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Héctor E Lomelı́1, James D Meiss2 and Rafael Ramı́rez-Ros3

1 Department of Mathematics, Instituto Tecnológico Autónomo de México, DF 01000, Mexico
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Abstract
We study perturbations of diffeomorphisms that have a saddle connection
between a pair of normally hyperbolic invariant manifolds. We develop a first-
order deformation calculus for invariant manifolds and show that a generalized
Melnikov function or Melnikov displacement can be written in a canonical
way. This function is defined to be a section of the normal bundle of the saddle
connection.

We show how our definition reproduces the classical methods of Poincaré
and Melnikov and specializes in methods previously used for exact symplectic
and volume-preserving maps. We use the method to detect the transverse
intersection of stable and unstable manifolds and relate this intersection to
the set of zeros of the Melnikov displacement.

Mathematics Subject Classification: 34C37, 37C29, 37J45, 70H09
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of the intersections of stable and unstable manifolds of maps and flows has a strong
influence on dynamical systems. In particular, the existence of a transverse intersection is
associated with the onset of chaos, and gave rise to the famous horseshoe construction of
Smale. The Poincaré–Melnikov method [18, 34, 36] is a widely used technique for detecting
such intersections. Given a system with a pair of saddles and a degenerate heteroclinic or
saddle connection between them, the classical Melnikov function computes the rate at which
the distance between the manifolds changes with a perturbation.
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There have been many formulations of the Melnikov method for two-dimensional maps
or flows [8, 11, 14, 24] and for higher-dimensional symplectic mappings [2, 4, 9]. Recently,
the geometric content of Melnikov’s method was exploited in order to detect heteroclinic
intersections of Lagrangian manifolds for the case of perturbed Hamiltonian flows [38]. Here
it was shown that the heteroclinic orbits are in correspondence with the zeros of a geometric
object, the so-called Melnikov one-form.

For maps, the Melnikov function is an infinite sum whose domain is a saddle connection
between two hyperbolic invariant sets. As usual, a simple zero of this function corresponds to
a transverse intersection of stable and unstable manifolds of a perturbation of the original map.

Melnikov’s method can also be used to compute transport fluxes. In particular, a resonance
zone for a two-dimensional mapping is a region bounded by alternating segments of stable
and unstable manifolds that are joined at primary intersection points [12, 30]. Because the
intersection points are primary, a resonance zone is bounded by a Jordan curve and has exit
and entry sets [13]. The images of these sets completely define the transport properties of the
resonance zone. Moreover, the integral of the Melnikov function between two neighbouring
primary intersection points is the first order approximation to the geometric flux escaping from
the resonance zone [19, 29].

The method has also been applied to the case of periodically time-dependent, volume-
preserving flows [35] and more generally to volume-preserving maps with fixed points [25]
and invariant circles [27]. Volume-preserving maps provide perhaps the simplest, natural
generalization of the class of area-preserving maps to higher dimensions. Moreover, they
naturally arise in applications as the time-one Poincaré map of incompressible flows—even
when the vector field of the flow is non-autonomous. Thus the study of the dynamics of
volume-preserving maps has application both to fluids and magnetic fields.

Our goal in this paper is to develop, based on the theory of deformations, a general,
geometrical description of the Melnikov displacement and to compare our theory with classical
results. Deformation theory was first introduced in the theory of singularities [40], but was
soon used in the contexts of volume and symplectic geometry. Its application to dynamical
systems in [7, 21, 22] provides results that are close to our goals.

Let fε be a smooth family of diffeomorphisms such that the unperturbed map f0 has a
saddle connection � between a pair of compact r-normally hyperbolic invariant manifolds.
Let ν(�) ≡ T�M/T � be the algebraic normal bundle of the saddle connection. We show that
there exists a canonical Cr−1 section D : � → ν(�), called the Melnikov displacement, that
measures the splitting of the saddle connection in first-order. We will prove that the Melnikov
displacement is given by the absolutely convergent series

D =
∑
k∈Z

(f ∗
0 )kF0 =

∑
k∈Z

(f0∗)
kF0,

where Fε is the vector field defined by ∂
∂ε

fε = Fε ◦ fε .
These sums do not converge in the tangent space T�M , but only in the algebraic normal

bundle ν(�). The use of the algebraic normal bundle in the study of normally hyperbolic
manifolds goes back to [17].

In addition, we will also show that the Melnikov displacement has a number of geometric
properties. The main result in this direction is that any change of coordinates acts on the
displacement by its pullback. This result will be used to obtain the natural action of any
symmetries, reversing symmetries or integrals of the dynamical system on the displacement.
Similarly, if the map preserves a symplectic or volume form, this gives additional structure to
the displacement. For example, if fε is a family of exact symplectic maps and the normally
hyperbolic invariant manifolds are fixed points, then we will show that there exists a function
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L : � → R, the Melnikov potential, such that dL = i(D)ω, where ω is the symplectic
two-form. This relation is reminiscent of the definition of globally Hamiltonian vector fields.
When the normally hyperbolic invariant manifolds are not fixed points (or isolated periodic
points), their stable and unstable manifolds are coisotropic, but not isotropic, and so the relation
dL = i(D)ω makes no sense.

We complete this introduction with a note on the organization of this paper. The general
theory is developed in section 2. In section 3, we show how our theory reproduces the classical
methods of Poincaré and Melnikov. The study of exact symplectic maps and volume-preserving
maps is contained in sections 4 and 5, respectively.

2. Melnikov displacement

2.1. Deformation calculus

In this subsection we present the deformation calculus for families of diffeomorphisms and
submanifolds. We shall begin with diffeomorphisms by defining a vector field associated
with a deformation. Next, we construct a vector field for the deformation of (immersed)
submanifolds. Finally, we will combine these results to define and compute the Melnikov
displacement.

In this paper, we consider smooth families of diffeomorphisms fε : M → M , where M is
an n-dimensional smooth manifold. Here, the term smooth family means that fε(ξ) ≡ f (ξ, ε)

is C∞ in both variables. The map f0 will be called ‘unperturbed’.

Definition 1 (Generating vector field [22]). The generating vector field of a smooth family
of diffeomorphisms fε is the unique vector field Fε such that

∂

∂ε
fε = Fε ◦ fε. (1)

If we regard Fε as a non-autonomous vector field with time ε, then the function
�t,s = ft ◦ f −1

s represents its time-dependent flow as in [1, theorem 2.2.23]. Indeed, one
has �s,s(m) = m and

∂

∂t
�t,s(m) = ∂

∂t
ft (f

−1
s (m)) = Ft (ft (f

−1
s (m))) = Ft (�t,s(m))

for t, s and all m ∈ M . In addition, we have the property: �t,s ◦ �s,r = �t,r .
Consequently, if fε is volume preserving, then Fε has zero divergence [1, theorem 2.2.24],

and iffε is (exact) symplectic, thenFε is (globally) Hamiltonian. These geometric equivalences
form the basis of the deformation calculus.

Remark 1. The generating vector field Fε was also called the perturbation vector field in [25];
however, we adopt the older terminology here. Sometimes, we will also refer to Fε as the
generator of the family fε .

We will always use the convention that, given a family of diffeomorphisms denoted by
italic letters fε , its generator is denoted by the same letter in calligraphic capitals. Recall that
the pullback f ∗ and push-forward f∗ of a diffeomorphism f : M → M act on a vector field
X : M → T M as follows:

f ∗X = Df −1 ◦ f X ◦ f = (Df −1X ) ◦ f,

f∗X = Df ◦ f −1X ◦ f −1 = (Df X ) ◦ f −1.

We note that f∗ = (f ∗)−1 = (f −1)∗.
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Next, our goal is to develop a first-order deformation calculus for invariant manifolds of
smooth diffeomorphisms. We are mainly interested in stable and unstable invariant manifolds
of r-normally hyperbolic manifolds for some r � 1, which unfortunately are just immersed
submanifolds (not embedded submanifolds), and Cr (not C∞). This gives rise to a few
technicalities. Recall that a map g : N → M is an immersion when its differential has
maximal rank everywhere. If g is one-to-one onto its image, then W = g(N) is an immersed
submanifold of the same dimension as N . We will denote an immersion by W = g(N) ↪→ M

or simply W ↪→ M when the immersion g does not matter. For brevity, we will sometimes
omit the term ‘immersed’.

