Multiple precision computation of exponentially small splittings (Lecture 2)

Rafael Ramírez-Ros

(Available at http://www.ma1.upc.edu/~rafael/research.html)
Rafael.Ramirez@upc.edu

Universitat Politècnica de Catalunya

Mission statements

- Present the exponentially small splitting problem for analytic area-preserving maps. [Lecture 1]
- Explain the computational challenges of this problem. [Lecture 1]
- Give some general principles to improve the efficiency of any computation that requires the use of a multiple precision arithmetic. [Lecture ?]
- Learn how to compute the Lazutkin homoclinic invariant in the general case. [Lecture 2]
- Implement explicitely the simplest case: the Hénon map. [Lecture 2]

Notations (1/2)

- M is the bi-dimensional phase space
- Ω is the area form.
- $f: M \rightarrow M$ is the analytic weakly-hyperbolic area-preserving map.
- $R: M \rightarrow M$ is the reversor.
- Fix $R=\{m \in M: G(m)=0\}$ is the symmetry line of the reversor.
- $m_{\infty} \in M$ is the saddle point.
- $\lambda \gtrsim 1$ is the characteristic multiplier.
- $h=\log \lambda \ll 1$ is the characteristic exponent.
- $W^{ \pm}$are the stable and unstable invariant curves of the saddle point.

Notations (2/2)

- $m: \mathbb{R} \rightarrow W^{+}$is the natural parameterization of the unstable curve.
- $m_{0}=m\left(r_{0}\right), r_{0}>0$, is the primary symmetric homoclinic point on Fix R.
- $\omega=\left(r_{0}\right)^{2} \Omega\left(\mathrm{~d} R\left(m_{0}\right) m^{\prime}\left(r_{0}\right), m^{\prime}\left(r_{0}\right)\right)$ is the Lazutkin homoclinic invariant.
- $c>0$ is the constant such that $\omega=\mathcal{O}\left(\mathrm{e}^{-c / h}\right)$ as $h \rightarrow 0^{+}$.
- $D=m\left(\left[r_{1} / \lambda, r_{1}\right)\right), 0<r_{1}<r_{0}$, is a fundamental domain of W^{+}.
- $N \approx h^{-1} \log \left(r_{0} / r_{1}\right)=\mathcal{O}(P / K h)$ is the smallest integer such that

$$
f^{N}(D) \cap \operatorname{Fix} R \neq \varnothing
$$

- $\bar{r}_{0} \in\left[r_{1} / \lambda, r_{1}\right)$ is the root of the one-dimensional equation

$$
Z(r):=G\left(f^{N}(m(r))\right)=0 .
$$

First big trick: Don't fix the order

- In order to control the number of iterations $N=\mathcal{O}(P / K h)$, the order K must increase when $h \rightarrow 0^{+}$.
- Orders below hundreds do not serve in edge scenarios. For sample, we shall see that the optimal choice in the Hénon map with $h=0.02$ is $K \approx 100$.
- Therefore, we must find a recursive algorithm to determine the Taylor coefficients up to any given (but arbitrary!) order.
- It is easier to find a good algorithm for maps that have explicit expressions: the Hénon map, the Standard map, polynomial standard maps, perturbed McMillan maps, etc.
- Implicit maps can also be dealt with, although they require more work. For instance, there is a nice algorithm for the billiard maps introduced in the first Lecture.

A sample: the Hénon map

- Let $x(r)=\sum_{k \geq 1} x_{k} r^{k}$ and $y(r)=\sum_{k \geq 1} y_{k} r^{k}$ be the Taylor expansions of the natural parameterization $m(r)=(x(r), y(r))$ of the Hénon map

$$
x_{1}=x+y_{1}, \quad y_{1}=y+\epsilon x(1-x)
$$

- The relation $f(m(r))=m(\lambda r)$ is equivalent to the functional equations

$$
x(\lambda r)-x(r)=y(\lambda r), \quad y(\lambda r)-y(r)=\epsilon x(r)(1-x(r)) .
$$

- We get from relation $x(\lambda r)-(2+\epsilon) x(r)+x(r / \lambda)=-\epsilon x(r)^{2}$ that

$$
d_{k} x_{k}=-\epsilon \sum_{j=1}^{k-1} x_{j} x_{k-j}, \quad \forall k \geq 1
$$

where $d_{k}=\lambda^{k}-(2+\epsilon)+\lambda^{-k}$ and $d_{k}=0 \Leftrightarrow k= \pm 1$.

- Hence, x_{1} is free and we normalize it by taking $x_{1}=1$.
- Next, we can compute recursively x_{k} for all $k \geq 2$.
- Finally, $y(\lambda r)=x(\lambda r)-x(r) \Longrightarrow y_{k}=\left(1-\lambda^{-k}\right) x_{k}$ for any $k \geq 1$.

