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Mission statements

I Present the exponentially small splitting problem for analytic
area-preserving maps. [Lecture 1]

I Explain the computational challenges of this problem. [Lecture 1]

I Give some general principles to improve the efficiency of any computation
that requires the use of a multiple precision arithmetic. [Lecture ?]

I Learn how to compute the Lazutkin homoclinic invariant in the general
case. [Lecture 2]

I Implement explicitely the simplest case: the Hénon map. [Lecture 2]
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Notations (1/2)

I M is the bi-dimensional phase space

I Ω is the area form.
I f : M → M is the analytic weakly-hyperbolic area-preserving map.

I R : M → M is the reversor.
I Fix R = {m ∈ M : G(m) = 0} is the symmetry line of the reversor.

I m∞ ∈ M is the saddle point.

I λ & 1 is the characteristic multiplier.

I h = log λ � 1 is the characteristic exponent.

I W± are the stable and unstable invariant curves of the saddle point.
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Notations (2/2)

I m : R → W+ is the natural parameterization of the unstable curve.

I m0 = m(r0), r0 > 0, is the primary symmetric homoclinic point on Fix R.

I ω = (r0)
2Ω

(

dR(m0)m′(r0), m′(r0)
)

is the Lazutkin homoclinic invariant.

I c > 0 is the constant such that ω = O(e−c/h) as h → 0+.

I D = m([r1/λ, r1)), 0 < r1 < r0, is a fundamental domain of W+.

I N ≈ h−1 log(r0/r1) = O(P/Kh) is the smallest integer such that

f N(D) ∩ Fix R 6= ∅.

I r̄0 ∈ [r1/λ, r1) is the root of the one-dimensional equation

Z(r) := G( f N(m(r))) = 0.
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First big trick: Don’t fix the order

I In order to control the number of iterations N = O(P/Kh), the order K
must increase when h → 0+.

I Orders below hundreds do not serve in edge scenarios. For sample, we
shall see that the optimal choice in the Hénon map with h = 0.02 is K ≈ 100.

I Therefore, we must find a recursive algorithm to determine the Taylor
coefficients up to any given (but arbitrary!) order.

I It is easier to find a good algorithm for maps that have explicit expressions:
the Hénon map, the Standard map, polynomial standard maps, perturbed
McMillan maps, etc.

I Implicit maps can also be dealt with, although they require more work. For
instance, there is a nice algorithm for the billiard maps introduced in the
first Lecture.
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A sample: the Hénon map

I Let x(r) = ∑k≥1 xkrk and y(r) = ∑k≥1 ykrk be the Taylor expansions of the
natural parameterization m(r) = (x(r), y(r)) of the Hénon map

x1 = x + y1, y1 = y + εx(1 − x).

I The relation f (m(r)) = m(λr) is equivalent to the functional equations

x(λr) − x(r) = y(λr), y(λr) − y(r) = εx(r)
(

1 − x(r)
)

.

I We get from relation x(λr) − (2 + ε)x(r) + x(r/λ) = −εx(r)2 that

dkxk = −ε∑
k−1
j=1 xjxk−j, ∀k ≥ 1

where dk = λk − (2 + ε) + λ−k and dk = 0 ⇔ k = ±1.
I Hence, x1 is free and we normalize it by taking x1 = 1.

I Next, we can compute recursively xk for all k ≥ 2.

I Finally, y(λr) = x(λr) − x(r) =⇒ yk = (1 − λ−k)xk for any k ≥ 1.
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A couple of little tricks

I Evaluate the Taylor expansions using the Horner’s rule.

