Multiple precision computation of exponentially small splittings (Lecture 1)

Rafael Ramírez-Ros

(Available at http://www.mal.upc.edu/~rafael/research.html)

Rafael.Ramirez@upc.edu

Universitat Politècnica de Catalunya

Mission statements

- Present the exponentially small splitting problem for analytic area-preserving maps. [Lecture 1]
- Explain the computational challenges of this problem. [Lecture 1]
- ► Give some general principles to improve the efficiency of any computation that requires the use of a multiple precision arithmetic. [Lecture ?]
- ► Learn how to compute the Lazutkin homoclinic invariant in the general case. [Lecture 2]
- ▶ Implement explicitely the simplest case: the Hénon map. [Lecture 2]

Basic definitions (1/2)

- A surface *M* is *symplectic* when it has a non-degenerate two-form Ω. The simplest example is $M = \mathbb{R}^2$ and $\Omega = dx \wedge dy$.
- ▶ A map $f: M \to M$ is area-preserving when $f^*\Omega = \Omega$.
- ► Classical examples of area-preserving maps are the *standard maps*

$$f(x,y) = (x_1 = x + y_1, y_1 = y + \epsilon p(x)), \qquad \epsilon > 0$$

where p(x) is a polynomial, trigonometric polynomial or rational function.

- A point $m_{\infty} \in \mathbb{R}^2$ is a *saddle point* of f when it is *fixed*: $f(m_{\infty}) = m_{\infty}$ and *hyperbolic*: $\operatorname{spec}[\operatorname{d} f(m_{\infty})] = \{\lambda, \lambda^{-1}\}$ with $|\lambda| > 1$.
- ightharpoonup We assume that the *characteristic multiplier* λ is bigger than one.
- ▶ The *stable* and *unstable invariant curves* of the saddle point are

$$W^{\pm} = W^{\pm}(m_{\infty}) = \left\{ m \in \mathbb{R}^2 : \lim_{n \to \mp \infty} f^n(m) = m_{\infty} \right\}.$$

(Note: Minus sign means stable curve, plus sign means unstable curve.)

Basic definitions (2/2)

▶ If the map is analytic, its invariant curves are analytic and there exists some analytic *natural parameterizations* $m_{\pm} : \mathbb{R} \to W^{\pm}$ such that $m_{\pm}(0) = m_{\infty}$ and

$$f(m_{\pm}(r)) = m_{\pm}(\lambda^{\pm 1}r).$$

They are uniquely defined up to substitutions of the form $r \mapsto cr$ with $c \neq 0$.

- ► Given any $r_1 > 0$, $D_{\pm} = m_{\pm}([\lambda^{-1}r_1, r_1))$ is a fundamental domain of W^{\pm} . The iterations $\{f^n(D_{\pm}) : n \in \mathbb{Z}\}$ cover the "positive" branch of W^{\pm} .
- ▶ An orbit $O = (m_n)_{n \in \mathbb{Z}}$ is homoclinic to m_∞ when $\lim_{n \to \pm \infty} m_n = m_\infty$.
- ▶ The *Lazutkin homoclinic invariant* of a homoclinic point m_0 is the quantity

$$\omega = \omega(m_0) := r_- r_+ \Omega(m'_-(r_-), m'_+(r_+)).$$

where $r_{\pm} \in \mathbb{R}$ are the parameters such that $m_{\pm}(r_{\pm}) = m_0$. It does not depend on the point of the homoclinic orbit: $\omega(m_n) = \omega(m_0)$ for all n, so that we can write $\omega = \omega(O)$. It is invariant by symplectic changes of variables and is proportional to the splitting angle.

Reversors

In general, the search of homoclinic points of planar maps is a two-dimensional problem, but in some symmetric cases. For instance, in the reversible case.

