=1 (1 − γit), we get the recursive relations

f0 = 1, 2fl = (−1)lel(γ1, . . . , γ2n−1) −
l−1∑
k=1

fkfl−k, ∀l � 1.

Hence, it is possible to compute recursively all Taylor coefficients fl , although their expressions
are rather complicated when l is big. Nevertheless, the computation of the Taylor coefficients
fn+1, . . . , f2m−1 is the simplest step in the practical implementation of the generalized Cayley
condition C(m, n). Next, we must impose that all (m − n + 1) × (m − n + 1) minors of the
matrix that appear in theorem 6 vanish. For simplicity, let us consider the minors formed by
the first m − n rows and the (m − n + l)th row of that matrix, for l = 1, . . . , n − 1. Then the
Cayley condition C(m, n) can be written as the system of n − 1 polynomial equations

Mm,n,l = Mm,n,l(γ1, . . . , γ2n−1) :=

∣∣∣∣∣∣∣∣∣
fm+1 · · · fn+1

...
...

f2m−n · · · fm

f2m−n+l · · · fm+l

∣∣∣∣∣∣∣∣∣ = 0, 1 � l � n − 1. (5)

One can check that Mm,n,l(γ1, . . . , γ2n−1) ∈ Q
hom,sym
(m−n+2)m−n+l[γ1, . . . , γ2n−1] from the Leibniz

formula for determinants. This implies that the resolution of system (5) is a formidable
challenge, even from a purely numerical point of view and for relatively small values of m.
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We want to write down the solutions of system (5) in an explicit algebraic way. Let
us focus on the planar case n = 2, when condition C(m, 2) becomes a single homogeneous
symmetric polynomial equation of degree m2 − 1 in three unknowns, namely,

Mm = Mm(γ1, γ2, γ3) :=

∣∣∣∣∣∣∣
fm+1 · · · f3

...
...

f2m−1 · · · fm+1

∣∣∣∣∣∣∣ = 0.

For instance, condition C(2, 2) can be easily solved, since

−16M2 = γ 3
1 + γ 3

2 + γ 3
3 − γ 2

1 γ2 − γ 2
1 γ3 − γ 2

2 γ1 − γ 2
2 γ3 − γ 2

3 γ1 − γ 2
3 γ2 + 2γ1γ2γ3

= (γ1 − γ2 − γ3)(γ3 − γ1 − γ2)(γ2 − γ3 − γ1).

The inverse quantities γi = 1/ci verify that 0 < γ3 < γ2 < γ1, since 0 < c1 < c2 < c3.
Therefore, only the first factor of the above formula provides a feasible solution, and so
condition C(2, 2) has a unique solution:

γ1 = γ2 + γ3.

The computations for condition C(3, 2) are much harder, so we have implemented them
using a computer algebra system. We got the factorization −16 384M3 = q0q1q2q3, where

q0 = γ 2
1 + γ 2

2 + γ 2
3 − 2γ1γ2 − 2γ1γ3 − 2γ2γ3,

qk = 3γ 2
k − 2(γi + γj )γk − (γi − γj )

2, {i, j, k} = {1, 2, 3}.
The first factor q0 can, in its turn, be factored as

q0 = (
√

γ1 − √
γ2 − √

γ3)(
√

γ1 +
√

γ2 − √
γ3)(

√
γ1 − √

γ2 +
√

γ3)(
√

γ1 +
√

γ2 +
√

γ3).

The factor q0 provides a unique feasible solution:
√

γ1 = √
γ2 +

√
γ3, because 0 < γ3 <

γ2 < γ1. Next, we consider the factor qk as a second-order polynomial in the variable γk with
coefficients in Zsym[γi, γj ]. Then we get the solutions

γk = γ ±
k (γi, γj ) := γi + γj

3
± 2

3

√
γ 2

i + γ 2
j − γiγj .

It turns out that γ −
k � 0 < max(γi, γj ) < γ +

k , so only the factor q1 gives a solution compatible
with the ordering 0 < γ3 < γ2 < γ1, namely, γ1 = γ +

1 (γ2, γ3). Hence, C(3, 2) has only two
solutions:

√
γ1 = √

γ2 +
√

γ3 and 3γ1 = γ2 + γ3 + 2
√

γ 2
2 + γ 2

3 − γ2γ3. (6)

We have tried to write down explicitly the solutions of system (5) in other cases, but we
did not succeed, even after implementing the computations in a computer algebra system. This
shows the limitations of the matrix formulation.

4. A polynomial formulation of the generalized Cayley conditions

Let us present a polynomial formulation of the generalized Cayley condition C(m, n). The key
idea goes back to Halphen [15, section XIV, p 600], but he only studied the planar case n = 2.

Theorem 7. Let r(t) =∏2n−1
i=1 (1−t/ci) and f (t) = √

r(t). The generalized Cayley condition
C(m, n) is equivalent to each of the following two conditions:

(i) There exists a non-zero polynomial s(t) ∈ Rm−n[t] such that

dl

dt l

∣∣∣∣
t=0

{s(t)f (t)} = 0, l = m + 1, . . . , 2m − 1. (7)
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(ii) There exist α �= 0, s(t) ∈ Rm−n[t], and q(t) ∈ Rm−1[t] such that s(0) = q(0) = 1 and

s2(t)r(t) = (αtm + q(t))q(t). (8)

Proof. We split the proof into three steps.

Step 1. C(m, n) ⇔ (i). C(m, n) means that the m − n + 1 columns of the matrix given in
theorem 6 are linearly dependent, so there exist s0, . . . , sm−n ∈ R, not all zero, such that

s0 × (first column) + · · · + sm−n × (last column) = 0,

which is equivalent to condition (7) when s(t) =∑m−n
l=0 slt

l ∈ Rm−n[t].

Step 2. (i) ⇒ (ii). If s(t) ∈ Rm−n[t] verifies (7), then g(t) = ∑l�0 glt
l := s(t)f (t)

verifies that gl = 0 for l = m + 1, . . . , 2m − 1. Hence,

g(t) = q(t) + αtm/2 + O(t2m),

where q(t) = g0 + · · · + gm−1t
m−1 ∈ Rm−1[t] and α = 2gm. Therefore,

s2r = s2f 2 = g2 = q2 + αtmq + O(t2m) = (q + αtm)q + O(t2m),

and so s2r = (q + αtm)q, since deg[s2r] � 2m − 1 and deg[(q + αtm)q] � 2m − 1. Besides
this, α �= 0, because deg[r] is odd and s(t) �≡ 0.

Let h(t) =∑l�0 hlt
l := g2(t) = s2(t)r(t) ∈ R2m−1[t]. Then

0 = h2m =
2m∑
l=0

glg2m−l = (gm)2 + 2g0g2m ⇒ g0g2m = −α2/8 �= 0.

From this property, we deduce that q(0) = g0 �= 0 and s2(0) = q2(0)/r(0) �= 0. Thus, we
can normalize s(t) by imposing s(0) = 1, since condition (7) only determines s(t) up to a
multiplicative constant. This implies that q2(0) = s2(0)r(0) = 1, so q(0) = ±1. We can
assume, without loss of generality, that q(0) = 1. Otherwise, we substitute q(t) and α in the
identity s2r = (αtm + q)q, by −q(t) and −α, respectively.

Step 3. (ii) ⇒ (i). If there exist α �= 0, s(t) ∈ Rm−n[t], and q(t) ∈ Rm−1[t] such that
s(0) = q(0) = 1 and relation (8) holds, we set g(t) =∑l�0 glt

l := s(t)f (t). Then,

g2 = s2f 2 = s2r = (q + αtm)q = (1 + αtm/q)q2.

The last operation is well defined for small values of |t |, because q(0) �= 0. Hence,

g = ±q

√
1 +

αtm

q
= ±q

(
1 +

αtm

2q
+ O(t2m)

)
= ±q ± αtm

2
+ O(t2m),

so gl = 0 for l = m + 1, . . . , 2m − 1. �

Next, we present three examples of the results that can be obtained from this formulation.

