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Abstract
The billiard motion inside an ellipsoid of R

3 is completely integrable. If the
ellipsoid is not of revolution, there are many orbits bi-asymptotic to its major
axis. The set of bi-asymptotic orbits is described from a geometrical, dynamical
and topological point of view. It contains eight surfaces, called separatrices.

The splitting of the separatrices under symmetric perturbations of the
ellipsoid is studied using a symplectic discrete version of the Poincaré–
Melnikov method, with special emphasis on the following situations: close
to the flat limit (when the minor axis of the ellipsoid is small enough), close to
the oblate limit (when the ellipsoid is close to an ellipsoid of revolution around
its minor axis) and close to the prolate limit (when the ellipsoid is close to an
ellipsoid of revolution around its major axis).

It is proved that any non-quadratic entire symmetric perturbation breaks
the integrability and splits the separatrices, although (at least) 16 symmetric
homoclinic orbits persist. Close to the flat limit, these orbits become transverse
under very general polynomial perturbations of the ellipsoid.

Finally, a particular quartic symmetric perturbation is analysed in great
detail. Close to the flat and to the oblate limits, the 16 symmetric homoclinic
orbits are the unique primary homoclinic orbits. Close to the prolate limit, the
number of primary homoclinic orbits undergoes infinitely many bifurcations.
The first bifurcation curves are computed numerically.

The planar and high-dimensional cases are also discussed.
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1. Introduction and main results

1.1. Billiard maps inside ellipsoids

Billiard maps inside convex sets were introduced by Birkhoff [Bir27], and are possibly the
most natural and genuine twist maps. Among them, the billiard map inside an ellipsoid (also
called the elliptic billiard map) is the most famous integrable map. Its integrability is closely
related to the remarkable fact that a billiard trajectory inside an ellipsoid Q in R

n+1 is tangent
to n fixed confocal quadrics (see, e.g., [KT91, Tab95]).

However, action-angle coordinates cannot be introduced over the whole phase space of
the billiard map f inside an ellipsoid Q, due to the existence of several classes of bi-asymptotic
motions. In the present paper we study in detail the bi-asymptotic motions to the diameter, i.e.
the major axis.

For generic ellipsoids, those with three different axes, the trajectory along the diameter
is generated by a hyperbolic two-periodic orbit {mh

+,m
h
−}. Using geometrical considerations
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(propositions 4.1, 5.1 and 6.1), it is not difficult to see that this hyperbolic two-periodic orbit
possesses an n-dimensional set W of bi-asymptotic motions, formed both by its unstable and
stable invariant manifolds, which are doubled, i.e. they coincide: W = Wu = Ws.

To provide a complete description of the dynamics on the bi-asymptotic set W , we present
in this paper natural parametrizations for the invariant manifolds Wu,s

± associated with the
fixed pointsmh

± of f 2, the square of the billiard map f inside the ellipsoid. These are analytic
diffeomorphisms mu,s

± : R
n → Wu,s

± that conjugate f 2 on Wu,s
± to a diagonal linear map with

the (real) characteristic multipliers of mh
± at their diagonal entries (lemmas 4.1, 5.1 and 6.1).

Although the generic billiard trajectories inside an ellipsoid can be obtained in terms of theta
functions, it is worth noting that the natural parametrizationsmu,s

± presented here are expressed
as quotients of tau functions which are simply polynomial functions in the parameters we
use.

It is very important to note that the dimension of the vectorial subspace of R
n+1 generated

by each billiard trajectory is not the same for all billiard trajectories on this bi-asymptotic set
W , but follows a hierarchy. Moreover, the asymptotic behaviour of a bi-asymptotic trajectory
depends on the parity of its dimension. Thus, for even l, 1 � l � n, the set of bi-asymptotic
trajectories of dimension l + 1 consists of homoclinic orbits for f 2 to the fixed points mh

± of
f 2, whereas for odd l, it consists of heteroclinic orbits for f 2 between mh

+ and mh
−.

In this paper, we call the separatrix the set S formed by the bi-asymptotic trajectories of
the largest dimension n + 1, and the bifurcation set its complementary set B = W \ S which
is formed by the bi-asymptotic trajectories of dimension l + 1 < n + 1, 1 � l � n− 1.

In terms of the above-mentioned natural parametrizations, it turns out that any point m
in the separatrix S is parametrized by values r ∈ R

n outside the n coordinate hyperplanes
rj = 0 of R

n, 1 � j � n and, consequently (propositions 4.2, 5.2 and 6.2), the separatrix S
has 2n+1 diffeomorphic connected components. In contrast,m = mu

±(r), with rj = 0 for some
j = 1, . . . , n, for any point m in the bifurcation set B.

The topology of both the separatrix and the bifurcation set is described in sections 4.1,
5.3 and 6, and is depicted in figure 5 for the planar case, and in figure 8 for the spatial case.
It is worth noting that, in the spatial case, the bi-asymptotic set falls into the last case of the
classification of bi-asymptotic sets of saddle points of four-dimensional integrable Hamiltonian
systems carried out by Lerman and Umanskiı̆ [LU94]. (Incidentally, our ‘bifurcation set’ is
denoted as ‘garland’ in [LU94].)

1.2. Symmetrically perturbed ellipsoids

Integrable billiard maps seem to be very rare. Indeed, there is a famous conjecture (due
to Birkhoff, at least for n = 1) that states that among all the billiard maps inside convex
hypersurfaces Q in R

n+1, the only ones that are integrable occur when Q is an ellipsoid.
The main goal of the present paper is to study the break-up of the bi-asymptotic set W ,

and more precisely of the separatrix S, for the billiard map inside a symmetric perturbation
Qε of an ellipsoid Q ∈ R

n+1.
As a general rule, only some of the bi-asymptotic motions in W persist under perturbations.

In the present paper, we restrict ourselves to symmetric perturbations, that is, to hypersurfaces
Qε ∈ R

n+1 that are symmetric with regard to all the coordinate axes of the Euclidean space
R
n+1, to ensure the preservation of the symmetric bi-asymptotic billiard orbits. By a symmetric

billiard orbit we mean an orbit such that its billiard configuration is symmetric with regard to
some coordinate subspace of R

n+1.
Using symmetry arguments, we see that there are

(
n

l

)
2l+2 symmetric bi-asymptotic billiard

orbits of dimension l + 1, l = 1, . . . , n, in the billiard map inside a generic ellipsoid Q in R
n+1,
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and that all of them persist under symmetric perturbations (theorems 4.1, 5.1 and 6.1). This
gives a total number of 4(3n − 1) symmetric bi-asymptotic billiard orbits.

To check whether these symmetric bi-asymptotic orbits are the only ones preserved under
the symmetric perturbation, we use the Melnikov potential L : S → R which is a well defined
and smooth function on the unperturbed separatrix (see section 2.2). It is at this moment that
the existence of ‘nice’ natural parametrizations for each connected component of the separatrix
becomes a crucial tool for the explicit representation of the Melnikov potential as an absolutely
convergent series (lemmas 4.2, 5.2 and 6.2).

As a first application of the Melnikov potential, it is proved (theorems 5.2 and 6.2)
that non-trivial entire symmetric perturbed billiards are non-uniformly integrable. More
precisely, we first note that every symmetric perturbation Qε of the ellipsoid Q ={
q ∈ R

n+1 : 〈q,D−2q〉 = 1
}
, where D = diag(d0, . . . , dn), d0 > · · · > dn > 0, can be

written in the form

Qε =
{
q ∈ R

n+1 : 〈q,D−2q〉 = 1 + εP (q2
1/d

2
1 , . . . , q

2
n/d

2
n)
}

for some function P : R
n → R such that P(0, . . . , 0) = 0. It is clear that if P is a linear

function (the case of a quadratic perturbation), Qε remains a generic ellipsoid for |ε| small
enough, and therefore integrable, as a matter of fact with n independent (and explicit, see
equation (6.2)) first integrals in involution I1, . . . , In. For an arbitrary entire function P , we
see that the perturbed billiard map inside Qε is not uniformly integrable, unless P is linear. By
uniformly integrable we mean that the first integrals I1, . . . , In can be smoothly extended as a
function of ε. This result can be considered as a local weak version of the Birkhoff conjecture.
Its proof consists simply in showing that for nonlinear functions P , the Melnikov potential L
has a singularity on C

n, and therefore is non-constant, forbidding the persistence of the whole
separatrix S, and consequently, preventing the existence of first integrals regular in ε.

Stronger results can be obtained for concrete values of the dimension n + 1 where the
ellipsoid lives. Thus, for planar billiards (n = 1, symmetrically perturbed elliptic billiard
tables), one has non-integrability, i.e. the absence of any analytical non-constant first integral,
for any nonlinear entire function P (theorem 4.2).

In particular, specific computations are carried out on two cases for the planar billiard. One
is the close to flat limit that takes place when the minor semi-axis goes to zero. In this case, it is
proved that if the ellipse is narrow enough, under any non-quadratic analytic symmetric small
enough perturbation, all the symmetric bi-asymptotic orbits become transverse (theorem 4.3).
The other one is the case of the simplest non-quadratic symmetric perturbation, a quartic
perturbation of the form

Qε =
{
q = (x, y) ∈ R

2 :
x2

a2
+
y2

b2
= 1 + ε

y4

b4

}
a > b > 0.

In this case, one can compute the Melnikov potential explicitly, as well as its critical points,
and consequently, conclude that there exist only eight primary (that is, depending smoothly
on ε) bi-asymptotic orbits, which are precisely the symmetric ones and which are transverse
(theorem 4.4).

The spatial billiard (n = 2, symmetrically perturbed ellipsoids in R
3) of the form

Qε =
{
q = (x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1 + εP (y2/b2, z2/c2)

}
(1.1)

where a > b > c > 0, is the ‘star’ case of this paper, for at least two reasons. First, thanks
to careful study, we have been able to generalize the planar results to the higher-dimensional
case. Second, for a particular perturbation, we present a pretty complete description of the
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Figure 1. The parameter space P of generic spatial ellipsoidal billiards, where β1 = b2/a2,
β2 = c2/a2 and a � b � c are the semi-axes of the ellipsoid. Its border corresponds to degenerate
ellipsoids.

spatial primary homoclinic orbits scenario in terms of the two intrinsic parameters of the system
β1 = b2/a2, β2 = c2/a2.

The parameter space of generic spatial ellipsoidal billiards is the triangle

P = {β = (β1, β2) ∈ R
2 : 0 < β2 < β1 < 1

}
whose edges consist of degenerate spatial ellipsoids (the oblate and prolate case) or flat
ellipsoids, as illustrated in figure 1.

Two different kinds of specific computations are carried out for the spatial billiard. One
is the close to flat limit that takes place when the minor semi-axis goes to zero. In terms of
the parameter β, this is equivalent to saying that β2 → 0+ (we approach the lower edge of
figure 1).

To avoid cumbersome computations, we have restricted ourselves to the symmetric
polynomial perturbations Qε preserving the horizontal section of Q = Q0, that is, the
function P has the form P(s1, s2) = s2R(s1, s2), and non-quadratic perturbations correspond
to nonlinear P , that is, to non-constant R. In this case, explicit generic inequalities
(corollary 5.3) on the 1-jet of R imply the transversality of each one of the spatial symmetric
bi-asymptotic orbits. We believe that such a result also holds for any non-quadratic analytic
symmetric perturbation (as in theorem 4.3 for the planar case), but the much more complicated
computations of the Melnikov potential require a considerable extra effort that has not been
carried out by the authors.

To realize the complexity of the computations in the spatial case, it is worth noting one
of the main differences between the spatial and the planar case, at least for what concerns the
Melnikov potential. One of the main features of the Melnikov potential L(r) for the planar
case is that the function t 
→ L(et ) is an elliptic function for any polynomial perturbation,
a fact that makes the computation of the series defining L(r) easier. Unfortunately, in the
spatial case, the function t = (t1, t2) 
→ L(et1 , et2) only possesses three independent periods
(instead of four) and therefore is not a hyperelliptic or an Abelian function, and this means that
in general we are not able to obtain closed formulae for the Melnikov potential L(r).
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Figure 2. Partition of the parameter space in white (16 primary homoclinic orbits) and black strips
(32 primary homoclinic orbits) for a perturbed ellipsoid Qε of the form (1.1) with P(s1, s2) = s1s2.
(Only a finite number of strips are visible in this figure.)

The second kind of specific computation has been focused on the number H = H(β) of
primary homoclinic orbits for the perturbation Qε in the concrete caseP(s1, s2) = s1s2. Briefly,
we see that H(β) = 16 close to the flat, circular and oblate limits, but that H(β) undergoes
infinitely many bifurcations when β approaches the prolate limit, oscillating between 16 and
32. The statements H(β) � 16 close to the flat or circular limit, and H(β) = 16 close to the
oblate limit, are proved analytically, whereas the rest are contained in the numerical results 5.4
and 5.5. In particular, the result concerning the oscillation of the number of homoclinic orbits
close to the prolate case is completely new and seems amazing to us.

An illustration of these results is provided by figure 2, where the points of the set
P− = {β ∈ P : H(β) = 16} are drawn in white, whereas the points of the set
P+ = {β ∈ P : H(β) = 32} are drawn in black. These sets are formed by infinitely many
strips connecting β = (0, 0) and β = (1, 1); that is, their extrema correspond to segments and
spheres. The reader will be able to find only the first three black strips, since the other black
strips are too thin to be seen on the scale of the picture.

1.3. Related open problems

The tools presented in this paper, which rely on the study of the Melnikov potential, can also
be applied to perturbations of any integrable map, whose bi-asymptotic motions admit good
natural parametrizations. We mention some such problems.

• Billiard maps inside convex closed surfaces can be perturbed in many ways, and not only
by deforming the initial surface. For instance, one can consider that a constant weak
magnetic field acts on the particle between consecutive impacts [RB85, BK96]. In a
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first approximation, this perturbation is equivalent to a rotation of the surface around the
direction of the magnetic field at a slow constant velocity. The elliptic planar case (a
particle inside a slowly rotating ellipse) was studied in [Koz98]. It seems reasonable to
deal with the spatial case (a particle inside a slowly rotating ellipsoid).

• Another related problem is the billiard with an oscillating ellipsoidal boundary, which is
a rather popular problem with several applications in physics [KMOC95, KMOC96].

• It is known that the ellipsoidal billiard remains integrable in the presence of certain
(separable) polynomial potentials of even degree, in particular, the quadratic Hooke
potential. Such kinds of potentials were described by Jacobi (see, for instance, [WT85]).
One can investigate ellipsoidal billiards with perturbations of the above potentials.

• Nowadays various non-trivial integrable discretizations of the classical Euler top and its
multidimensional generalizations are known (see [MV91,BLS98,Fed00]). Our approach
can equally be applied to perturbations of the discrete Euler top.

Going back to the billiard inside a perturbed ellipsoid, we list other open problems.
First, the bifurcations that appear in infinite cycles close to the prolate limit look amazing.

At the present time, we do not know of an ultimate reason for their appearance. Since the
homoclinic orbits inside a generic ellipsoid tend to a concatenation of two heteroclinic orbits
inside a prolate ellipsoid when the generic ellipsoid tends to the prolate one, it seems necessary
to develop some kind of ‘secondary’ Poincaré–Melnikov method to study this phenomenon
(classical methods only detect primary orbits). One can use the variational approach introduced
in [BM00] to detect these secondary (or two-bump) homoclinic orbits.

Second, in this paper, we have restricted ourselves to bi-asymptotic motions of maximal
dimension (for instance, spatial bi-asymptotic motions in the spatial billiard), since they lie
on the separatrix. It would be very interesting to investigate the persistence of homoclinic or
heteroclinic orbits of lower dimension (those originating from the bifurcation set).

We finish this introduction with the organization of this paper. The logical development
of its content gives rise to a structure that is very different from this introduction. Thus, we
first need to introduce (in section 2) the concepts of twist maps, and for them the notion of
doubled invariant manifolds and the Melnikov potential. Next, we introduce convex billiards
in section 3. Afterwards, we deal in section 4 with the planar case, to make the reader familiar
with the concept of the separatrix. The Melnikov potential is computed explicitly for a flat
case and for a quartic perturbation (some of its computations are postponed to appendix B).

Subsequently, in section 5 we introduce the spatial billiard and the geometry, dynamics and
topology of the bi-asymptotic set are carefully explained, as well as the role of the separatrix.
Several kinds of symmetries are introduced. We are confronted with non-uniform integrability
instead of non-integrability as another difference with the planar case. The situation close to the
flat limit is studied analytically (some of these computations are postponed to appendix A). In
the case of a particular quartic perturbation, both analytical and numerical results are presented.
Finally, all the results that do not involve specific computations are generalized to higher
dimensions in section 6.

2. The Poincaré–Melnikov method for twist maps

In this section the Poincaré–Melnikov method for twist maps from [DR97] is reviewed. Related
ideas are contained in [Lom97].

For the sake of simplicity, we will assume that the objects considered here are smooth. For
a general background on the symplectic geometry we refer to [AM78]. The review [Mei92]
is a good reference for twist maps.
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2.1. Twist maps

An exact symplectic manifold is an even-dimensional manifold M endowed with a symplectic
form ω which is exact: ω = −dφ. An exact symplectic map is a map f : M → M such that
f ∗φ − φ = dS for some function S : M → R, called a generating function of f .

Typical examples of exact symplectic manifolds are cotangent bundles endowed with their
canonical forms φ0 and ω0 = −dφ0. Typical examples of exact symplectic maps are the so-
called twist maps. Although there exist several almost-equivalent definitions of twist maps,
the following one suffices for the study of convex billiards.

Let M be an open subset of a cotangent bundle T ∗Q. A map f : M → M will be called
twist if it is exact symplectic and there exists an open U ⊂ Q×Q such that π×π ◦f : M → U
is a diffeomorphism. Here, π denotes the canonical projection of the phase space M ⊂ T ∗Q
onto the configuration space Q. The quantity n = dim Q is called the number of degrees of
freedom of f , the map l = (π × π ◦ f )−1 : U → M is called the Legendre transformation of
f , and the function L = S ◦ l : U → R is called the twist generating function or Lagrangian
of f .

The term Lagrangian is motivated by the following variational principle.
Let f : M → M be a twist map. Its orbits are the sequences O = (mk)k∈Z ∈ MZ

such that f (mk) = mk+1. Its configurations are the sequences C = (qk)k∈Z ∈ QZ such that
f (mk) = mk+1 when mk = l(qk, qk+1). (Configurations are in a one-to-one correspondence
with orbits via the Legendre transformation.) Then the configurations are just the critical points
of the formal series (called the action functional)

QZ � C 
→
∑
k∈Z

L(qk, qk+1) ∈ R. (2.1)

Of course, this series can be divergent, but there are many special cases in which it makes
sense. For instance, let O = (mk)k∈Z be a homoclinic orbit to a hyperbolic fixed point mh and
let C = (qk)k∈Z be the corresponding configuration. Then the series

W [O] := W [C] :=
∑
k∈Z

[L(qk, qk+1)− L(qh, qh)] qh = π(mh)

converges to a quantity called the homoclinic action of the orbit O (or the configuration C).
In cotangent coordinates (q, p) (q positions, p momenta) the canonical forms read as

φ0 = p dq and ω0 = dq ∧ dp, whereas the canonical projection is π(q, p) = q. Writing
f (q, p) = (q ′, p′), the exactness property f ∗φ0−φ0 = dS reads asp′ dq ′−p dq = dS(q, p),
whereas the Legendre transformation l is simply given by (q, q ′) 
→ (q, p) and the twist
generating function is L(q, q ′) = S(q, p). Hence, p′ dq ′ −p dq = dL(q, q ′), so that one can
retrieve the map f implicitly from

p = −∂1L(q, q ′) p′ = ∂2L(q, q ′).
This can be done over the whole phase space M, because in the above definition of twist maps
it is assumed that the momenta can be expressed globally in terms of old and new positions,
via the Legendre transformation l.

