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Mission statements

I Present the exponentially small splitting problem for analytic
area-preserving maps. [Lecture 1]

I Explain the computational challenges of this problem. [Lecture 1]

I Give some general principles to improve the efficiency of any computation
that requires the use of a multiple precision arithmetic. [Lecture ?]

I Learn how to compute the Lazutkin homoclinic invariant in the general
case. [Lecture 2]

I Implement explicitely the simplest case: the Hénon map. [Lecture 2]
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Basic definitions (1/2)

I A surface M is symplectic when it has a non-degenerate two-form Ω. The
simplest example is M = R2 and Ω = dx ∧ dy.

I A map f : M → M is area-preserving when f ∗Ω = Ω.

I Classical examples of area-preserving maps are the standard maps

f (x, y) = (x1 = x + y1, y1 = y + εp(x)), ε > 0

where p(x) is a polynomial, trigonometric polynomial or rational function.

I A point m∞ ∈ R2 is a saddle point of f when it is fixed: f (m∞) = m∞ and
hyperbolic: spec[d f (m∞)] = {λ, λ−1} with |λ| > 1.

I We assume that the characteristic multiplier λ is bigger than one.

I The stable and unstable invariant curves of the saddle point are

W± = W±(m∞) =
{

m ∈ R2 : limn→∓∞ f n(m) = m∞

}
.

(Note: Minus sign means stable curve, plus sign means unstable curve.)
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Basic definitions (2/2)

I If the map is analytic, its invariant curves are analytic and there exists some
analytic natural parameterizations m± : R → W± such that m±(0) = m∞ and

f (m±(r)) = m±(λ±1r).

They are uniquely defined up to substitutions of the form r 7→ cr with c 6= 0.

I Given any r1 > 0, D± = m±([λ−1r1, r1)) is a fundamental domain of W±. The
iterations { f n(D±) : n ∈ Z} cover the “positive” branch of W±.

I An orbit O = (mn)n∈Z is homoclinic to m∞ when limn→±∞ mn = m∞.
I The Lazutkin homoclinic invariant of a homoclinic point m0 is the quantity

ω = ω(m0) := r−r+Ω
(
m′

−(r−), m′
+(r+)

)
.

where r± ∈ R are the parameters such that m±(r±) = m0. It does not
depend on the point of the homoclinic orbit: ω(mn) = ω(m0) for all n, so
that we can write ω = ω(O). It is invariant by symplectic changes of
variables and is proportional to the splitting angle.
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Reversors

In general, the search of homoclinic points of planar maps is a two-dimensional
problem, but in some symmetric cases. For instance, in the reversible case.

I A diffeomorphism f : M → M is reversible when there exists a
diffeomorphism R : M → M such that f ◦ R = R ◦ f −1, and then R is called
a reversor of the map. Usually, R is an involution: R2 = I.

I If R is a reversor, the points in Fix R = {m ∈ M : R(m) = m} are symmetric.
Usually, Fix R is a smooth curve and then it is called a symmetry line.

I Let f be a R-reversible diffeomorphism with a saddle point m∞ ∈ Fix R. Let
m be a natural parameterization of its unstable invariant curve W+. Then:
• R ◦ m is a natural parameterization of the stable invariant curve W−.
• If m0 = m(r0) ∈ Fix R, then m0 is a (symmetric) homoclinic point whose

Lazutkin homoclinic invariant is

ω(m0) = (r0)
2Ω

(
dR(m0)m′(r0), m′(r0)

)
.

• To find r0, it suffices to solve the one-dimensional problem m(r) ∈ Fix R.
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An exponentially small upper bound

I We shall deal with maps whose stable and unstable invariant curves are
exponentially close with respect to some small parameter.

I In order to derive simple expressions, the best parameter is the characteristic
exponent of the saddle point: h = ln λ > 0.

I (Fontich & Simó) Let fh : R2 → R2, h > 0, be a diffeomorphism such that:
• It is area-preserving and analytic in a big enough complex region;
• It is O(h)-close to the identity map;
• The origin is a saddle point of fh;
• Its characteristic exponent at the origin is h; and
• It has a homoclinic orbit to the origin for small enough h.

Then, there exists d∗ > 0 such that:

splitting size ≤ O(e−2πd/h) (h → 0+)

for any d ∈ (0, d∗). Besides, d∗ is the analyticity width of the separatrix of
certain limit Hamiltonian flow. Sometimes, it can be analytically computed.
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The Standard map

I The first example is the Standard map

SM : T2 → T2, SM(x, y) = (x + y + ε sin x, y + ε sin x).