Theorem 8. The non-singular billiard trajectories inside the ellipsoid (1) sharing the caustics
Qλ1 , . . . , Qλn−1 are periodic with:

• elliptic period m = n if the roots of tn −∏n
j=1(t − aj ) are the caustic parameters;

• elliptic period m = n+1 if there exists d ∈ R such that the roots of tn+1−(t−d)2∏n−1
k=1(t−

λk) are the ellipsoidal parameters; and
• elliptic period m = 2n − 1 if the roots of t2n−1 −∏n

j=1(t − aj )
∏n−1

k=1(t − λk) are double.
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Proof. It suffices to find α �= 0, s(t) ∈ Rm−n[t], and q(t) ∈ Rm−1[t] such that

s2(t)r(t) = (αtm + q(t))q(t), s(0) = q(0) = 1,

for m = n, m = n + 1 and m = 2n − 1, respectively; see theorem 7. We recall that
r(t) =∏2n−1

i=1 (1 − t/ci) with {c1, . . . , c2n−1} = {a1, . . . , an} ∪ {λ1, . . . , λn−1}.
Case m = n. If the caustic parameters are the roots of tn −∏n

j=1(t − aj ), then

tn −
n∏

j=1

(t − aj ) = κ

n−1∏
k=1

(t − λk),

for some factor κ ∈ R. Indeed, κ = ∏n
j=1 aj

∏n−1
k=1 λ−1

k . We take α = (−1)n
∏n

j=1 a−1
j ,

s(t) ≡ 1, and q(t) = ∏n−1
k=1(1 − t/λk). Clearly, α �= 0, s(t) ∈ R0[t], q(t) ∈ Rn−1[t], and

s(0) = q(0) = 1. Besides this,

s2(t)r(t) =
n∏

j=1

(1 − t/aj )

n−1∏
k=1

(1 − t/λk) = (αtn + q(t))q(t),

since
∏n

j=1(1 − t/aj ) = α
∏n

j=1(t − aj ) = αtn − ακ
∏n−1

k=1(t − λk) = αtn + q(t).

Case m = n + 1. If a1, . . . , an are the roots of tn+1 − (t − d)2∏n−1
k=1(t − λk), then

tn+1 − (t − d)2
n−1∏
k=1

(t − λk) = κ

n∏
j=1

(t − aj ),

for some κ ∈ R. Indeed, κ = d2∏n−1
k=1 λk

∏n
j=1 a−1

j . We take α = (−1)n+1d−2∏n−1
k=1 λ−1

k ,
s(t) = (1 − t/d), and q(t) = ∏n

j=1(1 − t/aj ). Clearly, α �= 0, s(t) ∈ R1[t], q(t) ∈ Rn[t],
and s(0) = q(0) = 1. Besides this,

s2(t)r(t) = (1 − t/d)2
n∏

j=1

(1 − t/ai)

n−1∏
k=1

(1 − t/λk) = (αtn+1 + q(t))q(t),

since (1 − t/d)2∏n−1
k=1(1 − t/λk) = α(t − d)2∏n−1

k=1(1 − t/λk) = αtn+1 − ακ
∏n

j=1(t − aj ) =
αtn+1 + q(t).

Case m = 2n − 1. If t2n−1 −∏2n−1
i=1 (t − ci) has double roots d1, . . . , dn−1, then

t2n−1 −
2n−1∏
i=1

(t − ci) = κ

n−1∏
l=1

(t − dl)
2,

for some κ ∈ R. Indeed, κ = ∏2n−1
i=1 ci

∏n−1
l=1 d−2

l . We take α = −∏2n−1
i=1 c−1

i , s(t) =∏n−1
l=1 (1 − t/dl), and q(t) = s2(t). Clearly, α �= 0, s(t) ∈ Rn−1[t], q(t) ∈ R2n−2[t], and

s(0) = q(0) = 1. Besides this,

s2(t)r(t) =
n−1∏
l=1

(1 − t/dl)
2

2n−1∏
i=1

(1 − t/ci) = (αt2n−1 + q(t))q(t),

since
∏2n−1

i=1 (1 − t/ci) = α
∏2n−1

i=1 (t − ci) = αt2n−1 − ακ
∏n−1

l=1 (t − dl)
2

= αt2n−1 + q(t). �
Several questions arise concerning the periodic trajectories found in the previous theorem.

Let us mention just three. Which are their caustic types, their (Cartesian) periods, and their
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winding numbers? Inside what ellipsoids do they exist? Are there other non-singular periodic
billiard trajectories with elliptic period n, n + 1 or 2n − 1?

We will give some partial answers in the following sections.
Some technicalities become simpler after the change of variables t = 1/x. Thus, we state

another polynomial formulation of the generalized Cayley condition C(m, n).

Proposition 9. Let R(x) = x
∏2n−1

i=1 (x − γi), where γi = 1/ci . The generalized Cayley
condition C(m, n) holds if and only if there exist two monic polynomials S(x), P (x) ∈ R[x]
such that deg[S] = m − n, deg[P ] = m, P(0) �= 0, and

S2(x)R(x) = P(x)
(
P(x) − P(0)

)
. (9)

Furthermore, if such polynomials S(x) and P(x) exist, the following properties hold:

(i) S(x) has no multiple roots;
(ii) all the real roots of S(x) are contained in {x ∈ R : R(x) < 0};

(iii) all the roots of S(x) are real when m � n + 3; and
(iv) P(x) and P(x) − P(0) have the same number of real roots (counted with multiplicity).

Proof. The ‘if and only if’ follows directly from the change of variables t = 1/x. Concretely,
the relation between the objects of identities (8) and (9) is

R(x) = x2nr(1/x), S(x) = xm−ns(1/x), P (x) = α + xmq(1/x).

Then P(0) �= 0 if and only if α �= 0, s(0) = 1 if and only if S(x) is a monic polynomial of
degree m − n, and q(0) = 1 if and only if P(x) is a monic polynomial of degree m.

To prove the first two properties, it suffices to prove that gcd[S, RS ′] = 1 and

l+ := #{x ∈ R : S(x) = 0 < R(x)} = 0.

If W(x) = P(x)(P (x) − P(0)) and T (x) = P(x) − P(0)/2, we get from (9) that

W(x) = S2(x)R(x) = T 2(x) − P 2(0)/4,

W ′(x) = S(x)(S(x)R′(x) + 2R(x)S ′(x)) = 2T (x)P ′(x).

We consider the factorization W ′(x) = 2mW−(x)W0(x)W+(x)W∗(x), where if z ∈ C is a
root of multiplicity β of W ′(x) such that W(z) < 0, W(z) = 0, W(z) > 0, or W(z) �∈ R, then
(x − z)β is included in the monic factor W−(x), W0(x), W+(x), or W∗(x), respectively. Next,
we find some lower bounds of the degrees of these factors.

First, T is divisor of W−, because W takes the negative value −P 2(0)/4 at each root of
T . Hence, deg[W−] � deg[T ] = m. Second, S gcd[S, RS ′] is a divisor of W0, because W

vanishes at each root of S. Thus, deg[W0] � m − n + l0, where l0 denotes the degree of
gcd[S, RS ′]. Third,

deg[W+] � #

(a, b) ⊂ R :
W(a) = W(b) = 0
R(x) > 0 for all x ∈ (a, b)

S(x) �= 0 for all x ∈ (a, b)

 = n − 1 + l+.

To understand the above inequality, we realize that if (a, b) is an open bounded interval that
satisfies the above three properties, then W(x) = S2(x)R(x) > 0 for all x ∈ (a, b), and W ′(x)

vanishes at some point c ∈ (a, b), by Rolle’s theorem. Therefore, deg[W+] is at least the
number of such intervals. We combine these three lower bounds:

2m − 1 = deg[W ′] � deg[W−] + deg[W0] + deg[W+] � 2m − 1 + l0 + l+.