I The computational effort to perform the convolution

b−a

∑
j=a

xjxb−j = xaxb−a + xa+1xb−a−1 + · · · + xb−a−1xa+1 + xb−axa

can be reduced by half using the formulae

b−a

∑
j=a

xjxb−j =

{

2 ∑
(b−1)/2
j=a xjxb−j if b is odd

2 ∑
b/2−1
j=a xjxb−j +

(

xb/2
)2 if b is even

.
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Second big trick: Don’t fix the precision

I In order to find, with a high precision P, the root of a function
Z : (a, b) → R such that Z(a) and Z(b) have opposite signs, we shall apply
the following algorithm:
1. Refine the interval (a, b) with some secure method (bisection, Brent’s) in

“single” precision.
2. Choose some fast iterative method (Newton’s, Brent’s, Ridders’) and

increase the precision by a factor equal to its order of convergence after each
iteration. For instance, doubling the precision in Newton’s method.

3. Stop the iterations when we exceed the given precision P.
4. Don’t check the error.

I This method rocks! Really.
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A silly trick: Choose the optimal “single” precision

I This previous algorithm can give the root at the cost of just

1 +
1
4

+
1
16

+
1
64

+ · · · = ∑
n≥0

4−n = 4/3

evaluations of the function Z(r) := G( f N(m(r))) with precision P.

I The idea is silly, but effective: to determine the optimal “single” precision p
from a certain limited range that gives the “final” precision P with the
minimum computational effort.

I Example with Newton’s method: To reach P = 4000 from a “single”
precision p ≤ 18, we see that
• p = 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, . . .
• p = 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 8704, . . .
• p = 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, . . .
• p = 15, 30, 60, 120, 240, 480, 960, 1920, 3840, 7680, . . .
• Et cetera.

Thus, p = 16 is the optimal “single” precision and p = 15 is the worst one.
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Where are we now?

I The main numerical difficulties that appear during the study of the singular
splitting of our maps are the computation of:
• The map f and its differential with an arbitrary precision P;
• The Taylor expansion of m(r) up to an arbitrary order K; and
• The Lazutkin homoclinic invariant ω with an arbitrary precision Q.

I Clearly, the precision Q is an input of the algorithm.

I On the contrary, P and K must be determined in an automatic way when
the computation begins.
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The choice of P

I We assume that ω = O(e−c/h) for some constant c > 0. For instance, we
recall that

map Hénon Standard polynomial “McMillan” “Billiard”
c 2π2 π2 variable π2 π2

I Let S ≈ c
h log(10)

be the number of digits lost by cancellation.

I For the sake of safety, set P = 1.1(Q + S).
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The choice of r1

I Let m̄K(r) = ∑
K
k=0 mkrk be the Taylor polynomial of degree K of the natural

parameterization m(r) of the unstable curve.

I Once fixed an order K ≥ 1 and a precision P, we need a parameter r1 > 0, as
biggest as possible, such that

|m(r) − m̄K(r)| ≤ 10−P, ∀r ∈ (0, r1).

I If the sequence (mk)k≥0 is alternate and |mk| ≤ Cρk for some constants
C, ρ > 0, then it suffices to set r1 by means of the relation

C(ρr1)
K+1 = 10−P.

I These hypotheses hold for the Hénon map with C = 1 and ρ = 1/5, so we
can set r1 = 5 × 10−P/(K+1).

I If the map is entire (as the Hénon map), the coefficients mk decrease
asymptotically at a factorial speed. Nevertheless, this factorial behaviour
appears only at very high orders and so, it is not so useful.
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The choice of K

I The order K is chosen to minimize the computation time.

I In order to determine it, we must construct a function T = T(k) that is
proportional to the CPU time, where the variable k runs over the range of
possible orders.

I The function T(k) is approximated by a sum of three terms: time to
compute the Taylor expansions, time to solve the equation Z(r) = 0, and
time to compute ω.

I For instance, using Newton’s method in the Hénon map, we have that

T(k) ≈ k2/4 + 4N + 3N ≈ k2/4 + 7P log(10)/kh

because N ≈ h−1 log(r0/r1) = h−1(log r0 − log 5 + P log(10)/(k + 1)) ≈

h−1P log(10)/(k + 1), and so the optimal order is

K ≈ 3
√

14P log(10)/h.
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On the CPU time for the Hénon map

I How many “products” takes the computation of the Taylor expansion up to
order K in the previous Hénon example?
Answer: K2/4 + O(K), if we use the convolution trick.