2.2. Doubled invariant manifolds

Let f : M → M be a twist diffeomorphism on an open subset of a cotangent bundle T ∗Q
with Lagrangian L : U → R, and assume that f has a hyperbolic fixed point mh. We will say
that its n-dimensional unstable and stable invariant manifolds

Wu :=
{
m ∈ M : lim

k→−∞
f k(m) = mh

}
Ws :=

{
m ∈ M : lim

k→+∞
f k(m) = mh

}
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are doubled when they coincide: Wu = Ws. Nevertheless, the invariant manifolds could not
coincide as smooth manifolds. We pause here to explain this subtle, although crucial, fact. For
more details, the reader can consult [DR97].

As a matter of fact, the invariant manifolds Wu,s need not be submanifolds of M ⊂ T ∗Q,
but just connected immersed submanifolds. More precisely, Wu,s = mu,s(Rn) for some one-
to-one immersions mu,s : R

n → M, such that mu,s(0) = mh and dmu,s(0)[Rn] is the tangent
space to Wu,s at mh. Hence, it is natural to endow Wu (respectively, Ws) with the smooth
structure induced by the immersion mu (respectively, ms).

From now on, in the case of doubled manifolds, we will reserve the letter W (without
a superscript) for the bi-asymptotic set W := {m ∈ M : lim|k|→∞ f k(m) = mh}, whereas
Wu and Ws will denote the invariant manifolds equipped with the above-mentioned smooth
structure.

We define the separatrix S (respectively, the bifurcation set B) as the subset of W of
the points where the invariant manifolds have (respectively, do not have) the same smooth
structure. In particular, the bifurcation set contains all the points where the tangent spaces of
the invariant manifolds differ.

The separatrix is an exact Lagrangian submanifold of the phase space invariant by the
twist diffeomorphism. Obviously, it does not contain the hyperbolic fixed point, since the
invariant manifolds are transverse at it. Moreover, it is easy to see [DR97] that all the orbits
on a connected component of the separatrix have the same homoclinic action.

In the planar case, that is, twist maps with one degree of freedom, the bifurcation set
becomes just the hyperbolic fixed point. For more degrees of freedom, the determination of
the bifurcation set (and as a consequence of the separatrix) is itself an interesting problem.

The following characterization of the bifurcation set turns out to be very useful in
determining it. Given a point m in the bi-asymptotic set W , it is parametrized by means
of the above-mentioned immersions mu,s : R

n → M as m = mu(ru) = ms(rs) for unique
parameter values ru and rs. The possibility that m belongs to the bifurcation set B can then
only take place when m = limj→∞mu(rj ) or m = limj→∞ms(rj ), for some unbounded
sequence (rj )j�0 ⊂ R

n. Roughly speaking, this means that the bifurcation set is formed by
the self-intersections of the bi-asymptotic set in the phase space.

Our next goal is to investigate the effect of small twist perturbations on this structure.
Typically, the separatrix splits (does not persist), and breaks down into isolated homoclinic
orbits, some of them transverse. The standard tool for measuring this splitting of the separatrix
is the Melnikov potential.

2.3. The Melnikov potential

Let fε : M → M be a twist perturbation of f . Let Lε = L + εL1 + O(ε2) : U → R be its
Lagrangian. It is not restrictive to normalize the problem in such a way that the hyperbolic
fixed point does not change: fε(mh) = mh. Set qh = π(mh). Then we introduce the Melnikov
potential as the function L : S −→ R given by

L(m) =
∑
k∈Z

[L1(qk, qk+1)− L1(q
h, qh)

]
qk = π(mk) mk = f k(m). (2.2)

This function is well defined, smooth and invariant under the unperturbed map: L = L ◦ f .
Due to the hyperbolic character of the fixed point, the series in (2.2) is absolutely convergent.
The fact that the perturbed invariant manifolds are exact Lagrangian immersed submanifolds of
M plays an essential role in its derivation. In particular, if (x, y) are coordinates symplectically
adapted to S—that is, in these coordinates S is given locally by {y = 0} and the Liouville
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form φ0 reads as y dx—it turns out [DR97] that the perturbed invariant manifolds can be
expressed as Wu,s

ε = {y = ε∇Lu,s(x) + O(ε2)} for some smooth functions Lu,s : Wu,s → R.
Restricting the base points of the invariant manifolds to the separatrix where their smooth
structures coincide, we arrive at the Melnikov potential L = Lu − Ls : S → R. It does
not depend on the coordinates (x, y), as expression (2.2) shows. Therefore, the differential
M = dL (called the Melnikov function) gives the first-order distance, along the coordinate
y in any coordinates (x, y) symplectically adapted to the separatrix, between the perturbed
invariant manifolds.

The following properties, which hold for 0 < |ε| small enough, are obtained using this
geometrical construction:

L1 If L is not locally constant, the separatrix splits.
L2 If L is not locally constant, and the unperturbed map f is (completely) integrable, then

the perturbed map is not uniformly integrable.
L3 The non-degenerate critical points of L give rise to transverse primary homoclinic orbits

of the perturbed map. If all the critical points of L are non-degenerate, any primary
homoclinic orbit arising from the separatrix can be associated with some critical point.

L4 If Õ(ε) and Ô(ε) are two primary homoclinic orbits associated with the critical points m̃
and m̂, then W [Õ(ε)] −W [Ô(ε)] = ε[L(m̃) − L(m̂)] + O(ε2), provided that m̃ and m̂
belong to the same connected component of the separatrix.

The proofs of L1, L3 and L4 can be found in [DR97], whereas L2 is established in [DLR01].
We will restrict ourselves to pointing out some comments about them.

C1 If the Melnikov potential is not locally constant, the Melnikov function is not identically
zero and the perturbed invariant manifolds do not coincide. This is the phenomenon of
separatrix splitting.

C2 A twist map with n degrees of freedom is called (completely) integrable if it has n
functionally independent almost-everywhere first integrals in involution. A family of twist
maps is called uniformly integrable if each map of the family is completely integrable and
the first integrals depend smoothly on the parameter of the family. Hence, in L2 it is stated
that the unperturbed first integrals cannot be smoothly continued to perturbed ones when
the Melnikov potential is not locally constant.

C3 In the planar case, the invariant manifolds become invariant curves and the non-
integrability criterion L2 can be strengthened. The result is the following: if the Melnikov
potential is not locally constant, then the perturbed invariant curves cross topologically,
and so the perturbed map becomes non-integrable [Cus78]. That is, we can deal with just
integrability, instead of uniform integrability.

C4 Let O(ε) be a perturbed homoclinic orbit; that is, O(ε) ⊂ (Wu
ε

⋂Ws
ε

) \ {mh}. It is called
transverse when the intersections of the invariant manifolds at its points are transverse.
It is called primary when it depends smoothly on ε ∈ (−ε0, ε0) for some ε0 > 0, and
O(ε) = O + O(ε) for some unperturbed homoclinic orbit O = (mk)k∈Z, mk = f k(m).
These are the kind of orbits that can be detected by a perturbative theory based on the
Melnikov potential.

C5 According to the Birkhoff–Smale homoclinic theorem [Sma65], maps with transverse
homoclinic orbits are chaotic: the restriction of some power of the map to some Cantor
set close to the homoclinic orbit is conjugated to a transitive topological Markov chain.
This existence of chaotic behaviour explains the importance of transverse homoclinic
orbits.
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C6 To motivate L4, let us first focus on the planar case. Let Õ(ε) and Ô(ε) be two primary
homoclinic orbits of fε, associated with some critical points m̃ and m̂ of the Melnikov
potential L, lying on the same connected component of the separatrix. Let A(ε) be
the area of the region enclosed by the perturbed invariant curves with endpoints on
these orbits. (Such regions are called lobes.) In the MacKay–Meiss–Percival action
principle [MMP84] this lobe area is interpreted as a difference of homoclinic actions:
A(ε) = W [Õ(ε)]−W [Ô(ε)]. Therefore, the difference L(m̃)−L(m̂)measures this lobe
area in first order in ε. Moreover, when this difference is zero and L is not constant, L
has other critical points and there exist more primary homoclinic orbits.
This is due to the fact that, since the Melnikov potentialL is invariant under the unperturbed
map f : L = L ◦ f , one can define it on the reduced separatrix S∗ = S/{f }, which is the
quotient of the separatrix under the action of the unperturbed map. In the planar case, the
separatrix is one dimensional and therefore every connected component of the reduced
separatrix is diffeomorphic to a one-dimensional torus T. Consequently, the Melnikov
potential L is a periodic function in suitable coordinates, and therefore it has more than
one critical point if it is non-constant.
In the general case of n degrees of freedom, if the reduced separatrix S∗ is compact,
this latter property also holds: if L(m̃) − L(m̂) = 0 for two critical points m̃ and m̂
of the Melnikov potential L on the same connected component of the separatrix, there
exist more critical points of L and therefore more primary homoclinic orbits. Sometimes
compactness of S∗ is not necessary. In those cases, it is important to check the difference
L(m̃)−L(m̂) for each pair of critical points m̃, m̂ of L on the same connected component
of the separatrix.

We end this section by noting that heteroclinic orbits (instead of homoclinic ones) and
periodic points (instead of fixed ones) can also be analysed with minor changes.

3. Convex billiards

We consider the convex billiard problem [Bir27, KT91, Tab95]. Let Q be a closed convex
hypersurface of R

n+1. A material point moves inside Q and collides elastically with Q; that
is, at the impact points the velocity is reflected so that its tangential component remains the
same, while the sign of its normal component is changed.

This billiard motion can be modelled by means of a diffeomorphism defined on a phase
space M consisting of positions q on the hypersurface Q and unitary velocities p directed
outward Q at q:

M = {m = (q, p) ∈ R
2n+2 : q ∈ Q, p ∈ S

n, p is directed outward Q at q
}
.

Indeed, we define the billiard map f : M → M, f (q, p) = (q ′, p′), in the following way
(see figure 3): p′ is the reflection of the velocity p described above, and q ′ ∈ Q is determined
by p′ = (q ′ − q)/ ∣∣q ′ − q∣∣.

Let U = {(q, q ′) ∈ Q × Q : q �= q ′}. It is very well known (see, for instance, [Tab95,
section 2.9]), that the convexity of Q implies that f is a twist map with Lagrangian

L : U → R L(q, q ′) = ∣∣q − q ′∣∣. (3.1)

A billiard orbit is a sequence O = (mk)k∈Z ∈ MZ such that f (mk) = mk+1. A billiard
configuration is a sequence of impact points C = (qk)k∈Z ∈ QZ such that f (qk, pk) =
(qk+1, pk+1) for pk+1 = (qk+1−qk)/ |qk+1 − qk|. A billiard trajectory is a sequence of oriented
segments T = (sk)k∈Z such that sk = [qk, qk+1] for some billiard configuration (qk)k∈Z, where
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Figure 3. The billiard map f (q, p) = (q ′, p′).

s = [q, q ′] denotes the segment from q to q ′. It is clear that orbits, configurations and
trajectories are in one-to-one correspondence. Hence, we can use them indistinctly.

The chords of the hypersurface Q are the segments perpendicular to Q at their ends. The
greatest chords are called diameters. A chord gives rise to a couple of two-periodic points.
Generically, the two-periodic points are hyperbolic when the chord is a diameter. Such a
diameter will be called hyperbolic.

Let T = (sk)k∈Z be a homoclinic trajectory to a hyperbolic diameter of a hypersurface Q.
Let O and C be its associated orbit and configuration, respectively. We denote by diam Q the
length of the diameter. Then the series

Length O := Length C := Length T :=
∑
k∈Z

(length sk − diam Q)

converges to a negative quantity called the (homoclinic) length of O, C or T . Clearly, it
coincides with the (homoclinic) action defined in section 2.1: Length O = W [O].

This leads to the following interpretation of the lobe area for planar billiards (see
comment C6 of section 2.3): the lobe area enclosed between two primary homoclinic billiard
orbits to a hyperbolic diameter is equal to the difference of lengths. For spatial and higher-
dimensional billiards, these differences of lengths are symplectic invariants which are useful
in estimating the splitting size [DR97].

4. The planar case

We collect here several results on billiards inside perturbed ellipses, adapted from the studies
contained in [LT93, Tab94, DR96, Lom96, Lev97]. They are intended to prepare the scenario
for the spatial case, which is conceptually similar but technically harder. So, in this section
we will lay the foundations for the next one.

We will consider a non-circular ellipse

Q =
{
q = (x, y) ∈ R

2 :
x2

a2
+
y2

b2
= 1

}
a > b > 0 (4.1)
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whose diameter is given by the chord joining the vertices (−a, 0) and (a, 0). (We avoid dealing
with the circumference a = b, since it has a continuous family of diameters.) We will denote
the set formed by the two-periodic points associated with the diameter by

Mh = {mh
+,m

h
−} mh

± = (qh
±, p

h
±) qh

± = (±a, 0) ph
± = (±1, 0).

4.1. The bi-asymptotic set

We are going to see that mh
+ and mh

− are hyperbolic two-periodic points of the planar elliptic
billiard map f whose unstable and stable invariant manifolds are doubled. Our first step will
be to give a geometric characterization of the invariant sets

W :=
{
m ∈ M : lim

|k|→∞
dist
(
f k(m),Mh

) = 0

}

Wu :=
{
m ∈ M : lim

k→−∞
dist
(
f k(m),Mh

) = 0

}

Ws :=
{
m ∈ M : lim

k→+∞
dist
(
f k(m),Mh

) = 0

}
.

(4.2)

As a by-product of this characterization, we will prove that the unstable and stable invariant
manifolds are doubled and coincide with the bi-asymptotic set:

W = Wu = Ws.

To begin with, let us recall a geometric property of the ellipses [Tab95, section 2.1]. Let

Q(κ) =
{
q = (x, y) ∈ R

2 :
x2

a2 − κ2
+

y2

b2 − κ2
= 1

}
κ �= a, b

be the family of confocal conics to the ellipse Q. It is clear that Q(κ) is an ellipse for 0 < κ < b,
and a hyperbola for b < κ < a. No real conic exists for κ > a.

Concerning the degenerate cases κ = a, b, we first note that for κ → b− (respectively,
κ → b+) the conic Q(κ) flattens into the region of the x-axis enclosed by (respectively, outside)
the foci of the ellipse Q. On the other hand, for κ → a−, the hyperbola flattens into the whole
y-axis.

The fundamental property of planar elliptic billiards is that any segment (or its
prolongation) of a billiard trajectory inside the ellipse Q = Q(0) is tangent3 to one fixed
confocal conic Q(κ). Thus, the confocal conics are caustics of the elliptic billiard (see figure 4).

The notion of tangency in the degenerate cases is the following: a line is tangent to Q(b)
when it passes through the foci

F = {(−c, 0), (c, 0)} c =
√
a2 − b2

and it is tangent to Q(a) when it coincides with the y-axis.
Therefore, the function κ : M → R is a first integral of the elliptic billiard map f , that

is, κ ◦ f = κ . A straightforward computation gives

κ(m) = ab(xu/a2 + yv/b2) m = (q, p) q = (x, y) p = (u, v).

Now, it is clear that the billiard orbits bi-asymptotic to the diameter are those ones that
are tangent to Q(b) or, equivalently, pass through the foci. Thus, if q + 〈p〉 denotes the line
passing by q with direction p, the next proposition holds.

3 Tangent in a projective sense; that is, the points of tangency can be proper or improper.



1154 A Delshams et al

Figure 4. The two kinds of confocal caustics: ellipses (a) and hyperbolas (b).

Proposition 4.1. W = Wu = Ws = Mb, where

Mb := {m ∈ M : κ(m) = b} = {m = (q, p) ∈ M : q + 〈p〉 intersects F}.
This discussion shows that elliptic planar billiards give a suitable framework with which

to apply the Poincaré–Melnikov method described in section 2, because they are integrable
twist diffeomorphisms with bi-asymptotic connections. Nevertheless, as was already stressed
in [GPB89], the explicit implementation of this method requires a closed-form solution of
the map on (and not only a parametrization of) the bi-asymptotic set. This closed form
solution is given in the following lemma. Equivalent or related formulae can be found
in [LT93, Tab94, DR96, Lom96, Lev97, Koz98].
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Figure 5. Topological representation of the bi-asymptotic set in the planar case.

Lemma 4.1. Let τ, τx, τy be the polynomials

τ(r) := 1 + r2 τx(r) := τ(ir) = 1− r2 τy(r) := 2r

and χ = (τx/τ, τy/τ). Let q : R → Q and p : R → S be the maps

q(r) := Dχ(r) =
(
a

1− r2

1 + r2
,

2br

1 + r2

)
p(r) := χ(λ−1/2r) =

(
λ− r2

λ + r2
,

2λ1/2r

λ + r2

)

where D = diag(a, b) and λ = (1 + e)/(1− e) with e =
√

1− b2/a2, and let m = (q, p).
Then the maps mu,s

± : R → M defined by mu
±(r) = ±m(r) and ms

±(r) = ∓m(1/r), are
natural parametrizations of the curves

Wu
± :=

{
m ∈ M : lim

k→−∞
dist
(
f k(m), f k(mh

±)
) = 0

}

Ws
± :=

{
m ∈ M : lim

k→+∞
dist
(
f k(m), f k(mh

±)
) = 0

} (4.3)

which are invariant under the square of the billiard map. That is,mu,s
± : R → Wu,s

± are analytic
diffeomorphisms such that

m
u,s
± (0) = mh

± f (mu
±(r)) = mu

∓(λr) f (ms
±(r)) = ms

∓(r/λ).

The quantity λ is the characteristic multiplier of the hyperbolic two-periodic points mh
±;

that is, the modulus of λ is greater than one and the eigenvalues of the differential of the elliptic
billiard map at the hyperbolic two-periodic points are λ and 1/λ (see [LT93]).

Remark 4.1. From the definitions (4.2) and (4.3), it is clear that the bi-asymptotic set can
be written as a disjoint union in two ways: W = Wu

+ ∪ Wu
− = Ws

+ ∪ Ws
−, and that

f
(Wu,s

+

) = Wu,s
− . We shall classify the bi-asymptotic orbits through the foci as heteroclinic

(in opposition to homoclinic), since they have that character for the square of the billiard
map.

Let us recall (see section 2.2) that, for planar maps, all the heteroclinic points are contained
in the separatrix. Hence, the separatrix S of the planar elliptic billiard map has four connected
components, namely

Proposition 4.2. S = W \Mh = S+
+ ∪ S−+ ∪ S+

− ∪ S−− , where Sσ
ς = {ςm(σr) : r > 0}.

We have depicted a topological representation of the bi-asymptotic set in figure 5.
(For a dynamical representation the reader can see figure 7.) Points with equal labels are
identified, so W = Wu

+ ∪ Wu
− is homeomorphic to two circumferences glued along the

couple of points mh
± = ±m(0) = ∓m(∞). The connected components of the separatrix

are invariant under the square of the elliptic billiard map. The arrows in the figure show this
dynamics.



1156 A Delshams et al

Figure 6. The two kinds of axial bi-asymptotic billiard trajectories inside an ellipse: x-axial (a)
and y-axial (b). The foci are marked with squares.

An ellipse is the geometric locus of the points whose sum of distances to two given
points (the foci of the ellipse) is a fixed quantity (the diameter of the ellipse). Using this
characterization and a straightforward telescopic argument, one finds that the length of all the
orbits in the separatrix is equal to minus the focal distance; that is,

Proposition 4.3. Length O = −2
√
a2 − b2, for all O ⊂ S.