This implies that l0 = l+ = 0. Indeed, W− = T , W0 = S, W∗ = 1, and gcd[S, RS ′] = 1.
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Next, we prove the property concerning the number of roots of P(x) and P(x) − P(0).
Let z be a root of the derivative P ′. Since W ′ = 2T P ′ and W− = T , we deduce that W(z)

cannot be a negative number. This implies that if P(z) is a real value between 0 and P(0),
then P ′(z) �= 0, since W(z) = P(z)(P (z) − P(0)) < 0. In particular, we deduce that the
number of real roots (counted with multiplicity) of the polynomial P(x) − η does not change
when the constant η ∈ R moves from 0 to P(0).

Finally, we prove that S(x) has only real roots when m � n+ 3. Let us suppose that z �∈ R

is a root of S(x). Then z̄ is also a root of S(x), so (x − z)(x − z̄)
∣∣ S(x). Using the identity

S2(x)R(x) = P(x)(P (x) − P(0)), we get that (x − z)2(x − z̄)2 is either a divisor of P(x) or
a divisor of P(x) − P(0), since P(x) and P(x) − P(0) have no common factors. But P(x)

and P(x) − P(0) have the same number of real roots, so there exists another w �∈ R ∪ {z, z̄}
such that (x − w)2(x − w̄)2 is a divisor of P(x)(P (x) − P(0)). This implies that S(x) has at
least four different complex roots, and so m − n = deg[S] � 4. �

There are some theoretical arguments against the existence of non-real roots of polynomial
S(x), although we have not been able to give a proof.

Conjecture 2. Let R(x) = x
∏2n−1

i=1 (x − γi) with 0 < γ2n−1 < · · · < γ1. If relation (9) holds
for some polynomials S(x), P (x) ∈ R[x] such that P(0) �= 0, then S(x) has only real roots.

5. Generalized Cayley conditions in the minimal case

Let us consider the case of minimal elliptic periods; that is, m = n.
We begin with a technical lemma for describing how the roots of the polynomials of the

form P(x)(P (x) − P(0)) with P(0) �= 0 are ordered in the real line, assuming that all these
roots—except the trivial one—are positive and have multiplicity at most 2.

Lemma 10. Let P(x) ∈ R[x] be a monic polynomial of degree m such that P(0) �= 0 and
all the roots of P(x)(P (x) − P(0))—except a simple root at x = 0—are positive and have
multiplicity at most 2. Let αm � · · · � α1 be the positive roots of P(x). Let βm−1 � · · · � β1

be the positive roots of P(x) − P(0).
If m is odd, then β2l−1, β2l ∈ (α2l , α2l−1) for all l = 1, . . . , (m − 1)/2; so

0 < αm � αm−1 < βm−1 � βm−2 < αm−2 � αm−3 < · · · < α3 � α2 < β2 � β1 < α1.

If m is even, then β1 > α1 and β2l , β2l+1 ∈ (α2l+1, α2l) for all l = 1, . . . , (m − 2)/2; so

0 < αm � αm−1 < βm−1 � βm−2 < αm−2 � αm−3 < · · · < β3 � β2 < α2 � α1 < β1.

Proof. Let η ∈ R. Using that the only critical points of P(x) are non-degenerate local maxima
or non-degenerate local minima, we deduce that the polynomial P(x) − η has m real roots
(counted with multiplicity) if and only if η � η � η, where

η = min {P(x) : x is a non-degenerate local maximum of P(x)} ,

η = max
{
P(x) : x is a non-degenerate local minimum of P(x)

}
.

Therefore, η � min(0, P (0)) and η � max(0, P (0)).
We begin with the case m odd, so P(0) = (−1)m

∏m
j=1 αj < 0, η � P(0), and η � 0.

The roots of P(x) and P(x) − P(0) can be viewed as the abscissas of the intersections of the
graph {y = P(x)} with the horizontal lines {y = 0} and {y = P(0)}, respectively. Double
roots correspond to tangential intersections. We know that P(x) � η � 0 at the local maxima,
and P(x) � η � P(0) at the local minima. This means that the intersections of the graph
{y = P(x)} with the lines {y = 0} and {y = P(0)} have the following pattern from left to
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right. First, the graph crosses {y = P(0)} at the abscissa x = 0; second, it intersects {y = 0}
at two abscissas αm and αm−1, which may coincide giving rise to a double root of P(x); third,
it intersects {y = P(0)} at two abscissas βm−1 and βm−2, which may coincide giving rise to
a double root of P(x) − P(0); fourth, it intersects {y = 0} at two abscissas αm−2 and αm−3,
which may coincide giving rise to a double root of P(x); and so on. The last intersection
corresponds to the abscissa x = α1.

The proof for m even is similar. We skip the details. �
We emphasize that ellipsoidal parameters 0 < a1 < · · · < an and non-singular caustic

parameters λ1 < · · · < λn−1 verify restrictions (2); then the parameters 0 < c1 < · · · < c2n−1

are defined in (3); next the inverse quantities 0 < γ2n−1 < · · · < γ1 are given by γi = 1/ci ;
and finally, R(x) = x

∏2n−1
i=1 (x − γi). We will make use of these orderings and conventions,

and this notation, throughout the paper without any explicit mention.

Corollary 11. Let {1, . . . , 2n − 1} = Jn ∪ Kn be the decomposition defined by

J1 = {1}, J2 = {2, 3}, Jn = Jn−2 ∪ {2n − 2, 2n − 1}, Kn = Jn−1.

If P(x) ∈ R[x] is a monic polynomial of degree n such that P(0) �= 0 and

R(x) = P(x)(P (x) − P(0)),

then P(x) =∏j∈Jn
(x − γj ) = P(0) + x

∏
k∈Kn

(x − γk).

Proof. There exists a decomposition {1, . . . , 2n − 1} = J ′ ∪ K ′ such that #J ′ = n,
#K ′ = n − 1, and P(x) = ∏j∈J ′(x − γj ) = P(0) + x

∏
k∈K ′(x − γk). The polynomial

P(x) verifies the hypotheses stated in lemma 10, so the roots {α1, . . . , αm} = {γj : j ∈ J ′}
and {β1, . . . , βm−1} = {γk : k ∈ K ′} obey the ordering described in that lemma. Therefore,
J ′ = Jn and K ′ = Kn. �

We now rewrite the generalized Cayley condition C(n, n) using the previous results. For
brevity, we omit the dependence of the decomposition {1, . . . , 2n − 1} = J ∪ K on the index
n. We note that #J = n and #K = n − 1. The symbol el(‘a set of parameters’) denotes the
elementary symmetric polynomial of degree l in those parameters.

Proposition 12. C(n, n) is equivalent to each of the following four conditions:

(i) If P(x) =∏j∈J (x − γj ), then P(x) − P(0) = x
∏

k∈K(x − γk).
(ii)
∏

j∈J (γj − γk) =∏j∈J γj , for all k ∈ K .
(iii) el({γj }j∈J ) = el({γk}k∈K), for all l = 1, . . . , n − 1.
(iv)
∑

j∈J γ l
j =∑k∈K γ l

k , for all l = 1, . . . , n − 1.

Proof. We split the proof into four steps.

Step 1. C(n, n) ⇔ (i). Let us assume that C(n, n) holds. Then there exist a monic polynomial
P(x) ∈ R[x] of degree n such that P(0) �= 0 and

R(x) = P(x)(P (x) − P(0)).

Thus, condition (i) follows from corollary 11.
Reciprocally, if condition (i) holds, P(x)(P (x) − P(0)) = x

∏2n−1
i=1 (x − γi), so C(n, n)

holds.

Step 2. (i) ⇔ (ii). If P(x) =∏j∈J (x − γj ) and Q(x) = x
∏

k∈K(x − γk), then

Q(x) = P(x) − P(0) ⇔ P(γk) = P(0), ∀k ∈ K ⇔
∏
j∈J

(γj − γk) =
∏
j∈J

γj , ∀k ∈ K.
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Step 3. (i) ⇔ (iii). If P(x) =∏j∈J (x − γj ) and Q(x) = x
∏

k∈K(x − γk), then

Q(x) = xn +
n−1∑
l=1

(−1)lel({γk}k∈K)xn−l , P (x) = xn +
n−1∑
l=1

(−1)lel({γj }j∈J )xn−l + P(0).