I How many “products” takes Newton’s method in the Hénon map?
Answer: One evaluation of d f requires 3 products, so 4N = 4

3 3N
(approximately).

I Once computed the root r̄0 ∈ [r1λ, r1) that gives the homoclinic point: How
many “products” takes the computation of ω in the Hénon map?
Answer: One evaluation of d f requires 3 products, so 3N (approximately).

I Problem: Check that, using all the previous (big, little and silly) tricks and
assuming that products in our multiple precision arithmetic take a time
quadratic in P, the order of the CPU time in the Hénon problem for fixed Q
can be reduced to O

(

h−10/3) from the original O
(

h−4| log h|
)

.

I Hard Problem: Improve this algorithm, while keeping the same multiple
precision arithmetic.
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The general algorithm

Given the characteristic exponent h and the desired precision Q, follow the steps:

1. Compute the number of digits S ≈ c
h log(10)

lost by cancellation.

2. Set the precision P = 1.1(Q + S), by safety.

3. Choose the order K by minimizing the function T(k).

4. Compute the Taylor expansion m̄(r) = ∑
K
k=0 mkrk.

5. Choose the biggest r1 > 0 such that |m(r) − m̄(r)| ≤ 10−P for all r ∈ (0, r1).

6. Find the smallest integer N such that f N(m̄([r1/λ, r1)) ∩ Fix R 6= ∅.

7. Find the root r̄0 of the equation G( f N(m̄(r))) = 0 in the interval [r1/λ, r1).

8. Compute the Lazutkin homoclinic invariant

ω = (r0)
2Ω

(

dR(m0)m′(r0), m′(r0)
)

≈ (r̄0)
2Ω

(

dR( f N(m̄(r̄0)))d f N(m̄(r̄0))m̄′(r̄0), d f N(m̄(r̄0))m̄′(r̄0)
)

.

9. Enjoy! (optional).
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Exercises (1/2)

Write the recursions to compute the Taylor expansions of the natural
paremeterizations in the following maps (in increasing order of difficulty):

I (DS & RRR, 1999) The perturbed McMillan map

f (x, y) =
(

y,−x + 2µ0y/(1 + y2) + εy2n+1
)

for several “small” values of n ≥ 1.
I (VG & CS, 2007) The polynomial maps (x, y) 7→ (x + y + εp(x), y + εp(x))

for several “simple” polynomials or rational functions p(x).

I (CS, 20??) The Standard map (x, y) 7→ (x + y + ε sin x, y + ε sin x).

I (RRR, 2005) The billiard maps associated to the perturbed ellipses

C =

{

(x, y) ∈ R
2 : x2 +

y2

1 − e2 + ε(ey)2n = 1
}

for several “small” values of n ≥ 2.
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Exercises (2/2)

I Estimate the order of the general algorithm for all of the previous maps.

I Implement this algorithm in some platform (GMP, PARI/GP, real men) for
some of the previous maps.

I Write a paper describing and improving the general algorithm and estimate
explicitely its cost in terms of the cost of one evaluation of the map and the
multiple precision arithmetic used.

I Send me the preprint.

Advanced School on Specific Algebraic Manipulators, Barcelona, September 12–15, 2007 – p. 17/17


	Mission statements
	Notations (1/2)
	Notations (2/2)
	First big trick: Don't fix the order
	A sample: the H'enon map
	A couple of little tricks
	Second big trick: Don't fix the precision
	A silly trick: Choose the optimal ``single'' precision
	Where are we now?
	The choice of $P$
	The choice of $r_1$
	The choice of $K$
	On the CPU time for the H'enon map
	The general algorithm
	Exercises (1/2)
	Exercises (2/2)