Example 1. If W is the stable (respectively, unstable) invariant manifold of a fixed point of a
diffeomorphism, then N = Rs (respectively, N = Ru), where s and u are the number of stable
and unstable directions at the hyperbolic point. When the fixed point is hyperbolic, n = s + u.
Stable and unstable manifolds are typically not embedded because they can have points of
accumulation. In this case the immersion is not a proper map.

We consider families of submanifolds of the form Wε = gε(N) ↪→ M , where g(ξ, ε) is
Cr in both variables, for some r � 1. All the elements of such a family are diffeomorphic (as
immersed submanifolds), because they are diffeomorphic to the same ‘base’ manifold N . Just
as for f0, the unperturbed submanifold is denoted by W0.

Definition 2 (Adapted deformation). If Wε ↪→ M is a Cr family of immersed submanifolds,
a family of diffeomorphisms φε : W0 → Wε is an adapted deformation when φ0 = IdW0 and
φ(ξ, ε) is Cr in both variables.

Adapted deformations exist since it suffices to take φε = gε ◦g−1
0 . While there is quite a bit

of freedom in the choice of φε , only its normal component is relevant, since this measures the
actual motion of Wε with ε. The normal component will be defined using the algebraic normal
bundle. For an immersed submanifold W ↪→ M , this is defined as the set of equivalence
classes

ν(W) ≡ TWM�T W. (2)

When M is Riemannian, this normal bundle is isomorphic to the more familiar geometric
normal bundle, T M⊥ (cf [16, p 96]). In general ν is a manifold of dimension n and is defined
independently of any inner product structure on T M .

Definition 3 (Displacement vector field). The displacement vector field of a Cr family of
immersed submanifolds Wε ↪→ M is the Cr−1 section

D : W0 → ν(W0), D(ξ) ≡ ∂

∂ε

∣∣∣∣
ε=0

φε(ξ) + TξW0, (3)

where φε : W0 → Wε is any adapted deformation.

The displacement vector field is well defined; that is, its definition is independent of the
choice of the adapted deformation, as is shown in the following lemma.

Lemma 1. Let φε, φ̃ε : W0 → Wε be two adapted deformations. Then[
∂

∂ε
φ̃ε(ξ) − ∂

∂ε
φε(ξ)

]
ε=0

∈ TξW0, ∀ξ ∈ W0 .



Canonical Melnikov theory for diffeomorphisms 489

Proof. For each fixed ξ ∈ W0, the map ε 	→ c(ε) ≡ φ−1
ε (φ̃ε(ξ)) describes a Cr curve in W0

such that c(0) = ξ and c′(0) ∈ TξW0. Using the fact that φ̃ε(ξ) = φε(c(ε)), we then have[
∂

∂ε
φ̃ε(ξ) − ∂

∂ε
φε(ξ)

]
ε=0

= Dφ0(ξ)c′(0) = c′(0) ∈ TξW0 ,

because Dφ0(ξ) = IdTξ W0 . �
When the submanifold is invariant under a diffeomorphism, its deformations are related

by means of a fundamental iterative relationship between the generating vector field of the
family of diffeomorphisms and the displacement vector field of the family of submanifolds.

Proposition 2. Let fε be a smooth family of diffeomorphisms, and Wε ↪→ M be a Cr family
of immersed submanifolds that are invariant under fε . Then

f ∗
0 D − D = f ∗

0 F0 (4)

on the unperturbed submanifold W0, where D is the displacement vector field (3).

Proof. The tangent space T W0 is invariant under the pullback f ∗
0 , so the term f ∗

0 D is well
defined as a section of the normal bundle ν(W0). If φε : W0 → Wε is any adapted deformation,
then φ̃ε ≡ fε ◦ φε ◦ f −1

0 is as well. Differentiating φ̃ε ◦ f0 = fε ◦ φε with respect to ε yields

∂

∂ε

∣∣∣∣
ε=0

φ̃ε ◦ f0 = F0 ◦ f0 + Df0
∂

∂ε

∣∣∣∣
ε=0

φε,

where we used (1). However, by lemma 1 displacement (3) is independent of the adapted
deformation, so

D ◦ f0 = F0 ◦ f0 + Df0D.

Applying Df −1
0 ◦ f0 to both sides finishes the proof. �

Identity (4) is equivalent to D = (f0)∗D + F0. Thus, we can work either with push-
forwards or pullbacks. To obtain the Melnikov displacement we will iterate these identities on
the stable and unstable manifolds of a family of diffeomorphisms.

2.2. Normally hyperbolic invariant manifolds and saddle connections

The Melnikov displacement will be defined for a saddle connection between a pair of normally
hyperbolic invariant manifolds. In this section we recall the definitions of these objects. There
are many slightly different definitions of normally hyperbolic manifolds, see [17]. In this
paper, we adopt the following.

Definition 4 (Normally hyperbolic invariant manifold). Let A ⊂ M be a submanifold
invariant under a smooth diffeomorphismf : M → M . We say thatA is r-normally hyperbolic
when there exist a Riemann structure on T M , a constant λ ∈ (0, 1) and a continuous invariant
splitting

TaM = Es
a ⊕ Eu

a ⊕ TaA, ∀a ∈ A (5)

such that if Ls,u
a : Es,u

a → E
s,u
f (a) and Lc

a : TaA → Tf (a)A are the canonical restrictions of the
linear map Df (a) : TaM → Tf (a)M associated with the splitting (5), then

(i) |(Lc
a)

−1|l|Ls
a| < λ and

(ii) |Lc
a|l|(Lu

a)
−1| < λ

for all l = 0, 1, . . . , r , and for all a ∈ A.
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As is usual in the literature, the term normally hyperbolic will be taken to mean 1-normally
hyperbolic. Note that setting l = 0 in the previous definition implies that the linearizations Ls

and Lu of f restricted to the stable and unstable spaces of A have the uniform bounds

|Ls
a|, |(Lu

a)
−1| < λ < 1, ∀a ∈ A. (6)

In this paper we will assume that each r-normally hyperbolic invariant manifold A is
compact, although it would be sufficient that our diffeomorphisms be uniformly Cr in some
neighbourhood of A. We will also assume, without loss of generality, that A is connected.
One consequence is that the sets

W s = W s(A) = W s(A, f ) =
{
ξ ∈ M : lim

k→+∞
dist(f k(ξ), A) = 0

}

and

W u = W u(A) = W u(A, f ) =
{
ξ ∈ M : lim

k→−∞
dist(f k(ξ), A) = 0

}

are Cr immersed submanifolds of M that are tangent at A to T A⊕Es,u, see [17]. In particular,
TAW s ∩ TAW u = T A. Moreover, A and its stable and unstable invariant manifolds are
persistent: given any smooth family of diffeomorphisms fε such that f = f0, then for each
small enough ε there exists a nearby r-normally hyperbolic invariant manifold Aε with Cr

families of immersed submanifolds W s,u
ε = W s,u(Aε, fε).

To compute the Melnikov displacement, we will need to show that certain series are
geometrically convergent; the following lemma is a key component in this proof.

Lemma 3. Let f : M → M be a diffeomorphism with a compact normally hyperbolic
invariant manifold A, and fix a point ξ ∈ W s = W s(A, f ). Then given any splitting
TξM = TξW

s ⊕ Nξ , there exists a constant µ ∈ (0, 1) and an integer n0 > 0 such that

|(LN
n )−1| < µ, ∀n � n0,

where LN
n : Nξn

→ Nξn+1 are the restrictions of Df (ξn) : Tξn
M → Tξn+1M to the subspaces

Nξn
= Df n(ξ)[Nξ ], ξn = f n(ξ). A similar bound holds for W u.

Proof. Leta ∈ Abe a point such that limn→+∞ dist(ξn, an) = 0, wherean = f n
0 (a). According

to the λ-lemma for normally hyperbolic manifolds [5], the complementary subspaces Nξn
tend

to the unstable subspaces Eu
an

, as n → +∞. Thus, the maps LN
n : Nξn

→ Nξn+1 tend to the
unstable restrictions Lu

an
: Eu

an
→ Eu

an+1
as n → +∞, and the lemma follows from (6). It

suffices to take any µ ∈ (λ, 1). �
The Melnikov displacement will be defined as a function on the normal bundle of a saddle

connection, which is defined as follows.

Definition 5 (Saddle connection). Let f : M → M be a diffeomorphism with a pair of
compact normally hyperbolic invariant manifolds A and B. A saddle connection between A

and B is an invariant submanifold � ⊂ W u(A) ∩ W s(B) such that

Tξ� = TξW
u(A) = TξW

s(B)

for all ξ ∈ �.