Step 4. (iii) ⇔ (iv). It follows from Newton’s identities connecting the elementary symmetric
polynomials and the power sum symmetric polynomials; see [28]. �

The examples given in the introduction concerning billiard trajectories inside ellipsoids
of R3 with elliptic period m = 3 follow from this proposition. Let us present some planar
examples.

Example 1. The quantities γ3 = 1, γ2 = 2, and γ1 = 3 verify C(2, 2), because 1 + 2 = 3.
This means that the billiard trajectories:

• inside the ellipse Q : x2 + 2y2 = 1 with caustic parameter λ = 1/3 or
• inside the ellipse Q : x2 + 3y2 = 1 with caustic parameter λ = 1/2

are periodic with elliptic periodic m = 2 and caustic types ς = 0 and ς = 1, respectively.

Let us compare the system of homogeneous symmetric polynomial equations (5), which
was obtained directly from the matrix formulation, with the system of homogeneous non-
symmetric polynomial equations

∑
j∈J γ l

j = ∑
k∈K γ l

k , 1 � l � n − 1, obtained in the
previous proposition. We are dealing with the case m = n, so the lth equation of the former
system has degree n + l, whereas the lth equation of the new system has degree l. Besides this,
the new system has a remarkably simple closed expression. This shows that the polynomial
formulation simplifies the problem.

The beauty of the conditions regarding the elementary symmetric polynomials and the
power sum symmetric polynomials given in proposition 12 has been the motivation for the
introduction of the inverse quantities γi = 1/ci . Nevertheless, we find it useful to state the
following result in terms of the ellipsoidal parameters aj , in order to answer some questions
concerning the non-singular periodic billiard trajectories found in the first item of theorem 8.

Theorem 13. There exist non-singular periodic billiard trajectories inside the ellipsoid (1)
with elliptic period m = n and caustic type

ς =
{
(1, 1, 3, 3, . . . , n − 2, n − 2) for n odd
(0, 2, 2, 4, 4, . . . , n − 2, n − 2) for n even

(10)

if and only if all the roots of tn −∏n
j=1(t − aj ) are real and simple. These periodic billiard

trajectories have the roots of tn −∏n
j=1(t − aj ) as caustic parameters, period m0 = 2n, and

even winding numbers m0, . . . , mn−1. Indeed,

mj = 2m̃j = 2(n − j), j = 0, . . . , n − 1, (11)

provided Conjecture 1 on the strict decreasing ordering of winding numbers holds.

Proof. Let us assume that there exist non-singular periodic billiard trajectories with elliptic
period n and caustic type (10). By definition of caustic type, the caustic parameters
λ1 < · · · < λn−1 of such trajectories verify that:

• if n is odd, then λ2l−1, λ2l ∈ (a2l−1, a2l), for l = 1, . . . , (n − 1)/2;
• if n is even, then λ1 ∈ (0, a1), and λ2l , λ2l+1 ∈ (a2l , a2l+1), for l = 1, . . . , (n − 2)/2.
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Hence, we can split the set {γi = 1/ci : i = 1, . . . , 2n − 1} as the disjoint union of the sets

{γj : j ∈ J } = {1/a1, . . . , 1/an}, {γk : k ∈ K} = {1/λ1, . . . , 1/λn−1},
where {1, . . . , 2n − 1} = J ∪ K is the decomposition described in corollary 11. Thus, we
know from condition (ii) of proposition 12 that

n∏
j=1

(
1

aj

− 1

λk

)
=

n∏
j=1

1

aj

, k = 1, . . . , n − 1.

This identity can be written as λn
k = ∏n

j=1(λk − aj ), for all k = 1, . . . , n − 1, which implies
that the caustic parameters λ1, . . . , λn−1 are the roots of tn −∏n

j=1(t − aj ).
Reciprocally, let us assume that the roots of q(t) = tn −∏n

j=1(t −aj ) are real and simple.
Let λ1 < · · · < λn−1 be these roots. None of them is zero, since q(0) �= 0. Besides this, λk is
a root of q(t) if and only if βk := 1/λk �= 0 is a root of

Q(x) := (−1)n−1xnq(1/x)

a1 · · · an

= P(x) − P(0),

where P(x) = ∏n
j=1(x − αj ) with αj = 1/aj . Therefore, the roots αj = 1/aj and

βk = 1/λk are ordered as stated in lemma 10. The consequences are twofold. On the
one hand, λk ∈ (aςk

, aςk+1), where ς = (ς1, . . . , ςn−1) is the caustic type given in (10). On
the other hand, there exist non-singular billiard trajectories inside the ellipsoid Q sharing
the caustics Qλ1 , . . . , Qλn−1 , because the existence conditions (2) hold. Thus, the trajectories
sharing the caustics Qλ1 , . . . , Qλn−1 are periodic with elliptic period n and caustic type ς , since
the generalized Cayley condition C(n, n) holds; see proposition 12.

Next, we prove the claims on the (Cartesian) period and the winding numbers. The
caustic parameters are located in the intervals delimited by the ellipsoidal parameters given at
the beginning of the proof, which implies that

{c2j , c2j+1} ∩ {a1, . . . , an} �= ∅, j = 0, . . . , n − 1,

where c0 := 0 < c1 < · · · < c2n−1 are defined in (3). Thus, all winding numbers are even—see
theorem 5—and so, by definition of elliptic period, m0 = 2m = 2n.

Finally, let us assume that winding numbers are ordered as stated in conjecture 1, so
2 � mn−1 < · · · < m0 = 2n with m0, . . . , mn−1 even. Then mj = 2m̃j = 2(n − j). �

Remark 1. If all the roots of tn −∏n
j=1(t −aj ) are real, but some of them are double, then we

get singular periodic billiard trajectories. In that case, there are only two possible scenarios.
Either n is odd and λ2l−1 = λ2l for some l = 1, . . . , (n−1)/2; or n is even and λ2l = λ2l+1 for
some l = 1, . . . , (n − 2)/2. In all of these cases, the singular periodic trajectories are formed
by segments contained in some non-singular ruled confocal quadrics.

Remark 2. All of the periodic billiard trajectories mentioned in theorem 13 have caustic
type (10). One may establish similar theorems for other caustic types. For instance, the
versions EH1, H1H1, EH2 and H1H2 of theorem 13 in the spatial case will be listed in table 2.

6. Cayley conditions in the general case

Now that we have understood the minimal case m = n, we tackle the general case m � n.
Let us explain the fundamental question by means of an example. In section 3 we saw that

condition C(3, 2) becomes a single homogeneous symmetric polynomial equation of degree
8 in the variables γ1, γ2, γ3, with only two feasible solutions; namely, the ones given in (6).
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Thus, it is natural to ask whether can we rewrite C(3, 2) as a set of two simpler conditions such
that each one of them gives rise to one of the solutions given in (6).

By the way, we raise a question for any m � n. Can we rewrite C(m, n) as a set of
‘simpler’ conditions such that each one of them gives rise to just ‘one’ solution of C(m, n)?
We answer this question in the affirmative. Indeed, we parameterize these ‘simpler’ conditions
with the elements of the set

T (m, n) = {(τ1, . . . , τn) ∈ Zn : τ1 + · · · + τn = m − n, τ1, . . . , τn � 0
}
.

The cardinal of T (m, n) is the number of monomials of degree m − n in n variables. Thus,
#T (m, n) = (m−1

n−1

)
, which gives a precise estimate of the complexity of the Cayley condition

C(m, n) when m grows. We will refer to the elements of T (m, n) as signatures. We set γ2n = 0
in order to simplify some notation.