I If ε > 0, the origin is hyperbolic and ε = 4 sinh2(h/2).

I The map R(x, y) = (2π − x, y + ε sin x) is a reversor, and Fix R = {x = π}.

I (Gelfreich) Let ω be the Lazutkin homoclinic invariant of the symmetric
homoclinic orbit passing through the first intersection of W+ with Fix R.
Then

ω � 4πh−2e−π2/h ∑
j≥0

ωjh2j (h → 0+).

This asymptotic expansion was proved using an approach suggested by
Lazutkin.

I The first asymptotic coefficient ω0 ≈ 1118.827706 is the Lazutkin constant.

I Simó conjectured that the series ∑j≥0 ωjh2j is Gevrey-1 of type 1/2π2.
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The Hénon map

I The second example is the Hénon map

HM : R2 → R2, HM(x, y) =
(

x + y + εx(1 − x), y + εx(1 − x)
)
.

I If ε > 0, the origin is hyperbolic and ε = 4 sinh2(h/2).

I The map R(x, y) = (x − y,−y) is a reversor, and Fix R = {y = 0}.

I Let ω be the Lazutkin homoclinic invariant of the symmetric homoclinic
orbit passing through the first intersection of W+ with Fix R. Then

ω � 4πh−6e−2π2/h ∑
j≥0

ωjh2j (h → 0+).

I do not know any complete proof of this asymptotic expansion.

I The first coefficient ω0 ≈ 2474425.5935525 was “approximated” by Chernov
and “computed” by Simó. Gelfreich & Sauzin proved that ω0 6= 0.

I Gelfreich & Simó conjectured that ∑j≥0 ωjh2j is Gevrey-1 of type 1/2π2.
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Polynomial standard maps

I The Hénon map is a particular case of the polynomial standard maps

f : R2 → R2, f (x, y) = (x + y + εp(x), y + εp(x))

for some polynomial p(x) = ∑
n
k=1 pkxk such that p1 = 1 and pn < 0.

I If ε > 0, the origin is hyperbolic and ε = 4 sinh2(h/2).

I The map R(x, y) = (x − y,−y) is a reversor, and Fix R = {y = 0}.

I Let ω be the Lazutkin invariant of the primary symmetric homoclinic orbit
associated to the reversor R. Gelfreich & Simó conjectured that:

• The expansion ω � e−c/h ∑k≥k0
ckhk does not hold for most p(x).

• There exist alternative asymptotic expansions with logarithmic terms
and/or rational powers of h.

• Sometimes, the series involved in these expansions are Gevrey-1.

• If n ≥ 4, ω can oscillate periodically in h−1. If n ≥ 6, the oscillations can
be quasi-periodic.
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Perturbed weakly hyperbolic integrable maps (1/2)

I The perturbed McMillan maps are

f : R2 → R2, f (x, y) =
(

y,−x + 2µ0y/(1 + y2) + εV ′(y)
)

where εV ′(y) is an odd entire perturbation.

I If µ = µ0 + εV ′′(0) > 1, the origin is hyperbolic and cosh h = µ.

I The map R(x, y) = (y, x) is a reversor, and Fix R = {y = x}.

I (Delshams & RRR) Let ω be the Lazutkin homoclinic invariant of the
symmetric homoclinic orbit passing through the first intersection of W+

with Fix R. Let V̂(ξ) be the Borel transform of V(y). Then, for any p > 6,

ω = 16π3εh−2e−π2/h(V̂(2π) + O(h2)
)

(ε = O(hp), h → 0+).

I We conjectured that ω � 16π3εh−2e−π2/h ∑j≥0 ωj(ε)h2j as h → 0+ (ε fixed).

I We also conjectured that the series ∑j≥0 ωj(ε)h2j is Gevrey-1 of type 1/2π2.
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Perturbed weakly hyperbolic integrable maps (2/2)

I Let f : T × (0, π) → T × (0, π) be the area-preserving map that models the
billiard motion inside the perturbed ellipses

C =

{
(x, y) ∈ R2 : x2 +

y2

1 − e2 + ε(ey)2n = 1
}

.

Here, e ∈ (0, 1) is the eccentricity of the unperturbed ellipse, ε is the
perturbative parameter, and 2n is the degree of the perturbation.

I The map has a two-periodic hyperbolic orbit such that e = tanh(h/2).

I The map is reversible, due to the axial symmetries of the curves.

