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Summary. The splitting of separatrices for the standard-like maps

21y
14 y?

FX,y) = (y, —X+ + sV’(y)) , u = coshh, h > 0, e € R,

is measured. For even entire perturbative potentaly) = » .., Vhy?" such that
\7(271) # 0, where\?(g) = anz VaE2'-1/(2n — 1)! is the Borel transform o¥ (y),

the following asymptotic formula for the are& of the lobes between the perturbed
separatrices is established:

A=81V@2r)ee ™M1+ 0(hd] (¢ =0o(htIin"th),h — 0).

This formula agrees with the one provided by the Melnikov theory, which cannot be
applied directly, due to the exponentially small sizefofvith respect td.
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1. Introduction and Main Results

The problem. As already noticed by Poinaamore than a century ago [P0i99], while he

was studying perturbations of integrable Hamiltonian systems—uwhich he described as
the “fundamental problem of the mechanics”—the separatrices associated with integrable
systems near simple resonances split under general perturbations. Moreover, the amount
of stochastic behaviour near these resonances is measured by the size of such splitting of
separatrices, which turns out to be exponentially small with respect to the parameter of
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perturbation. Thus, this phenomenon could not be detected by the classical perturbation
theory, and it remained unsolved for a long time.

It was not until the last decade that the effective measure of such splitting was fi-
nally proved by several authors [HMS88], [GLT91], [DS92], [Ang93], [Gel93], [Tre94],
[Sau95], but for some concrete problems. For more general systems, exponentially small
upper estimates for the splitting of separatrices in Hamiltonian systems were given in
several papers [Nei84], [Fon93], [Sim94], [Fon95], [FS96], and very recently, asymp-
totic expressions or lower estimates [Gal94], [Gel95], [DGJIS96], [DS96], [RW9I7] have
been obtained by several means.

Hamiltonian systems with two degrees of freedom near resonances can also be studied
via the induced Poincamaps, giving rise to different models of families of analytic area
preserving maps close to the identity. For such families of planar maps, exponentially
small upper estimates of the splitting of separatrices have been obtained by several authors
[Nei84], [FS90], [Fon95], [Gel96], whereas the effective measure of the splitting size has
only been formulated for some celebrated entire standard-like maps by V. Lazutkin and
coworkers [Laz84], [LST89], [GLT91], [GLS94], as well as by D. Treschev [Tre96a].

However, a complete proof of the asymptotic formulae for the splitting of separatrices
for these entire maps has not been published yet, in spite of the intensive efforts devoted
to it. An important complexity arises from the fact that these celebrated maps (like the
standard map or theétion map) cannot be easily expressed as close enough (also in the
complex field) to an integrable map defined on the whole plane.

In this paper we start with aintegrablestandard-like map, which possesses separa-
trices associated to a fixed point with characteristic multipigPs The parameter > 0
will be assumed to be small, and therefore the fixed point is weakly hyperbolic. Next,
a general entire standard-like perturbation is considered. Since we want to deal with
analytic perturbations also with respecthtpthe sizes of the perturbation is assumed
to be of the forms = hP for somep > 0. Then, forp > 6, an asymptotic formula
is obtained for the splitting of separatrices, which is exponentially smadil {Lower
values ofp are also discussed numerically.)

To the best of our knowledge, this is the first time that such a formula is rigorously
proved for a discrete dynamical system. The proof is based on a rigorous justification
of the Melnikov method for maps. This methodology follows an approach suggested by
V. Lazutkin [Laz84], which has been developed already for rapidly forced flows close
to integrable ones [DS92], [DS96].

The model. In the present paper we consider the fanfilyR? — R? of standard-like
maps

2uy
1+y?