Remark 2. The coincidence of the tangent spaces is needed in order that the manifolds have
the same algebraic normal bundles on the saddle connection:

ν(�) = ν(W u(A))|� = ν(W s(B))|�
since TξM/Tξ� = TξM/TξW

u(A) = TξM/TξW
s(B), for all ξ ∈ �.
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By definition, dim � = dim W u(A) = dim W s(B), and the manifolds A and B are not part
of the saddle connection. The simplest (and most common) saddle connections are of the form
� = W u(A)\A = W s(B)\B. In this case, we say that the unperturbed invariant manifolds are
completely doubled. Many Melnikov problems studied in the literature fall into this category.
Nevertheless, in some problems there may exist points ξ ∈ W u(A) ∩ W s(B), ξ �∈ A ∪ B, such
that TξW

u(A) �= TξW
s(B), see [9]. In that case the saddle connection is strictly contained in the

intersection of the stable and unstable invariant manifolds: � � (W u(A)∩W s(B)) \ (A∪B).

2.3. Displacement vector fields of stable and unstable invariant manifolds

In this subsection we use the fundamental iterative equation (4) to obtain infinite series for the
displacements of the stable and unstable manifolds. These series are absolutely convergent,
but only, as we must stress, when they are evaluated on their corresponding normal bundles.
Indeed, the tangential components of these series can be unbounded. Consequently, in order
to compute these sums, each term must be projected onto the normal bundle. An example will
be given in section 2.5.

The proof of the following proposition is inspired by a proof given in [2], the main
difference is that our setting is more geometric.

Proposition 4. Let fε be a smooth family of diffeomorphisms such that the unperturbed
map f0 has a compact normally hyperbolic invariant manifold A0 with stable and unstable
invariant manifolds W

s,u
0 . Then the displacement vector fields Ds : W s

0 → ν(W s
0) and

Du : W u
0 → ν(W u

0 ) of the families of perturbed stable and unstable invariant manifolds
are given by the absolutely convergent series

Ds = −
∑
k�1

(f ∗
0 )kF0, Du =

∑
k�0

(f ∗
0 )kF0 .

Proof. We prove the claim about the stable displacement Ds; the unstable result is obtained
analogously. Repeatedly applying the iterative formula (4) yields

Ds = (f ∗
0 )nDs −

n∑
k=1

(f ∗
0 )kF0

for any integer n � 1. Therefore, it suffices to check that the term (f ∗
0 )nDs tends geometrically

to zero on the normal bundle of the unperturbed stable manifold. For any point ξ ∈ W s
0 =

W s(A0, f0), let ξn ≡ f n
0 (ξ), and Ds

n ≡ Ds(ξn) ∈ Tξn
M . Then (f ∗

0 )nDs(ξ) = (L̄n)
−1Ds

n,
where L̄n ≡ Df n

0 (ξ) : TξM → Tξn
M . We must show that (L̄n)

−1Ds
n tends geometrically to

zero as an element of the quotient space TξM/TξW
s
0 .

Given any splitting TξM = TξW
s
0 ⊕ Nξ , let �N

n : Tξn
M → Nξn

be the projections onto
the linear subspaces Nξn

= Df n
0 (ξ)[Nξ ], and let LN

n : Nξn
→ Nξn+1 be the corresponding

restrictions of the linear maps Ln ≡ Df0(ξn) : Tξn
M → Tξn+1M . Then,

�N
0 (L̄n)

−1Ds
n = �N

0 (L0)
−1(L1)

−1 · · · (Ln−1)
−1Ds

n

= (LN
0 )−1(LN

1 )−1 · · · (LN
n−1)

−1�N
n Ds

n

because L̄n = Ln−1 · · · L1L0 and LN
k ◦ �N

k = �N
k+1 ◦ Lk . Let n0 be the integer referred to in

lemma 3, and define ln0 = �
n0−1
k=0 |(LN

k )−1|. Lemma 3 gives the bound

|�N
0 (L̄n)

−1Ds
n| � ln0µ

n−n0 |�N
n Ds

n| � ln0µ
n−n0 |Ds

n|
for some µ ∈ (0, 1). Moreover, the sequence (Ds

n)n�0 is bounded due to the compactness of
the normally hyperbolic manifold A0 and the continuity of the displacement vector field Ds(ξ).
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Therefore, |�N
0 (L̄n)

−1Ds
n| tends geometrically to zero as n → 0, and hence, (L̄n)

−1Ds
n tends

geometrically to zero in the quotient space TξM/TξW
s
0 . �

2.4. Melnikov displacement

We will now use the displacement vector fields to study the splitting of a saddle connection
upon perturbation. As usual, fε denotes a smooth family of diffeomorphisms such that the
unperturbed map f0 has a saddle connection � ⊂ W u(A0, f0)∩W s(B0, f0) between a pair of
compact r-normally hyperbolic invariant manifolds A0 and B0. These manifolds persist and
remain r-normally hyperbolic for small ε.

We want to study the distance between the perturbed manifolds W u
ε = W u(Aε, fε) and

W s
ε = W s(Bε, fε) The growth rate of this distance with ε is obtained simply by taking the

difference between the displacement vector fields of both families.

Definition 6 (Melnikov displacement). Under the previous assumptions, the Melnikov
displacement is the canonical Cr−1 section of the normal bundle ν(�) defined by

D ≡ Du − Ds : � → ν(�), (7)

where Du : W u
0 → ν(W u

0 ) and Ds : W s
0 → ν(W s

0) are the displacement vector fields of W u
ε

and W s
ε , respectively.

Remark 3. The Melnikov displacement D makes sense only on the saddle connection, where
the tangent spaces of the unperturbed invariant manifolds W u

0 and W s
0 coincide. Away from

�, the difference Du −Ds is undefined because each term is a section of a different (algebraic)
normal bundle, see remark 2.

Corollary 5. Let fε : M → M be a smooth family of diffeomorphisms verifying the
assumptions of definition 6. Then its Melnikov displacement D : � → ν(�) is given by
the absolutely convergent sums

D =
∑
k∈Z

(f ∗
0 )kF0 =

∑
k∈Z

(f0∗)
kF0. (8)

Proof. From proposition 4, we get that D = Du − Ds = ∑
k∈Z

(f ∗
0 )kF0 = ∑

k∈Z
(f0∗)kF0,

where the last equality follows from the identity (f0∗)k = (f ∗
0 )−k . �

The Melnikov displacement has been defined in a canonical way as a section of the
normal bundle; as such it has strong geometric properties. We will show next that any change
of variables acts as a pullback on it. This will imply a number of geometrical properties,
for example, that the displacement is invariant under the pullback and the push-forward of the
unperturbed map. In addition, we will see that if there exist symmetries, reversors, first integrals
or saddle connections, then these have natural implications for the Melnikov displacement.
These claims are the subject of proposition 6.

We recall that a diffeomorphism f : M → M is symmetric when there exists a
diffeomorphism s : M → M such that f ◦ s = s ◦ f , and then s is called a symmetry
of the map f . Analogously, f is reversible when there exists a diffeomorphism r : M → M

such that f ◦ r = r ◦f −1, and then r is called a reversor of the map f . In many applications, r
is an involution, r2 = Id, though this need not be the case [15]. Finally, a function I : M → R

is a first integral of f when I ◦ f = I .
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Proposition 6. Let fε be a smooth family of diffeomorphisms verifying the assumptions of
definition 6 and let D be its Melnikov displacement.

(i) Given any smooth family of changes of variableshε : M → M , the family f̃ε = h−1
ε ◦fε◦hε

also verifies the assumptions of definition 6, its Melnikov displacement D̃ is defined on the
saddle connection �̃ ≡ h−1

0 (�), and

D̃ = h∗
0D. (9)

(ii) The Melnikov displacement is invariant by the pullback and the push-forward of the
unperturbed map. That is,

f ∗
0 D = (f0)∗D = D. (10)

(iii) If fε has a smooth family of

(a) symmetries sε : M → M such that s0(�) = �, then

s∗
0 D = (s0)∗D = D. (11)

(b) Reversors rε : M → M such that r0(�) = �, then

r∗
0 D = (r0)∗D = −D. (12)

If, in addition, r0 is an involution and its fixed set R0 ≡ {ξ ∈ M : r0(ξ) = ξ} is a
submanifold that intersects � transversely at some point ξ0, then D(ξ0) = 0.