I RRR conjectured that the Lazutkin invariant of the corresponding
symmetric heteroclinic orbit verifies the asymptotic expansion

ω � 2π2h−2εe−π2/h ∑
j≥0

ωj(ε)h2j (h → 0+, ε fixed)

and the series ∑j≥0 ωj(ε)h2j is Gevrey-1 of type 1/2π2.
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First numerical problem: slow dynamics

I Let f be a R-reversible area-preserving map with a saddle point m∞ whose
unstable curve intersects the symmetry line Fix R.

I Let m(r) be a natural parameterization of the unstable invariant curve W+.

I Let r0 > 0 be the first positive parameter such that m0 = m(r0) ∈ Fix R.

I To find numerically m0, we solve the one-dimensional equation

f N(m(r)) ∈ Fix R, λ−1r1 ≤ r < r1

where:
• The fundamental domain D = m([λ−1r1, r1)) must be chosen in such a

way that the natural parameterization m(r) can be computed with a
given precision P for any r ∈ (0, r1). [precision P means error ≤ 10−P.]

• N is the smallest integer such that f N(D) ∩ Fix R 6= ∅. Thus,

N ≈
log(r0/r1)

h
.
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Second numerical problem: cancellations (1/2)

I Let f : R2 → R2 be a map preserving the standard area Ω = dx ∧ dy.

I Let m± : R → W± be some natural parameterizations of the stable and
unstable invariant curves.

I Let r± ∈ R be parameters such that m+(r+) = m0 = m−(r−).

I Let m′
± = (x′±, y′±) = m′(r±).

I If the Lazutkin homoclinic invariant

ω = ω(m0) = r−r+Ω(m′
−, m′

+) = r−r+(x′−y′+ − x′+y′−)

is exponentially small in h, then the invariants ω+ := r−r+x′−y′+ and
ω− := r−r+x′+y′− are exponentially close in h. Thus, the computation of
their difference ω = ω+ − ω− produces a big cancellation of significant
digits, even for moderate values of h.
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Second numerical problem: cancellations (2/2)

I For sample, if h = 1/7, then

ω+ ≈ −0.0057989651489715957915620990323109816836394888269378
ω− ≈ −0.0057989651489715957915620990323109816836394888305137

for the primary homoclinic point of Hénon map on the x-axis.

I Therefore, 44 decimal digits are lost when we compute the difference

ω = ω+ − ω− ≈ 3.5759 × 10−48.

I The above computation is beyond single, double, and quadruple precisions.
The use of a multiple precision arithmetic (MPA) is mandatory.

I In general, if we “know” that ω � e−c/h, then the number of decimal digits
lost by the cancellation in the differences is approximately equal to

S = S(h) =
c

h log(10)
= O(1/h).
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These problems are a bad combination

I Let m̄(r) be our numerical approximation to the parameterization m(r).
Assume that, if r is small enough, we have a bound for the error of the form

|m(r) − m̄(r)| ≤ CrK

for some constant C > 0 and some fixed order K ≥ 1.
I Problem 2 implies that we must work with precision P ≥ S = O(1/h).

I Then, we must choose r1 > 0 such that

|m(r1) − m̄(r1)| ≤ C(r1)
K ≤ 10−P.

That is, r1 = O(10−P/K), and so: − log r1 = O(P/K) = O(1/h).

I Besides, r0 tends to some non-zero value as h → 0+.
I Finally, Problem 1 implies that, if K is fixed, then the number of iterations is

N ≈
log(r0/r1)

h
= O(P/Kh) = O(1/h2).
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And that’s not all, folks!

I If we fix the order K of the error in the computation of m(r), then the
number of iterations is N = O(1/h2). One could think that a quadratic
increase in the number of operations is not very dramatic, but stay tuned!

I Besides, the precision P = O(1/h) also grows. We assume that the cost of
one product is quadratic in P. Other operations like the evaluation of
transcendental functions are worse.

I (There exist asymptotically faster implementations of MPAs (for instance,
using the Karatsuba multiplication), but they become useful only for
extremely high values of P.)

I Finally, the number of iterations to solve a nonlinear equation with
precision P by any standard iterative method (Newton’s, Brent’s, Ridders’,
etc.) grows logarithmically in P.

I Hence, the CPU time to solve the one-dimensional equation
f N(m(r)) ∈ Fix R is at least O(N × P2 × log(P)) = O(h−4| log h|). Bad.
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Promises, promises, ...

I We shall explain in the next lecture how to deal with these numerical
problems.