- ▶ A diffeomorphism $f: M \to M$ is *reversible* when there exists a diffeomorphism $R: M \to M$ such that $f \circ R = R \circ f^{-1}$, and then R is called a *reversor* of the map. Usually, R is an involution: $R^2 = I$.
- ▶ If R is a reversor, the points in Fix $R = \{m \in M : R(m) = m\}$ are *symmetric*. Usually, Fix R is a smooth curve and then it is called a *symmetry line*.
- Let f be a R-reversible diffeomorphism with a saddle point $m_{\infty} \in Fix R$. Let m be a natural parameterization of its unstable invariant curve W^+ . Then:
 - $R \circ m$ is a natural parameterization of the stable invariant curve W^- .
 - If $m_0 = m(r_0) \in \text{Fix } R$, then m_0 is a (symmetric) homoclinic point whose Lazutkin homoclinic invariant is

$$\omega(m_0) = (r_0)^2 \Omega(dR(m_0)m'(r_0), m'(r_0)).$$

• To find r_0 , it suffices to solve the one-dimensional problem $m(r) \in Fix R$.

An exponentially small upper bound

- ➤ We shall deal with maps whose stable and unstable invariant curves are exponentially close with respect to some small parameter.
- In order to derive simple expressions, the best parameter is the *characteristic* exponent of the saddle point: $h = \ln \lambda > 0$.
- ▶ (Fontich & Simó) Let $f_h : \mathbb{R}^2 \to \mathbb{R}^2$, h > 0, be a diffeomorphism such that:
 - It is area-preserving and analytic in a big enough complex region;
 - It is O(h)-close to the identity map;
 - The origin is a saddle point of f_h ;
 - Its characteristic exponent at the origin is *h*; and
 - It has a homoclinic orbit to the origin for small enough *h*.

Then, there exists $d_* > 0$ such that:

splitting size
$$\leq \mathcal{O}(e^{-2\pi d/h})$$
 $(h \to 0^+)$

for any $d \in (0, d_*)$. Besides, d_* is the analyticity width of the separatrix of certain limit Hamiltonian flow. Sometimes, it can be analytically computed.

The Standard map

► The first example is the *Standard map*

$$SM: \mathbb{T}^2 \to \mathbb{T}^2$$
, $SM(x,y) = (x+y+\epsilon\sin x, y+\epsilon\sin x)$.

- ▶ If $\epsilon > 0$, the origin is hyperbolic and $\epsilon = 4 \sinh^2(h/2)$.
- ► The map $R(x,y) = (2\pi x, y + \epsilon \sin x)$ is a reversor, and Fix $R = \{x = \pi\}$.
- ▶ (Gelfreich) Let ω be the Lazutkin homoclinic invariant of the symmetric homoclinic orbit passing through the first intersection of W^+ with Fix R. Then

$$\omega \approx 4\pi h^{-2} \mathrm{e}^{-\pi^2/h} \sum_{j\geq 0} \omega_j h^{2j} \qquad (h \to 0^+).$$

This asymptotic expansion was proved using an approach suggested by Lazutkin.

- ▶ The first asymptotic coefficient $\omega_0 \approx 1118.827706$ is the *Lazutkin constant*.
- ► Simó conjectured that the series $\sum_{j\geq 0} \omega_j h^{2j}$ is Gevrey-1 of type $1/2\pi^2$.

The Hénon map

The second example is the Hénon map

$$HM: \mathbb{R}^2 \to \mathbb{R}^2$$
, $HM(x,y) = (x+y+\epsilon x(1-x), y+\epsilon x(1-x))$.

- ▶ If $\epsilon > 0$, the origin is hyperbolic and $\epsilon = 4 \sinh^2(h/2)$.
- ▶ The map R(x,y) = (x y, -y) is a reversor, and Fix $R = \{y = 0\}$.
- Let ω be the Lazutkin homoclinic invariant of the symmetric homoclinic orbit passing through the first intersection of W^+ with Fix R. Then

$$\omega \approx 4\pi h^{-6} e^{-2\pi^2/h} \sum_{j\geq 0} \omega_j h^{2j} \qquad (h \to 0^+).$$

I do not know any complete proof of this asymptotic expansion.