(c) First integrals Iε : M → R such that Aε ∪ Bε ⊂ I−1
ε ({0}), then

i(D)dI0 ≡ dI0(D) = 0. (13)

(d) Saddle connections �ε ⊂ W u
ε ∩ W s

ε such that �0 = �, then D = 0.

(iv) If there exists a vector field X : M → T M such that its flow commutes with fε , then the
Lie derivative of the Melnikov displacement with respect to X vanishes, that is,

LX D = 0. (14)

It is very important to stress that the above results make sense as identities on the normal
bundle of saddle connections. The relation (9) makes sense because the pullback h∗

0 maps
T � onto T �̃, whereas (10) makes sense because T � is invariant by the pullback f ∗

0 and the
push-forward (f0)∗. Similar arguments apply to (11) and (12). The identities (13) and (14)
make sense because T � is contained in the kernel of the one-form dI0 and the vector field X
is tangent to �, respectively. The hypothesis Aε ∪ Bε ⊂ I−1

ε ({0}) means that Aε and Bε are
contained in the same level set of the first integrals, which can be assumed to be the zero level
without loss of generality. This holds, for instance, in the transitive homoclinic case: Bε = Aε

and Aε is transitive.

Proof. We can write a geometric proof based on the definition of the Melnikov displacement
as a canonical section of the normal bundle, or a computational proof using the formulae (8).
We follow the geometric approach.

(i) The first claims are obvious. For the last one, note that if φs,u
ε : W

s,u
0 → W s,u

ε are any
adapted deformations (for the family fε), then φ̃s,u

ε ≡ h−1
ε ◦ φs,u

ε ◦ h0 are as well (for the
family f̃ε). Differentiating hε ◦ φ̃s,u

ε = φs,u
ε ◦ h0 with respect to ε yields

H0 ◦ h0 + Dh0
∂

∂ε

∣∣∣∣
ε=0

φ̃s,u
ε = ∂

∂ε

∣∣∣∣
ε=0

φs,u
ε ◦ h0,

where we used that ∂
∂ε

hε = Hε ◦ hε . Hence, H0 ◦ h0 + Dh0D̃s,u = Ds,u ◦ h0, so the
difference D = Du − Ds verifies the relation D ◦ h0 = Dh0D̃, which is equivalent to (9).
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(ii) If we take hε = fε in (6), then f̃ε = f −1
ε ◦fε ◦fε = fε and �̃ = f −1

0 (�) = �. Therefore,
D̃ = D and (10) follows from (9).

(iiia) If we take hε = sε in (6), then f̃ε = s−1
ε ◦ fε ◦ sε = fε and �̃ = s−1

0 (�) = �. Therefore,
D̃ = D and (11) follows from (9).

(iiib) If we take hε = rε in (6), then f̃ε = r−1
ε ◦fε ◦rε = f −1

ε and �̃ = r−1
0 (�) = �. Moreover,

a stable (respectively, unstable) manifold of a map becomes unstable (respectively, stable)
for the inverse map. Therefore, D̃ = −D and (12) follows from (9).
Next, we assume that r0 is an involution whose fixed set R0 intersects � transversely at
ξ0. That is, r2

0 = Id, r0(ξ0) = ξ0 and Tξ0M = Tξ0� ⊕ Tξ0R0. We want to prove that
D(ξ0) = 0 in the normal bundle ν(�), or equivalently that D(ξ0) ∈ Tξ0�.
Since r0(ξ0) = ξ0 and r2

0 = Id, the square of the linear endomorphism Dr0(ξ0) : Tξ0M →
Tξ0M is the identity map. This implies that Dr0(ξ0) is diagonalizable and its spectrum
is contained in the set {−1, 1}, so Tξ0M = E+ ⊕ E−, where E± = ker(Dr0(ξ0) ∓ Id).
We claim that E+ = Tξ0R0 and E− = Tξ0�. The first claim follows from the fact that
involutions are locally conjugate to their linear parts at fixed points. Since Tξ0� is invariant
under Dr0(ξ0) and complementary to Tξ0R0 = E+ in Tξ0M , we get the second claim.
Finally, the evaluation of (12) at the point ξ = ξ0 yields Dr0(ξ0)D(ξ0) = −D(r0(ξ0)) =
−D(ξ0), and so D(ξ0) ∈ E− = Tξ0�.

(iiic) Let Iε = I0 + εI1 + O(ε2). Obviously, W u,s
ε ⊂ I−1

ε ({0}). Differentiating Iε ◦ φs,u
ε = 0

with respect to ε yields dI0(Ds,u) = −I1. Thus, D = Du − Ds verifies (13).
(iiid) In this case, we can take φs

ε = φu
ε , and so D = Du − Ds vanishes on � = �0.

(iv) Let φt : M → M be the flow of the vector field: ∂
∂t

φt = X ◦φt and φ0 = Id. Thus, given
any t , the (constant) family sε ≡ φt is a smooth family of symmetries of fε . Next, using
relation (11), we get that (φt )∗D = D for any t , and (14) follows by definition of the Lie
derivative. �

These results have been extensively used in the literature. The invariance of Melnikov
objects under the unperturbed map gives rise to periodicities when suitable coordinates are
used; examples can be found in [8, 14, 20]. Item (iiid) implies a simple splitting criterion:
if the Melnikov displacement does not vanish identically, the separatrix splits [8, 37]. Upper
bounds on the number of uniform first integrals of the family fε can be deduced from item (iiic),
see [32, 41]. This result has also been used to establish necessary and sufficient conditions
for uniform integrability of analytic, exact symplectic maps [21]. Symmetries have also been
extensively used, for example, to improve the lower bound obtained by Morse theory for
the number of critical points of some Melnikov potentials [9] (we will discuss Melnikov
potentials in section 4.2.). Relation (14) is similar to Noether’s theorem, since the existence
of a continuous symmetry—the flow of the vector field X—implies a conservation law for the
Melnikov displacement. Finally, fixed sets of reversors can be used to guarantee the existence
of heteroclinic points and zeros of Melnikov functions; this is an old trick, see [10].

In the classical Melnikov method, one uses simple zeros of a Melnikov function to predict
the transverse intersection of the invariant manifolds. We next show that this result also holds
for the Melnikov displacement.

Theorem 7. If ξ0 is a simple zero of the Melnikov displacement (7), then the perturbed invariant
manifolds W u

ε and W s
ε intersect transversely at some point ξε = ξ0 + O(ε) for small enough ε.

Proof. By definition, the saddle connection � is an f0-invariant submanifold of M . Let
π : ν(�) → � be the projection of the normal bundle onto�. There is a tubular neighbourhood
N of � that is diffeomorphic to ν(�) via a diffeomorphism ψ : N → ν(�), as illustrated
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Figure 1. A tubular neighbourhood that is diffeomorphic to the normal bundle π : ν(�) → �.

in figure 1. Since N is an open neighbourhood of � in M , each deformation of � occurs inside
N , for ε small enough.

We note that under the diffeomorphism ψ , and for ε small enough, deformations of � can
be thought as deformations of the zero section, 0π , in ν(�). Indeed, a deformation of � can
be parametrized by a section � → ν(�). Let U0 ⊂ � be an open set that contains ξ0. Let U s

ε

and U u
ε be deformations of U0 such that

U s
ε ⊂ W s

ε , U u
ε ⊂ W u

ε .

Let �s
ε = ψ(U s

ε ) and �u
ε = ψ(U u

ε ) be the images in ν(�) of two deformations of the saddle
connection, corresponding to the images of the stable and unstable manifolds. We want to
show that �s

ε and �u
ε intersect transversely for ε small enough when D has a simple zero.

We parametrize each manifold with a section U0 → ν(�). That is, if ε is small, then
φ̃s,u

ε : U0 → ν(�) given by

φ̃s,u
ε (ξ) = π−1(ξ) ∩ �s,u

ε

are sections of the normal bundle restricted to U0. Notice that the functions φs,u
ε : U0 → N ⊂

M given by

φs,u
ε = ψ−1 ◦ φ̃s,u

ε

are adapted deformations of U0 with images U s,u
ε . In fact, both are perturbations of the zero

section. From the definition of displacements we have that

φ̃s,u
ε (ξ) = εD̃s,u(ξ) + O(ε2),

where

D̃s,u(ξ) = Dψ(ξ)Ds,u(ξ)

and Ds,u(ξ) are the displacements of φs,u
ε . Therefore, each manifold �s

ε and �u
ε is the image

of φ̃s
ε and φ̃u

ε and they intersect transversely at φ̃s
ε(ξ0) = φ̃u

ε (ξ0) if and only if ξ0 is a simple
zero of the section φ̃u

ε − φ̃s
ε .