I For instance, we shall describe some (big, little and silly) tricks that give rise
to an algorithm that takes an O

(
h−10/3) time to compute the Lazutkin

homoclinic invariant for the Hénon map.

I Besides, we shall show a GP-program to compute this Lazutkin homoclinic
invariant with generates the following benchmarks:

h 1 0.1 0.01 0.001
time (ms) 3 21 2210 3000754

(Times for an old desktop: CPU = Intel Pentium 4 (3.40GHz), RAM = 2 Gb.)

I Pendent check: Almost any GP-program can run faster simply by using a
GP-to-C compiler called gp2c.
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The principles of multiple precision computation

I Time is money.

I Empty your mind.

I Search & compare.

I Don’t be too obsessive.
I Don’t be too transcendental.
I Sometimes, be rational.
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Time is money

Current best price: 100$ per GFLOP. Explanations are unnecessary.a

a“Nowadays people know the price of everything and the value of nothing”, Oscar Wilde

(The Picture of Dorian Gray, 1891)
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Empty your mind

I There are some principles that are good for single precision arithmetic, but
a disaster in MPA.

I You must think carefully about how the MPA affects your algorithm.

I Example of bad principle: “A product is more expensive that a sum, but not
MUCH more.” This is clearly false in MPA. We are talking about different
orders of complexity.

I Example of good idea: Complex multiplication can be reduced to a sequence
of ordinary operations on real numbers, but there are two ways:
• Using 4 real multiplications and 2 real additions:

(a + b i) × (c + d i) = (ac − bd) + (ad + bc) i.

• Using 3 real multiplications and 5 real additions.
We shall choose the second one.

I Exercise: Find the formula for the second way.
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Search & compare

I Try several different methods and compare them. First and/or lazy choices
are usually not the best ones.

I Example: To solve the nonlinear one-dimensional equation to compute the
primary homoclinic point of the Hénon map, I compared the following
possibilities: Newton’s method, Ridders’s method, secant method, and the
GP-routine solve.
The last one was my first try, but it was the worse one.
Newton’s method was the best choice.
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Don’t be too obsessive

I First Rule: If at some moment, you have to work a couple of (human) days
to win a couple of (CPU) seconds, something is wrong.

I Second Rule: Don’t forget the First Rule.
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Don’t be too transcendental

Transcendental operations must be avoided as much as possible. I have used the
following tricks in several splitting problems:

I Working with the Hénon map: If λ = eh and ε = 4 sinh2(h/2), then
ε = λ − 2 + λ−1.

I Computing the lobe area of some perturbed McMillan maps:

N

∑
n=1

log(xn) = log
(
ΠN

n=1xn
)
.

I Computing Melnikov functions of some volume-preserving maps: If r = et,
λ = eh, and µ = eω i , then

E(t) := ∑
k∈Z

cos(ωk)
cosh(t + kh)

= ∑
k∈Z

µk + µ−k

λkr2 + λ−k r.
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Sometimes, be rational

If we are working with a MPA, rational numbers have two good properties:

I They are usually cheap. A rational × real product is peccadillo with
respect to a real × real one when the numerator and denominator are
not very high integers.
Example: If we perform an heuristic study on some “continuous” property
for the Hénon map

(x, y) 7→ (x + y + εx(1 − x), y + εx(1 − x))

in the range ε ∈ (a, b) that requires the computation of many iterates with a
very high precision, take ε ∈ (a, b) ∩ Q.

I They are absolutely exact. For instance, they are not affected by changes in
the precision and they can not be the weak link in any computation.
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Software options

There are several choices to carry out a multiple precision computation.

I Hand-made. Write your own implementation starting from scratch. It is a
hard and long way, but it is highly educative. It can be useful to read the
Knuth’s book about this subject. The choice of real men. a

I Commercial packages (Mapple, Mathematica,. . . ). I don’t like this option b, but
as a first approach or for some toy problems.

I PARI/GP (http://pari.math.u-bordeaux.fr/). A free computer
algebra system designed for fast computations in number theory. It can be
used as a C library (called PARI) or in a interactive shell (called gp) giving
access to the PARI functions. The second one is my current choice, because
it provides a readable codec

I GMP (http://gmplib.org/). A free library for arbitrary precision
arithmetic. It is the fastest option (with my apologies to real men).

a“Write your own programs, be a man”, Carles Simó (s’Agaró, June 2nd 2006)
b“Software is like sex: it’s better when it’s free”, Linus Torvalds
c“You’re brilliant, but you’d like to understand what you did 2 weeks from now”, Torvalds
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