4.2. Persistence of symmetric bi-asymptotic orbits

Next, our goal is to prove that some distinguished heteroclinic orbits persist under suitable
perturbations. Let us introduce these perturbations and orbits. A curve in the plane will be
called symmetric when it is symmetric with regard to both coordinate axes of the plane. A
perturbation of the ellipse (4.1) will be called symmetric if the perturbed ellipse is symmetric.
Finally, a billiard orbit inside a symmetric curve will be called central (respectively, axial)
when its billiard configuration is symmetric with regard to the origin (respectively, to some axis
of coordinates). Inside an ellipse there are no central bi-asymptotic orbits, but there are two
kinds of axial bi-asymptotic orbits: x-axial and y-axial (see figure 6). Their axes of symmetry
are the x-axis and the y-axis, respectively.

Theorem 4.1. Inside a non-circular ellipse there are four x-axial (and four y-axial) billiard
orbits bi-asymptotic to the diameter. They persist under symmetric perturbations.

Proof. Any billiard orbit inside a symmetric curve with a point on the set of symmetry

F̃ = {m ∈ M : x = 0}
is y-axial. The connected component Sσ

ς of the separatrix intersects F̃ at the point

m̃σ
ς = ςm(σ r̃) = ς (q̃σ , p̃σ ) q̃σ = (x̃, σ ỹ) p̃σ = (ũ, σ ṽ) ς, σ = ±

where r̃ = 1, x̃ = 0, ỹ = b, ũ = √
a2 − b2/a and ṽ = b/a. The intersection is

transverse, because the equations of the phase space (x2/a2 + y2/b2 = 1 and u2 + v2 = 1),
the separatrix (xu/a2 + yv/b2 = 1/a), and the set of symmetry (x = 0), are functionally
independent at the points m̃σ

ς . Hence, the stable invariant curve of the billiard map

associated with any symmetric perturbation of the ellipse intersects F̃ in (at least) four
points. The orbits by these points are y-axial and forward asymptotic. Due to the
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Figure 7. Phase portrait of the planar elliptic billiard map in (ϕ, ρ) coordinates.

axial symmetry, they are also backward asymptotic and, therefore, bi-asymptotic. This
ends the proof concerning the existence of four y-axial persistent bi-asymptotic billiard
orbits.

It turns out that there also exist four x-axial persistent bi-asymptotic billiard orbits. These
x-axial orbits pass through the points

m̂σ
ς = ςm(σ r̂) = ς

(
q̂σ , p̂σ

)
q̂σ = (x̂, σ ŷ) p̂σ = (û, σ v̂) ς, σ = ±

where r̂ = √λ, x̃ = −√a2 − b2, ỹ = b2/a, ũ = 0 and ṽ = 1. It suffices to check that Sσ
ς

intersects transversely at m̂σ
ς another set of symmetry: F̂ = {m ∈ M : u = 0}. �

Remark 4.2. We have used the axial symmetries to determine the natural parametrizations of
lemma 4.1 in the following way. Natural parametrizations are unique except for linear changes
of variables r 
→ µr , for someµ �= 0. Between all the mapsm : R → M verifyingm(0) = mh

+
and f (m(r)) = −m(λr), we have chosen one in such a way that the ‘natural parameter’ of
the y-axial bi-asymptotic points m̃σ

ς (respectively, the x-axial ones m̂σ
ς ) is r = σ r̃ with r̃ = 1

(respectively, r = σ r̂ with r̂ = √λ).

For visualization purposes, it is useful to identify the phase space M with the annulus

A = {(ϕ, ρ) ∈ T× R : |ρ| < |γ̇ (ϕ)|} γ (ϕ) = (a cosϕ, b sin ϕ)

by means of the relations q = γ (ϕ) and ρ = 〈γ̇ (ϕ), p〉 = |γ̇ (ϕ)| cosϑ , where ϑ ∈ (0, π)
is the angle between the tangent vector γ̇ (ϕ) and the velocity p. In these coordinates,
κ2 = b2 + c2 sin2 ϕ − ρ2. The partition of the annulus into invariant level curves of
the billiard map f is shown in figure 7. The ∞-shaped curve is the bi-asymptotic set
W = {(ϕ, ρ) ∈ A : ρ = ±c sin ϕ}. In particular, it becomes clear that the separatrix S
has four connected components and that it intersects transversely the sets of symmetry F̃ and
F̂ just at eight points.

Once this persistence has been confirmed, several questions arise. Is the perturbed billiard
integrable? Are the perturbed axial bi-asymptotic orbits transverse? Do all the perturbed
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axial bi-asymptotic orbits have the same length? The answers to these questions have been
considered in several papers, by means of the Poincaré–Melnikov method. We summarize
some results below.

4.3. The Melnikov potential

Let Qε be a symmetric perturbation of the ellipse (4.1). We can assume without loss of
generality that the perturbation preserves the diameter of the ellipse; that is, diam Qε ≡ 2a.
Modulo O(ε2) terms, which do not play any role in our first-order perturbative analysis, Qε

can be put in the following explicit form:

Qε = φε(Q) φε(q) = [1 + εψ(q)]q (4.4)

for some symmetric function ψ : Q → R such that ψ(qh
±) = 0. (Symmetric means that

ψ(x, y) = ψ(−x, y) = ψ(x,−y) for all (x, y) ∈ Q.) If P : R → R is a function such that

P(y2/b2) = 2ψ(q) ∀q = (x, y) ∈ Q (4.5)

then the explicit form (4.4) is equivalent, modulo O(ε2) terms, to the implicit form

Qε =
{
q = (x, y) ∈ R

2 :
x2

a2
+
y2

b2
= 1 + εP (y2/b2)

}
. (4.6)

(Note thatP(0) = 2ψ(qh
±) = 0.) We shall call this perturbation polynomial, entire or analytic,

if the function P is polynomial, entire or analytic, respectively. In the polynomial case, we
shall say that the order of the perturbation is twice the degree of the polynomial P . Thus,
quadratic perturbations correspond to linear functions P .

Next, we look for an expression of the Melnikov potential (2.2) which is as simple as
possible. The methodology for the spatial case is the same, and so it will not be repeated in
the next section.

The Lagrangian Lε = L0 + εL1 + O(ε2) of the perturbed billiard inside (4.4) is

Lε(q, q
′) = ∣∣φε(q)− φε(q ′)∣∣ = ∣∣q − q ′∣∣ + ε〈p′, ψ(q ′)q ′ − ψ(q)q〉 + O(ε2)

where p′ = (q − q ′)/ ∣∣q − q ′∣∣. Hence, L1(q, q
′) = 〈p′, ψ(q ′)q ′ −ψ(q)q〉 and L1(q

h
±, q

h
∓) =

0. Given an unperturbed bi-asymptotic orbit O = (mk)k∈Z ⊂ S, mk = (qk, pk) = f k(m), we
introduce the notation νk = 〈pk − pk+1, qk〉 and ψk = ψ(qk). Then the absolutely convergent
series in (2.2) can be rearranged in the following way:

L(m) =
∑
k∈Z

L1(qk, qk+1) =
∑
k∈Z

〈pk+1, ψk+1qk+1 − ψkqk〉

=
∑
k∈Z

〈pk − pk+1, ψkqk〉 =
∑
k∈Z

νkψk

which is the simple formula for the Melnikov potential we were looking for.
The separatrix has four connected components, but symmetric perturbations cause the

same effect on any of them. Therefore, we can restrict our study to one component, namely
S+

+ = {m(r) : r ∈ (0,+∞)}. If we take the variable r as a natural coordinate over S+
+ , the

Melnikov potential can be written in the following form:

L : (0,+∞)→ R L(r) = L(m(r)) =
∑
k∈Z

ν(λkr)ψ(λkr)
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where ν, ψ : (0,+∞)→ R are the continuous versions of the sequences νk, ψk; that is,

ν(r) := 〈p(r) + p(λr), q(r)〉 = 2aτ 2(r)

τ (λ−1/2r)τ (λ1/2r)
= 2a(1 + r2)2

(1 + λ−1r2)(1 + λr2)

ψ(r) := ψ(q(r)) = 1
2P
(
τ 2

y (r)/τ
2(r)
) = 1

2P
(
4r2/(1 + r2)2

)
see lemma 4.1 and relation (4.5). The final result can be stated as follows.

Lemma 4.2. The Melnikov potential associated with the billiard inside (4.6) consists of four
copies of the function L : (0,+∞)→ R defined by

L(r) = a
∑
k∈Z

;(λkr) ;(r) = τ 2(r)

τ (λ−1/2r)τ (λ1/2r)
P

(
τ 2

y (r)

τ 2(r)

)
(4.7)

where the characteristic multiplier λ and the polynomials τ, τy are defined in lemma 4.1.
Moreover, the function L is invariant: L(λr) = L(r), and symmetric: L(r) = L(1/r). In
particular, r̃ = 1 and r̂ = √λ are critical points of L: L′(r̃) = L′(r̂) = 0.

Once we have a suitable expression for the Melnikov potential, we are ready to study the
splitting of separatrices, both from a qualitative and quantitative point of view. In the qualitative
part, we shall establish a non-integrability criterion. In the quantitative part, we shall prove
that the perturbed axial bi-asymptotic orbits are transverse close to the flat limit; that is, when
the unperturbed ellipse is close to a segment whose extrema are the foci: β = b2/a2 → 0+,
so that e = √1− β → 1− and λ→ +∞.

4.4. Non-integrability and splitting

We begin with the non-integrability criterion. It is clear that the quadratic perturbations preserve
the elliptic (and consequently, integrable) character of the billiard inside an ellipse. It is
remarkable that, for entire symmetric perturbations, the converse also holds.

Theorem 4.2 (see [DR96]). An entire symmetric perturbation of a non-circular ellipse gives
rise to an integrable billiard if and only if it is quadratic.

Proof. LetP be an entire function. It suffices to check that ifP is not linear, then the Melnikov
potential (4.7) is non-constant, see comment C3 in section 2.3. (Indeed, one can check that
L(r) ≡ p1b

2/c when P(s) = p1s.)
The key point is to observe that the Melnikov potential can be analytically extended to the

complex plane and to study its complex singularities, since it can be constant only when it has
no complex singularities.

Let r∗ = i be the imaginary unit. It is clear that L(r) − a;(r) = a
∑

0 �=k∈Z
;(λkr) is

analytic at r∗. On the other hand, ;(r) is analytic at r∗ if and only if P is linear. Consequently,
if P is not linear, then L(r) is not analytic at r∗ and therefore is non-constant. �

Birkhoff conjectured that elliptic billiards are the unique integrable smooth convex
billiards. Theorem 4.2 can be considered as a local version of this conjecture around non-
circular ellipses in the set of entire symmetric curves.

From the proof and property L1 in section 2.3, we deduce that the separatrix splits under
any non-quadratic entirely symmetric perturbation.

At this point, we have finished the review of known results. Next, we present some new
results concerning transversality close to the flat limit.
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4.5. Transversality close to the flat limit

The transversality conditions are obtained from the asymptotic behaviour of the Melnikov
potential at its critical points r̃ = 1 and r̂ = √λ when

β := b2

a2
= 4λ

(1 + λ)2
→ 0+.

This behaviour is contained in the following lemma. In the spatial case a similar study will be
carried out, although with more cumbersome computations (see appendix A). Here, we shall
only sketch the proof to avoid tedious repetitions.

Lemma 4.3. Let d, d̃, d̂ : (0, 1)→ R be the functions

d(β) = a−1[L(r̃)− L(r̂)] d̃(β) = a−1L′′(r̃) d̂(β) = a−1L′′(r̂).

If the perturbation (4.6) is analytic, then

d(β) = [P(1)− P ′(0)]β + O(β2)

d̃(β) = 2[P(1)− P ′(1)]β + 2[P ′(0)− P(1)]β2 + O(β4)

d̂(β) = P ′′(0)β3 + O(β4).

Proof. Let P(s) =∑j�1 pjs
j be the Taylor expansion of the perturbation around zero. Then

the function ;(r) defined in (4.7) can be written as follows:

;(r) =
∑
j�1

pj;j (r) ;j (r) = (2r)2j

(1 + λ−1r2)(1 + r2)2(j−1)(1 + λr2)
.

We note that 0 < ;j (λ
k) = ;j (λ

−k) � (2λ−|k|)2j , for all integers k, j � 1. On the other hand,
;(λ0) = ;(1) = 4λP (1)/(1 + λ)2 = P(1)β. Therefore,∣∣a−1L(r̃)− P(1)β∣∣ �

∑
k �=0

∣∣;(λk)∣∣ �∑
j�1

∑
k �=0

∣∣pj;j (λk)∣∣

� 2
∑
j�1

22j
∣∣pj ∣∣

λ2j − 1
= O(λ−2) = O(β2)

using that λ−1 ∼ β/4 when β → 0.
The formulae for L(r̂), L′′(r̃), and L′′(r̂) can be obtained in the same way. �
We recall that the Melnikov potential is constant for quadratic perturbations or,

equivalently, for a linear P : P(s) = p1s, which satisfies P(1) = P ′(0) = P ′(1) and
P ′′(0) = 0.

Corollary 4.1. If P is an analytic function such that P(1) �= P ′(1) or P(1) �= P ′(0)
(respectively, P ′′(0) �= 0) (respectively, P(1) �= P ′(0)) and the ellipse is narrow enough,
then for a small enough perturbation the y-axial bi-asymptotic orbits become transverse
(respectively, the x-axial bi-asymptotic orbits become transverse) (respectively, the length
of the x-axial bi-asymptotic orbits is different from the length of the y-axial ones).

Proof. Let P be an analytic function such that P(1) �= P ′(1) or P(1) �= P ′(0). Then
there exists a constant β0 > 0 such that a−1L′′(r̃) = d̃(β) �= 0 for all β ∈ (0, β0), see the
expansion of d̃(β) in lemma 4.3. This is equivalent to saying that the points m̃σ

ς = ςm(σ r̃)

are non-degenerate critical points of the Melnikov potential if the ellipse is narrow enough for
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all ς, σ ∈ {−,+}. Thus, taking into account that the billiard orbits passing by the points m̃σ
ς

are the y-axial bi-asymptotic ones, the first claim of the corollary follows from property L3 in
section 2.3. The other claims are established using similar arguments. �

In some degenerate cases, this corollary cannot be applied and further computations are
necessary to obtain the following general theorem.

Theorem 4.3. If the ellipse is narrow enough, under any non-quadratic analytic symmetric
small enough perturbation, all the axial bi-asymptotic orbits become transverse, and the length
of the x-axial bi-asymptotic orbits is different from the length of the y-axial ones.

Proof. LetP be a nonlinear analytic function such thatP(0) = 0, and let j � 2 be the smallest
integer such that pj = P (j)(0)/j ! �= 0. After some rather tedious, but simple, manipulations,
it turns out that the following estimates hold:

d(β) = [P(1)− P ′(0)]β − pjβj + O(βj+1)

d̃(β) = 2[P(1)− P ′(1)]β + 2[P ′(0)− P(1)]β2 + 23−2j j 2pjβ
2j + O(β2j+1)

d̂(β) = (j 2 − j)pjβj+1 + O(βj+2).

Hence, the functions d , d̃ and d̂ are non-zero for 0 < β ! 1, and the theorem follows. �

This theorem is rather powerful, in the sense that it establishes that, close to the flat limit, an
analytic perturbation is either quadratic and preserves the separatrix, or breaks up the separatrix
in a transverse way. Behind the chunk of computations used to prove the above theorem, the
main idea relies on the fact that the functions d, d̃, d̂ : (0, 1)→ R can be extended analytically
to the flat limit β = 0. Hence, it suffices to prove that the Taylor expansions of d(β), d̃(β) and
d̂(β) around β = 0 have some non-zero Taylor coefficient in order to find that these functions
do not vanish for small enough, but positive, values of β. (The zeros of analytic functions are
isolated.)

On the other hand, this discussion motivates the following question: can d, d̃, d̂ : (0, 1)→
R be analytically extended to the circular limit β = 1; that is, when the unperturbed ellipse
is close to a circumference? The answer is ‘no’. We do not pursue a detailed explanation
of this claim, but only sketch a counter-example. Similar results hold for any polynomial
perturbation.

4.6. A quartic perturbation

The simplest non-quadratic symmetric perturbation is, of course, a quartic one. So, let us
consider the quartic perturbation

Qε =
{
q = (x, y) ∈ R

2 :
x2

a2
+
y2

b2
= 1 + ε

y4

b4

}
. (4.8)

Then P(s) = s2 and the Melnikov potential (4.7) becomes

L(r) = a
∑
k∈Z

;(λkr) ;(r) = 16r4

(1 + λ−1r2)(1 + r2)2(1 + λr2)
. (4.9)

It is clear that the function t 
→ L(et ) is elliptic; that is, it is meromorphic in the whole complex
plane and has two complex periods independent over the reals:

ω1 := ln λ ω2 := π i.
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This crucial observation goes back to the work of Levallois [Lev97], and allows us to
apply the powerful theory of elliptic functions to our problem, and to compute the Melnikov
potential (4.9) explicitly in terms of the classical Jacobian elliptic functions. Concretely, in
appendix B it is shown that

a−1L(r) = constant +
4λ

(λ− 1)2

(
2K

ln λ

)2

dn2

(
2K log r

ln λ
, k

)
(4.10)

where, if K = K(k) is the complete elliptic integral of the first kind, the modulus k ∈ (0, 1)
of the Jacobian elliptic function dn(u) = dn(u, k) is determined by imposing the condition
K(k′) = K(k)π/ ln λ with k2 + k′ 2 = 1. As a corollary, one can obtain the following lemma.

Lemma 4.4. The critical points of the Melnikov potential (4.9) are the points in the set λZ/2, all
of which are non-degenerate. The functions d, d̃, d̂ : (0, 1)→ R associated with the quartic
perturbation (4.8) are

d(β) = 4π2λ

(λ− 1)2 ln2 λ

(∑
n∈Z

q(n+1/2)2

)4

d̃(β) = −8π4λ

(λ− 1)2 ln4 λ

(∑
n∈Z

q(n+1/2)2

)4 (∑
n∈Z

qn
2

)4

d̂(β) = 8π4

(λ− 1)2 ln4 λ

(∑
n∈Z

q(n+1/2)2

)4 (∑
n∈Z

(−q)n2

)4

where q = e−π
2/ ln λ. In particular, the functions d, d̃, d̂ : (0, 1)→ R never vanish.

For the sake of brevity, we skip the proof. (We shall describe a similar proof with full
details in the spatial case, see lemma 5.4.)

Several interesting results can easily be deduced from this lemma. Let us mention only
a couple of them. First, we present a result on the number of primary bi-asymptotic orbits
of symmetric quartic perturbations of non-circular ellipses, in which no ‘flat’ hypothesis is
required.

Theorem 4.4. The billiard inside a small enough quartic symmetric perturbation of a non-
circular ellipse has only eight primary bi-asymptotic orbits (the axial ones), which are
transverse. Moreover, the x-axial and y-axial bi-asymptotic orbits have different lengths.

Proof. It is a consequence of properties L3 and L4 in section 2.3 and the previous lemma. �
Next, we address the non-analyticity of the functions d, d̃, d̂ : (0, 1)→ R at the circular

limit β = 1. The formulae in lemma 4.4 imply that the quantities d(β), d̃(β) and d̂(β) are
exponentially small in ln λ ∼ 2

√
1− β when β → 1−. For instance,

d(β) ∼ 4π2

(1− β)2 exp

(
− π2

2
√

1− β
)

(β → 1−).

Similar formulae hold for d̃(β) and d̂(β). Hence, the functions d, d̃, d̂ : (0, 1) → R cannot
be analytic at β = 1.