- The first coefficient $\omega_0 \approx 2474425.5935525$ was "approximated" by Chernov and "computed" by Simó. Gelfreich & Sauzin proved that $\omega_0 \neq 0$.
- ► Gelfreich & Simó conjectured that $\sum_{j>0} \omega_j h^{2j}$ is Gevrey-1 of type $1/2\pi^2$.

Polynomial standard maps

The Hénon map is a particular case of the *polynomial standard maps*

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (x+y+\epsilon p(x), y+\epsilon p(x))$

for some polynomial $p(x) = \sum_{k=1}^{n} p_k x^k$ such that $p_1 = 1$ and $p_n < 0$.

- ▶ If $\epsilon > 0$, the origin is hyperbolic and $\epsilon = 4 \sinh^2(h/2)$.
- ► The map R(x,y) = (x y, -y) is a reversor, and Fix $R = \{y = 0\}$.
- Let ω be the Lazutkin invariant of the primary symmetric homoclinic orbit associated to the reversor R. Gelfreich & Simó conjectured that:
 - The expansion $\omega \simeq e^{-c/h} \sum_{k \geq k_0} c_k h^k$ does not hold for most p(x).
 - There exist alternative asymptotic expansions with logarithmic terms and/or rational powers of h.
 - Sometimes, the series involved in these expansions are Gevrey-1.
 - If $n \ge 4$, ω can oscillate periodically in h^{-1} . If $n \ge 6$, the oscillations can be quasi-periodic.

Perturbed weakly hyperbolic integrable maps (1/2)

The perturbed McMillan maps are

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \qquad f(x,y) = (y, -x + 2\mu_0 y / (1 + y^2) + \epsilon V'(y))$$

where $\epsilon V'(y)$ is an odd entire perturbation.

- ▶ If $\mu = \mu_0 + \epsilon V''(0) > 1$, the origin is hyperbolic and $\cosh h = \mu$.
- ▶ The map R(x,y) = (y,x) is a reversor, and Fix $R = \{y = x\}$.
- ▶ (Delshams & RRR) Let ω be the Lazutkin homoclinic invariant of the symmetric homoclinic orbit passing through the first intersection of W^+ with Fix R. Let $\widehat{V}(\xi)$ be the Borel transform of V(y). Then, for any p > 6,

$$\omega = 16\pi^3 \epsilon h^{-2} e^{-\pi^2/h} (\widehat{V}(2\pi) + \mathcal{O}(h^2)) \qquad (\epsilon = \mathcal{O}(h^p), \ h \to 0^+).$$

- ► We conjectured that $\omega \approx 16\pi^3 \epsilon h^{-2} e^{-\pi^2/h} \sum_{j\geq 0} \omega_j(\epsilon) h^{2j}$ as $h \to 0^+$ (ϵ fixed).
- ▶ We also conjectured that the series $\sum_{j\geq 0} \omega_j(\epsilon) h^{2j}$ is Gevrey-1 of type $1/2\pi^2$.

Perturbed weakly hyperbolic integrable maps (2/2)

Let $f: \mathbb{T} \times (0, \pi) \to \mathbb{T} \times (0, \pi)$ be the area-preserving map that models the *billiard motion* inside the perturbed ellipses

$$C = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + \frac{y^2}{1 - e^2} + \epsilon(ey)^{2n} = 1 \right\}.$$

Here, $e \in (0,1)$ is the *eccentricity* of the unperturbed ellipse, ϵ is the *perturbative parameter*, and 2n is the degree of the perturbation.