Now we use the standard ‘blow up’ argument so that the implicit function theorem can be
applied. Let φ̄s,u

ε : � → ν(�) be the section given by

φ̄s,u
ε =




1

ε
φ̃s,u

ε for ε �= 0,

D̃s,u for ε = 0.

Notice that φ̄s,u
ε is Cr−1 if φ̃s,u

ε is Cr , and moreover that, when ε �= 0, ξε is a simple zero of
φ̃u

ε − φ̃s
ε if and only if it is for φ̄u

ε − φ̄s
ε . Finally, since Dψ(ξ)D(ξ) = (φ̄u

0 − φ̄s
0)(ξ) and �s

ε
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and �u
ε are the images of φ̃s

ε and φ̃u
ε , the implicit function theorem implies that if ξ0 is a simple

zero of D, then �s
ε and �u

ε intersect transversely near ξ0, for ε small enough. Thus W s
ε and

W u
ε intersect transversely near ξ0, for ε small enough. �

2.5. Example: perturbed Suris map

As a simple example, we consider the generalized standard map

f : T × R → T × R, f (x, y) = (x + y − V ′(x), y − V ′(x)), (15)

where V : T → T is a periodic potential. It is easy to see that f preserves area and orientation
and that its fixed points have the form (x∗, 0) where V ′(x∗) = 0. Such fixed points are saddles
if and only if V ′′(x∗) < 0 or V ′′(x∗) > 4, because tr(Df (x∗, 0)) = 2 − V ′′(x∗).

Following McMillan [31], we can find a generalized standard map with a saddle connection
between two saddle points if we choose a diffeomorphism c : R → R such that c(x + 2) =
c−1(x + 1) + 1 = c(x) + 2, and let

V ′(x) = 2x − c(x) − c−1(x). (16)

To see this, first note that, with this choice, the force V ′(x) is periodic with period one.
Moreover, if x∗ is a hyperbolic fixed point of c (that is, c(x∗) = x∗ and 0 < c′(x∗) �= 1), then

V ′′(x∗) = 2 − c′(x∗) − (c−1)′(x∗) = 2 − c′(x∗) − 1/c′(x∗) < 0.

Thus, (x∗, 0) is a saddle fixed point.
Moreover, the graphs of the functions χ±(x) ≡ x −c±1(x) are invariant and the dynamics

on these sets is very simple:

f k(x, χ−(x)) = (ck(x), χ−(ck(x))),

f k(x, χ+(x)) = (c−k(x), χ+(c
−k(x)))

(17)

for all k ∈ Z. These graphs contain saddle connections if we choose a pair of neighbouring
fixed points a and b of c, so that c has no fixed points in (a, b). Suppose further that a

(respectively, b) is a stable (respectively, unstable) fixed point of c, so that limk→+∞ ck(x) = a

and limk→+∞ c−k(x) = b for all x ∈ (a, b). Then A = (a, 0) and B = (b, 0) are saddle points
of the map f , and

�± = {(x, χ±(x)) ∈ T × R : x ∈ (a, b)}
are saddle connections between them: �− ⊂ W s(A) ∩ W u(B) and �+ ⊂ W u(A) ∩ W s(B),
see figure 2.

It is known that a generalized standard map with a potential of the form (16) is typically
non-integrable [27]. An integrable example, f0, for each µ ∈ (0, 1) is obtained when the
diffeomorphism c is given by

c(x) = cµ(x) = 2

π
arctan

(
(µ + 1) tan(πx/2) + (µ − 1)

(µ − 1) tan(πx/2) + (µ + 1)

)
(18)

for −1 � x � 1. This function, when extended to R using c(x + 2) = c(x) + 2, gives the
period-one potential (16)

V0(x) = 2

π

∫ x

0
arctan

(
δ sin(2πt)

1 + δ cos (2πt)

)
dt, δ = (1 − µ)2

(1 + µ)2
. (19)

A first integral of the map is I (x, y) = cos πy + δ cos π(2x − y) [26, 33, 39].
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Figure 2. Saddle connections �+ and �− for the Suris map with potential (19) and the
diffeomorphisms x 	→ c±1(x) for µ = 0.2. Also shown are images of a point on the saddle
connection �−, obtained by iterating x 	→ c(x).

The diffeomorphism (18) is conjugate to a Möbius transformation, and it is easy to find
an explicit formula for its iterations:

(
cµ

)k
(x) = cµk (x), ∀k ∈ Z. (20)

The points a = −1/2 and b = 1/2 are fixed points of c. The point a is stable and b is unstable
because c′(a) = µ ∈ (0, 1) and c′(b) = 1/µ > 1.

We now perturb the integrable map by modifying the potential (19):

Vε(x) = V0(x) + εU(x). (21)

We compute the Melnikov displacement using (8). For this calculation we must first compute
the vector field F0, which for the generalized standard map (15) with potential (21) is

F0(x, y) = −U ′(x − y)(1, 1)T.

The series (8) for the displacement D is easily computed by iterating f0 and its inverse along the
orbit. The relations (17) and (20) make it even easier since the iterations reduce to evaluations
of c. However, in order to ensure convergence of the series, we must take into account the fact
that it is only the normal component of the displacement that is desired; indeed, the iteration
of the tangential component is not bounded. Let �N : T�M → ν(�) be the canonical
projection onto the normal bundle (2). Due to the fact that � is invariant under f0, we have
that �N ◦ f ∗

0 = f ∗
0 ◦ �N . To avoid numerical errors, we project each term in the sum (8).

We display in figure 3 the projection �N(D) as a function of x along �−, for two perturbative
potentials U(x).

3. Comparison with classical methods

The Melnikov displacement (7) generalizes the classical methods used to detect the splitting
of separatrices due to Poincaré and Melnikov.
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Figure 3. Normal component of D for the Suris map on �− with µ = 0.2. The solid curve is for
U(x) = − cos(2πx)/2π and the dashed curve is for U(x) = sin(2πx)/2π .

3.1. Poincaré method

Poincaré’s method [36] is based on the existence of first integrals, such as an energy function,
for the unperturbed system. Assume that f0 has a saddle connection � between a pair of
hyperbolic fixed points a and b. For the simplest case, � has codimension one, and a single
first integral suffices: I ◦f0 = I . Saddle connections with a higher codimension can be treated
in a similar way if there are sufficiently many integrals. The splitting between the stable and
unstable manifolds is measured by the rate of change in the first integral I with ε on the saddle
connection. That is, we define the Poincaré function MI : � → R by

MI = ∂

∂ε

∣∣∣∣
ε=0

(
I ◦ φu

ε − I ◦ φs
ε

)
, (22)

where φu
ε and φs

ε are deformations adapted to the perturbed invariant manifolds.

Proposition 8. Under the above assumptions,

MI = i(D)dI ≡ dI (D),

where D is the Melnikov displacement (7).

The proof is a simple computation. The term dI (D) makes sense because the first integral
is constant on the saddle connection, and so the tangent space T � in contained in the kernel
of dI . If dI |� is non-degenerate, then a point ξ0 ∈ � is a simple zero of MI if and only if it is
a simple zero of D. In this case, the perturbed invariant manifolds intersect transversely near
ξ0 for ε small enough. Therefore, the Melnikov displacement D generalizes the estimates of
splitting in the Poincaré style.

3.2. Melnikov method

The classical Melnikov method [34] is based on estimating the movement of a manifold in
a direction normal to the separatrix. To define the normal, the phase space M is assumed to
have a Riemannian inner product 〈·, ·〉. As before, assume for simplicity that � is a saddle
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connection of codimension one. The appropriate normal to � is called an adapted normal
vector field.