A couple of little tricks

- Evaluate the Taylor expansions using the Horner's rule.
- The computational effort to perform the convolution

$$
\sum_{j=a}^{b-a} x_{j} x_{b-j}=x_{a} x_{b-a}+x_{a+1} x_{b-a-1}+\cdots+x_{b-a-1} x_{a+1}+x_{b-a} x_{a}
$$

can be reduced by half using the formulae

$$
\sum_{j=a}^{b-a} x_{j} x_{b-j}=\left\{\begin{array}{ll}
2 \sum_{j=a}^{(b-1) / 2} x_{j} x_{b-j} & \text { if } b \text { is odd } \\
2 \sum_{j=a}^{b / 2-1} x_{j} x_{b-j}+\left(x_{b / 2}\right)^{2} & \text { if } b \text { is even }
\end{array} .\right.
$$

Second big trick: Don't fix the precision

- In order to find, with a high precision P, the root of a function $Z:(a, b) \rightarrow \mathbb{R}$ such that $Z(a)$ and $Z(b)$ have opposite signs, we shall apply the following algorithm:

1. Refine the interval (a, b) with some secure method (bisection, Brent's) in "single" precision.
2. Choose some fast iterative method (Newton's, Brent's, Ridders') and increase the precision by a factor equal to its order of convergence after each iteration. For instance, doubling the precision in Newton's method.
3. Stop the iterations when we exceed the given precision P.
4. Don't check the error.

- This method rocks! Really.

A silly trick: Choose the optimal "single" precision

- This previous algorithm can give the root at the cost of just

$$
1+\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+\cdots=\sum_{n \geq 0} 4^{-n}=4 / 3
$$

evaluations of the function $Z(r):=G\left(f^{N}(m(r))\right)$ with precision P.

- The idea is silly, but effective: to determine the optimal "single" precision p from a certain limited range that gives the "final" precision P with the minimum computational effort.
- Example with Newton's method: To reach $P=4000$ from a "single" precision $p \leq 18$, we see that
- $p=18,36,72,144,288,576,1152,2304,4608,9216, \ldots$
- $p=17,34,68,136,272,544,1088,2176,4352,8704, \ldots$
- $p=16,32,64,128,256,512,1024,2048,4096,8192, \ldots$
- $p=15,30,60,120,240,480,960,1920,3840,7680, \ldots$
- Et cetera.

Thus, $p=16$ is the optimal "single" precision and $p=15$ is the worst one.

Where are we now?

- The main numerical difficulties that appear during the study of the singular splitting of our maps are the computation of:
- The map f and its differential with an arbitrary precision P;
- The Taylor expansion of $m(r)$ up to an arbitrary order K; and
- The Lazutkin homoclinic invariant ω with an arbitrary precision Q.
- Clearly, the precision Q is an input of the algorithm.
- On the contrary, P and K must be determined in an automatic way when the computation begins.

The choice of P

- We assume that $\omega=\mathcal{O}\left(\mathrm{e}^{-c / h}\right)$ for some constant $c>0$. For instance, we recall that

map	Hénon	Standard	polynomial	"McMillan"	"Billiard"
c	$2 \pi^{2}$	π^{2}	variable	π^{2}	π^{2}

- Let $S \approx \frac{c}{h \log (10)}$ be the number of digits lost by cancellation.
- For the sake of safety, set $P=1.1(Q+S)$.

The choice of r_{1}

- Let $\bar{m}_{K}(r)=\sum_{k=0}^{K} m_{k} r^{k}$ be the Taylor polynomial of degree K of the natural parameterization $m(r)$ of the unstable curve.
- Once fixed an order $K \geq 1$ and a precision P, we need a parameter $r_{1}>0$, as biggest as possible, such that

$$
\left|m(r)-\bar{m}_{K}(r)\right| \leq 10^{-P}, \quad \forall r \in\left(0, r_{1}\right)
$$

- If the sequence $\left(m_{k}\right)_{k \geq 0}$ is alternate and $\left|m_{k}\right| \leq C \rho^{k}$ for some constants $C, \rho>0$, then it suffices to set r_{1} by means of the relation

$$
C\left(\rho r_{1}\right)^{K+1}=10^{-P} .
$$

- These hypotheses hold for the Hénon map with $C=1$ and $\rho=1 / 5$, so we can set $r_{1}=5 \times 10^{-P /(K+1)}$.
- If the map is entire (as the Hénon map), the coefficients m_{k} decrease asymptotically at a factorial speed. Nevertheless, this factorial behaviour appears only at very high orders and so, it is not so useful.