+ sv/(y)>, wu = coshh, h > 0, £ eR,

1.1
where the functionv: C — C (which will be called theperturbative potentiglis
determined by imposiny (0) = 0. We shall assume th#ft(y) is an even entire function
such thatv”(0) = 0. Its Taylor expansion will be denoted by

V) =) Vay™ (12)

n>2

F(X» Y) = (yv —X+
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Introducing
L=/rL0ert L£0(x, X) = —x X+ log(14 X?), LY(x, X) = V(X), (1.3)

it is easy to check thaf(x, X) is atwist generating functiorior the map (1.1), i.e.,
F(x,y) = (X, Y)ifandonlyify = —9:.£(x, X) andY = 3,L(X, X). Asaconsequence,
every standard-like map of the family (1.1) idveist mapand, in particular, is an area
preserving map.

Twist maps are frequently used as good models for return maps associated to Hamil-
tonian systems with two degrees of freedom, as well as for motion inside particle ac-
celerators. A discussion of the adequacy of our model (1.1) for representing a physical
system can be found in [McM71], [Las78].

The unperturbed map is the so-caldMillan map[McM71]

2py
0 — J—

which is integrable, with a polynomial first integral given by
HO(x, y) = (X2 — 2uxy + y* + x2y9)[2y,  y = sinhh. (15)

The originis a hyperbolic fixed point where SpeEfI0, 0)] = {x, A1} with » = €";
that is, h is the characteristic exponertf the origin. Therefore, for smali > 0, the
origin isweakly hyperbolicMoreover, the McMillan map has a separatrix to the origin
in the first quadrant contained in the zero level of the first integrfsee Figure 1),
which can be parameterized by

22t = xX°1), yot) = %t — h/2), %t + h/2)), &%) = y secht.  (1.6)

This parameterization will be callathatural becausd=°(2°(t)) = z°(t + h), a fact that
can be checked simply by noting thig(t) is a homoclinic solution of the difference
equation

21y
1+y?’

and thatFo(x, y) = (y, —x + f°(y)). All these properties of the McMillan map can be
found in [GPB89], [DR96].
From now on, given the characteristic exponent 0, the notations

0t +h) + &%t —h) = 9%, fo(y) = 1.7

w = coshh, y = sinhh, r=¢é",

will be used without further comment. Also, to avoid a cumbersome notation, the depen-
dence of all functions oh ande is not written explicitly. To end the conventions about
notation, the superscript “0” will denote an unperturbed quantity; that4s .

When the perturbation is taken into consideration, the qualitative behaviour of the
map (1.1) changes drastically. For fixed>- 0, ande # 0 small enough, the perturbed
invariant curves cross, and the miapecomes nonintegrable for any nonconstant entire
perturbative potentia¥/ (y) [DR96].
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Fig. 1. The zero level oH® for h = 2.

The standard-like map (1.1) isversiblewith respect to the involutions
2uX ,
Ry (X, y) = (¥, %), R.(X,y) = (x, Yt et eV (x)> = (FRy) (X, y),

i.e., F1 = R.FR.. SinceR.(W"Y) = WS, in order to find a homoclinic orbit, it is
sufficient to search for points. of the unstable curve that intersect the cur@as:=

{z € R% R.(2) = z}; see Figure 2. Such an orbit is calletkaersible homoclinic orbit

Fore = 0, the unstable curve intersects (transversely) the c@@gast in four points,
excluding the origin; see Figure 1. Thus, for small enoughere exist at least four
primary reversible homoclinic orbits: two on the first quadrant, and their symmetrical
pairs in the third one. For general perturbations, these four symmetric orbits will be the
only primary homoclinic orbits, and in this case, our measure of the splitting size will
be the algebrafcareaA of the lobe that remains between the two invariant curves from
Z, to z_; see Figure 2 again. It should be noted that tbize area Ais a symplectic
invariant; that is, it does not depend on the symplectic coordinates used, and all the lobes
have the same (geometric) ar¢A|.

1 The termalgebraicmeans that can take negative values. The usual geometric arpa|isThe sign ofA
can be used to know the way in which the perturbed curves crogssIfY — 5%, wherenS is the path from
z, to z_ insideW"s, thenA > 0 if and only if 5 is traveled clockwise, as in Figure 2.
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Fig. 2. The homoclinic pointsz,. and the lobe area\ for
V/(y) = y3, h =2, ande = 0.025.