Definition 5. Given any signature τ = (τ1, . . . , τn) ∈ T (m, n), we say that condition
C(m, n; τ) holds if and only if there exist two monic polynomials S(x), P (x) ∈ R[x] such
that deg[S] = m − n, deg[P ] = m, P(0) �= 0, S2(x)R(x) = P(x)(P (x) − P(0)), and S(x)

has m − n simple real roots δm−n < · · · < δ1 such that

#
({δ1, . . . , δm−n} ∩ (γ2r , γ2r−1)

) = τr , r = 1, . . . , n. (12)

Corollary 14. If there exists τ ∈ T (m, n) such that C(m, n; τ) holds, then C(m, n) also holds.
The reciprocal implication is true for m � n + 3 (or provided conjecture 2 holds).

Proof. The first implication is obvious. For the reciprocal implication, we simply recall
that S(x) has only real roots when m � n + 3 and all its real roots are contained in
{x ∈ R : R(x) < 0} =⋃n

r=1(γ2r , γ2r−1); see proposition 9. �

Definition 6. Given any signature τ ∈ T (m, n), let {1, . . . , 2n − 1} = Jτ ∪ Kτ and
{1, . . . , m − n} = Vτ ∪ Wτ be the decompositions determined as follows. If δm−n < · · · < δ1

is any ordered sequence verifying (12), then the elements of the multisets

{α1, . . . , αm} = {γj : j ∈ Jτ } ∪ {δv, δv : v ∈ Vτ },
{β1, . . . , βm−1} = {γk : k ∈ Kτ } ∪ {δw, δw : w ∈ Wτ },

are ordered as in lemma 10.

Multisets are a generalization of sets in which members are allowed to appear more than
once; see [29]. In our case, the numbers δ1, . . . , δm−n appear twice.

These decompositions are well defined. That is, they only depend on the signature τ , since
any ordered sequence δm−n < · · · < δ1 verifying (12) gives rise to the same decomposition.
The decomposition {1, . . . , 2n − 1} = Jn ∪ Kn given in corollary 11 corresponds to the trivial
signature τ = (0, . . . , 0) ∈ T (n, n).

Next, we generalize corollary 11 and proposition 12 to the case m � n.

Corollary 15. Let δm−n < · · · < δ1 be an ordered sequence verifying (12) for some signature
τ ∈ T (m, n). If P(x) is a monic polynomial of degree m such that P(0) �= 0 and

m−n∏
u=1

(x − δu)
2 · R(x) = P(x)(P (x) − P(0)),

then P(x) =∏j∈Jτ
(x − γj )

∏
v∈Vτ

(x − δv)
2 = P(0) + x

∏
k∈Kτ

(x − γk)
∏

w∈Wτ
(x − δw)2.
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Proof. There exist two decompositions {1, . . . , 2n−1} = J ′∪K ′ and {1, . . . , m−n} = V ′∪W ′

such that P(x) =∏j∈J ′(x − γj )
∏

v∈V ′(x − δv)
2 = P(0) + x

∏
k∈K ′(x − γk)

∏
w∈W ′(x − δw)2.

The polynomial P(x) verifies the hypotheses stated in lemma 10, so the roots

{α1, . . . , αm} = {γj : j ∈ J ′} ∪ {δv, δv : v ∈ V ′}
{β1, . . . , βm−1} = {γk : k ∈ K ′} ∪ {δw, δw : w ∈ W ′}

obey the ordering described in that lemma. Hence, J ′ = Jτ , K ′ = Kτ , V ′ = Vτ , and
W ′ = Wτ . �

Proposition 16. Condition C(m, n; τ) holds if and only if there exists a sequence δm−n <

· · · < δ1 verifying (12) such that the following three equivalent properties hold:

(i) if P(x) =∏j∈Jτ
(x − γj )

∏
v∈Vτ

(x − δv)
2, then P(x) − P(0) = x

∏
k∈Kτ

(x − γk)
∏

w∈Wτ

(x − δw)2;

(ii) el

({γj }j∈Jτ
∪ {δv, δv}v∈Vτ

) = el

({γk}k∈Kτ
∪ {δw, δw}w∈Wτ

)
, for all l = 1, . . . , m − 1;

(iii)
∑

j∈Jτ
γ l

j + 2
∑

v∈Vτ
δl
v =∑k∈Kτ

γ l
k + 2

∑
w∈Wτ

δl
w, for all l = 1, . . . , m − 1.

Proof. We simply repeat the steps of the proof of proposition 12, but using corollary 15 instead
of corollary 11. �

Example 2. The quantities γ3 = 1, γ2 = 4, and γ1 = 9 verify condition C(3, 2; τ) with
τ = (1, 0), because 1 + 4 + 9 = 2 · 7, 12 + 42 + 92 = 2 · 72, and 7 ∈ (4, 9). Hence, the billiard
trajectories:

• inside the ellipse Q : x2 + 4y2 = 1 with caustic parameter λ = 1/9 or

• inside the ellipse Q : x2 + 9y2 = 1 with caustic parameter λ = 1/4

are periodic with elliptic periodic m = 3. Their caustic types are ς = 0 and ς = 1,
respectively.

All conditions C(m, n; τ), τ ∈ T (m, n), give rise to non-singular periodic billiard
trajectories with elliptic period m, so we wondered what is the dynamical meaning of the
signature τ . We believe that there exists a one-to-one correspondence between the elliptic
winding numbers m̃0, . . . , m̃n−1—see definition 3—and the signature τ = (τ1, . . . , τn).

Conjecture 3. Set m̃n = 0. Then m̃j = m̃j+1 + τj+1 + 1 for all j = 0, . . . , n − 1.

This conjecture follows from the interpretation of C(m, n; τ) as a singular limit of C(m, m)

when m − n couples of simple roots collide, so they become double roots. Unfortunately, we
have not been able to transform this argument into a rigorous proof, although all our analytical
and numerical computations agree with the conjecture.

To end this section, we stress that if conjectures 2 and 3 hold, then the elliptic winding
numbers m̃0, . . . , m̃n−1 of any non-singular periodic billiard trajectory verify the above-
mentioned relations for some signature τ = (τ1, . . . , τn) with non-negative entries, so the
sequence m̃0, . . . , m̃n−1 strictly decreases, and conjecture 1 holds.
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7. The planar case

We adapt the previous setting of billiards inside ellipsoids of Rn to the planar case n = 2. To
follow traditional conventions in the literature, we write the ellipse as

Q =
{
(x, y) ∈ R2 :

x2

a
+

y2

b
= 1

}
, a > b > 0. (13)

Any non-singular billiard trajectory inside Q is tangent to one confocal caustic

Qλ =
{
(x, y) ∈ R2 :

x2

a − λ
+

y2

b − λ
= 1

}
,

where λ ∈ � = E ∪ H , with E = (0, b) and H = (b, a).
The names of the connected components of � come from the fact that Qλ is a confocal

ellipse for λ ∈ E and a confocal hyperbola for λ ∈ H . The singular cases λ = b and λ = a

correspond to the x-axis and y-axis, respectively. We say that the caustic type of a billiard
trajectory is E or H when its caustic is an ellipse or a hyperbola (compare with definition 1).
We also distinguish between E-caustics and H-caustics.

We recall some concepts related to periodic trajectories of billiards inside ellipses. These
results can be found, for instance, in [9, 26]. To begin with, we introduce the function
ρ : � → R given by the quotient of elliptic integrals

ρ(λ) = ρ(λ; b, a) :=

∫ min(b,λ)

0

dt√
(λ − t)(b − t)(a − t)

2
∫ a

max(b,λ)

dt√
(λ − t)(b − t)(a − t)

. (14)

It is called the rotation number and characterizes the caustic parameters that give rise to periodic
trajectories. To be precise, the billiard trajectories with caustic Qλ are periodic if and only if

ρ(λ) = m1/2m0 ∈ Q

for some integers 2 � m1 < m0, which are the winding numbers. On the one hand, m0 is the
period. On the other hand, m1 is twice the number of turns around the ellipse Qλ for E-caustics,
and the number of crossings of the y-axis for H-caustics. Thus, m1 is always even. Besides
this, all periodic trajectories with H-caustics have even period. (Compare with theorem 5.)