Definition 7 (Adapted normal vector field [25]). Let � be a f0-invariant submanifold of
codimension one. A vector field η : � → T�M is adapted normal when

(i) η is non-degenerate: η(ξ) �= 0, for all ξ ∈ �,
(ii) η is normal: 〈η(ξ), v〉 = 0, for all ξ ∈ � and v ∈ Tξ� and

(iii) η is invariant: f ∗
0 〈η, Y〉 = 〈η, f ∗

0 Y〉, for all vector field Y : � → T�M .

Using this notation, the classical Melnikov function Mη : � → R is

Mη = ∂

∂ε

∣∣∣∣
ε=0

〈η, φu
ε − φs

ε〉, (23)

where φu
ε and φs

ε are deformations adapted to the perturbed invariant manifolds. Consequently,
Mη is related to the Melnikov displacement (7) by

Mη = 〈η, D〉. (24)

Since η is non-degenerate, Mη and D have the same simple zeros. We also note that (24) makes
sense because η is normal, and so the component of D in the tangent space T � does not play
any role.

Remark 4. Adapted normal vector fields can be obtained as gradients of non-degenerate
first integrals. Let I be a smooth first integral of f0 such that its gradient ∇I does not
vanish on �. Given a Riemannian structure, the gradient is the unique vector field such that
i(Y)dI = 〈∇I, Y〉 for any vector field Y on M . Therefore, f ∗

0 〈∇I, Y〉 = 〈∇(I ◦ f0), f
∗
0 Y〉,

and η = ∇I is an adapted normal vector field. Obviously, the Poincaré function (22) and the
Melnikov function (23) coincide when η = ∇I .

4. Exact symplectic maps

4.1. Basic results

In this section, we will see how the Melnikov displacement (7) generalizes previous theories
developed for hyperbolic fixed points of exact symplectic maps. We will also show why general
normally hyperbolic invariant manifolds cannot be studied in the same way.

A 2n-dimensional manifold M is exact symplectic when it admits a non-degenerate two-
form ω such that ω = −dλ for some Liouville one-form λ. The typical example of an exact
symplectic manifold is provided by a cotangent bundle M = T ∗Q, together with the canonical
forms ω0 = dx ∧ dy and λ0 = ydx, in cotangent coordinates (x, y).

A map f : M → M is exact symplectic if
∮
γ

λ = ∮
f (γ )

λ for any closed path γ ⊂ M

or, equivalently, if there exists a generating (or primitive) function S : M → R such that
f ∗λ − λ = dS. In particular, an exact symplectic map is symplectic: f ∗ω = ω.

A submanifold N of M is exact isotropic if
∮
γ

λ = ∮
f (γ )

λ for any closed path γ ⊂ N

or, equivalently, if there exists a generating function L : N → R such that j ∗
Nλ = dL. Here,

jN : N ↪→ M denotes the natural inclusion map. In particular, an exact isotropic submanifold
is isotropic: j ∗

Nω = 0. The maximal dimension of an isotropic submanifold is n, and when
the dimension is n, the submanifold is called Lagrangian.

A vector field F : M → T M is globally Hamiltonian if there exists a Hamiltonian
function H : M → R such that

i(F)ω = dH.
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We stress two key properties of the symplectic case. First, the generator of a family of
exact symplectic maps is globally Hamiltonian and there exists a simple relation between this
Hamiltonian and the generating function of the maps. Second, the stable and the unstable
invariant manifolds of a connected normally hyperbolic invariant submanifold A of an (exact)
symplectic map are (exact) isotropic if and only if A is a fixed point, in which case they
are Lagrangian (that is, n-dimensional). The second property is an obstruction to develop a
symplectic version of our canonical Melnikov theory for general normally hyperbolic invariant
submanifolds; we shall do it just for fixed points.

These properties are well known, but we prove both for completeness.

Proposition 9. Let fε be a family of exact symplectic maps with generating function Sε and
generating vector field Fε . Then, Fε is globally Hamiltonian with Hamiltonian

Hε = λ(Fε) − ∂Sε

∂ε
◦ f −1

ε . (25)

Proof. By definition, ∂
∂ε

fε = Fε ◦ fε , so the Lie derivative with respect to Fε is LFε
λ =

(f ∗
ε )−1 ∂

∂ε
(f ∗

ε λ). Using Cartan’s formula: LX λ = i(X )dλ + di(X )λ, and taking the derivative
with respect to ε of the relation dSε = f ∗

ε λ − λ, we get

d
∂Sε

∂ε
= ∂

∂ε
f ∗

ε λ = f ∗
ε LFε

λ = f ∗
ε (i(Fε)dλ + di(Fε)λ) .

Rearranging this yields

i(Fε)dλ = (
f −1

ε

)∗
d
∂Sε

∂ε
− di(Fε)λ = d

(
∂Sε

∂ε
◦ f −1

ε − i(Fε)λ

)
.

Finally, i(Fε)λ = λ(Fε), since λ is a one-form. �

Proposition 10. Let f : M → M be a diffeomorphism with a connected, normally hyperbolic,
invariant manifold A. If f is (exact) symplectic, the stable and unstable invariant manifolds
W s,u = W s,u(A, f ) are (exact) isotropic if and only if A is a hyperbolic fixed point. Moreover,
in this case the submanifolds W s,u are (exact) Lagrangian.

Proof. Since A is normally hyperbolic, (5) implies that for each a ∈ A, s = dim Es
a ,

u = dim Eu
a and c = dim TaA sum to dim TaM = dim M = 2n. Since f is symplectic

s = u = n − c/2. Therefore dim W s = dim W u = u + c = n + c/2. Suppose that W s,u

are isotopic; then since isotopic manifolds have maximum dimension n, we must have c = 0.
Consequently, dim A = 0 and since A is connected it is a hyperbolic fixed point.

Conversely, assume that dim A = 0, so that A = {a} for some hyperbolic fixed point a

and dim W s,u = n. To prove that W s is Lagrangian, take any two vectors u, v ∈ TξW
s. We

know that Df ku and Df kv tend to zero as k → +∞, since the stable directions are uniformly
contracted. Since f preserves ω, we have

ω(u, v) = (f k)∗ω(u, v) = ω(Df ku, Df kv) −→ ω(0, 0) = 0

as k → +∞.
If, in addition, f is exact symplectic, then for every closed loop γ ,

∮
γ

λ = ∮
f (γ )

λ. Now

suppose that γ ⊂ W s, so that f k(γ ) → {a} as k → +∞. Then∮
γ

λ =
∮

f k(γ )

λ −→
∮

a

λ = 0.

Finally, the (exact) Lagrangian character of W u follows from the fact that it is the stable
manifold for f −1. �
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4.2. Melnikov method for hyperbolic fixed points of exact symplectic maps

Let fε : M → M be a family of exact symplectic maps such that f0 has an exact
Lagrangian saddle connection � between two hyperbolic fixed points a and b. Note that
in this case the stable and unstable manifolds are as smooth as the map fε . We assume that
H0(a) = H0(b), where Hε is the Hamiltonian (25). Without loss of generality, we can assume
that H0(a) = H0(b) = 0.

The natural measure of splitting for this case is a real valued function L, the Melnikov
potential, whose derivative measures the splitting [9]. In other words, non-degenerate critical
points of the Melnikov potential predict transverse splitting. In this subsection, we shall find
the relation between the one-form dL introduced by [38] and the Melnikov displacement.

Definition 8 (Melnikov potential). For a saddle connection � and Melnikov displacement
D : � → ν(�), the function L : � → R implicitly defined by

dL = j ∗
�(i(D)ω). (26)

is the Melnikov potential.4

We will show next that L is indeed defined by (26) and that its critical points correspond
to zeros of the displacement.

Proposition 11. The pullback of the one-form i(D)ω to the saddle connection � is well defined
and exact. In particular, there exists a function L : � → R, determined uniquely up to additive
constants that obeys (26).

Moreover, the set of simple zeros of the Melnikov displacement D coincides with the set
of non-degenerate critical points of the function L.

Remark 5. Let N be a submanifold of M and X : N → ν(N) a section of its normal bundle.
Then the pullback of the one-form i(X )ω to the submanifold N is well defined if and only if
N is isotropic. This has to do with the fact that j ∗

N(i(X )ω) is well defined if and only if

ω(X + Y, Z) = ω(X , Z)

for any vector fields X : N → TNM and Y, Z : N → T N .