- ▶ The map has a two-periodic hyperbolic orbit such that $e = \tanh(h/2)$.
- ▶ The map is reversible, due to the axial symmetries of the curves.
- ▶ RRR conjectured that the Lazutkin invariant of the corresponding symmetric heteroclinic orbit verifies the asymptotic expansion

$$\omega \approx 2\pi^2 h^{-2} \epsilon e^{-\pi^2/h} \sum_{j\geq 0} \omega_j(\epsilon) h^{2j} \qquad (h \to 0^+, \epsilon \text{ fixed})$$

and the series $\sum_{j>0} \omega_j(\epsilon) h^{2j}$ is Gevrey-1 of type $1/2\pi^2$.

First numerical problem: slow dynamics

- Let f be a R-reversible area-preserving map with a saddle point m_{∞} whose unstable curve intersects the symmetry line Fix R.
- ▶ Let m(r) be a natural parameterization of the unstable invariant curve W^+ .
- Let $r_0 > 0$ be the first positive parameter such that $m_0 = m(r_0) \in \text{Fix } R$.
- \triangleright To find numerically m_0 , we solve the one-dimensional equation

$$f^N(m(r)) \in \operatorname{Fix} R, \qquad \lambda^{-1} r_1 \le r < r_1$$

where:

- The fundamental domain $D = m([\lambda^{-1}r_1, r_1))$ must be chosen in such a way that the natural parameterization m(r) can be computed with a given precision P for any $r \in (0, r_1)$. [precision P means error $\leq 10^{-P}$.]
- *N* is the smallest integer such that $f^N(D) \cap \text{Fix } R \neq \emptyset$. Thus,

$$N \approx \frac{\log(r_0/r_1)}{h}$$
.

Second numerical problem: cancellations (1/2)

- ▶ Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a map preserving the standard area $\Omega = dx \wedge dy$.
- Let $m_{\pm}: \mathbb{R} \to W^{\pm}$ be some natural parameterizations of the stable and unstable invariant curves.
- ▶ Let $r_{\pm} \in \mathbb{R}$ be parameters such that $m_{+}(r_{+}) = m_{0} = m_{-}(r_{-})$.
- Let $m'_{\pm} = (x'_{\pm}, y'_{\pm}) = m'(r_{\pm}).$
- ► If the Lazutkin homoclinic invariant

$$\omega = \omega(m_0) = r_- r_+ \Omega(m'_-, m'_+) = r_- r_+ (x'_- y'_+ - x'_+ y'_-)$$

is exponentially small in h, then the invariants $\omega_+ := r_- r_+ x'_- y'_+$ and $\omega_- := r_- r_+ x'_+ y'_-$ are exponentially close in h. Thus, the computation of their difference $\omega = \omega_+ - \omega_-$ produces a *big cancellation* of significant digits, even for moderate values of h.

Second numerical problem: cancellations (2/2)

For sample, if h = 1/7, then

$$\omega_{+} \approx -0.0057989651489715957915620990323109816836394888269378$$

$$\omega_{-} \approx -0.0057989651489715957915620990323109816836394888305137$$

for the primary homoclinic point of Hénon map on the *x*-axis.

▶ Therefore, 44 decimal digits are lost when we compute the difference

$$\omega = \omega_{+} - \omega_{-} \approx 3.5759 \times 10^{-48}$$
.

- ► The above computation is beyond single, double, and quadruple precisions. The use of a multiple precision arithmetic (MPA) is mandatory.
- In general, if we "know" that $\omega \approx e^{-c/h}$, then the number of decimal digits lost by the cancellation in the differences is approximately equal to

$$S = S(h) = \frac{c}{h \log(10)} = \mathcal{O}(1/h).$$

These problems are a bad combination

Let $\bar{m}(r)$ be our numerical approximation to the parameterization m(r). Assume that, if r is small enough, we have a bound for the error of the form

$$|m(r) - \bar{m}(r)| \le Cr^K$$

for some constant C > 0 and some fixed order $K \ge 1$.