The results. A direct application of the Melnikov theory [DR96], [DR97a] gives the
following formula for the lobe area:

h/2
A=cs / M (t)dt + O(e?), (1.8)
0

whereM (t) = M(t, h) is the celebratetelnikov function

M(t) = ZdHO (FOZ(tn))) FH(Z(t)), ty=t+ hn, (1.9

nez

F1! being the perturbation, i.eF, = F° 4 ¢F. SinceF is a twist map generated by the
generating functio = £°+ ¢£* given in (1.3), there exists a functidn(t) = L (t, h)
(called theMelnikov potentia[DR96]) such thaM (t) = L'(t), given by

L) =D L2xtn), x*(ta12)). ty =t + hn.

nez

Hence, using equations (1.3) and (1.6), we can express the Melnikov function and the
Melnikov potential as

M(t) = L' (1), L) = Z f(t + hny, ft) = f(t, h) =V(ysecht + h/2)).
nez

(1.10)
This formula shows clearly thdt(t), M(t) are doubly periodic functions with periods
h and Zri (i for an even perturbative potenti®d like the one given in (1.2)). A
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straightforward bound of the Fourier coefficientd df) reveals that (t) = constant-
O (exp(—m?/h)) for realt, and from (1.8), we can conclude that

h/2
A=c¢ f M (t)dt+0(e?) = & (L("/2) — L(0))+0(e?) = & O (exp(—m4/h))+0(e?).
0

Thus, forfixed h > 0, if ¢ is small enough, the Melnikov ternyL (h/2) — L(0)),
assumed to be not zero, is the dominant term for the formula of the area of the lobe.
On the contrary, in the case that> 0 is a small parameter ard= hP—the case that
we are interested in, according to the previous comments—the Melnikov theory above
described is not applicable because it only gives the very coarse estiate(h?)
and not the desired exponentially small behaviour of the splitting.

Our main result is that fop > 6, the first term of formula (1.8) predicts correctly the
exponentially small asymptotic behaviour of the lobe area, under a general condition on
V.

Theorem 1.1(Main Theorem). LetV: C — C be the Borel transforfof the pertur-
bative potential \(y) given in (1.2); that is,

& \ e
V() = n; mgz L (1.12)

Assume that = o(h®In"th) and h= o(1). Then,

(@ If \7(27r) #+ 0, there exist exactly four primary homoclinic orbits (the reversible
ones), and all the lobes have the same geometric gkgavhere

A=81V@2r)ee ™M1+ 0], (h— 0. (1.12)

(b) If V(2r) = 0, there may exist more primary homoclinic orbits, but the area of any
lobe isO(¢h2 e*“"y when h— 0.

Let us make some comments on this result. R

The conditionV (27r) = 0 is of codimension one, and therefovég2r) £ 0 is a
generic property. For instance, it holds for any nonzero polynomialith rational
coefficients, sincer is a transcendental number. When it holds, the perturbed curves
cross and the perturbed map is nonintegrable [Cus78].

The hypothese¥ (y) even andv”(0) = 0 are of technical character and have been
assumed for the sake of simplicity and brevity. They are intended to preserve some
properties of the unperturbed map. The first one preservaythmetry &) = —z(i.e.,

F = SF9 and allows us to give in Proposition 2.2 a nice formula for the Melnikov
function,

M(t) = 8z2h~te ™M [V(2r)sin@rt/h) + 0hd)],  teR. (113

2 We use the definition of Borel transform given in [SS96]: The Borel transforiykdt is £X/k!, and it is
extended by linearity.
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When the perturbative potentidl(y) is not even, the splitting size in the first quadrant of
Figure 2 is also given in first order by the Melnikov approximation (1.13), but a different
formula holds in the third quadrant.

The conditionV”(0) = 0 simply preserves the characteristic exporterdince then
the linear part of the map at the origin does not depend on the perturbatiox. if0) =
V1 # 0, one must change the unperturbed characteristic expbrgrthe perturbed one
k =k (h, &) > 0 defined implicitly by cosk = © + Vi¢ in all the above formulae and
bounds. See [DR97b] for a numerical study of this fact.