Proof. The pullback is well defined because � is Lagrangian, see remark 5. With regard to
the exactness, it suffices to prove that

∮
γ

j ∗
�(i(D)ω) = 0 for any closed path γ ⊂ �. Let γ be

a closed path contained in the saddle connection, then∮
γ

j ∗
�(i(D)ω) =

∮
γ

j ∗
�(i(f ∗

0 D)(f ∗
0 ω)) =

∮
f0(γ )

j ∗
�(i(D)ω),

where, since f0 is symplectic, the Melnikov displacement is invariant under the pullback of f0,
and the saddle connection is invariant under f0. Finally, since γ ∈ W s

0(b, f0), we obtain that∮
γ

j ∗
�(i(D)ω) =

∮
f k

0 (γ )

j ∗
�(i(D)ω) −→

∮
b

j ∗
�(i(D)ω) = 0

as k → +∞.
The equivalence between simple zeros of D and non-degenerate critical points of L follows

from the Lagrangian character of the saddle connection �. �

An explicit series for L can be obtained using the Hamiltonian (25).

4 For simplicity, henceforth we will write this relation as i(D)ω = dL.
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Corollary 12. The Melnikov potential (26) is given by the absolutely convergent series

L =
∑
k∈Z

H0 ◦ f k
0 . (27)

Proof. Since f0 is symplectic, and the generator F0 is globally Hamiltonian with Hamiltonian
H0: i(F0)ω = dH0, we deduce that

i(D)ω =
∑
k∈Z

i((f ∗
0 )kF0)ω =

∑
k∈Z

(f ∗
0 )ki(F0)ω =

∑
k∈Z

d(H0 ◦ f k
0 ) = dL.

The series converges absolutely because H0(a) = H0(b) = 0, limk→−∞ f k
0 (ξ) = a, and

limk→+∞ f k
0 (ξ) = b. In fact, it converges at a geometric rate. �

While the Melnikov potential has been used many times for exact symplectic, twist and
Hamiltonian maps, the formulation given here, using the power of deformation theory, is more
elegant.

The Melnikov potential introduced here is identical to the one defined in [9]. This can be
checked by direct comparison of formula (27) with formula (2.7) of the cited paper, using (25)
to express H0 in terms of the derivative of the generating function Sε at ε = 0.

We also note that it is impossible to define a ‘Melnikov potential’ on the saddle connection
of normally hyperbolic invariant manifolds with non-zero dimension, because then the saddle
connection is not isotropic (proposition 10) and so the identity (26) makes no sense (remark 5).
Nevertheless, even in this case the Melnikov displacement is defined.

4.3. Area-preserving maps

In this subsection, we restrict to the two-dimensional case in order to show in a simple way
that the Melnikov potential and the classical Melnikov function are transparently related.
Moreover, we will see that in some cases there exist geometric obstructions to the non-
vanishing of Melnikov functions. These points are most easily seen by choosing a special
time-like parametrization of the saddle connection.

We consider the standard symplectic structure on the plane, (M, ω) = (R2, dx ∧ dy), and
let J be the standard 2 × 2 symplectic matrix: ω(u, v) = uT Jv = 〈u, Jv〉.

Suppose thatfε : R2 → R2 is a family of diffeomorphisms preserving area and orientation,
and Hε is the generating Hamiltonian for Fε , the generator for fε . We assume that the
unperturbed map has a saddle connection � ⊂ W u(a) ∩ W s(b) between two hyperbolic
fixed points a and b such that H0(a) = H0(b) = 0. Note that the unperturbed map not need
be integrable.

The key point is that, on a one-dimensional saddle connection, there is a parametrization
α : R → � such that

f0(α(t)) = α(t + 1), lim
t→−∞ α(t) = a, lim

t→+∞ α(t) = b.

Remark 6. In many cases, such parametrizations can be expressed in terms of elementary
functions, and the Melnikov function can be explicitly computed [8, 14, 23].

Consequently, α provides a diffeomorphism between the saddle connection � and the
real line, so that objects defined over � can be considered as depending on the real variable t .
Thus, for example, the Melnikov potential (27) can be replaced by L ◦ α to become a function
L : R → R given by

L(t) =
∑
k∈Z

H0(α(t + k)). (28)
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Here we abuse the notation by not giving the function a new name.
Our goal is to show that the classical Melnikov function (24), or rather the composition

M ◦ α, can be computed by differentiating L:

M(t) = L′(t). (29)

In addition we will show that these functions have the following properties.

• Periodicity: L(t + 1) = L(t) and M(t + 1) = M(t).

• In each fundamental domain [t, t + 1), M must vanish. Indeed,
∫ t+1
t

M(s) ds = 0 for any
t ∈ R. (This property will be generalized to volume-preserving maps in the next section.)

• Near each simple zero of M(t) or non-degenerate critical point of L(t) there is transverse
intersection of the stable and unstable manifolds.

Given (28) and (29), the first two properties are obvious. Periodicity is simply a
consequence of the invariance of (28) under t → t + 1; this invariance under the unperturbed
map is a property of all of the Melnikov objects introduced so far. The second property is a
simple consequence of periodicity and integration of (29).

To show that M(t) is actually the classical Melnikov function (24) we must construct an
adapted normal vector field η on �, recall definition 7. We claim that, when thought of as a
function of t , such a vector field η : R → R2 is given by

η(t) = Jα′(t).

This claim is proved in lemma 13 at the end of this subsection.
The relation between M and the classical Melnikov function (24) follows from a

straightforward computation of the derivative using J 2 = −I :

L′(t) =
∑
k∈Z

〈∇H0(α(t + k)), α′(t + k)〉

=
∑
k∈Z

〈Jα′(t + k), −J∇H0(α(t + k))〉

=
∑
k∈Z

〈η(t + k), F0(α(t + k))〉.

Thus

M(t) =
∑
k∈Z

〈η(t + k), F0(α(t + k))〉,

which is the obvious form of (24) under the parametrization α. This verifies (29) and the final
property.

To end this subsection, it remains to prove the claim about the vector field η.

Lemma 13. The vector field η : � → R2 defined by η(α(t)) = Jα′(t) is an adapted normal
vector field on the saddle connection �.

Proof. Since f0 is symplectic, Df T
0 JDf0 = J . Consequently,

Jα′(t + 1) = Df −1
0 (α(t + 1))TJDf −1

0 (α(t + 1))α′(t + 1)

= Df −1
0 (α(t + 1))T Jα′(t).
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Thus, given any vector field Y : � → R2, we have

f ∗
0 〈η, Y〉(α(t)) = 〈η(α(t + 1)), Y(α(t + 1))〉

= 〈Jα′(t + 1), Y(α(t + 1))〉
= 〈Jα′(t), Df −1

0 (α(t + 1))Y(α(t + 1))〉
= 〈Jα′(t), Df −1

0 (f0(α(t))Y(f0(α(t))〉
= 〈η, f ∗

0 Y〉(α(t)).

Moreover, since J is antisymmetric, 〈η, α′〉 = 0. Therefore, according to definition 7,
η : � → R2 is an adapted normal vector field. �

5. Volume-preserving maps

For the case of a volume-preserving mapping with a codimension-one saddle connection, an
adapted normal field formulation of the Melnikov function also applies [25]. Here we show
how to relate this to the Melnikov displacement (7).

Let fε : M → M be a family of volume-preserving diffeomorphisms on an oriented
n-dimensional manifold M with volume form � such that f0 has a codimension-one saddle
connection � between two normally hyperbolic invariant sets A and B.

We start with a simple lemma about the generator for fε .

Proposition 14. Let Fε be the generator of a volume-preserving smooth family fε . Then

(i) the divergence of Fε with respect to � is zero,
(ii) the one-form i(Fε)� is closed,

(iii) if M is simply connected, then i(Fε)� is exact.

Proof. From [1, theorem 2.2.21], we have that LFε
� = 0. Since the divergence is defined by

div(Fε)� = LFε
�, this implies that the divergence vanishes. Moreover, since d� = 0 and

LFε
� = di(Fε)� + i(Fε) d�, then di(Fε)� = 0, implying (ii) and (iii). �
In order to find an invariant non-degenerate (n − 1)-form from any adapted normal field,

we assume that M has a Riemannian metric 〈·, ·〉.
Proposition 15. If η is an adapted vector field (cf definition 7), then

ωη = i(η)�

〈η, η〉 (30)

is a non-degenerate (n − 1)-form on � that is invariant under the restriction f0|� .