To end this section, let us introduce a problem arising from the exponential smallness of
the function d(β) near β = 1. For regular perturbations (β remains fixed, whereas ε→ 0), the
Melnikov term εad(β) is the dominant term of the lobe area between the y-axial and x-axial
bi-asymptotic orbits; that is, of the difference of the lengths of these two kinds of orbits. In



Homoclinic billiard orbits inside perturbed ellipsoids 1163

contrast, for singular perturbations (β → 1− and ε→ 0), one is confronted with the difficult
problem of justifying the following exponentially small asymptotic expression provided by
the Poincaré–Melnikov method:

lobe area = difference of lengths ∼ 4π2aε

(1− β)2 exp

(
− π2

2
√

1− β
)

(ε→ 0, β → 1−).

We refer to [DR99] for a brief account of results on singular splittings for analytic area-
preserving maps. The perturbations of elliptic planar billiards close to the circular limit are
still an open problem in that subject.

5. The spatial case

In this section, we extend to the spatial case, with the appropriate modifications, the lemmas,
propositions and theorems concerning the planar case presented in the previous section. There
are two important exceptions: theorem 4.3 and the final comments concerning the quartic
perturbation.

Let a � b � c be the semi-axes of a given ellipsoid. The ellipsoid will be called generic,
prolate, oblate or spherical when a > b > c, a > b = c, a = b > c or a = b = c,
respectively. Oblate ellipsoids and spheres do not fall into our set-up, because they have a
continuous family of diameters. Prolate ellipsoids have already been considered in [DR98] as
a first step in gaining insight into the spatial case, since they are much simpler than generic
ellipsoids.

We will consider a generic ellipsoid

Q =
{
q = (x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1

}
a > b > c > 0 (5.1)

whose diameter is given by the chord joining the vertices (−a, 0, 0) and (a, 0, 0). We will
denote the set formed by the two-periodic points associated with the diameter by

Mh = {mh
+,m

h
−} mh

± = (qh
±, p

h
±) qh

± = (±a, 0, 0) ph
± = (±1, 0, 0).

5.1. Geometry of the bi-asymptotic set

We are going to see that mh
+ and mh

− are hyperbolic two-periodic points of the spatial elliptic
billiard map f whose unstable and stable invariant manifolds are doubled.

The sets W,Wu,Ws,Wu
±,Ws

± have the same meaning, (4.2) and (4.3), as in the planar
case. Let

Q(κ) =
{
q = (x, y, z) ∈ R

3 :
x2

a2 − κ2
+

y2

b2 − κ2
+

z2

c2 − κ2
= 1

}
κ �= a, b, c

be the family of quadrics confocal to the ellipsoid Q. It is clear that Q(κ) is an ellipsoid
for 0 < κ < c, an one-sheet hyperboloid when c < κ < b and a two-sheet hyperboloid
if b < κ < a. No real quadric exists for κ > a. We now consider the degenerate cases
κ = a, b, c.

On the one hand, for κ → c− (respectively, κ → c+), the quadric Q(κ) flattens into the
region of the xy-plane enclosed by (respectively, outside) the focal ellipse

Efocal =
{
q = (x, y, 0) ∈ R

3 :
x2

a2 − c2
+

y2

b2 − c2
= 1

}
.
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On the other hand, for κ → b− (respectively, κ → b+), the quadric Q(κ) flattens into the
region of the xz-plane between (respectively, outside) the branches of the focal hyperbola

Hfocal =
{
q = (x, 0, z) ∈ R

3 :
x2

a2 − b2
− z2

b2 − c2
= 1

}
.

Finally, for κ → a−, the quadric flattens into the yz-plane.
We shall use the term focal conics when we refer to both the focal ellipse and the focal

hyperbola. The four points on the intersection of the focal hyperbola with the ellipsoid are
called umbilical points and their coordinates are (±x̃, ỹ,±z̃), where

x̃ = −a
√
a2 − b2

√
a2 − c2

ỹ = 0 z̃ = c

√
b2 − c2

√
a2 − c2

. (5.2)

The four unitary velocities determined by the couple of asymptotes of the focal hyperbola will
be called asymptotic velocities and their coordinates are (±û, v̂,±ŵ), where

û = −
√
a2 − b2

√
a2 − c2

v̂ = 0 ŵ =
√
b2 − c2

√
a2 − c2

. (5.3)

(One must beware of the terms ‘asymptotic’ and ‘bi-asymptotic’; the former has a purely
geometric nature, whereas the latter describes a dynamical behaviour.)

The integrability of spatial elliptic billiards is closely related to the following nice property:
any segment (or its prolongation) of a billiard trajectory inside the ellipsoid Q = Q(0) is
tangent4 to two fixed confocal quadrics Q(κ1) and Q(κ2), see [Tab95, section 2.3]. The
quantities κ1 and κ2, regarded as functions of the starting point of the billiard orbit, are first
integrals of the elliptic billiard map. Hence, the level sets

Mκ = M(κ1,κ2) = {m = (q, p) ∈ M : q + 〈p〉 is tangent to Q(κ1) and Q(κ2)}
are invariant by f , where q + 〈p〉 denotes the line passing by q with direction p.

There is a simpler family of first integrals in involution, namely

Ix(m) = (κ2
1 (m)− a2)(κ2

2 (m)− a2)

(a2 − b2)(a2 − c2)
= u2 +

(xv − yu)2
a2 − b2

+
(xw − zu)2
a2 − c2

Iy(m) = (κ2
1 (m)− b2)(κ2

2 (m)− b2)

(b2 − a2)(b2 − c2)
= v2 − (yu− xv)2

a2 − b2
+
(yw − zv)2
b2 − c2

Iz(m) = (κ2
1 (m)− c2)(κ2

2 (m)− c2)

(a2 − c2)(b2 − c2)
= w2 − (zu− xw)2

a2 − c2
− (zv − yw)2

b2 − c2

where m = (q, p) with q = (x, y, z) ∈ Q and p = (u, v,w) ∈ S
2 (see, for instance, [Tab95,

section 2.3]). These first integrals are dependent: Ix(m) + Iy(m) + Iz(m) = u2 + v2 +w2 ≡ 1,
but skipping one of them the rest are independent almost-everywhere. This shows that spatial
elliptic billiards are completely integrable. The above formulae can also be used to compute
the value of κ1 and κ2 at any point of the phase space.

There exist some restrictions over where the quantities κ1 and κ2 range. We can assume
that κ1 � κ2. Then κ1 > 0 and κ2 � a. On the other hand, a line cannot be tangent to two
different ellipsoids or to two different hyperboloids of two sheets. Hence, κ1, κ2 < c and
κ1, κ2 > b are impossible configurations. There are no more restrictions.

Next, we shall explain what we mean by tangency of a billiard trajectory to the confocal
quadrics Q(κ1) and Q(κ2) in the degenerate situations. There are two kinds of degenerations.

4 Tangent in a projective sense; that is, the points of tangency can be proper or improper.
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First, the coincidence of the confocal quadrics: κ1 = κ2, where we shall say that the trajectory
is bi-tangent to Q(κ1) = Q(κ2), and second, the degeneration of a confocal quadric: κj = a, b
or c, for some j = 1, 2. All of these situations are covered by the following definitions, easily
deduced by limit procedures passing from generic cases (in which the definition is clear) to
degenerate ones. A line is:

• bi-tangent to Q(κ), c < κ < b, when it is a generatrix of the ruled quadric Q(κ);
• tangent to Q(c) when it is contained in the xy-plane or it intersects Efocal;
• bi-tangent to Q(c) when it is contained in the xy-plane and it is tangent to Efocal;
• tangent to Q(b) when it is contained in the xz-plane or it intersects Hfocal;
• bi-tangent to Q(b) when it is contained in the xz-plane and it is tangent to Hfocal;
• tangent to Q(a) when it is contained in the yz-plane.

Obviously, these intersections and tangencies are understood in a projective sense. In particular,
it must be retained in what follows that any line parallel to an asymptote of the focal hyperbola
intersects the focal hyperbola (at an improper point, of course).

Now, we are ready to prove that the invariant manifolds are doubled.

Proposition 5.1. W = Wu = Ws = M(c,b), where

M(c,b) = {m = (q, p) ∈ M : q + 〈p〉 intersects Efocal and Hfocal}
= {m ∈ M : Iy(m) = Iz(m) = 0}.

Proof. The first formula for the level set M(c,b) is obtained simply by noting that a line is
tangent to Q(c) and Q(b) if and only if it intersects both focal conics.

The second one follows from the relations between the two families of first integrals.
The inclusion W ⊂ Wu,s is obvious.
The inclusion Wu,s ⊂ M(c,b) is a direct consequence of Mh ⊂ M(c,b).
It remains to prove that M(c,b) ⊂ W . Let O = (mk)k∈Z ⊂ M(c,b).
If the lines lk = qk + 〈pk〉, mk = (qk, pk), are contained in the xy-plane, then O ⊂ W

because O is a bi-asymptotic billiard orbit inside the ellipse Qxy := Q ∩ {z = 0}. It suffices
to note that the xy-plane cuts the focal hyperbola at the foci of the ellipse Qxy.

If the lines lk are contained in the xz-plane, a similar argument shows that O ⊂ W , since
the xz-plane cuts the focal ellipse at the foci of the ellipse Qxz := Q ∩ {y = 0}.

If the lines lk are contained neither in the xy-plane nor in the xz-plane, they intersect each
focal conic at a single point. Let

qE
k := (xE

k , y
E
k , 0
)

:= Efocal ∩ lk qH
k := (xH

k , 0, zH
k

)
:= Hfocal ∩ lk

be these points. They are mapped onto points qxy
k ∈ Qxy and qxz

k ∈ Qxz by means of the
transformations (note that xH

k �= 0 for all k ∈ Z):

q
xy
k := (xxy

k , y
xy
k , 0
)

:=
(

axE
k√

a2 − c2
,

byE
k√

b2 − c2
, 0

)

qxz
k := (xxz

k , 0, zxz
k

)
:=
(
a
√
a2 − b2

xH
k

, 0, (−1)kc

√
a2 − b2

√
b2 − c2

zH
k

xH
k

)
.

In [Fed99] it is stated that the sequences (qxy
k )k∈Z and (qxz

k )k∈Z are bi-asymptotic billiard
configurations inside the ellipses Qxy and Qxz, respectively. Hence, lim|k|→∞ y

xy
k =

lim|k|→∞ zxz
k = 0 or, equivalently, lim|k|→∞ yE

k = lim|k|→∞ zH
k = 0. This implies that the

line lk tends to the x-axis when |k| → ∞, and so O ⊂ W . �
We can summarize the above results in the following remarks:
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• when a segment (or its prolongation) of a billiard trajectory inside a generic ellipsoid
intersects both focal conics of the ellipsoid, the other segments (or their prolongations)
also do the same; and

• a billiard orbit inside a generic ellipsoid is bi-asymptotic to the diameter of the ellipsoid if
and only if all the segments (or their prolongations) of this trajectory intersect both focal
conics of the ellipsoid.

In order to better understand the structure of the bi-asymptotic set, we describe the set of
lines passing through a given impact point (parallel to a given unitary velocity) that intersect
both focal conics. Such lines will be called bi-asymptotic.

Given q ∈ Q, four different cases arise:

(1) if q is an umbilical point, there is a continuous family of bi-asymptotic lines through q:
the generatrices of the cone with vertex at q and containing the focal ellipse;

(2) if q = qh
±, there is just one: the x-axis;

(3) if q is contained in the xy-plane or in the xz-plane, but q is not umbilical and q �= qh
±, there

are two such lines: those passing through the foci of the ellipse Qxy or Qxz, respectively;
and

(4) if q is contained neither in the xy-plane nor in the xz-plane, there are four bi-asymptotic
lines through q.

Given p ∈ S
2, there arise also four different cases:

(1′) if p is an asymptotic velocity, there is a continuous family of bi-asymptotic lines parallel
to p: the generatrices of the cylinder with direction p and containing the focal ellipse;

(2′) if p = ph
±, there is just one: the x-axis;

(3′) ifp is parallel to the xy-plane or to the xz-plane, butp is not asymptotic andp �= ph
±, there

are two such lines: those passing through the foci of the ellipse Qxy or Qxz, respectively;
and

(4′) if p is not parallel to the xy-plane nor in the xz-plane, there are four bi-asymptotic lines
parallel to p.

The pictures displayed in figure 9 help to visualize cases (4) and (4′). It suffices to realize
that the projections of the focal conics from a point (or with a direction) onto the plane of the
paper have four points of intersection in those cases.

5.2. Dynamics of the bi-asymptotic set

Here, we shall describe the billiard dynamics on the bi-asymptotic set. To be more precise, we
shall linearize the billiard motion on the invariant manifolds Wu

± and Ws
± introduced in (4.3);

that is, we shall compute an analytic conjugation between the restrictions f : Wu
± → Wu

∓
(respectively, f : Ws

± → Ws
∓) and the linear map r 
→ >r (respectively, r 
→ >−1r), where

the entries of the diagonal matrix > = diag(λ1, λ2) are the characteristic multipliers of the
hyperbolic periodic set Mh: Spec[ df (Mh)] = {λ1, λ2, 1/λ1, 1/λ2} and |λ1| , |λ2| > 1. Such
conjugations will be called natural parametrizations.

Remark 5.1. In general, resonances between characteristic multipliers are an obstruction for
the analytic linearization of the dynamics on the unstable and stable invariant manifolds. In
our setting, the algebraic integrability of elliptic billiard maps implies not only the existence
of the natural parametrizations, but also their rational character.
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To parametrize the bi-asymptotic motions, let us first recall that the real invariant tori of
algebraic completely integrable systems can be extended to complex algebraic tori (Abelian
varieties) related to regular algebraic curves, and the complex parametrizations of the tori
are given by theta-functions of the above-mentioned curves (see, e.g., [AvM89]). In the case
of algebraic completely integrable maps the dynamics on the complex tori becomes just a
translation by a constant vector (see [Ves88]). On the other hand, some complex invariant
manifolds turn out to be non-compact Abelian varieties related to singular Riemann surfaces.
These invariant manifolds also have a shift dynamics, and their parametrizations are given by
generalized theta-functions, which reduce to tau-functions, finite sums of exponents, in the
most degenerate cases. A description of tau-functions can be found in [Mum84].

Presumably, the most celebrated examples of algebraic completely integrable maps are
the elliptic billiard maps, which have been studied in several papers using quite different
approaches. The generic and bi-asymptotic elliptic billiard motions were first integrated
in [Ves88] and [Fed99], respectively. The following results are contained in [Fed99].

If Mκ is a (real) generic level set with complex extension MC
κ , there exists a map

mκ = (qκ, pκ) : C
2 → MC

κ and a constant shift hκ ∈ R
2 such that f (mκ(t)) = mκ(t + hκ).

The map mκ = (qκ, pκ) has the form qκ(t) = Dχκ(t), pκ(t) = χκ(t − hκ/2), where

χκ = (αxθx/θ, αyθy/θ, αzθz/θ) D = diag(a, b, c)

and θ, θx, θy, θz are some theta-functions with half-integer theta-characteristics related to the
hyperelliptic curve of genus two,

Bκ = B(κ1,κ2) =
{
ω2 = −(µ− a2) · (µ− b2) · (µ− c2) · (µ− κ2

1 ) · (µ− κ2
2 )
}

and αx, αy, αz are constants depending on the moduli of Bκ only.
The generic cases correspond to regular hyperelliptic curves; that is, when the numbers

κ1, κ2, a, b, c are all different. When κ = (c, b), the above theta-functions degenerate into
some tau-functions τ, τx, τy, τz. Their exact expressions can be found in [Fed99].

From a dynamical point of view, it is better to adopt a multiplicative notation. Thus,
we have substituted the additive variable t = (t1, t2) by the multiplicative one r = (r1, r2)

defined by r1 = exp(t1) and r2 = exp(t2). Then the tau-functions τ, τx, τy, τz become the
tau-polynomials to be introduced in lemma 5.1, and the shifts tj 
→ tj + hj read as rj 
→ λj rj
with λj = exp(hj ), j = 1, 2.

All of these comments are intended to clarify the origin of the polynomials τ, τx, τy, τz.
The proof of the lemma, although self-contained and short, does not illuminate it at all.

The following notation is used in the statement of lemma 5.1.
Let R̂ = R∪ {∞} be the extended real line. Let i be the imaginary unit. Let I : R̂

2 → R̂
2

be the involution I(r1, r2) = (r−1
1 , r−1

2 ), where 0−1 = ∞ and ∞−1 = 0. Henceforth, if
> = diag(λ1, λ2) is a diagonal matrix, s is a real number and m is a map defined on R̂

2 or R
2,

we shall denote by m ◦>s the map r 
→ m(>sr) = m(λs1r1, λ
s
2r2).

Lemma 5.1. Let> = diag(λ1, λ2) be the diagonal matrix whose entries are the characteristic
multipliers

λ1 = 1 + e1

1− e1
λ2 = 1 + e2

1− e2

e1 =
√

1− β1 e2 =
√

1− β2

β1 = b2

a2
β2 = c2

a2
.
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Let α2 = (e2 + e1)/(e2 − e1) with α > 1. Let τ, τx, τy, τz be the tau-polynomials

τ(r) = 1 + r2
1 r

2
2 + α2(r2

1 + r2
2 ) τx(r) = τ(ir)

τy(r) = 2αr1(1− r2
2 ) τz(r) = 2αr2(1 + r2

1 ).

Let χ = (τx/τ, τy/τ, τz/τ ) : R̂
2 → R̂

3. Let D = diag(a, b, c). Let q = Dχ : R
2 → Q,

p = χ ◦>−1/2 : R
2 → S

2 and m = (q, p) : R
2 → M.

Then the maps mu,s
± : R

2 → M defined by mu
± = ±m and ms

± = ±m ◦ I are natural
parametrizations of the invariant manifolds Wu

± and Ws
±; that is, mu,s

± : R
2 → Wu,s

± are
analytic diffeomorphisms such that

m
u,s
± (0, 0) = mh

± f ◦mu
± = mu

∓ ◦> f ◦ms
± = ms

∓ ◦>−1.

Proof. First, we note that the rational map χ has the following fundamental properties:

χ(0, 0) = (1, 0, 0) rank[ dχ(0, 0)] = 2

|χ | ≡ 1 χ ◦>−1/2 + χ ◦>1/2 = νD−1χ

where ν : R̂ → (0,+∞) is the rational function ν = 2aτ 2/(τ ◦ >−1/2 · τ ◦ >1/2). These
properties can be checked by means of straightforward computations. They will be used
repeatedly throughout the proof.

Let (mk)k∈Z ⊂ MZ, mk = (qk, pk), be a billiard orbit associated with the ellipsoid
Q = {q ∈ R

3 :
∣∣D−1q

∣∣ = 1}. The difference qk+1 − qk of two consecutive impact points
has the same direction and sense as the unitary outward velocity pk+1, whereas the difference
pk − pk+1 of two consecutive unitary outward velocities is an outward normal vector to the
ellipsoid at the impact point qk . Thus, taking into account that D−2qk is an outward normal
vector to the ellipsoid at qk , we deduce that there exist a couple of positive numbers µk and νk
such that

qk+1 − qk = µkpk+1 pk − pk+1 = νkD
−2qk. (5.4)

The converse also holds. A sequence (mk)k ∈ MZ is a billiard orbit if and only if it
verifies (5.4) for some sequences of positive numbers (µk)k and (νk)k , which are determined
by the conditions qk ∈ Q and pk ∈ S

2, or equivalently, by the condition
∣∣D−1qk

∣∣ = |pk| = 1.
Concretely, νk = 〈pk − pk+1, qk〉 and µk = 〈qk+1 − qk, pk+1〉.

From χ(0, 0) = (1, 0, 0) and |χ | ≡ 1 we deduce that q(0, 0) = qh
+, p(0, 0) = ph

+, and∣∣D−1q
∣∣ ≡ 1, |p| ≡ 1. Hence, m(0, 0) = mh

+ and m(R2) ⊂ M. Besides, the sequences of
maps

qk = (−1)kq ◦>k pk = (−1)kp ◦>k µk = ν ◦>k+1/2 νk = ν ◦>k

verify the billiard equations (5.4). This follows from χ ◦>−1/2 + χ ◦>1/2 = νD−1χ .
Therefore, m : R

2 → M is a well defined rational map such that m(0, 0) = mh
+ and

f ◦m = −m ◦>. It remains to see that it is a diffeomorphism onto Wu
+.