The choice of K

- The order K is chosen to minimize the computation time.
- In order to determine it, we must construct a function $T=T(k)$ that is proportional to the CPU time, where the variable k runs over the range of possible orders.
- The function $T(k)$ is approximated by a sum of three terms: time to compute the Taylor expansions, time to solve the equation $Z(r)=0$, and time to compute ω.
- For instance, using Newton's method in the Hénon map, we have that

$$
T(k) \approx k^{2} / 4+4 N+3 N \approx k^{2} / 4+7 P \log (10) / k h
$$

because $N \approx h^{-1} \log \left(r_{0} / r_{1}\right)=h^{-1}\left(\log r_{0}-\log 5+P \log (10) /(k+1)\right) \approx$ $h^{-1} P \log (10) /(k+1)$, and so the optimal order is

$$
K \approx \sqrt[3]{14 P \log (10) / h}
$$

On the CPU time for the Hénon map

- How many "products" takes the computation of the Taylor expansion up to order K in the previous Hénon example?
Answer: $K^{2} / 4+\mathcal{O}(K)$, if we use the convolution trick.
- How many "products" takes Newton's method in the Hénon map? Answer: One evaluation of $d f$ requires 3 products, so $4 N=\frac{4}{3} 3 N$ (approximately).
- Once computed the root $\bar{r}_{0} \in\left[r_{1} \lambda, r_{1}\right)$ that gives the homoclinic point: How many "products" takes the computation of ω in the Hénon map? Answer: One evaluation of $\mathrm{d} f$ requires 3 products, so $3 N$ (approximately).
- Problem: Check that, using all the previous (big, little and silly) tricks and assuming that products in our multiple precision arithmetic take a time quadratic in P, the order of the CPU time in the Hénon problem for fixed Q can be reduced to $\mathcal{O}\left(h^{-10 / 3}\right)$ from the original $\mathcal{O}\left(h^{-4}|\log h|\right)$.
- Hard Problem: Improve this algorithm, while keeping the same multiple precision arithmetic.

The general algorithm

Given the characteristic exponent h and the desired precision Q, follow the steps:

1. Compute the number of digits $S \approx \frac{c}{h \log (10)}$ lost by cancellation.
2. Set the precision $P=1.1(Q+S)$, by safety.
3. Choose the order K by minimizing the function $T(k)$.
4. Compute the Taylor expansion $\bar{m}(r)=\sum_{k=0}^{K} m_{k} r^{k}$.
5. Choose the biggest $r_{1}>0$ such that $|m(r)-\bar{m}(r)| \leq 10^{-P}$ for all $r \in\left(0, r_{1}\right)$.
6. Find the smallest integer N such that $f^{N}\left(\bar{m}\left(\left[r_{1} / \lambda, r_{1}\right)\right) \cap\right.$ Fix $R \neq \varnothing$.
7. Find the root \bar{r}_{0} of the equation $G\left(f^{N}(\bar{m}(r))\right)=0$ in the interval $\left[r_{1} / \lambda, r_{1}\right)$.
8. Compute the Lazutkin homoclinic invariant

$$
\begin{aligned}
\omega & =\left(r_{0}\right)^{2} \Omega\left(\mathrm{~d} R\left(m_{0}\right) m^{\prime}\left(r_{0}\right), m^{\prime}\left(r_{0}\right)\right) \\
& \approx\left(\bar{r}_{0}\right)^{2} \Omega\left(\mathrm{~d} R\left(f^{N}\left(\bar{m}\left(\bar{r}_{0}\right)\right)\right) \mathrm{d} f^{N}\left(\bar{m}\left(\bar{r}_{0}\right)\right) \bar{m}^{\prime}\left(\bar{r}_{0}\right), \mathrm{d} f^{N}\left(\bar{m}\left(\bar{r}_{0}\right)\right) \bar{m}^{\prime}\left(\bar{r}_{0}\right)\right) .
\end{aligned}
$$

9. Enjoy! (optional).

Exercises (1/2)

Write the recursions to compute the Taylor expansions of the natural paremeterizations in the following maps (in increasing order of difficulty):

- (DS $\mathcal{E} R R R, 1999)$ The perturbed McMillan map

$$
f(x, y)=\left(y,-x+2 \mu_{0} y /\left(1+y^{2}\right)+\epsilon y^{2 n+1}\right)
$$

for several "small" values of $n \geq 1$.

- (VG $\mathcal{E} C S$, 2007) The polynomial maps $(x, y) \mapsto(x+y+\epsilon p(x), y+\epsilon p(x))$ for several "simple" polynomials or rational functions $p(x)$.
- (CS, 20??) The Standard map $(x, y) \mapsto(x+y+\epsilon \sin x, y+\epsilon \sin x)$.
- ($R R R, 2005$) The billiard maps associated to the perturbed ellipses

$$
C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{y^{2}}{1-e^{2}}+\epsilon(e y)^{2 n}=1\right\}
$$

for several "small" values of $n \geq 2$.

Exercises (2/2)

- Estimate the order of the general algorithm for all of the previous maps.
- Implement this algorithm in some platform (GMP, PARI/GP, real men) for some of the previous maps.
- Write a paper describing and improving the general algorithm and estimate explicitely its cost in terms of the cost of one evaluation of the map and the multiple precision arithmetic used.
- Send me the preprint.