Proposition 17. The winding numbers 2 � m1 < m0, rotation number ρ = m1/2m0,
signature τ = (τ1, τ2) ∈ T (m, 2), caustic type (E or H), and caustic parameter λ of all non-
singular periodic billiard trajectories inside the ellipse (13) with elliptic period m ∈ {2, 3} are
listed in table 1. The ellipses for which such trajectories take place are also listed.

Proof. We split the proof into four steps.

Step 1. To find the solutions of C(m, 2) in terms of the inverse quantities γi . First, we saw in
proposition 12 that C(2, 2) holds if and only if γ1 = γ2 + γ3.

Next, we focus on the case m = 3. We note that C(3, 2) holds if and only if C(3, 2; τ)

holds for some τ = (τ1, τ2) ∈ Z2 such that τ1 + τ2 = 1 and τ1, τ2 � 0; see corollary 14.
Let us begin with the signature τ = (1, 0). After a straightforward check, we get that the

decompositions presented in definition 6 are Jτ = {1, 2, 3}, Kτ = Vτ = ∅, and Wτ = {1}.
Thus, C(3, 2; τ) holds if and only if there exists some δ1 ∈ (γ2, γ1) such that

P(x) = (x − γ1)(x − γ2)(x − γ3) = P(0) + x(x − δ1)
2,
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Table 1. Algebraic formulas for the caustic parameter corresponding to non-singular
periodic billiard trajectories with elliptic period m ∈ {2, 3} in the planar case.

m m0 m1 ρ τ Type Ellipses Caustic parameter

2 4 2 1/4 (0, 0) E Any
ab

a + b

2 4 2 1/4 (0, 0) H 2b < a
ab

a − b

3 6 2 1/6 (1, 0) E Any
ab

a + b + 2
√

ab

3 6 2 1/6 (1, 0) H 4b < a
ab

a + b − 2
√

ab

3 3 2 1/3 (0, 1) E Any
3ab

a + b + 2
√

a2 − ab + b2

3 6 4 1/3 (0, 1) H 4b < 3a
ab

2
√

a2 − ab + b − a

or, equivalently, if and only if the discriminant of the polynomial

Q(x) = P(x) − P(0)

x
= x2 − e1(γ1, γ2, γ3)x + e2(γ1, γ2, γ3)

is equal to zero. The discriminant of Q(x) is


 = γ 2
1 + γ 2

2 + γ 2
3 − 2γ1γ2 − 2γ1γ3 − 2γ2γ3.

We already saw in section 3 that the only feasible solution of 
 = 0 is
√

γ1 = √
γ2 +

√
γ3.

When τ = (0, 1), the decompositions are Jτ = {1}, Kτ = {2, 3}, Vτ = {1}, and Wτ = ∅.
Thus, C(3, 2; τ) holds if and only if there exists some δ1 ∈ (0, γ3) such that

γ1 + 2δ1 = γ2 + γ3, γ 2
1 + 2δ2

1 = γ 2
2 + γ 2

3 ,

or, equivalently, if and only if

3γ 2
1 − 2(γ2 + γ3)γ1 − (γ2 − γ3)

2 = (γ2 + γ3 − γ1)
2 − 2(γ 2

2 + γ 2
3 − γ 2

1 )

= (2δ1)
2 − 4δ2

1 = 0.

And we already saw in section 3 that the only feasible solution of the above equation is

3γ1 = γ2 + γ3 + 2
√

γ 2
2 + γ 2

3 − γ2γ3.

Step 2. To express the above solutions in terms of a, b and λ. If the caustic type is E, then
λ ∈ (0, b), γ1 = 1/λ, γ2 = 1/b and γ3 = 1/a. Thus,

γ1 = γ2 + γ3 ⇔ λ = ab

a + b
,

√
γ1 = √

γ2 +
√

γ3 ⇔ λ = ab

a + b + 2
√

ab

3γ1 = γ2 + γ3 + 2
√

γ 2
2 + γ 2

3 − γ2γ3 ⇔ λ = 3ab

a + b + 2
√

a2 − ab + b2
.

If the caustic type is H, then λ ∈ (b, a), γ1 = 1/b, γ2 = 1/λ and γ3 = 1/a. Thus,

γ1 = γ2 + γ3 ⇔ λ = ab

a − b
,

√
γ1 = √

γ2 +
√

γ3 ⇔ λ = ab

a + b − 2
√

ab

3γ1 = γ2 + γ3 + 2
√

γ 2
2 + γ 2

3 − γ2γ3 ⇔ λ = ab

2
√

a2 − ab + b − a
.
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Figure 1. Some periodic trajectories corresponding to the caustic parameters given in
table 1. The ellipse for λ = ab

a+b−2
√

ab
is flatter, because it must satisfy the condition

4b < a.

Step 3. To determine the ellipses for which such periodic billiard trajectories take place. We
ask whether the caustic parameters found above belong to the interval (0, b) for E-caustics, and
to the interval (b, a) for H-caustics. The caustic type E does not give any restriction, because

0 < b < a and λ ∈
{

ab

a + b
,

ab

a + b + 2
√

ab
,

3ab

a + b + 2
√

a2 − ab + b2

}
⇒ λ ∈ (0, b).

In contrast, the caustic type H gives rise to some restrictions. Namely,

b <
ab

a − b
< a ⇔ 2b < a,

b <
ab

a + b − 2
√

ab
< a ⇔ 4b < a,

b <
ab

2
√

a2 − ab + b − a
< a ⇔ 4b < 3a.

Step 4. To find the winding numbers and the rotation number. The winding numbers
2 � m1 < m0 and the rotation number ρ(λ) = m1/2m0 are obtained from geometric
arguments. To be precise, we draw in figure 1 a billiard trajectory tangent to Qλ for each
of the caustic parameters listed in table 1. Then we recall that m0 is the period and m1 is twice
the number of turns around the ellipse Qλ for E-caustics, and the number of crossings of the
y-axis for H-caustics. �

Halphen [15, p 377] obtained several algebraic equations related to the formulas given in
table 1. Halphen looks for all caustics associated with some fixed period, whereas we look
for the unique caustic associated with some fixed winding numbers and caustic type. Thus,
Halphen’s equations have many different solutions, whereas each one of our formulas gives
rise to a single caustic.
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Table 2. Algebraic formulas for the caustic parameters corresponding to the non-singular
periodic trajectories with elliptic period m = 3 in the spatial case.

Type Ellipsoids Caustic parameters

EH1 c <
ab

a + b +
√

ab

c3 = (c − λ1)(b − c)(a − c)

1/λ2 + 1/c = 1/a + 1/b + 1/λ1

H1H1 c <
ab

a + b + 2
√

ab

Roots of
t3 − (t − a)(t − b)(t − c)

EH2

c <
a − 2b

2a − 3b
a

2b < a

Roots of
(a − b)(a − c)t2 + (bc − a(b + c))at + a2bc

H1H2


c <

a − 2b

(a − b)2
ab

b >
ac

a + c − √
ac

b3 = (b − c)(λ2 − b)(a − b)

1/λ1 + 1/b = 1/a + 1/c + 1/λ2

It is interesting to realize that the results in table 1 agree with conjecture 3.
In the planar case n = 2, the caustic type (10) is ς = 0 or, equivalently, E. Hence, the

planar version of theorem 13 is shown in the first row of table 1, because λ = ab/(a + b) is
the root of t2 − (t − a)(t − b). This naive observation was the germ of this paper.