- ▶ Problem 2 implies that we must work with precision $P \ge S = \mathcal{O}(1/h)$.
- ▶ Then, we must choose $r_1 > 0$ such that

$$|m(r_1) - \bar{m}(r_1)| \le C(r_1)^K \le 10^{-P}$$
.

That is, $r_1 = \mathcal{O}(10^{-P/K})$, and so: $-\log r_1 = \mathcal{O}(P/K) = \mathcal{O}(1/h)$.

- ▶ Besides, r_0 tends to some non-zero value as $h \to 0^+$.
- Finally, Problem 1 implies that, if *K* is fixed, then the number of iterations is

$$N \approx \frac{\log(r_0/r_1)}{h} = \mathcal{O}(P/Kh) = \mathcal{O}(1/h^2).$$

And that's not all, folks!

- ▶ If we fix the order K of the error in the computation of m(r), then the number of iterations is $N = \mathcal{O}(1/h^2)$. One could think that a quadratic increase in the number of operations is not very dramatic, but stay tuned!
- ▶ Besides, the precision P = O(1/h) also grows. We assume that the cost of one product is quadratic in P. Other operations like the evaluation of transcendental functions are worse.
- ► (There exist asymptotically faster implementations of MPAs (for instance, using the Karatsuba multiplication), but they become useful only for extremely high values of *P*.)
- ▶ Finally, the number of iterations to solve a nonlinear equation with precision *P* by any standard iterative method (Newton's, Brent's, Ridders', etc.) grows logarithmically in *P*.
- ► Hence, the CPU time to solve the one-dimensional equation $f^N(m(r)) \in \text{Fix } R$ is at least $\mathcal{O}(N \times P^2 \times \log(P)) = \mathcal{O}(h^{-4}|\log h|)$. Bad.

Promises, promises, ...

- We shall explain in the next lecture how to deal with these numerical problems.
- ▶ For instance, we shall describe some (big, little and silly) tricks that give rise to an algorithm that takes an $\mathcal{O}(h^{-10/3})$ time to compute the Lazutkin homoclinic invariant for the Hénon map.
- ▶ Besides, we shall show a GP-program to compute this Lazutkin homoclinic invariant with generates the following benchmarks:

(Times for an old desktop: CPU = Intel Pentium 4 (3.40GHz), RAM = 2 Gb.)

► *Pendent check:* Almost any GP-program can run faster simply by using a GP-to-C compiler called gp2c.

The principles of multiple precision computation

- ► Time is money.
- Empty your mind.
- Search & compare.
- Don't be too obsessive.
- ▶ Don't be too transcendental.
- Sometimes, be rational.

Time is money

Current best price: 100\$ per GFLOP. Explanations are unnecessary.^a

^a"Nowadays people know the price of everything and the value of nothing", Oscar Wilde (The Picture of Dorian Gray, 1891)

Empty your mind

- ► There are some principles that are good for single precision arithmetic, but a disaster in MPA.
- ▶ You must think carefully about how the MPA affects your algorithm.
- Example of bad principle: "A product is more expensive that a sum, but not MUCH more." This is clearly false in MPA. We are talking about different orders of complexity.
- Example of good idea: Complex multiplication can be reduced to a sequence of ordinary operations on real numbers, but there are two ways:
 - Using 4 real multiplications and 2 real additions:

$$(a+bi)\times(c+di)=(ac-bd)+(ad+bc)i.$$

- Using 3 real multiplications and 5 real additions.
- We shall choose the second one.
- Exercise: Find the formula for the second way.

Search & compare

- Try several different methods and compare them. First and/or lazy choices are usually not the best ones.
- ► Example: To solve the nonlinear one-dimensional equation to compute the primary homoclinic point of the Hénon map, I compared the following possibilities: Newton's method, Ridders's method, secant method, and the GP-routine solve.

The last one was my first try, but it was the worse one.

Newton's method was the best choice.