__ For entire perturbation¥ (y), the expression (1.12) is not a closed formula because
V (2r) is given by a series. However, for a polynomialy), the Melnikov function

and the Melnikov potential can be expressed explicitly in terms of Jacobian elliptic
functions [DR96].

The main difference in our work with respect to the previous exponentially small
asymptotic formulae for other related problems is the character of the perturbation,
which is anarbitrary even entire functioinstead of a polynomial one as usual. This
general perturbation can be handled because the unperturbed map that we consider is
written in the same way as the separatrices that take place near resonances of integrable
systems. In particular, the separatrix is contained in a neighbouxb@f the origin,
and the homoclinic solutiog®(t) = y secht is boundedup to a distance(h) of its
singularities. This is the key property that allows us to consider entire perturbations.

To finish these comments on the results, it is interesting to point out that exponentially
smallupperbounds of the splitting size can be obtained simply by applying the results
in [FS90], [Fon95], giving rise to the following result.

Theorem 1.2(Upper Bound Theorem).Assume that = O(hP) for some p> 0. Then,
given any € (0, 72), there exists a constant N N («) such that the lobe area verifies

A<N@e™“"  (h—0").

Of course, the conclusion of the Main Theorem is sharper than that of the Upper
Bound Theorem because one does not have any control in the wal thatgrows
whene tends tar?. However, the hypothesis= O(hP), for somep > 0, of the Upper
Bound Theorem is weaker than the hypothesis o(h® In~1 h) of the Main Theorem.

The methodology. It should be stressed that the problem considered here is easier than
the one for the standard oriHon maps. This has to do with the fact that, in the example
considered here, there appear in a natural way two parameters playing a very different
role: a parameten that creates the hyperbolicity and the separatrix, but preserves the
integrability of the maps, and another (perturbative) parametkat gives rise to the
splitting. In particular, an integrable map that approximates everywhere the perturbed
map is easily obtained, whereas for the standardesrdi ‘maps this seems very difficult.
This fact allows us to translate the mainideas of [DS92], [DS96] to maps, since the rapidly
forced systems considered there have a similar behaviour, i.e., they are close to integrable
systems (see also [Gel93], [Ang93]).

Let us note that the proof of the exponentially small asymptotic formulae for rapidly
forced systems follows easily once itis shown that the splitting is given in first order by the
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Melnikov function (a highly nontrivial fact). In [DS92] it is claimed that the problem for
maps is more difficult than for flows, because “the linear difference equations that appear
in that case do not lead to a computational Poieddglnikov theory, as happens in the
case of flows, and the analysis is more intricate”(sic). Recently, this obstacle has been
overcome. In a previous work [DR96], the authors were able to develop a computational
Melnikov theory for perturbations of an integrable planar map with a separatrix to a
hyperbolic fixed point. Thus, the proof for rapidly forced systems can be adapted to the
case of maps with two fundamental differences. First, difference equations (instead of
differential equations) appear in the study of the invariant curves of the maps. Second,
the Summation Formula given in [DR96] (instead of the Residue Theorem) must be used
in the effective computation of the Melnikov function.

We are able to give a rigorous justification of the Melnikov method by studying the
perturbed invariant curves of the maps (1.1) for complex values of the discretg isie
close as possible to the singularities of the unperturbed natural parameterZtjon
given in (1.6). This approach was suggested by Lazutkin [Laz84] for the case of the
standard map.

Our measure of the splitting of the separatrices is given by the so-csléting
functionW (s) defined in (2.22) as the graphic of the unstable curve over the stable one,
in some “flow box” canonical coordinates. It is &Aperiodic function, whose zeros
give rise to homoclinic orbits, and all the splitting quantities can be obtained from
it. For instance, the lobe area is the integral of the splitting function between two
consecutive zeros. Other symplectic invariants used to measure the splitting, like the
Lazutkin homoclinic invarianntroduced in [GLT91] (which is simply the derivative of
the splitting function at some of its zeros) or #irea of the stochastic layé€see [Laz91],
[Tre96b]), can be computed. We have chosen the lobe area because it measures the flux
along the homoclinic tangle, which is related to the study of transport [RW88], [Mei92],
and it has a clear geometric interpretation.