To begin with, it is clear that m maps R
2 onto Wu

+:

lim
k→−∞

dist
(
f k(m(r)), f k(mh

+)
) = lim

k→−∞
dist
(
m(>kr),mh

+

) = dist
(
mh

+,m
h
+

) = 0.

Besides, m : R
2 → Wu

+ is a local diffeomorphism at r = (0, 0), since rank[ dχ(0, 0)] = 2.
This implies that m : R

2 → Wu
+ is a global diffeomorphism, because the whole manifold Wu

+
is obtained from its local part by iterating the square of the map f .

This proves that mu
+ = m is a natural parametrization of Wu

+. The other cases can be
analysed in a similar way. �
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Remark 5.2. Although the mapm = (q, p) : R
2 → M is a diffeomorphism onto the invariant

manifold Wu
+ ⊂ M, its components q : R

2 → Q and p : R
2 → S

2 are not injective. For
instance, q maps all the points r = (r1, r2) ∈ R

2 such that r2
2 = 1 onto umbilical points:

q(r1,±1) =
(
a

1− α2

1 + α2
, 0,

±2αc

1 + α2

)
= (x̃, ỹ,±z̃)

see equation (5.2). Analogously, but using equation (5.3), p maps all the points r = (r1, r2) ∈
R

2 such that r2
2 = λ2 onto asymptotic velocities:

p(r1,±λ1/2
2 ) =

(
1− α2

1 + α2
, 0,

±2α

1 + α2

)
= (û, v̂,±ŵ).

Remark 5.3. The natural parametrizations of the spatial case (lemma 5.1) are related to those
of the planar case (lemma 4.1), since

q(r1/α, 0) =
(
a

1− r2
1

1 + r2
1

,
2br1

1 + r2
1

, 0

)
q(0, r2/α) =

(
a

1− r2
2

1 + r2
2

, 0,
2cr2

1 + r2
2

)
. (5.5)

To explain these relations, let us consider the sections of the ellipsoid

Qxy = Q ∩ {z = 0} Qxz = Q ∩ {y = 0} Qyz = Q ∩ {x = 0}.
If two consecutive impact points are on one of them, all the rest also are. Therefore, the
spatial elliptic billiard has three invariant sub-systems with the same properties as a planar
elliptic billiard. The section Qyz has no interest here, because there are no orbits in the bi-
asymptotic set W whose impact points are entirely contained in the ellipse Qyz. Returning to the
relations (5.5), the bi-asymptotic billiard orbits inside the ellipsoid with r2 = 0 (respectively,
r1 = 0) can be viewed as bi-asymptotic orbits of the planar elliptic billiard inside the ellipse
Qxy (respectively, Qxz).

5.3. Topology of the bi-asymptotic set

In this subsection, we describe the bifurcation set B and the separatrix S = W \B of the spatial
elliptic billiard. According to the characterization of the bifurcation set of section 2.2, this
is accomplished through the study of the map m : R

2 → M at infinity. (Let us recall that,
roughly speaking, the bifurcation set is formed by the self-intersections of the bi-asymptotic
set.)

The mapm : R
2 → M can be evaluated at the infinity points (i.e. the points r = (r1, r2) ∈

R̂
2 such that r1 = ∞ or r2 = ∞) by direct substitution, becausem = (q, p) = (Dχ, χ◦>−1/2)

and the components of the map χ = (τx/τ, τy/τ, τz/τ) are rational fractions. After some
trivial computations, we find that the values of these rational fractions χx(r) := τx(r)/τ(r),
χy(r) := τy(r)/τ(r) and χz(r) := τz(r)/τ(r) at the infinity points are related to their values
at the zero points (i.e. the points r = (r1, r2) such that r1 = 0 or r2 = 0). We summarize the
relations in the following list:

χx(r1,∞) = −χx(r̄1, 0) χy(r1,∞) = −χy(r̄1, 0) χz(·,∞) = χz(·, 0) = 0

χx(∞, r2) = −χx(0, r̄2) χy(∞, ·) = χy(0, ·) = 0 χz(∞, r2) = χz(0, r̄2)

χx(∞,∞) = χx(0, 0) χy(∞,∞) = χy(0, 0) χz(∞,∞) = χz(0, 0)

where r̄1 = r1/α
2 and r̄2 = r2/α

2. These relations imply that

{±m(σ1r1, 0) : r1 > 0} =: Yσ1± := {∓m(σ1r1,∞) : r1 < 0}
{±m(0, σ2r2) : r2 > 0} =: Zσ2± := {∓m(∞, σ2r2) : r2 > 0}



1170 A Delshams et al

Figure 8. Topological representation of the bi-asymptotic set in the spatial case.

for σ1, σ2 ∈ {−,+}. Besides, mh
± = ±m(0, 0) = ∓m(∞, 0) = ∓m(0,∞) = ±m(∞,∞).

Therefore, the self-intersections of the bi-asymptotic set take place along the curves

Y := Y+
+ ∪ Y−+ ∪ Y+

− ∪ Y−− Z := Z+
+ ∪ Z−

+ ∪ Z+
− ∪ Z−

−

and, of course, at the hyperbolic points mh
±. After excluding all of them, the separatrix has

eight connected components, namely

Proposition 5.2. S = S(+,+)
+ ∪ S(−,+)

+ ∪ S(−,−)
+ ∪ S(+,−)

+ ∪ S(+,+)
− ∪ S(−,+)

− ∪ S(−,−)
− ∪ S(+,−)

− ,
where Sσ

ς := {ςm(σ1r1, σ2r2) : r1, r2 > 0}.
We have depicted a topological representation of the bi-asymptotic set in figure 8. Points

and segments with equal labels are identified. All the elements that appear in the figure (points,
segments and squares) are invariant under the square of the billiard map; that is, under f 2. The
arrows show the sense of the dynamics in the segments. In the squares the dynamics must be
compatible with the arrows of the segments. This implies that the points on the segments (that
is, on the curves Y and Z) are heteroclinic points of the map f 2, whereas those in the squares
(that is, on the separatrix) are homoclinic.

Remark 5.4. It is interesting to compare our figure with those that appear in the topological
classification of the energy levels of saddle points of four-dimensional integrable Hamiltonians
obtained by Lerman and Umanskiı̆ [LU94]. They prove that, under some mild hypotheses, the
bi-asymptotic set of a saddle point with doubled invariant manifolds is a CW-complex with one
zero-dimensional cell (the saddle point), four one-dimensional cells (called loops) and four
two-dimensional cells (called, say, squares). Each loop is either orientable or non-orientable
(see definition 4.1 in [LU94]), but some combinations can never take place. Lerman and
Umanskiı̆ list all the feasible cases. In the last one, exactly one half of the loops are orientable.

Since we are not dealing with fixed points, but with two-periodic points, all the cells appear
repeated in figure 8. There are two one-dimensional cells (the periodic points), eight loops
and eight squares. Moreover, the four loops Yσ1± are non-orientable and the other four loops
Zσ2± are orientable. Therefore, the spatial elliptic billiard is a realization of the last case in
the above-mentioned Lerman–Umanskiı̆ classification, but for two-periodic points of discrete
systems, instead of fixed points of continuous systems.
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Figure 9. The two kinds of spatial symmetric bi-asymptotic trajectories inside a generic ellipsoid:
xz-specular with an umbilical impact point (a) and y-axial with an asymptotic unitary velocity
(b). The focal conics are represented by thick curves and a section of the ellipsoid is skipped for
visualization purposes.

To end this section, we give a geometric characterization of the separatrix. We define
the dimension of a billiard orbit as the dimension of the vectorial subspace generated by its
velocities. A billiard orbit will be called linear, planar or spatial if its dimension is one, two
or three, respectively. Billiard orbits inside a hypersurface of R

3 are generically spatial. The
only linear billiard orbits are the two-periodic orbits.

Coming back to the bi-asymptotic orbits inside the ellipsoid Q, the planar ones are those
on the curves Y and Z , which can be interpreted as the separatrices of the planar billiards inside
the ellipses Qxy and Qxz, respectively. (See the end of subsection 5.2.) Thus, the separatrix is
characterized as the set of spatial bi-asymptotic billiard orbits.

As in the planar case, all the orbits in the separatrix have the same (homoclinic) length,
namely

Proposition 5.3. Length O = −2
(√

a2 − b2 +
√
a2 − c2

)
, for all O ⊂ S.

This result is stated without proof, since it will not be used.

5.4. Persistence of symmetric bi-asymptotic orbits

A surface in R
3 will be called symmetric when it is symmetric with regard to the three coordinate

axes of R
3. A billiard orbit inside a symmetric surface will be called central (respectively,

axial) (respectively, specular) when its billiard configuration is symmetric with regard to the
origin (respectively, to some axis of coordinates) (respectively, to some plane of coordinates).
We shall say that an orbit is symmetric when it is central, axial or specular.

It turns out that there are two kinds of spatial symmetric bi-asymptotic orbits inside a
generic ellipsoid (see figure 9). They are the xz-specular ones and the y-axial ones, which are
symmetric with regard to the xz-plane and the y-axis, respectively. There are other symmetric
bi-asymptotic orbits, but they live on coordinate planes; that is, they are planar.
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Theorem 5.1. Inside a generic ellipsoid there are eight xz-specular (and eight y-axial)
spatial symmetric billiard orbits bi-asymptotic to the diameter. They persist under symmetric
perturbations.

Proof. Let Q be any symmetric convex surface, not necessarily an ellipsoid. Denote its
associated billiard map by f : M → M and its section by the xz-plane is Qxz. Let us
consider the set of symmetry

F̃ = {m = (q, p) ∈ M : q ∈ Qxz and p is perpendicular to Qxz at q}.
The importance of this set relies on the fact that the orbits inside Q with a point on it are
xz-specular: if (q, p) ∈ F̃ and (q ′, p′) = f (q, p), the line l′ = q ′ + 〈p′〉 = q + 〈p′〉 is the
xz-specular reflection of the line l = q + 〈p〉.

Next, following the proof of the planar case, we shall study the intersections of the
separatrix and this set of symmetry. Concretely, we shall prove that the connected component
Sσ
ς of the separatrix intersects the set of symmetry F̃ at the point

m̃σ
ς = ςm(σ1r̃1, σ2r̃2) = ς(q̃σ , p̃σ ) q̃σ = (x̃, σ1ỹ, σ2z̃) p̃σ = (ũ, σ1ṽ, σ2w̃)

where r̃ = (r̃1, r̃2) = (1, 1), σ = (σ1, σ2) ∈ {−,+}2, ς = ± and

x̃ = −a
√
a2 − b2

√
a2 − c2

ỹ = 0 z̃ = c

√
b2 − c2

√
a2 − c2

ũ = −c
2
√
a2 − b2

b2
√
a2 − c2

ṽ =
√
b2 − c2

b
w̃ = ac

√
b2 − c2

b2
√
a2 − c2

.

The inclusion m̃σ
ς ∈ Sσ

ς is direct from the definition of Sσ
ς . On the other hand, if the

surface Q is the ellipsoid (5.1), the equations of the set of symmetry F̃ in the coordinates
q = (x, y, z) ∈ Q and p = (u, v,w) ∈ S

2 are y = 0 and a2uz = c2xw, so m̃σ
ς ∈ F̃ .

We also note that all of these intersections are transverse: the equations of the phase space
(x2/a2 + y2/b2 + z2/c2 = 1 and u2 + v2 +w2 = 1), the separatrix (Iy(m) = 0 and Iz(m) = 0,
see proposition 5.1), and the set of symmetry (y = 0 and a2uz = c2xw), are functionally
independent at the points m̃σ

ς .
Therefore, inside a generic ellipsoid there are eight xz-specular symmetric billiard orbits

bi-asymptotic to the diameter: the orbits by the points m̃σ
ς , σ ∈ {−,+}2, ς = ±. Their

persistence is a consequence of the above established transversality (see the argument explained
in the planar case).

It turns out that there exist eight y-axial persistent bi-asymptotic billiard orbits, too. These
y-axial orbits pass through the points

m̂σ
ς = ςm(σ1r̂1, σ2r̂2) = ς

(
q̂σ , p̂σ

)
q̂σ = (x̂, σ1ŷ, σ2ẑ) p̂σ = (û, σ1v̂, σ2ŵ)

where r̂ = (r̂1, r̂2) = (λ
1/2
1 , λ

1/2
2 ), σ = (σ1, σ2) ∈ {−,+}2, ς = ± and

x̂ = −ac
2
√
a2 − b2

b2
√
a2 − c2

ŷ = −
√
b2 − c2 ẑ = ac2

√
b2 − c2

b2
√
a2 − c2

û = −
√
a2 − b2

√
a2 − c2

v̂ = 0 ŵ =
√
b2 − c2

√
a2 − c2

.

In order to prove it, let us consider another set of symmetry, namely

F̂ = {m = (q, p) ∈ M : q + 〈p〉 cuts the y-axis perpendicularly}.
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Obviously, any billiard orbit inside a symmetric surface Q with a point on F̂ is y-axial.
Moreover, the equations of F̂ in the coordinates q = (x, y, z) ∈ Q and p = (u, v,w) ∈ S

2

are v = 0 and uz = xw. To end, it suffices to check that Sσ
ς intersects F̂ transversely at the

point m̂σ
ς . �

It is interesting to note that imposing some symmetries is not necessary; to prove the
persistence of the xz-specular (respectively, y-axial) bi-asymptotic orbits we have only used
the symmetry with regard to the xz-plane (respectively, y-axis). Therefore, the next corollary
follows.

Corollary 5.1. The eight xz-specular (respectively, y-axial) symmetric bi-asymptotic orbits
persist under any small perturbation preserving the symmetry with regard to the xz-plane
(respectively, y-axis).

Remark 5.5. The xz-specular bi-asymptotic trajectories inside a generic ellipsoid have an
umbilical impact point, whereas the y-axial ones have an asymptotic unitary velocity, see (5.2)
and (5.3). This gives rise to some nice geometric characterizations of these orbits. For instance,
the eight y-axial spatial bi-asymptotic trajectories inside a generic ellipsoid are characterized
as follows: the prolongation of some of their segments intersects the focal hyperbola at an
improper point and the focal ellipse at a vertex of its minor axis. The eight xz-specular
trajectories admit a similar characterization. In the perturbed case, the symmetric bi-asymptotic
orbits do not admit any characterization of this type, because the perturbed surface is not a
quadric and concepts such as focal conics are missing.

Another interesting observation is that the persistence of the 16 symmetric homoclinic
orbits can be obtained from purely dynamic arguments and, to be more precise, from a
well known property of reversible maps. This dynamic approach is less intuitive than the
geometric one, but its generalization to higher-dimensional cases is easier. We limit ourselves
to describing the main ideas of the proof.

A map f is reversible when f ◦ h = h ◦ f −1 for some involution h, which is called a
reversor of f . If mh is a hyperbolic fixed point of f , h(mh) = mh and m ∈ Wu, then

lim
k→+∞

f k(h(m)) = lim
k→+∞

h(f −k(m)) = h

(
lim

k→−∞
f k(m)

)
= h(mh) = mh.

Thus, reversors interchange unstable and stable invariant manifolds: h(Wu,s) = Ws,u, so the
points in the intersection of Wu (or Ws) with the set F = {m : h(m) = m} are homoclinic
to mh. In particular, the homoclinic points associated with transverse intersections of Wu (or
Ws) with F persist under reversible perturbations of the map.

These concepts are relevant because billiard maps inside symmetric surfaces are reversible.
Indeed, among the infinitely many reversors of such billiards, there exists a distinguished couple
h̃, ĥ : M → M such that h̃(mh

±) = ĥ(mh
±) = mh

± and

F̃ = {m ∈ M : h̃(m) = m} F̂ = {m ∈ M : ĥ(m) = m}
are the couple of sets of symmetry introduced in the proof of theorem 5.1. Therefore, it is
clear that each transverse intersection of the separatrix with these sets gives rise to a persistent
homoclinic point under symmetric (and hence, reversible) perturbations of the ellipsoid. Let
us study those intersections. It turns out that

h̃(m(r1, r2)) = m(1/r1, 1/r2) ĥ(m(r1, r2)) = m(λ1/r1, λ2/r2)
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where m : R
2 → M is the map defined in lemma 5.1. Then

F̃ ∩ Sσς = {ςm(σ1r1, σ2r2) : m(r1, r2) = m(1/r1, 1/r2), r1, r2 > 0} = {m̃σ
ς

}
F̂ ∩ Sσς = {ςm(σ1r1, σ2r2) : m(r1, r2) = m(λ1/r1, λ2/r2), r1, r2 > 0} = {m̂σ

ς

}
.

Once we have computed these intersections, we must check their transversality to prove
theorem 5.1 (again). We focus on F̃ ∩ Sσς —the study of F̂ ∩ Sσς is analogous.

Clearly, it suffices to check that the tangent planes of F̃ and Sσ
ς at the point m = m̃σ

ς

have zero intersection. This follows from the fact that any tangent vector to F̃ (respectively,
Sσ
ς ) at the point m = m̃σ

ς is an eigenvector of eigenvalue one (respectively, minus one) of the

differential linear map dh̃(mσ
ς ). The first claim follows from the equality h̃(m) = m form ∈ F̃ .

The second one is obtained by differentiating the equality h̃(m(r1, r2)) = m(1/r1, 1/r2) at
r = (σ1r̃1, σ2r̃2), where r̃ = (r̃1, r̃2) = (1, 1).

To end the results about persistent symmetric bi-asymptotic orbits, we note that some of
them are planar, instead of spatial.

Corollary 5.2. Inside a generic ellipsoid there are 16 planar (and 16 spatial) symmetric
billiard orbits bi-asymptotic to the diameter. They persist under symmetric perturbations.

Proof. The 16 planar ones are obtained by applying theorem 4.1 to the horizontal section
Qxy = Q ∩ {z = 0} and the vertical section Qxz = Q ∩ {y = 0} of the ellipsoid.

The 16 spatial ones have been obtained in theorem 5.1. �
In the rest of the paper, we restrict our study to the spatial symmetric bi-asymptotic orbits;

that is, to the eight xz-specular ones and the eight y-axial ones stated in theorem 5.1. The
planar ones can be analysed as in the planar case.

5.5. The Melnikov potential

We consider the symmetric perturbations of the ellipsoid (5.1) defined by means of an implicit
equation like

Qε =
{
q = (x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1 + εP (y2/b2, z2/c2)

}
(5.6)

for some function P : R
2 → R such that P(0, 0) = 0. We shall call this perturbation

polynomial, entire or analytic, if the function P is polynomial, entire or analytic, respectively.
In the polynomial case, we shall say that the order of the perturbation is twice the total degree
of the polynomial P . Thus, quadratic perturbations correspond to linear functions P .

The Melnikov potential associated with this kind of implicit symmetric perturbation can
be computed in the same way as in the planar case. There are no substantial differences, and
the result is summarized in the following lemma.

Lemma 5.2. The Melnikov potential associated with the billiard inside (5.6) consists of eight
copies of the function L : (0,+∞)2 → R defined by

L(r) = a
∑
k∈Z

;(>kr) ;(r) = τ 2(r)

τ (>−1/2r) · τ(>1/2r)
P

(
τ 2

y (r)

τ 2(r)
,
τ 2

z (r)

τ 2(r)

)
(5.7)

where the diagonal matrix > = diag(λ1, λ2) and the tau-polynomials τ, τy, τz are defined in

lemma 5.1. Moreover, L ◦> = L = L ◦ I. In particular, r̃ = (1, 1) and r̂ = (λ
1/2
1 , λ

1/2
2 ) are

critical points of L.
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5.6. Uniform non-integrability and splitting

Following Birkhoff, it is natural to conjecture that the elliptic billiards are the unique smooth
integrable convex billiards, not only in the plane but also in any dimension. We are not ready
to tackle this conjecture, not even a local version of it around generic ellipsoids in the set of
entire convex hypersurfaces. The tools at our disposal only allow us to establish a local version
in the frame of the uniform integrability introduced in section 2.3.