Don't be too obsessive

- ➤ *First Rule:* If at some moment, you have to work a couple of (human) days to win a couple of (CPU) seconds, something is wrong.
- Second Rule: Don't forget the First Rule.

Don't be too transcendental

Transcendental operations must be avoided as much as possible. I have used the following tricks in several splitting problems:

- Working with the Hénon map: If $\lambda = e^h$ and $\epsilon = 4 \sinh^2(h/2)$, then $\epsilon = \lambda 2 + \lambda^{-1}$.
- ▶ Computing the lobe area of some perturbed McMillan maps:

$$\sum_{n=1}^{N} \log(x_n) = \log \left(\prod_{n=1}^{N} x_n \right).$$

Computing Melnikov functions of some volume-preserving maps: If $r = e^t$, $\lambda = e^h$, and $\mu = e^{\omega i}$, then

$$E(t) := \sum_{k \in \mathbb{Z}} \frac{\cos(\omega k)}{\cosh(t + kh)} = \sum_{k \in \mathbb{Z}} \frac{\mu^k + \mu^{-k}}{\lambda^k r^2 + \lambda^{-k}} r.$$

Sometimes, be rational

If we are working with a MPA, rational numbers have two good properties:

► They are *usually cheap*. A rational × real product is peccadillo with respect to a real × real one when the numerator and denominator are not very high integers.

Example: If we perform an heuristic study on some "continuous" property for the Hénon map

$$(x,y) \mapsto (x+y+\epsilon x(1-x),y+\epsilon x(1-x))$$

in the range $\epsilon \in (a, b)$ that requires the computation of many iterates with a very high precision, take $\epsilon \in (a, b) \cap \mathbb{Q}$.

► They are *absolutely exact*. For instance, they are not affected by changes in the precision and they can not be the weak link in any computation.

Bibliography

The following works contain multiple precision computations related to exponentially small phenomena in analytic area-preserving maps.

- 1. E Fontich and C Simó 1990 The splitting of separatrices for analytic diffeomorphisms *Ergodic Theory Dynam*. *Systems* **10** 295–318
- 2. B Fiedler and J Scheurle 1996 Discretization of homoclinic orbits, rapid forcing and "invisible" chaos *Mem. Amer. Math. Soc.* **119**
- 3. A Delshams and R Ramírez-Ros 1999 Singular separatrix splitting and the Melnikov method: An experimental study *Exp. Math.* **8** 29–48
- 4. R Ramírez-Ros 2005 Exponentially small separatrix splittings and almost invisible homoclinic bifurcations in some billiard tables *Phys. D* **210** 149–179.
- 5. V G Gelfreich and C Simó 2007 High-precision computations of divergent asymptotic series and homoclinic phenomena (To appear in *DCDS*)
- 6. R Ramírez-Ros 2008 On the length spectrum of analytic convex curves (In progress)
- 7. O Larreal's thesis (In progress)

Software options

There are several choices to carry out a multiple precision computation.

- ► *Hand-made.* Write your own implementation starting from scratch. It is a hard and long way, but it is highly educative. It can be useful to read the Knuth's book about this subject. The choice of real men. ^a
- Commercial packages (Mapple, Mathematica,...). I don't like this option ^b, but as a first approach or for some toy problems.
- ▶ PARI/GP (http://pari.math.u-bordeaux.fr/). A free computer algebra system designed for fast computations in number theory. It can be used as a C library (called PARI) or in a interactive shell (called gp) giving access to the PARI functions. The second one is my current choice, because it provides a readable code^c
- ► *GMP* (http://gmplib.org/). A free library for arbitrary precision arithmetic. It is the fastest option (with my apologies to real men).

^a"Write your own programs, be a man", Carles Simó (s'Agaró, June 2nd 2006)

b"Software is like sex: it's better when it's free", Linus Torvalds

^c"You're brilliant, but you'd like to understand what you did 2 weeks from now", Torvalds