Proof. By definition η is non-zero, so that ωη is non-degenerate. To prove that f ∗
0 ωη = ωη on

the saddle connection �, we introduce the vector field Zη : � → T � defined by

Zη ≡ f ∗
0 η

〈η, f ∗
0 η〉 − η

〈η, η〉 .
This vector field is tangent to �, because 〈η, Zη〉 ≡ 0. Now, we compute the difference

f ∗
0 ωη − ωη = i(f ∗

0 η)f ∗
0 �

f ∗
0 〈η, η〉 − i(η)�

〈η, η〉 = i(f ∗
0 η)�

〈η, f ∗
0 η〉 − i(η)�

〈η, η〉 = i(Zη)�.

Hence, it suffices to see that the (n−1)-form i(Zη)� vanishes identically on the tangent space
T �. This follows from the fact that Zη is tangent to � and dim � = n − 1. �

The Melnikov function associated with η is defined using ωη.
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Definition 9 (Volume-preserving Melnikov function). Let D be the Melnikov displace-
ment (7). Given an adapted vector field η on �, we define the Melnikov function Mη : � → R

as the unique Cr−1 function such that

Mηωη = i(D)� (31)

as (n − 1)-forms on �.

The previous definition first appeared in [25]. Note that i(D)� is an (n−1)-form, but it is
possible that it might be degenerate; if this were the case then zeros of Mη need not correspond
to those of D. We will show next that this is not the case.

Proposition 16. The Melnikov function Mη is invariant under the map f0 and Mη = 〈η, D〉.
Moreover, a point ξ0 is a zero of Mη if and only if it is a zero of D.

Proof. Using (30), we obtain

i(D)� − 〈η, D〉ωη = i(v)�,

where v ≡ D − c〈η, D〉/〈η, η〉η. Since v ∈ T �, we conclude that i(v)� ≡ 0, as an
(n − 1)-form on �, and thus Mη = 〈η, D〉. Since η is an adapted field, and D is invariant,
f ∗

0 〈η, D〉 = 〈η, f ∗
0 D〉 = 〈η, D〉. Therefore, f ∗

0 Mη = Mη. Finally, Mη(ξ0) = 0 only when
D(ξ0) = 0, since η is non-zero and normal to T �, and D is not in the tangent space. �

We would like to show, as we did for the area-preserving case in section 4.3, that the
volume-preserving Melnikov function necessarily has zeros on �. To do this, we will show
that the integral of Mη with respect to the measure ωη is zero. This can be accomplished by
dividing the saddle connection into pieces—fundamental domains—that are mapped into each
other by f0.

Definition 10 (Proper boundary). Let A be a compact normally hyperbolic invariant
manifold of a diffeomorphism f0 with stable manifold W s(A). A proper boundary, γ , is a
submanifold of W s(A) that bounds an isolating neighbourhood of A in W s(A). In other
words, γ is proper if there is a closed submanifold W s

γ (A) such that

(i) ∂W s
γ (A) = γ and

(ii) f0(W
s
γ (A)) ⊂ int (W s

γ (A)).

We refer to the closed set W s
γ (A) as the stable manifold starting at γ .

Similarly, for the unstable manifold, a submanifold σ ⊂ W u(A) is proper for f −1
0 .

However, in this case we define the unstable manifold up to σ , denoted by W u
σ (A), as the

interior of the local manifold that corresponds to f −1
0 .

Notice that the definition is not symmetric, because W s
γ (A) is a closed subset of W s(A),

while W u
σ (A) is open in W u(A). The asymmetry is just a technicality in order to simplify some

proofs.

Definition 11 (Fundamental domain). Let A be a hyperbolic invariant set for f0. A
submanifold with boundary P is a fundamental domain of W s(A) if there exists some proper
boundary γ ∈ W s(A) such that

P = W s
γ (A) \ W s

f0◦γ (A).

Equivalently, a fundamental domain in W u(A) is a manifold with boundary of the form

P = W u
σ (A) \ W u

f −1
0 ◦σ

(A),

where σ is a proper boundary in W u(A).
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In each case, the fundamental domain is a manifold with boundary ∂P =γ ∪ f0(γ ). An
immediate consequence of the definition is that all the forward and backward iterations of a
fundamental domain are also fundamental. It is easy to see that proper boundaries always exist,
and in fact, the unstable manifold can be decomposed as the disjoint union of fundamental
domains:

W s(A) \ A =
⋃
k∈Z

f k
0 (P ).

The importance of fundamental domains is that much of the information about the entire
manifold can be found by looking only at these submanifolds. For example, as discussed
in [27], the topology of the intersections of W u and W s can be studied by restricting to P .

Proposition 17. Let M be a simply connected manifold and fε : M → M a family of volume-
preserving maps such that f0 has a saddle connection � with fundamental domain P . If ωη is
the (n − 1)-form defined in (30) and Mη is the Melnikov function (31), then

∫
P

Mηωη = 0.

Proof. The fundamental domain P is a submanifold with boundary, such that ∂P = γ ∪f0(γ ),
where γ is a closed curve that does not intersect f0(γ ). If we give an orientation [P ] to P , the
induced orientation on the boundary satisfies [γ ] = −[f0(γ )]. According to proposition 14,
the form i(F0)� is exact. Thus there exists an (n − 2)-form � such that d� = i(F0)�.
From (8) we conclude that

i(D)� = i

( ∑
k∈Z

(f ∗
0 )kF0

)
� =

∑
k∈Z

(f ∗
0 )k(i(F0)�) = d

∑
k∈Z

(f ∗
0 )k� = d�,

where � = ∑
k∈Z

(f ∗
0 )k�. Finally, from definition 9, Stokes’s theorem and the invariance

f ∗
0 � = �, we get that the integral∫

P

Mηωη =
∫

P

i(D)� =
∫

P

d� =
∫

∂P

� =
∫

γ

� −
∫

γ

f ∗
0 �

vanishes. �

The previous result implies that the stable and unstable manifolds of a perturbed saddle
connection necessarily intersect. Examples of such intersections were computed for the case
M = R3—where the hypothesis of proposition 17 are satisfied—in [25, 27].

6. Conclusion and future research

We have studied a general theory of the Melnikov method that can be applied to many different
settings. Formula (8) for the Melnikov displacement D generalizes many of the classical
methods that use a normal vector field to measure the displacement with respect to a natural
direction. For example, when the saddle connection is defined as the level set of a first
integral I , the classical Poincaré function MI = dI (D) measures the splitting as the rate
of change of the first integral. If there is a Riemannian structure and an associated adapted
normal vector field η, then the classical Melnikov function Mη = 〈η, D〉 measures the rate of
change of the splitting in this normal direction. For the case of exact symplectic maps with
saddle connections between hyperbolic fixed points, the Melnikov potential L is defined on a
Lagrangian submanifold and acts as a generator for the displacement: dL = i(D)ω.

This Melnikov theory can be extended to other situations and can be applied in many
problems. For instance, one can study billiard dynamics inside a perturbed ellipsoid, following
a program initiated in [3, 6]. It turns out that the billiard map inside an ellipsoid is an
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exact symplectic diffeomorphism defined on the cotangent bundle of the ellipsoid, which has
a two-dimensional normally hyperbolic invariant manifold with a three-dimensional saddle
connection. Therefore, ellipsoidal billiards represent a strong motivation for a more detailed
study of general normally hyperbolic invariant manifolds in a symplectic framework. This is
a work in progress.

In discrete volume geometry there are many open Melnikov problems, since the application
of Melnikov methods to volume-preserving maps began just a few years ago [25,27]. We plan
to continue this program in several ways. As a first step, we plan to obtain bounds on the number
of primary heteroclinic orbits in terms of the degree of the polynomial perturbation [28].
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[8] Delshams A and Ramı́rez-Ros R 1996 Poincaré–Melnikov–Arnold method for analytic planar maps Nonlinearity
9 1–26

[9] Delshams A and Ramı́rez-Ros R 1997 Melnikov potential for exact symplectic maps Commun. Math. Phys.
190 213–45

[10] Devaney R L 1976 Reversible diffeomorphisms and flows Trans. Am. Math. Soc. 218 89–113
[11] Easton R W 1984 Computing the dependence on a parameter of a family of unstable manifolds: generalized

Melnikov formulas Nonlin. Anal. 8 1–4
[12] Easton R W 1991 Transport through chaos Nonlinearity 4 583–90
[13] Easton R W, Meiss J D and Carver S 1993 Exit times and transport for symplectic twist maps Chaos 3 153–65
[14] Glasser M L, Papageorgiou V G and Boutis T C 1989 Melnikov’s function for two-dimensional mappings SIAM

J. Appl. Math. 49 692–703
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