Theorem 5.2. An entirely symmetric perturbation of a generic ellipsoid gives rise to a
uniformly integrable billiard if and only if it is quadratic.

Proof. Let P be an entire function. As in the planar case, it suffices to prove that the Melnikov
potential (5.7) is non-constant if the perturbation is not quadratic; that is, P is not linear. This
can be accomplished through the study of the complex singularities of the Melnikov potential,
since it is non-constant if its complex extension has singularities. More precisely, the theorem
follows from the following fact: L(r) is analytic at r∗ := (1, i) if and only if P is linear.

The proof of this equivalence is performed in two steps.

Step 1. L(r)−a;(r) is analytic at r∗ = (1, i). Only the points r for which some denominator
τ(>j/2r) vanishes for 0 �= j ∈ Z can be singularities ofL(r)−a;(r) = a

∑
0 �=k∈Z

;(>kr). We
must check that these denominators are uniformly far away from zero in some neighbourhood
of r∗.

Given δ ∈ (0, 1), let Vδ be the neighbourhood of r∗ defined by

Vδ = V +
δ ∩ V −δ V ±δ =

{
r ∈ C

2 :
∣∣r±2

1 + r±2
2

∣∣ < δ,
∣∣1 + r±2

1 r±2
2

∣∣ < δ
}
.

Using the relation τ(r1, r2) = r2
1 r

2
2 τ(1/r1, 1/r2) and the inequalities 1 < λ1 < λ2, we obtain

∣∣τ(>−j/2r)∣∣ � 1− 1 + δ

λ
j

1λ
j

2

− α2δ

λ
j

1

� 1− 1 + δ

λ1λ2
− α2δ

λ1

∣∣τ(>j/2r)
∣∣ � (1− δ)λj1λj2

(
1− 1 + δ

λ
j

1λ
j

2

− α2δ

λ
j

1

)
� (1− δ)(λ1λ2 − 1− δ − α2λ2δ)

for any j � 1 and r ∈ Vδ . Therefore, the denominators τ(>j/2r), for r ∈ Vδ and 0 �= j ∈ Z,
are uniformly far away from zero if δ is small enough.

Step 2. ;(r) is analytic at r∗ = (1, i) if and only if P is linear. Let η, ζ, ξ : C
2 → C be the

functions

η(r) = τ 2
z (r)

τ (>−1/2r)τ (>1/2r)

ζ(r) = τ 2(r)

τ 2
z (r)

P

(
τ 2

y (r)

τ 2(r)
,
τ 2

z (r)

τ 2(r)

)

ξ(t) = t1P

(
t2

t1
,

1

t1

)
.

We note that ;(r) = η(r)ζ(r), η(r) is analytic at r∗, η(r∗) �= 0, and the rational map

r = (r1, r2) 
→ t = (t1, t2) =
(
τ 2(r)/τ 2

z (r), τ
2
y (r)/τ

2
z (r)
)
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is an analytic change of variables from a small neighbourhood of r∗ = (1, i) onto a small
neighbourhood of t∗ = (0,−1). Hence, the following three statements are equivalent: ;(r) is
analytic at r∗, ζ(r) is analytic at r∗ and ξ(t) is analytic at t∗.

It remains to prove that ξ(t) is analytic at t∗ if and only if P is linear.
Let P = ∑n�1 Pn be the decomposition of the perturbation as a convergent series of

homogeneous polynomials; that is, Pn(µs) = µnPn(s) for all s ∈ C
2 and µ ∈ C. Then

ξ(t) =∑j�0 Pj+1(t2, 1)t−j1 . Using this equality, we find that ξ(t) is analytic at t∗ = (0,−1)
if and only if the Laurent coefficients Pn(t2, 1), n � 2, are identically zero for t2 close to −1,
or equivalently, if and only if P is linear. �

As a by-product, the separatrix splits under any non-quadratic entire symmetric
perturbation of a generic ellipsoid.

5.7. The parameter space

The closed convex surface (5.6) is determined by some function P : R
2 → R such that

P(0, 0) = 0, some lengths (a, b, c) such that a > b > c > 0, and the perturbative parameter
ε �= 0, which is supposed to be as small as necessary. The billiard dynamics inside two
different surfaces of that form, determined by the same function P and the same perturbative
parameter ε but with different lengths (a, b, c) and (a′, b′, c′) such that a′/a = b′/b = c′/c,
are clearly conjugated. Therefore, we can normalize these lengths.

Concretely, we shall work with the normalized parameter

β = (β1, β2) β1 = b2/a2 β2 = c2/a2

already introduced in lemma 5.1. Then the parameter space is the triangle

P = {β = (β1, β2) ∈ R
2 : 0 < β2 < β1 < 1

}
.

When some inequality in the expression a > b > c > 0 becomes an equality, the
unperturbed ellipsoid (5.1) is degenerate. As we can observe in figure 1, there are six types of
degenerate ellipsoids:

• Flat ellipsoids: Q = {(x, y, 0) ∈ R
3 : x2/a2 + y2/b2 � 1

}
, with a > b > 0. They

correspond to the single degeneration c = 0; that is, to β2 = 0.
• Oblate ellipsoids: Q = {(x, y, z) : x2 + y2 + ηz2 = a2

}
, with a > 0 and η ∈ (0, 1). They

correspond to the single degeneration b = a; that is, to β1 = 1.
• Prolate ellipsoids: Q = {(x, y, z) : x2 + η(y2 + z2) = a2

}
, with a > 0 and η ∈ (0, 1).

They correspond to the single degeneration c = b; that is, to β1 = β2.
• Circles: Q = {(x, y, 0) : x2 + y2 � a2

}
, with a > 0. They correspond to the double

degeneration c = 0 and a = b; that is, to the point β = (1, 0).
• Segments: Q = {(x, 0, 0) : −a � x � a}, with a > 0. They correspond to the double

degeneration b = c = 0; that is, to the point β = (0, 0).
• Spheres: Q = {(x, y, z) : x2 + y2 + z2 = a2

}
, with a > 0. They correspond to the double

degeneration a = b = c; that is, to the point β = (1, 1).

The flat, oblate and prolate ellipsoids correspond to degenerations of co-dimension one,
whereas the circles, segments and spheres are associated with degenerations of co-dimension
two. We have restricted our considerations to the first kind of degenerate ellipsoids.

For further reference, it should be recalled that we say that a property holds:

• close to the flat limit when for any βf = (β f
1, 0), 0 < β f

1 < 1, there exists a positive
constant δ such that the property holds for all β ∈ P ,

∣∣β f − β∣∣ < δ.
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• close to the oblate limit when for any βo = (1, βo
2 ), 0 < βo

2 < 1, there exists a positive
constant δ such that the property holds for all β ∈ P , |βo − β| < δ.

• close to the prolate limit when for any βp = (β
p
1 , β

p
2 ), 0 < β

p
1 = β

p
2 < 1, there exists a

positive constant δ such that the property holds for all β ∈ P , |βp − β| < δ.

Of course, the size of the constant δ depends on the points β f , βo, βp ∈ ∂P .
Henceforth, we shall put the superscripts ‘f’, ‘o’ and ‘p’ on objects associated with flat,

oblate and prolate ellipsoids, respectively.
In the remainder of this section, we present some partial answers to the following questions:

Are the 16 spatial symmetric bi-asymptotic orbits transverse? Are there other primary spatial
bi-asymptotic orbits? The answers are just partial for several reasons. First, a restrictive
hypothesis is placed on the perturbation. Second, analytic results have been obtained only
close to the flat and oblate limits.

At the end of the section, we have performed an accurate numerical study of a particular
quartic perturbation (the simplest non-trivial one), in which infinitely many bifurcations are
observed numerically close to the prolate limit.

5.8. Transversality close to the flat limit

For technical reasons, which are explained in the remark below, we restrict ourselves to the
symmetric polynomial perturbations of the ellipsoid (5.1) preserving its horizontal section;
that is,

Qε =
{
q = (x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1 + ε(z2/c2) · R(y2/b2, z2/c2)

}
(5.8)

for some polynomial R : R
2 → R. This perturbation is linked to the perturbation (5.6) by

means of the relation P(s1, s2) = s2R(s1, s2).
Following the ideas presented in the planar case, we shall study the asymptotic behaviour

of the Melnikov potential and the determinant of its Hessian (HessL(r) := d2L(r)) at its
critical points r̃ = (1, 1) and r̂ = (λ

1/2
1 , λ

1/2
2 ) when β2 = c2/a2 → 0+. This behaviour is

contained in the following lemma.

Lemma 5.3. Let d, d̃, d̂ : P → R be the functions

d(β) = a−1[L(r̃)− L(r̂)]
d̃(β) = a−2 det[HessL(r̃)]

d̂(β) = a−2 det[HessL(r̂)].

If the perturbation (5.8) is polynomial, then

d(β) = [R(0, β1)− R(1, 0)]β2 + O(β2
2 )

d̃(β) = −4β2
1 (1− β1) [∂2R(0, β1)]

2 β2
2 + O(β3

2 )

d̂(β) = 4β−1
1 λ−1

1 ∂1R(1, 0) · [∂1R(1, 0)− ∂2R(0, 0)]β4
2 + O(β5

2 ).

Proof. The lemma follows directly from

a−1L(r̃) = R(0, β1)β2 + O(β2
2 )

a−1L(r̂) = R(1, 0)β2 + O(β2
2 )
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a−1 HessL(r̃) = 2β1

√
1− β1

(
O(β2

2 ) ∂2R(0, β1)β2 + O(β2
2 )

∂2R(0, β1)β2 + O(β2
2 ) O(β2)

)

a−1 HessL(r̂) =



− 2

λ1
∂1R(1, 0)β2 + O(β2

2 ) O(β
5/2
2 )

O(β
5/2
2 )

2

β1
[∂2R(0, 0)− ∂1R(1, 0)]β3

2 + O(β4
2 )


.

The proof of these formulae has been deferred to appendix A. �

Remark 5.6. The preservation of the horizontal section of the ellipsoid plays an essential role
in the computations. This implies that the function ;(r) in (5.7) has a common factor τ 2

z (r).
Then only the central term of the series

∑
k∈Z

(−1)k;
(
λ
k/2
1 , λ

k/2
2

)
= a−1[L(r̃)− L(r̂)] = d(β)

contributes to the lowest-order coefficient of the Taylor expansion of the function d(β) in
powers of the small parameter β2. The same behaviour is observed for d̃(β) and d̂(β). This
makes it possible to prove the lemma with a reasonable amount of work (see appendix A).
(Otherwise, it would be necessary to consider all the terms of the series.)

Corollary 5.3. If ∂1R(1, 0) �= 0, ∂2R(0, 0) (respectively, ∂2R(0, β1) �= 0) (respectively,
R(0, β1) �= R(1, 0)), the y-axial spatial bi-asymptotic orbits become transverse (respectively,
the xz-specular ones become transverse) (respectively, the xz-specular and y-axial ones have
different lengths), close to the flat limit and for small enough perturbations.

Proof. It follows directly from lemma 5.3 and properties L3 and L4 in section 2.3. �

Although the hypotheses on the polynomial R stated in corollary 5.3 are generic in the
space of polynomials, they fail in some degenerate cases, where the corollary cannot be applied
directly. Thus, further computations are necessary to obtain some information from the first
non-vanishing Taylor coefficients of the functions d, d̃, d̂ : P → R.

Some degenerate cases are listed below:

• If R(s1, s2) = s1, then d̃(β) = β2
1 (6β1 − 8)β3

2 + O(β4
2 ) and the xz-specular spatial bi-

asymptotic orbits are transverse.

• If R(s1, s2) = s
j

2 , j � 1, then d̂(β) = −2j 2(j + 1)(1− β1)β
−2j
1 λ−1

1 β
2j+3
2 + O(β

2j+4
2 ) and

the y-axial spatial bi-asymptotic orbits are transverse.

• If R(s1, s2) = s1s
j

2 for some integer j � 1, then d(β) = −β−j1 β
j+1
2 + O(β

j+2
2 ) and the

xz-specular and y-axial spatial bi-asymptotic orbits have different lengths.

The computations in these degenerate cases are similar to those performed in appendix A.
To end this section, it is natural to ask whether some spatial version of theorem 4.3 holds;

that is, whether under any non-quadratic analytic symmetric perturbation of the ellipsoid the
symmetric spatial bi-asymptotic orbits become transverse close to the flat limit. We have
tried to prove it for perturbations preserving the horizontal section of the ellipsoid, but the
computations were too cumbersome.
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5.9. A quartic perturbation

Here we focus our attention on the symmetric quartic perturbation of the ellipsoid (5.1)
preserving its horizontal section Q ∩ {z = 0} and its vertical one Q ∩ {y = 0}; that is,

Qε =
{
q = (x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1 + ε

y2

b2
· z

2

c2

}
. (5.9)

In spite of its simplicity, it turns out to be quite interesting.
The Melnikov potential (5.7) for this quartic perturbation is

L(r) = a
∑
k∈Z

;(>kr) ;(r) = τ 2
y (r)τ

2
z (r)

τ (>−1r)τ 2(r)τ (>r)
. (5.10)

The function t = (t1, t2) 
→ L(et1 , et2) is neither hyperelliptic nor Abelian, since it has
only three (instead of four) complex periods independent over the reals:

ω1 := (ln λ1, ln λ2) ω2 := (π i, 0) ω3 := (0, π i).

This makes an important difference with the planar case, in which explicit computations can
be easily performed using the theory of elliptic functions. In the spatial case, we are forced to
consider some cases close to simpler limit cases in order to obtain analytic results. We have
also carried out a numerical study.

Our results can be summarized as follows. Let H = H(β) be the number of primary
homoclinic orbits under the quartic perturbation (5.9) with parameter β ∈ P . ThenH(β) = 16
close to the flat, circular and oblate limits, but H(β) undergoes infinitely many bifurcations
when β approaches the prolate limit, oscillating between 16 and 32. Let us explain this.
Suppose that we go from the initial parameter βc = (0, 1) to some final parameter βp on
the hypotenuse of the right-angled triangle ∂P along a straight line. (The parameter βc

corresponds to a circle, whereas βp corresponds to a prolate ellipsoid.) If β is close enough to
βc,H(β) = 16. After a certain bifurcation valueβ+

1 of the parameterβ is attained,H(β) = 32,
and when a second bifurcation valueβ−1 is crossed,H(β) = 16 again. These bifurcations occur
infinitely many times when β approaches βp; that is, there exist infinitely many bifurcation
values β±n , n � 1 of the parameter β. The sequences (β±n )n�1 tend in a geometric way to
βp = (β

p
1 , β

p
2 ). To be more precise, if

λp = 1 + ep

1− ep
ep =

√
1− βp

1 =
√

1− βp
2 (5.11)

is the (double) characteristic multiplier of the prolate ellipsoid associated with βp, then

βp − β±n ∼ λp(βp − β±n+1) (n→ +∞). (5.12)

Moreover, if P = P− ∪ P0 ∪ P+ is the decomposition of the parameter space given by

P± :=
{
β ∈ P : ±d̃(β) d̂(β) > 0

}
P0 :=

{
β ∈ P : d̃(β) d̂(β) = 0

}
(5.13)

then P− = {β ∈ P : H(β) = 16} and P+ = {β ∈ P : H(β) = 32}, whereas P0 is formed
by the infinitely many bifurcation curves which separate them; that is, P0 contains all the
bifurcation values β±n , n � 1.

In figure 2 we have marked the points of P− in white and those of P+ in black. These
sets are formed by infinitely many strips connecting β = (0, 0) and β = (1, 1); that is, their
extrema correspond to segments and spheres. We have represented only the first three black
strips, although we have computed the first eight ones, using multiple-precision arithmetic to
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overcome some numerical difficulties. Nevertheless, the other black strips are so thin that they
cannot been seen at the scale of that picture!

Using that P− ∪P+ = {β ∈ P : d̃(β) d̂(β) �= 0}, we deduce that the perturbed symmetric
bi-asymptotic orbits are transverse when β is inside a white or black strip.

Finally, inside each black strip we find a new bifurcation curve from β = (0, 0) to
β = (1, 1) defined by {d(β) = 0}. The xz-specular and y-axial perturbed bi-asymptotic orbits
have different lengths when β does not belong to some of these new curves.

We end this summary by stressing the main analogies and differences with respect to the
planar case. First, the functions d, d̃, d̂ : P → R can be extended analytically to the flat
limit; continuously to the spherical, oblate, circular and segment limits; but they cannot be
extended to the prolate limit. Second, these functions are exponentially small close to the
spherical limit. This makes it harder to perform the numerical computations for parameters
β ≈ (1, 1); multiple-precision arithmetic is essential here. And last, close to the prolate limit,
these functions undergo infinitely many changes of sign in the parameter space, which is the
crucial difference with respect to the planar case. Let us recall that any quartic symmetric
perturbation of a non-circular ellipse always has eight primary heteroclinic orbits: H(β) ≡ 8,
see theorem 4.4. In the spatial case, this is false: the quantity H(β) is no longer constant for
quartic perturbations.

The rest of the section contains the proofs of the analytical results and the description
of the numerical experiments. During the exposition it will become clear which results are
analytical and which are numerical.

5.9.1. Analysis close to the flat limit. The quartic perturbation (5.9) fits into the frame of
the previous subsection, since it preserves the horizontal section. Following the terminology
of (5.8), it corresponds to the polynomial R(s1, s2) = s1. In particular, the following relations
hold:

d(β) = −β2 + O(β2
2 )

d̃(β) = β2
1 (6β1 − 8)β3

2 + O(β4
2 )

d̂(β) = 4β−1
1 λ−1

1 β4
2 + O(β5

2 ).

The first and last ones are direct consequences of lemma 5.3, whereas the second one follows
from the comments on degenerate cases after corollary 5.3.

Thus, all the symmetric bi-asymptotic orbits become transverse and the xz-specular and y-
axial ones have different lengths, close to the flat limit and under the quartic perturbation (5.9),
provided that ε is small enough. Finally, we cannot claim that close to the flat limit there are
no more primary bi-asymptotic orbits, at least using only the above arguments. Nevertheless,
we have checked numerically that this is the case.

5.9.2. Analysis close to the circular limit. The results obtained close to the flat limit also
hold close to the circular limit: β → βc := (1, 0). The proof does not require any new ideas.
Once the limits

lim
β→βc

d(β)/β2 = −1 lim
β→βc

d̃(β)/β3
2 = −2 lim

β→βc
d̂(β)/β4

2 = 4

are established, all the results follow directly. The computations are standard.
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5.9.3. Analysis close to the oblate limit. In the oblate limit we shall establish a stronger result:
the symmetric spatial bi-asymptotic orbits are transverse and there are no more primary ones.
The key is to realize that the Melnikov potential can be continuously extended up to values
of the parameters corresponding to oblate ellipsoids and, in addition, it becomes a function of
separate variables for these degenerate parameters. This simplifies the analysis.