8. The spatial case

In order to study the spatial case n = 3, we consider the triaxial ellipsoid

Q =
{
(x, y, z) ∈ R3 :

x2

a
+

y2

b
+

z2

c
= 1

}
, a > b > c > 0. (15)

Any non-singular billiard trajectory inside Q is tangent to two distinct non-singular
caustics Qλ1 and Qλ2 , with λ1 < λ2, of the confocal family

Qλ =
{
(x, y, z) ∈ R3 :

x2

a − λ
+

y2

b − λ
+

z2

c − λ
= 1

}
. (16)

The caustic Qλ is an ellipsoid for λ ∈ (0, c), a hyperboloid of one sheet when λ ∈ (c, b), and
a hyperboloid of two sheets if λ ∈ (b, a). Not all combinations of non-singular caustics can
take place: only the four caustic types EH1, H1H1, EH2 and H1H2.

Proposition 18. The caustic type and caustic parameters of all non-singular periodic billiard
trajectories inside the triaxial ellipsoid (15) with elliptic period m = 3 are listed in table 2.
The ellipsoids for which such trajectories take place are also listed.

Proof. If a, b, and c are the ellipsoidal parameters, and λ1 and λ2 are the caustic parameters,
we set {c1, c2, c3, c4, c5} = {a, b, c, λ1, λ2}, where 0 < c1 < c2 < c3 < c4 < c5. We
also set γi = 1/ci . Let {1, 2, 3, 4, 5} = J ∪ K , with J = {1, 4, 5} and K = {2, 3}, be the
decomposition defined in corollary 11 when n = 3. From proposition 12 we know that

C(3, 3) ⇔ γ2 + γ3 = γ1 + γ4 + γ5 and γ 2
2 + γ 2

3 = γ 2
1 + γ 2

4 + γ 2
5

⇔ (γ1 − γk)(γ4 − γk)(γ5 − γk) = γ1γ4γ5, for k = 2, 3

⇔ c3
k = (ck − c1)(c4 − ck)(c5 − ck), for k = 2, 3.

In the rest of the proof, we study each caustic type separately.
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Caustic type EH1. In this case 0 < λ1 < c < λ2 < b < a, so

c1 = λ1, c2 = c, c3 = λ2, c4 = b, c5 = a.

Thus the formula for λ1 follows from the relation c3
2 = (c2 −c1)(c4 −c2)(c5 −c2), whereas the

formula for λ2 follows from the relation γ2 + γ3 = γ1 + γ4 + γ5. Next, we look for ellipsoidal
parameters such that the caustic parameters computed using these two formulas are placed in
the right intervals: λ1 ∈ (0, c) and λ2 ∈ (c, b).

To begin with, we note that λ1 < c, since (c − λ1)(b − c)(a − c) = c3 > 0. Besides this,

λ1 = ab − (a + b)c

(b − c)(a − c)
c > 0 ⇔ c <

ab

a + b
.

On the other hand, if λ1 ∈ (0, c), then

1/λ2 = 1/a + 1/b + (1/λ1 − 1/c) > 1/a + 1/b > 1/b,

so λ2 < b. Finally,

λ2 > c ⇔ 1

c
+

c

ab − (a + b)c
= 1

λ1
= 1

λ2
+

1

c
− 1

a
− 1

b
<

2

c
− 1

a
− 1

b

⇔ c <
ab

a + b +
√

ab
.

Therefore, λ1 ∈ (0, c) and λ2 ∈ (c, b) if and only if c < ab/(a + b +
√

ab).

Caustic type H1H1. If n = 3, then the caustic type (10) is ς = (1, 1) or, equivalently, H1H1.
Hence, the study for the caustic type H1H1 was already carried out in theorem 13. It suffices
to note that the polynomial

t3 − (t − a)(t − b)(t − c) = (a + b + c)t2 − (ab + ac + bc)t + abc

has two real simple roots if and only if its discriminant


 = (ab + ac + bc)2 − 4abc(a + b + c) = (a − b)2c2 − 2ab(a + b)c + a2b2

is positive. This discriminant is a second-degree polynomial in c whose roots are

c± = ab(a + b) ± 2ab
√

ab

(a − b)2
= ab

a + b ∓ 2
√

ab
.

We note that 0 < c− < b < c+. Thus, using that 0 < c < b < a, we get 
 > 0 ⇔ c < c−.

Caustic type EH2. In this case 0 < λ1 < c < b < λ2 < a, so

c1 = λ1, c2 = c, c3 = b, c4 = λ2, c5 = a.

Using relations γ l
2 + γ l

3 = γ l
1 + γ l

4 + γ l
5, with l = 1, 2, we know that

sl := 1

λl
1

+
1

λl
2

= 1

cl
+

1

bl
− 1

al
, l = 1, 2.

Hence, 1/λ1 and 1/λ2 are the roots of the polynomial

(x − 1/λ1)(x − 1/λ2) = x2 − s1x +
s2

1 − s2

2
= x2 +

bc − a(b + c)

abc
x +

(a − b)(a − c)

a2bc
.

Thus, using the change of variables t = 1/x, we get that λ1 and λ2 are the roots of

Q(t) = (a − b)(a − c)t2 + (bc − a(b + c))at + a2bc.

We look for ellipsoidal parameters such that Q(t) has a root in (0, c) and a root in (b, a). The
root in (0, c) always exists, since Q(0) = a2bc > 0 and Q(c) = −c3(a − b) < 0. Besides

1024



Nonlinearity 27 (2014) 1003 R Ramı́rez-Ros

this, Q(b) = −b3(a − c) < 0 and limt→+∞ Q(t) = +∞, so Q(t) has a root in (b, a) if and
only if

Q(a) = a2
(
a2 − 2a(b + c) + 3bc

)
> 0,

or, equivalently, if and only if c < (a − 2b)a/(2a − 3b) and 2b < a. We have used that
0 < c < b < a in the last equivalence.

Caustic type H1H2. In this case 0 < c < λ1 < b < λ2 < a, so

c1 = c, c2 = λ1, c3 = b, c4 = λ2, c5 = a.

Thus the formula for λ2 follows from the relation c3
2 = (c2 −c1)(c4 −c2)(c5 −c2), whereas the

formula for λ1 follows from the relation γ2 + γ3 = γ1 + γ4 + γ5. Next, we look for conditions
on the ellipsoidal parameters such that the caustic parameters computed from the previous
formulas are placed in the right intervals: λ1 ∈ (c, b) and λ2 ∈ (b, a).

To begin with, we note that λ2 > b, because (b−c)(λ2−b)(a−b) = b3 > 0. Besides this,

(a + c)b − ac

(a − b)(b − c)
b = λ2 < a ⇔ c <

a − 2b

(a − b)2
ab.

On the other hand, using that 0 < c < b < a, we get that

c < λ1 < b ⇔ 2

b
− 1

a
− 1

c
<

1

λ2
= 1

λ1
+

1

b
− 1

a
− 1

c
<

1

b
− 1

a

⇔ 2

b
− 1

a
− 1

c
<

1

b
− b

(a + c)b − ac
<

1

b
− 1

a

⇔ b >
ac

a + c − √
ac

.

Thus, λ1 ∈ (0, c) and λ2 ∈ (b, a) if and only if c < (a − 2b)ab/(a − b)2 and b >

ac/(a + c − √
ac). �

Let us look for the winding numbers of the trajectories described in the previous
proposition. The winding numbers m0, m1 and m2 describe how the periodic billiard
trajectories fold in R3. The following results can be found in [26, table 1]. First, m0 is
the period. Second, m1 is the number of xy-crossings and m2 is twice the number of turns
around the z-axis for EH1-caustics; m1 is twice the number of turns around the x-axis and m2

is the number of yz-crossings for EH2-caustics; m1 is the number of tangential touches with
each hyperboloid of one sheet caustic and m2 is twice the number of turns around the z-axis
for H1H1-caustics; m1 is the number of xz-crossings and m2 is the number of yz-crossings for
H1H2-caustics. Besides this, all periodic trajectories with H1H1-caustics or H1H2-caustics
have even period. Several periodic billiard trajectories with elliptic period m = 3 were depicted
in [27, tables XV and XVII]. We conclude by direct inspection of those pictures that the non-
singular periodic billiard trajectories inside a triaxial ellipsoid with elliptic period m = 3 have
winding numbers

m2 = 2, m1 = 4, m0 = 6.

This agrees with the formulas (11) given in theorem 13. We emphasize that those formulas
were not rigorously proved, because their ‘proof’ was based on conjecture 1.

Next, we establish the algebraic formulas for the caustic parameters of other non-singular
periodic billiard trajectories. We begin with a technical lemma concerning fourth-degree
polynomials.
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Lemma 19. Let Q(x) = (x − α−)(x − β−)(x − β+)(x − α+) for some α− < β− < β+ < α+.
Let ν− ∈ (α−, β−), ν ∈ (β−, β+), and ν+ ∈ (β+, α+) be the three roots of Q′(x). Then

Q(ν+) < Q(ν−) ⇔ α− + α+ > β− + β+.

Proof. If we set η = (β+ + β−)/2 and ξ = (β+ − β−)/2, then

Q(η + s) − Q(η − s) = 2(s2 − ξ 2)(β− + β+ − α− − α+)s, ∀s ∈ R.

On the one hand, if α− + α+ > β− + β+, then Q(η + s) < Q(η − s) for all s > ξ , which implies
that Q(ν+) < Q(ν−). On the other hand, if α− + α+ < β− + β+, then Q(η + s) > Q(η − s)

for all s > ξ , which implies that Q(ν+) > Q(ν−). Finally, if α− + α+ = β− + β+, then
Q(η + s) = Q(η − s) for all s ∈ R, which implies that Q(ν+) = Q(ν−). �

We can now answer some questions concerning the non-singular periodic billiard
trajectories found in the second item of theorem 8, although the study is restricted to the
spatial case.

Proposition 20. There exist periodic billiard trajectories inside the triaxial ellipsoid (15) with
elliptic period m = 4, signature τ = (0, 0, 1), and caustic type H1H1 if and only if

c < ab/(a + b).

Besides this, the caustic parameters λ1 and λ2 of such periodic billiard trajectories are the
roots of the quadratic polynomial (s2

1 − s2)t
2/2 − s1t + 1, where

sl = 1/al + 1/bl + 1/cl − 2/dl, l = 1, 2, (17)

and d is the only root of the cubic polynomial t3 − 2(a + b + c)t2 + 3(ab + ac + bc)t − 4abc

in the interval (a, +∞).

Proof. If τ = (0, 0, 1), the decompositions presented in definition 6 are Jτ = {2, 3},
Kτ = {1, 4, 5}, Vτ = {1} and Wτ = ∅. Thus, C(4, 3; τ) holds if and only if there exists
some δ1 ∈ (0, γ5) such that the following two equivalent properties hold:

(i) P(x) = (x−δ1)
2(x−γ2)(x−γ3) ⇒ Q(x) := x(x−γ1)(x−γ4)(x−γ5) = P(x)−P(0).

(ii) γ l
2 + γ l

3 + 2δl
1 = γ l

1 + γ l
4 + γ l

5, for l = 1, 2, 3.

If the caustic type is H1H1, then 0 < c < λ1 < λ2 < b < a, so

γ1 = 1/c, γ2 = 1/λ1, γ3 = 1/λ2, γ4 = 1/b, γ5 = 1/a.

Let el = el(γ1, γ4, γ5) for l = 1, 2, 3. We set d = 1/δ1 > a. Then Q(x) =
x4 − e1x

3 + e2x
2 − e1x and δ1 is a root of Q′(x) = 4x3 − 3e1x

2 + 2e2x − e3. Hence, d

is a root of the cubic polynomial

q(t) = −abct3Q′(1/t) = t3 − 2(a + b + c)t2 + 3(ab + ac + bc)t − 4abc.

We note that q(0) = −4abc < 0, q(b) = −b(b−a)(b−c) > 0, q(a) = −a(a−b)(a−c) < 0,
and limt→+∞ q(t) = +∞. This shows that q(t) has just one root in the interval (a, +∞).

From property (ii) above, we deduce that the sums sl := 1/λl
1 + 1/λl

2 verify relations (17).
Besides this, 1/λ1 and 1/λ2 are the roots of (x − 1/λ1)(x − 1/λ2) = x2 − s1x + (s2

1 − s2)/2,
so λ1 and λ2 are the roots of the quadratic polynomial (s2

1 − s2)t
2/2 − s1t + 1.

We look for ellipsoidal parameters such that the previous periodic trajectories exist. From
property (i) above, we deduce that such ellipsoidal parameters exist if and only the graph
{y = Q(x)} intersects the horizontal line {y = Q(δ1)} at two different points γ2, γ3 ∈ (γ4, γ5)
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or, equivalently, if and only if Q(δ3) < Q(δ1), where δ1 < δ2 < δ3 are the three ordered roots
of the derivative of the polynomial Q(x) = x(x − γ1)(x − γ4)(x − γ5). But

Q(δ3) < Q(δ1) ⇔ γ1 > γ4 + γ5 ⇔ c < ab/(a + b),

according to lemma 19. �
As we have explained before, the period and winding numbers of any non-singular periodic

billiard trajectory can be determined by direct inspection of its corresponding figure. A periodic
billiard trajectory with elliptic period m = 4 and caustic type H1H1 whose caustic parameters
verify the relations given in proposition 20 is displayed in [26, figure 13]. That trajectory has
(Cartesian) period m0 = 4 and winding numbers

m2 = 2, m1 = 3, m0 = 4.

Hence, gcd(m0, m1, m2) = 1, so the elliptic winding numbers are m̃2 = 2, m̃1 = 3, and
m̃0 = 4. This result reinforces conjecture 3. Besides this, these non-singular billiard
trajectories of period 4 with caustic type H1H1 are quite interesting, because they display
the minimal period among all non-singular periodic billiard trajectories; see [26, theorem 1].

We end the study at this point. We just mention that there exist similar results for when the
signature or the caustic type do not coincide with the ones given in proposition 20. Analogously,
the case m = 5 can be dealt with using the same techniques, although the final formulas become
more complicated. For instance, it can be easily checked that the caustic parameters λ1 and
λ2 of the billiard trajectories with elliptic period m = 5 and signature τ = (1, 1, 0) verify the
homogeneous symmetric polynomial equations

8s3 + s3
1 = 6s1s2, 16s4 + s4

1 = 4s2
1s2 + 4s2

2 ,

where sl = 1/al + 1/bl + 1/cl + 1/λl
2 + 1/λl

1 for l = 1, 2, 3, 4. Each of the other signatures
τ ∈ T (5, 3) gives rise to similar homogeneous—although not symmetric—polynomial
equations of degrees 3 and 4 in the variables 1/a, 1/b, 1/c, 1/λ1 and 1/λ2. We leave the
details to the reader. Finally, we recall that the original matrix formulation of the generalized
Cayley condition C(5, 3) gives rise to two homogeneous symmetric polynomial equations of
degrees 23 and 24 in those five variables, as explained in section 3. This confirms, once
again, that the polynomial formulation offers great computational advantages over the matrix
formulation.

Acknowledgments

The author was supported in part by MICINN-FEDER grants MTM2009-06973 and
MTM2012-31714 (Spain) and CUR-DIUE grant 2009SGR859 (Catalonia). Useful
conversations with Pablo S Casas, Yuri Fedorov, and Bernat Plans are gratefully acknowledged.
The author would like to thank Vladimir Dragović for his remarks about Halphen’s work.
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[6] Poncelet J V 1822 Traité des Propriétés Projectives des Figures (Paris: Mett-Paris)

1027

http://dx.doi.org/10.1007/BF01460986


Nonlinearity 27 (2014) 1003 R Ramı́rez-Ros

[7] Griffiths Ph and Harris J 1977 A Poncelet theorem in space Comment. Math. Helvetici 52 145–60
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[15] Halphen G H 1888 Traité des Fonctions Elliptiques et leurs Applications vol 2 (Paris: Gauthier-Villars)
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