The ultimate reason for the separation of variables is the parabolic character of the two-
periodic orbits associated with the diameters of oblate ellipsoids; that is, these orbits have some
characteristic multiplier equal to one. Concretely, if the parameter belongs to the cathetus

Po = {βo = (βo
1 , β

o
2 ) : βo

1 = 1, 0 < βo
2 < 1

}
of the right-angled triangle ∂P , its associated characteristic multipliers are

λo
1 = 1 λo

2 =
1 + eo

2

1− eo
2

eo
2 =
√

1− βo
2 . (5.14)

The tau-polynomials τ, τx, τy, τz defined in lemma 5.1 have simpler expressions in the
oblate limit. Concretely,

τ o(r) = (1 + r2
1 )(1 + r2

2 ) τ o
x = (1− r2

1 )(1− r2
2 )

τ o
y (r) = 2r1(1− r2

2 ) τ o
z (r) = 2r2(1 + r2

1 ).

Then the Melnikov potential (5.10) becomes a function of separate variables, namely

Lo : (0,+∞)2 → (0,+∞) Lo(r) := lim
β→βo

L(r) = aLo
1(r1)L

o
2(r2) (5.15)

where Lo
1 : (0,+∞)→ (0,+∞) is the rational function

Lo
1(r1) =

(
2r1

1 + r2
1

)2

and Lo
2 : (0,+∞)→ (0,+∞) is given by the series

Lo
2(r2) =

∑
k∈Z

;o
2(λ

o
2
k
r2) ;o

2(r2) = 4(1− r2
2 )

2r2
2(

1 + r2
2/λ

o
2

)
(1 + r2

2 )
2
(
1 + λo

2r
2
2

) . (5.16)

These expressions make clear that the functions d, d̃, d̂ : P → R can be continuously
extended to the oblate limit, giving rise to the extensions do, d̃o, d̂o : Po → R defined by

do(βo) = a−1
(
Lo(r̃o)− Lo(r̂o)

) = Lo
1(1)
(
Lo

2(r̃
o
2 )− Lo

2(r̂
o
2 )
)

d̃o(βo) = a−2 det[HessLo(r̃o)] = Lo
1(1)

d2Lo
1

dr2
1

(1)Lo
2(r̃

o
2 )

d2Lo
2

dr2
2

(r̃o
2 )

d̂o(βo) = a−2 det[HessLo(r̂o)] = Lo
1(1)

d2Lo
1

dr2
1

(1)Lo
2(r̂

o
2 )

d2Lo
2

dr2
2

(r̂o
2 )

where

r̃o = (r̃o
1 , r̃

o
2 ) := lim

β→βo
r̃ = (1, 1) r̂o = (r̂o

1 , r̂
o
2 ) := lim

β→βo
r̂ =
(

1,
√
λo

2

)
are the critical points in the oblate limit.

The study of the series (5.16) is the main difficulty in computing these extensions. This
series can be expressed in terms of Jacobian elliptic functions, as we did in lemma 4.4. To
such an end, we now recall some classical notation, which is borrowed from [WW27].
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Given two quantities k, k′ ∈ (0, 1) such that k2 + k′ 2 = 1, k is called the modulus and k′ is
known as the complementary modulus. Then K = ∫ π/20 (1 − k2 sin u)−1/2 du is the complete

elliptic integral of the first kind, whereas K ′ = ∫ π/20 (1 − k′ 2 sin u)−1/2 du, so that K ′ is the
same function of k′ as K is of k. Finally, q = e−πK

′/K is the nome. If any of the numbers k,
k′, K , K ′ or q is given, all the rest are determined. For instance, in [WW27, p 479] we find
the relations√

2kK/π =
∑
n∈Z

q(n+1/2)2
√

2K/π =
∑
n∈Z

qn
2 √

2k′K/π =
∑
n∈Z

(−q)n2
(5.17)

which are useful to compute the modulus k, the complementary modulus k′, and the complete
elliptic integral of the first kind K , when the nome q is given. From now on, we shall
consider that the quantities q, k, k′ and K are determined by the parameter βo ∈ Po via the
formulae (5.14), the identification

q = e−π
2/ ln λo

2

and relations (5.17). Under these notation and assumptions, it turns out that

Lo
2(r2) = constant− 4λo

2

(λo
2 − 1)2

(
2K

ln λo
2

)2

dn2

(
2K log r2

ln λo
2

, k

)
(5.18)

where dn(u) = dn(u, k) is one of the 12 Jacobian elliptic functions (see appendix B). The
exact value of the unknown additive constant is immaterial for our present purposes, although
it could be expressed explicitly in terms of complete elliptic integrals of the first and second
kinds, if necessary.

Now, we are ready to compute the extensions do, d̃o, d̂o : Po → R explicitly. The result
is contained in the following lemma (compare with lemma 4.4 for the planar case.)

Lemma 5.4. The critical points of the function (5.15) are just the points in the set {1}×(λo)Z/2,
all of them being non-degenerate. The extensions do, d̃o, d̂o : Po → R associated with the
quartic perturbation (5.9) are

do(βo) = −4π2λo
2

(λo
2 − 1)2 ln2 λo

2

(∑
n∈Z

q(n+1/2)2

)4

d̃o(βo) = −16π4λo
2L

o
2(r̃

o
2 )

(λo
2 − 1)2 ln4 λo

2

(∑
n∈Z

q(n+1/2)2

)4 (∑
n∈Z

qn
2

)4

d̂o(βo) = 16π4Lo
2(r̂

o
2 )

(λo
2 − 1)2 ln4 λo

2

(∑
n∈Z

q(n+1/2)2

)4 (∑
n∈Z

(−q)n2

)4

where q = e−π
2/ ln λo

2 . In particular, the extensions do, d̃o, d̂o : Po → R never vanish.

Proof. The rational function Lo
1(r1) has one (non-degenerate) critical point: r1 = 1. From the

properties of the Jacobian elliptic function dn(u, k), we deduce that the only critical points of
the modular functionLo

2(r2) are the points in the set (λo
2)

Z/2, all of them being non-degenerate.
This proves the first part of the lemma.

The computation of the first extension is immediate:

do(βo) = Lo
1(1)
(
Lo

2(r̃
o
2 )− Lo

2(r̂
o
2 )
) = −4λo

2

(λo
2 − 1)2

(
2kK

ln λo
2

)2
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where we have used that dn(0, k) = 1 and dn(K, k) = k′ = √1− k2. (Note that the unknown
additive constant disappears.)

The second extension is obtained as follows:

d̃o(βo) = Lo
1(1)

d2Lo
1

dr2
1

(1)Lo
2(r̃

o
2 )

d2Lo
2

dr2
2

(r̃o
2 ) =

−16λo
2L

o
2(r̃

o
2 )

(λo
2 − 1)2

(
2kK

ln λo
2

)2 ( 2K

ln λo
2

)2

using the well known derivative rules for the Jacobian elliptic functions

sn′ = cn · dn cn′ = − sn · dn dn′ = −k2 · sn · cn

together with the properties

sn(0, k) = 0 cn(0, k) = 1 dn(0, k) = 1

which can be found in [WW27, pp 492–3].
The computation of the last extension is very similar:

d̂o(βo) = Lo
1(1)

d2Lo
1

dr2
1

(1)Lo
2(r̂

o
2 )

d2Lo
2

dr2
2

(r̂o
2 ) =

16Lo
2(r̂

o
2 )

(λo
2 − 1)2

(
2kK

ln λo
2

)2 (2k′K
ln λo

2

)2

.

Finally, the lemma follows from relations (5.17). �

By an argument of continuity, the properties in the oblate limit are still valid close to
the oblate limit. In particular, the Melnikov potential (5.10) has only a couple of critical
points close to the oblate limit and d(β), d̃(β), d̂(β) are non-zero if β is close enough to Po.
Consequently, we obtain a complete description of the situation close to the oblate limit, which
is summarized in the following theorem.

Theorem 5.3. The billiard inside the quartic perturbation (5.9) has exactly 16 primary bi-
asymptotic orbits (the xz-specular and y-axial ones) close to the oblate limit, for small enough
perturbations. Moreover, these orbits are transverse and the xz-specular and y-axial spatial
bi-asymptotic orbits have different lengths.

5.9.4. Experiments close to the prolate limit. Once we know what happens close to the
flat, circular and oblate limits, we focus on the rest of the parameter space, emphasizing what
happens close to the prolate limit.

The first experiment is to draw the graph and the level curves of the Melnikov
potential (5.10) for several values of the parameter β to detect all of its critical points and
to study the possible bifurcations. Hence, it is useful to introduce some variables best suited
for the pictures. The time–energy variables (t, e) ∈ R

2 defined by

r1 = λt1λ
e
2 r2 = λt2/λ

e
1 (5.19)

are a good choice for several reasons. On the one hand, in these variables the Melnikov potential
L(t, e) is one-periodic in t , because the linear map r = (r1, r2) 
→ >r = (λ1r1, λ2r2) reads as
(t, e) 
→ (t + 1, e) in the time–energy variables. (This motivates the terminology. The action
of the map increases the time t by one unit, but does not change the energy e.) On the other
hand, L(t, e) tends to zero exponentially fast when |e| → ∞. This has to do with the fact
that the quartic perturbation (5.9) preserves the horizontal section Qxy = Q∩ {z = 0} and the
vertical one Qxz = Q ∩ {y = 0} of the ellipsoid.

In figure 10 we have displayed the graphs and some level curves of the Melnikov potential
L(t, e) for a = 1, β1 = 0.5, and several increasing values of β2. In all the pictures, the range
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Figure 10. Graphs and level curves of the Melnikov potential for a = 1, β1 = 0.5 and
β2 = 0.2, 0.3, γ ∗1 , 0.325, 0.41, 0.456, γ ∗2 , 0.4575, 0.48. The variables (t, e) ∈ R

2 are given by
r1 = λt1λ

e
2 and r2 = λt2/λ

e
1. The Melnikov potential is one-periodic in t and tends to zero when

|e| → ∞.

in the time–energy variables (t, e) is the square [−0.5, 0.5]2. Nothing interesting falls out of
this range, since L is one-periodic in t and tends to zero as |e| → ∞.

In the time–energy variables, the Melnikov potential has the symmetries

L(−t,−e) = L(t, e) L
(

1
2 − t,−e

) = L
(

1
2 + t, e

)
which follow from the symmetry L = L ◦ I (see lemma 5.2) and the periodicity in t . In
particular, the points (t̃ , ẽ) = (0, 0) and (t̂ , ê) = ( 1

2 , 0
)

are critical points, obtained from the

already known critical points r̃ = (1, 1) and r̂ = (λ
1/2
1 , λ

1/2
2 ) by the change of variables (5.19).

The first and last pictures in figure 10, which correspond, respectively, to β2 = 0.2 and
β2 = 0.48, look the same from a qualitative point of view: r̃ is a saddle point, r̂ is a global
maximum and there are no more critical points. Thus,H(0.5, 0.2) = H(0.5, 0.48) = 8×2 =
16. Nevertheless, when the parameter grows from β2 = 0.2 up to β2 = 0.48, the following
bifurcations take place:

(a) at γ +
1 ≈ 0.287 199 647 426, r̂ becomes a saddle point and a couple (the first one) of global

maxima are created from it;
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(b) at γ ∗1 ≈ 0.312 364 388 028, the saddle points r̃ and r̂ lie on the same level curve of L:
L(r̃) = L(r̂), and the couple of maxima are halfway between them;

(c) at γ−1 ≈ 0.335 698 528 316, the global maxima meet r̃ , and they disappear, whereas r̃
becomes the only global maximum;

(d) at γ +
2 ≈ 0.455 587 000 258, r̃ becomes again a saddle point and a couple (the second one)

of global maxima are created from it;
(e) at γ ∗2 ≈ 0.456 737 539 206, the saddle points r̃ and r̂ are in the same level curve of L:

L(r̃) = L(r̂), and the second couple of maxima are halfway between them;
(f) at γ−2 ≈ 0.457 977 789 177, the global maxima meet r̂ , and they disappear, whereas r̂

becomes the only global maximum.

These bifurcations form a cycle, in the sense that after the last one we are just in the same
situation as before the first one. (The three first bifurcations do not form a cycle, because
the critical points r̃ and r̂ have changed their types after them.) To gain more insight into
this cycle, we have drawn in figure 11 the graphs of the functions d, d̃, and d̂ for β1 = 0.5
and β2 ∈ (0, β1). Clearly, their changes of sign are associated with the above-described
cycle bifurcations. On the one hand, a change in d̃ (respectively, d̂), means that the type of r̃
(respectively, r̂) changes between the global maximum and saddle point. On the other hand,
r̃ and r̂ lie on the same level curve of L if and only if d vanishes. Therefore, the bifurcation
values γ +

1 , γ ∗1 and γ−1 are the first zeros of d̂, d and d̃, whereas γ +
2 , γ ∗2 and γ−2 are the second

ones of d̃ , d and d̂ .
To gain more insight into the prolate limit, we introduce the variable η > 0, defined as

β2 = β1
(
1− λ−2η

1

)
(5.20)

which tends to infinity when β2 → β1. This logarithmic variable η is particularly well suited
to elucidate the situation close to the prolate limit. For instance, the numerical computations
strongly suggest that the functions d , d̃ , and d̂ tend to be one-periodic in η, whereas the distance
between their zeros tend to 1

2 as η → +∞ (see figure 11). This behaviour is general: it is
observed for any fixed β1 ∈ (0, 1), and not only for β1 = 0.5.

We now summarize the conclusions that can be obtained from this numerical study.

Numerical result 5.4. Let P = P− ∪ P0 ∪ P+ be the decomposition of the parameter space
given in (5.13). Then the quartic perturbation (5.9) has exactly 16 (respectively, 32) primary
bi-asymptotic orbits for β ∈ P− (respectively, β ∈ P+). Moreover, the open sets P±
(respectively, the bifurcation set P0) are formed by infinitely many strips (respectively, curves)
connecting the points β = (0, 0) and β = (1, 1), as displayed in figure 2. Finally, the
bifurcation curves tend to the prolate limit at the geometric rate stated in formulae (5.11) and
(5.12).

To end this section, we present an amazing relation between the oblate and prolate limits.
We hope to explain it in a further study. Let

Pp = {βp = (β
p
1 , β

p
2 ) : 0 < β

p
1 = β

p
2 < 1

}
be the hypotenuse of ∂P . The function d : P → R has an oscillatory behaviour close to
the prolate limit; that is, for β → βp ∈ Pp. We have computed the limit amplitude of these
oscillations as a function of the parameter βp. This limit amplitude is related to the behaviour
close to the oblate limit presented in lemma 5.4 as follows.

Numerical result 5.5. Given a couple of degenerate parameters βo = (1, βo
2 ) ∈ Po and

βp = (β
p
1 , β

p
2 ) ∈ Pp such that βo

2 = β
p
j , then

lim sup
β→βp

d(β) = −do(βo)/2 lim inf
β→βp

d(β) = do(βo)/2.
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Figure 11. Graphs of d (full curve), d̃ (broken curve) and d̂ (dotted curve) for β1 = 0.5. (a)
The horizontal variable is β2 ∈ (0, β1). (b) The logarithmic variable defined in (5.20). The points
marked with squares correspond to the values of β2 for which the Melnikov potential have been
shown in figure 10.
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6. The high-dimensional case

In this section we describe the extension to the high-dimensional case of some of the results
already presented for the spatial case. For the sake of brevity, and to avoid unnecessary
repetition, we have adopted a compact style. In particular, all the proofs have been omitted.

To begin with, let us consider the generic ellipsoid

Q = {q ∈ R
n+1 : 〈q,D−2q〉 = 1

}
D = diag(d0, . . . , dn) d0 > · · · > dn > 0.

(6.1)

The chord joining the vertices (−d0, 0, . . . , 0) and (d0, 0, . . . , 0) is the diameter of the ellipsoid
Q. The set formed by the two-periodic points associated with the diameter

Mh = {mh
+,m

h
−
}

mh
± = (qh

±, v
h
±) qh

± = (±d0, 0, . . . , 0) vh
± = (1, 0, . . . , 0)

is a hyperbolic periodic set of the elliptic billiard map f whose unstable and stable invariant
manifolds are doubled.

The sets W,Wu,Ws,Wu
±,Ws

± are defined as in the previous sections. Let

Q(κ) = {q ∈ R
n+1 : 〈q,D(κ)−2q〉 = 1

}
D(κ)2 = D2 − κ2 Id κ �= d0, . . . , dn

be the family of non-degenerate quadrics confocal to the ellipsoid, and

Qj =
{
q = (q0, . . . , qn) ∈ R

n+1 : qj = 0,
∑
i �=j

qi
2

di
2 − dj 2 = 1

}
j = 1, . . . , n

be the family of degenerate focal quadrics of the ellipsoid. When κ → dj , the quadric Q(κ)
flattens into a region of the hyperplane Hj := {q ∈ R

n+1 : qj = 0} enclosed by (or outside)
the degenerate focal quadric Qj ; that is,

Qj = Q+(dj ) ∩Q−(dj ) ⊂ Hj Q±(dj ) = lim
κ→d±j

Q(κ).

As already mentioned in the introduction, any segment (or its prolongation) of a
billiard trajectory inside the ellipsoid Q = Q(0) is tangent to n fixed confocal quadrics
Q(κ1), . . . ,Q(κn). The first integrals of the family κ1, . . . , κn can be computed by means of
their relation with the family of involutive first integrals

Ij (m) =
∏n

i=1(κ
2
i (m)− d2

j )∏
i �=j (d

2
i − d2

j )
= p2

j +
∑
i �=j

(qjpi − qipj )2
d2
j − d2

i

j = 0, . . . , n (6.2)

where m = (q, p), q = (q0, . . . , qn) and p = (p0, . . . , pn).
In a similar way to the spatial case, we shall say that a line is tangent to the degenerate

focal quadric Qj when it is contained in the hyperplane Hj or it intersects Qj . In particular,
a line is tangent to all the degenerate focal quadrics if and only if it intersects all of them. All
of these intersections and tangencies are understood in a projective sense.

Now, we can give the geometric characterization of the bi-asymptotic set, which is the
tool to see that the invariant manifolds are doubled.

Proposition 6.1. W = Wu = Ws = M(d1,...,dn), where

M(d1,...,dn) = {m ∈ M : κj (m) = dj for all 1 � j � n}
= {m ∈ M : Ij (m) = 0 for all 1 � j � n}
= {m = (q, p) ∈ M : q + 〈p〉 intersects Qj for all 1 � j � n}.
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Once we know the geometry of the bi-asymptotic set, we focus on its dynamics. In order
to describe that dynamics, we must introduce the following notation.

Let R̂ be the extended real line, and i be the imaginary unit. Let I : R̂
n → R̂

n

be the involution I(r1, . . . , rn) = (1/r1, . . . , 1/rn), where 0−1 = ∞ and ∞−1 = 0. If
> = diag(λ1, . . . , λn), s ∈ R, and m is a map defined on R̂

n or R
n, we denote by m ◦>s the

map r 
→ m(>sr) = m(λs1r1, . . . , λ
s
nrn).

We shall also adopt the standard multinomial notation rε = ∏i ri
εi and |ε| = ∑i εi ,

for multi-indices ε = (ε1, . . . , εn) ∈ N
n and vectors r = (r1, . . . , rn) ∈ R̂

n. In addition,
if r = (r1, . . . , rn) and 1 � j � n, we set r�=j = (r1, . . . , rj−1, rj+1, . . . , rn). If A is
an n × n matrix, A�=j denotes the (n − 1) × (n − 1) matrix obtained by deleting the j th
row and the j th column of A. Finally, given a multi-index ε ∈ N

n and an n × n matrix
A = (αij ), let J(A, ε) := ∏εi �=εj αij , if {(i, j) : εi �= εj } �= ∅, and J(A, ε) := 1,
otherwise.

Lemma 6.1. Let > = diag(λ1, . . . , λn) be the diagonal matrix whose entries are the
characteristic multipliers

λj = 1 + ej
1− ej ej =

√
1− βj βj = d2

j /d
2
0 .

Let A = (αij ) be the n× n symmetric matrix of positive elements defined by

α2
ij =



(ei + ej )/(ei − ej ) if i > j

α2
ji if i < j

1 if i = j .

Let τ, τ0, τ1, . . . , τn ∈ R[r] = R[r1, . . . , rn] be the tau-polynomials

τ(r) =
∑

ε∈{0,2}n
J(A, ε)rε

τ0(r) = τ(ir) =
∑

ε∈{0,2}n
(−1)|ε|/2J(A, ε)rε

τj (r) = Jn
i=1αij · rj ·

∑
ε∈{0,2}n

(−1)|ε>j |/2J(A �=j , ε�=j )r �=j ε �=j 1 � j � n.

Let χ = (τ0/τ, . . . , τn/τ) : R̂
n → R̂

n+1. Let q = Dχ : R
n → Q, p = χ ◦>−1/2 : R

n → S
n

and m = (q, p) : R
n → M.

Then the mapsmu,s
± : R

n → M defined bymu
± = ±m andms

± = ±(−1)nm◦ I are natural
parametrizations of the invariant manifolds Wu,s

± ; that is, mu,s
± : R

n → Wu,s
± are analytic

diffeomorphisms such that

m
u,s
± (0, . . . , 0) = mh

± f ◦mu
± = mu

∓ ◦> f ◦ms
± = ms

∓ ◦>−1.

Let us define the dimension of a billiard orbit inside an ellipsoid of R
n+1 as the dimension

of the vectorial subspace of R
n+1 generated by its velocities. Billiard orbits have generically

dimension n + 1, but two-periodic orbits have dimension one, and there exists a complete
hierarchy of orbits between them.

The interest of this concept is twofold. On the one hand, a billiard orbit inside
a generic ellipsoid of R

n+1 and bi-asymptotic to the diameter of the ellipsoid is on the
separatrix S if and only if it has dimension n + 1. On the other hand, a billiard orbit is
homoclinic (respectively, heteroclinic) for the square of the billiard map f 2 if and only
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if its dimension is odd (respectively, even). Both claims generalize results given in the
spatial case. For instance, a bi-asymptotic billiard orbit inside a spatial generic ellipsoid is
homoclinic (respectively, heteroclinic) for the map f 2 if and only if it is spatial (respectively,
planar).

As a corollary of the characterization of the separatrix given above, we find that:

Proposition 6.2. The separatrix of the elliptic billiard has 2n+1 connected components:

S = S+ ∪ S− S± :=
⋃

σ∈{+,−}n
Sσ
± Sσ

ς := {ςm(r) : σj rj > 0 for all 1 � j � n}.

The length of the orbits in the separatrix is

Proposition 6.3. Length O = −2
∑n

j=1

√
d2

0 − d2
j , for all O ⊂ S.

Next, we tackle the persistence of the symmetric bi-asymptotic orbits under symmetric
perturbations. A hypersurface of R

n+1 is symmetric when it is symmetric with regard to
all of the coordinate axes of the Euclidean space R

n+1. A billiard orbit inside a symmetric
hypersurface will be called symmetric when its billiard configuration is symmetric with regard
to some coordinate subspace of R

n+1. There are two kinds of symmetric bi-asymptotic orbits
of dimension n + 1 inside a generic ellipsoid of R

n+1. They are the even-symmetric ones and
the odd-symmetric ones, which are symmetric with regard to the subspaces

E = {q = (q0, . . . , qn) ∈ R
n+1 : qj = 0 for all even j

}
O = {q = (q0, . . . , qn) ∈ R

n+1 : qj = 0 for all odd j
}

respectively. The following results are the high-dimensional versions of theorem 5.1 and
corollaries 5.1 and 5.2.

Theorem 6.1. Inside a generic ellipsoid of R
n+1 there are 2n+1 even-symmetric (and 2n+1 odd-

symmetric) billiard orbits bi-asymptotic to the diameter of dimension n+1. They persist under
symmetric perturbations.

Corollary 6.1. The even-symmetric (respectively, odd-symmetric) bi-asymptotic orbits persist
under any small perturbation, preserving the symmetry with regard to the subspace E

(respectively, O).

Corollary 6.2. Inside a generic ellipsoid of R
n+1 there are 4(3n− 1) symmetric billiard orbits

bi-asymptotic with the diameter. They persist under symmetric perturbations.

In order to explain the corollary, let us consider all the coordinate sections of the ellipsoid that
contain its diameter; that is, the sections of the form

QJ =
{
q = (q0, . . . , qn) ∈ Q : qj = 0 for all j �∈ J} J ⊂ {1, . . . , n}.

If two consecutive impact points are on QJ , the same happens to all the impact points, so QJ

gives rise to an invariant sub-system of the billiard map with the same properties as a billiard
inside a generic ellipsoid of R

m+1, wherem = #J . Hence, there are 2m+2 persistent symmetric
bi-asymptotic orbits inside QJ of dimension m + 1 (see theorem 6.1). Then the total number
of persistent symmetric bi-asymptotic orbits is

∑n
m=1(

n
m)2

m+2 = 4(3n− 1), since there are ( nm)
subsets J ⊂ {1, . . . , n} such that #J = m.
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Finally, we consider the symmetric perturbations of the ellipsoid (6.1) defined by means
of an implicit equation such as

Q = {q ∈ R
n+1 : 〈q,D−2q〉 = 1 + εP (q2

1/d
2
1 , . . . , q

2
n/d

2
n)
}

(6.3)

for some function P : R
n → R such that P(0, . . . , 0) = 0. We shall call this perturbation

entire (respectively, quadratic) if the function P is entire (respectively, linear).

Lemma 6.2. The Melnikov potential associated with the billiard inside (6.3) consists in 2n+1

copies of the function L : (0,+∞)n → R defined by

L(r) = d0

∑
k∈Z

;(>kr) ;(r) = τ 2(r)

τ (>−1/2r) · τ(>1/2r)
P

(
τ 2

1 (r)

τ 2(r)
, . . . ,

τ 2
n (r)

τ 2(r)

)
(6.4)

where the diagonal matrix > = diag(λ1, . . . , λn) and the tau-polynomials τ, τ1, . . . , τn are
defined in lemma 6.1. Moreover, L ◦ > = L = L ◦ I. In particular, r̃ = (1, . . . , 1) and
r̂ = (λ

1/2
1 , . . . , λ

1/2
n ) are critical points of L.

Our confidence in the extended Birkhoff conjecture has been strengthened in view of the
following theorem.

Theorem 6.2. An entire symmetric perturbation of a generic ellipsoid of R
n+1 gives rise to a

uniformly integrable billiard if and only if it is quadratic.

The proof of this theorem follows the same lines as in the planar or spatial case. The crux of
the argument is that the Melnikov potential (6.4) is analytic at the point r∗ = (1, . . . , 1, i) ∈ C

n

if and only if the perturbation (6.3) is quadratic. This also implies that the separatrix splits
under any non-quadratic entire symmetric perturbation.
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Appendix A. Computations close to the flat limit

By linearity, it suffices to consider the monomial perturbations R(s) = R(s1, s2) = si1s
j

2 , for
non-negative integers i and j . Then the perturbation (5.8) takes the form

Qε =
{
q = (x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1 + ε(y/b)2i (z/c)2j+2

}
(A.1)

and the formulae used to prove lemma 5.3 are equivalent to the following ones:

(i) a−1L(r̃) = δi0β
j

1β2 + O(β2
2 ),

(ii) a−1∂11L(r̃) = O(β2
2 ),

(iii) a−1∂12L(r̃) = a−1∂21L(r̃) = 2jδi0e1β
j

1β2 + O(β2
2 ),

(iv) a−1∂22L(r̃) = O(β2),
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(i′) a−1L(r̂) = δj0β2 + O(β2
2 ),

(ii′) a−1∂11L(r̂) = −2iδj0λ
−1
1 β2 + O(β2

2 ),

(iii′) a−1∂12L(r̂) = a−1∂21L(r̂) = O(β
5/2
2 ), and

(iv′) a−1∂22L(r̂) = 2[δj1 − iδj0]β−1
1 β3

2 + O(β4
2 ),

where δij denotes the Kronecker delta.
The rest of the appendix is devoted to sketching the proofs of the formulae (i)–(iv), the

other proofs being very similar.
To begin with, let ν = (ν1, ν2) = (1/λ1, 1/λ2). Then

α2 = e2 + e1

e2 − e1
= λ1λ2 − 1

λ2 − λ1
= 1− ν1ν2

ν1 − ν2

and the Melnikov potential associated with the perturbation (A.1) can be written as

L(r) = L(r; ν; a) = a
∑
k∈Z

;(νk1r1, ν
k
2r2; ν) ;(r) = ;(r; ν) = h(ν)f (r1)g(r2)

q(r; ν)
where

h(ν) = 2mν1ν2(ν1 − ν2)
m/2(1− ν1ν2)

m/2

f (r1) =
(
1 + r2

1

)2j+2
r2i

1

g(r2) =
(
1− r2

2

)2i
r

2j+2
2

q(r; ν) = q−(r; ν) (q0(r; ν))m−2
q+(r; ν)

q+(r; ν) = (ν1 − ν2)
(
1 + ν1ν2r

2
1 r

2
2

)
+ (1− ν1ν2)

(
ν1r

2
1 + ν2r

2
2

)
q0(r; ν) = (ν1 − ν2)

(
1 + r2

1 r
2
2

)
+ (1− ν1ν2)

(
r2

1 + r2
2

)
q−(r; ν) = (ν1 − ν2)

(
ν1ν2 + r2

1 r
2
2

)
+ (1− ν1ν2)

(
ν2r

2
1 + ν1r

2
2

)
and m = 2i + 2j + 2 � 2 is the order of the perturbation.

For further reference, we recall the relations

βn = 4νn
(1 + νn)2

= 4νn + O(ν2
n) en = 1− νn

1 + νn
n = 1, 2 (A.2)

between the parameters β = (β1, β2), e = (e1, e2) and ν = (ν1, ν2).
Besides, for briefness, we will use the notation νk = (νk1 , ν

k
2 ), h = h(ν), fk = f (νk1 ),

f ′k = f ′(νk1 ), f
′′
k = f ′′(νk1 ), gk = g(νk2 ), g

′
k = g′(νk2 ), g

′′
k = g′′(νk2 ), qk = q(νk; ν),

∂nqk = ∂nq(ν
k; ν), ∂n1n2qk = ∂n1n2q(ν

k; ν), ;k = ;(νk; ν), ∂n;k = ∂n;(ν
k; ν), and

∂n1n2;k = ∂n1n2;(ν
k; ν), for k ∈ Z and n, n1, n2 ∈ {1, 2}.

In analogy with the proof of lemma 4.3 in the planar case, there are two main points in
the current computations for the spatial case: to estimate the leading terms ;0 = ;(r̃) and
∂n1n2;0 = ∂n1n2;(r̃), and to bound the series a−1L(r̃) − ;0 =

∑
k �=0 ;k and a−1∂n1n2L(r̃) −

∂n1n2;0 =
∑

k �=0 ∂n1n2;k .
In order to obtain the principal term in the small parameter ν2 of ;0 and the four partial

derivatives ∂n1n2;0, we study, separately, the factors involved in the computations.
The factor h = h(ν) can be easily analysed:

h = 2mν1+m/2
1 ν2 + O(ν2

2 ).
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Evaluating the functions f (r1) and g(r2) (together with their first and second derivatives) at
the points r1 = ν0

1 = 1 = r̃1 and r2 = ν0
2 = 1 = r̃2, respectively, we arrive at

f0 = 22j+2 f ′0 = m22j+2 f ′′0 = (m2 − 2i)22j+2

and

g0 = δi0 g′0 = mδi0 g′′0 = (m2 −m)δi0 + 8δi1.

Finally, we study the factor q(r) = q(r; ν) and its first partial derivatives at the point
r = ν0 = (1, 1) = r̃ . Since q is the denominator, its partial derivatives will appear in
the numerator. Due to that, it is interesting to express each partial derivative as a multiple of
the original function q, at least in a first approximation in the small parameter ν2. This can be
accomplished after some long computations, yielding the following results:

q0 = 2mν2
1 (1 + ν1)

m−2 + O(ν2)

∂1q0 = mq0

∂2q0 = mq0 + O(ν2)

∂11q0 = m2q0

∂12q0 =
(
m2 −m + 2 +

2(m− 2)ν1

1 + ν1

)
q0 + O(ν2)

∂22q0 = (m2 − 2)q0 + O(ν2).

Using all of these formulae, jointly with relations (A.2), we obtain

;0 = hf0g0

q0
= 4δi0

(
4ν1

(1 + ν1)2

)j
ν2 + O(ν2

2 ) = δi0β
j

1β2 + O(β2
2 )

∂11;0 = hg0

q3
0

(
q2

0f
′′
0 − 2q0∂1q0f

′
0 +
[
2(∂1q0)

2 − q0∂11q0
]
f0
)

= hg0

q0

(
f ′′0 − 2mf ′0 +m2f0

) = 0

∂12;0 = h

q3
0

(
q2

0f
′
0g
′
0 − q0∂1q0f0g

′
0 − q0∂2q0f

′
0g0 + [2∂1q0∂2q0 − q0∂12q0] f0g0

)

= h

q0

(
f ′0g

′
0 −m(f ′0g0 + f0g

′
0) +

[
m2 +m− 2− 2(m− 2)ν1

1 + ν1

]
f0g0

)
+ O(ν2

2 )

= 8jδi0
1− ν1

1 + ν1

(
4ν1

(1 + ν1)2

)j
ν2 + O(ν2

2 ) = 2jδi0e1β
j

1β2 + O(β2
2 )

∂22;0 = hf0

q3
0

(
q2

0g
′′
0 − 2q0∂2q0g

′
0 +
[
2(∂2q0)

2 − q0∂22q0
]
g0
)

= hf0

q0

(
g′′0 − 2mg′0 + (m2 + 2)g0

)
+ O(ν2

2 ) = O(β2).

Consequently, formulae (i)–(iv) follow from the estimates

a−1L(r̃) = ;0 + O(β2
2 ) a−1 HessL(r̃) =

(
∂11;0 ∂12;0

∂21;0 ∂22;0

)
+ O(β2

2 ). (A.3)
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To check that the first estimate holds, we note that a−1L(r̃) = ;0 + 2
∑

k>0 ;k , since
;(r) = ;(r−1). Moreover, using the bounds

0 < h(ν) � 2mν2 0 < fk � 22j+2 0 < gk � ν
2k(j+1)
2 qk � 2−mνm+1

1 ν2

we find that 0 < ;k � 22m+2j+2ν
−(m+1)
1 ν

2k(j+1)
2 , for all k > 0. Therefore,∣∣a−1L(r̃)− ;0

∣∣ = 2
∑
k�1

;k � 22m+2j+3ν
−(m+1)
1

∑
k�1

ν
2k(j+1)
2 = O(ν

2j+2
2 ) � O(β2

2 ).

This completes the proof of the first estimate in (A.3). The second estimate can be proved in
an analogous way, although with more work. We omit the details.

Appendix B. Computations with Jacobian elliptic functions

Here, we address the explicit computation of the series (4.9) and (5.16) in terms of the square
of the Jacobian elliptic function dn(u) = dn(u, k). It is possible to present a unified treatment
of these series, using that both can be written as

L : (0,+∞)→ R L(r) =
∑
k∈Z

;(λkr) ;(r) = 16µr4 + 4ν(1 + r2)2r2

(1 + r2/λ)(1 + r2)2(1 + λr2)

for some µ, ν ∈ R and λ > 1. In (4.9), µ = 1 and ν = 0. In (5.16), µ = −1 and ν = 1.
To fit this computation within the framework of elliptic functions, it is convenient to make

the change of variables r = et , so that the series above is transformed into

L̄(t) = L(et ) =
∑
k∈Z

;̄(t + kh) ;̄(t) = ;(et ) = µ + ν cosh2 t

cosh(t − h/2) cosh2 t cosh(t + h/2)

with h = ln λ. The function L̄(t) is elliptic; that is, it is meromorphic in the whole complex
plane and has two complex periods independent over the reals: h and π i.

We now recall that elliptic functions are characterized (modulo additive constants) by
their periods, poles and principal parts: the difference of two elliptic functions with the same
periods, poles and principal parts is a bounded entire function, and hence a constant function
by Liouville’s theorem. Therefore, we are naturally led to the search for the poles (and their
principal parts) of the series L̄(t) =∑k∈Z

;̄(t + kh).
First, the poles of ;̄(t) are the points in the setsπ i/2+π iZ andπ i/2±h/2+π iZ. The poles

t0 ∈ π i/2 + π iZ are double, whereas the poles t±0 ∈ π i/2± h/2 + π iZ are simple. Moreover,
a−1(t0) = 0, a−2(t0) = −4µλ/(λ− 1)2 and a−1(t

+
0 ) + a−1(t

−
0 ) = 0, where as(τ ) denotes the

coefficient of the term (t − τ)s in the Laurent expansion of ;̄(t) around t = τ . Hence, the
elliptic function L̄(t) =∑k∈Z

;̄(t + kh) is characterized (modulo an additive constant) by the
following properties:

(i) its periods are h and π i;
(ii) its poles are the points in the set π i/2 + hZ + π iZ; and

(iii) its principal part around any pole t0 is −4µλ(λ− 1)−2(t − t0)−2.

On the other hand, the square of the Jacobian elliptic function dn(u) = dn(u, k) is
characterized (modulo an additive constant) by the properties:

(i′) its periods are 2K and 2K ′i;
(ii′) its poles are the points in the set K ′i + 2KZ + 2K ′iZ,
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(iii′) the principal part around any pole u0 is −(u − u0)
−2, see [WW27, section 22]. Here,

k is the modulus, K = ∫ π/20 (1 − k2 sin u)−1/2 du is the complete elliptic integral of the

first kind, and K ′ = ∫ π/20 (1− k′ 2 sin u)−1/2 du, where k′ is the complementary modulus:
k2 + k′ 2 = 1. Finally, the quantity q = e−πK

′/K is called the nome.

Therefore, if we take q = e−π
2/ ln λ, then K ′ = Kπ/h and

L̄(t) = constant + 4µλ(λ− 1)−2 (2K/h)2 dn2 (2Kt/h, k).

Finally, the formulae (4.10) and (5.18) follow using that µ = 1 for the quartic planar
perturbation and µ = −1 for the quartic spatial one.
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Preprint in progress
[DR96] Delshams A and Ramı́rez-Ros R 1996 Poincaré–Melnikov–Arnold method for analytic planar maps
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[LT93] Levallois P and Tabanov M B 1993 Séparation des séparatrices du billard elliptique pour une perturbation
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[MV91] Moser J and Veselov A P 1991 Discrete versions of some classical integrable systems and factorization

of matrix polynomials Commun. Math. Phys. 139 217–43
[RB85] Robnik M and Berry M V 1985 Classical billiards in magnetic fields J. Phys. A: Math. Gen. 18 1361–78
[Sma65] Smale S 1965 Diffeomorphisms with many periodic points Differential and Combinatorial Topology (A

Symposium in Honor of Marston Morse) ed S S Cairns (Princeton, NJ: Princeton University Press)
pp 63–80

[Tab94] Tabanov M B 1994 Separatrices splitting for Birkhoff’s billiard in symmetric convex domain, closed to
an ellipse Chaos 4 595–606

[Tab95] Tabachnikov S 1995 Billiards Panor. Synth. 1 vi+142
[Ves88] Veselov A P 1988 Integrable systems with discrete time and difference operators Funct. Anal. Appl. 22

83–93
[WT85] Wojciechowski S and Tsiganov A V 1985 Integrable one-particle potentials related to the Neumann

system and the Jacobi problem of geodesic motion on an ellipsoid Phys. Lett. A 107 106–11
[WW27] Whittaker E T and Watson G N 1927 A Course of Modern Analysis (Cambridge: Cambridge University

Press)