Other applications. As already said, the method used in this paper does not apply to
the standard or Eilon maps, since we do not know which integrable map can play the
role that is played here by the McMillan map. (Several unfruitful attempts have been
done by the authors.) Nevertheless, this method is general enough and can be applied to
many other situations.

As afirstexample, it can be applied to perturbations of other integrable area preserving
maps such as the standard-like maps given by Suris in [Sur89] or the twist maps associated
to elliptic billiards. (The McMillan map is a particular case of the Suris maps.) For
instance, the paper [LM96] is devoted to the study of a trigonometric Suris map and an
exponentially small prediction for the lobe area is computed via the Melnikov function,
whichis likely to be proved by the tools developed here. As for perturbed elliptic billiards,
they have been considered in several papers [LT93], [Tab94], [DR96], [Lom96], [Lev97],
which contain exponentially small predictions for the splitting size, but there is still a
lack of rigorous proof.

As a second application, we mention the study of the splitting of separatrices for
some high-dimensional symplectic maps. A first step in this direction was contained
in [DR97a], where exponentially small asymptotic predictions were computed via Mel-
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nikov methods for some perturbations of the McLachlan map (a high-dimensional gen-
eralization of the McMillan map). We hope that someday these heuristic formulae give
rise to rigorous results in the same way that the heuristic formulae of [DR96] for the
McMillan map have been the inspiration of this work.

As a last application, we consider the splitting of separatrices for volume preserving
high-dimensional maps. In this case, the first results about exponentially small splitting of
separatrices go back to [ACKR92]. We believe that some of the semianalytical arguments
contained in that paper can be developed rigorously by following the ideas contained
here, especially in the part concerning the extension of the unstable curve. Of course,
it will be necessary to consider maps depending on two parameters, as in our current
example.

All these (and other related) topics are currently being researched.

Open issues and numerical testsThe factorV (27) that appears in the asymptotic
formula (1.12) looks amazing. At the present time, we do not know of an ultimate reason
for its appearance (leaving aside the obvious fact that the computations lead to this
factor). Resurgence tools in the same spirit as in [Laz93], [HM93], [Sur94], [Sau95],
[Che95] seem suitable in order to get an insight into this factor.

Our estimates are valid only fer= o(h® In~1 h), which is the condition required for
the Extension Theorem 2.1 to hold on a complex rectakilef values of the discrete
timet, O(h)-close to the singularities of the unperturbed natural parameteriz2ion
given in (1.6). Besides, our approach is not applicable on the complex rectghfe
|8h*4| big, as it is explained in Remark 2.4. Consequently, it seems possible to improve
slightly the hypothesis about the size of the perturbative parametep(i-e4) without
big changes of the method, whereas a proof of the optimal hypothesis (that (1)
according to the numerical results described below) apparently requires a new approach
(maybe a more accurate singularity analysis on a smaller complex rectangle [DMS97],
or the continuous averaging method of D. Treschev [Tre94], [Tre96a], or resurgence
techniques).

There is numerical evidence that the parametieasnds can be takerndependent
with aO(e) relative error if one changes slightly the asymptotic formula [DR97b]. Let us
explain this. First, we note that tigah?) error term in the asymptotic formula (1.12) for
the lobe area is generated by thén?) error term in the asymptotic formula (1.13) for the
Melnikov function. (There are higher order errors generated by other approximations.)
Thus, we must compute more accurately the Melnikov function in order to improve

the error. Let}", ., v.(h)t% be the Laurent expansion around= 0 of the function
V(y/sin(ht)). Lemma 4.2 implies thafneo = & (L(h/2) — L(0)) = & [i"* M(t)dt is

given by

2k+1

> 1 ) s Vkr1(h) = 8req [1(h) + o],
kot d

Atheo = 8rre

whereq = e ™M anddi(h) = Y1kt (/20 — D! = V(27k) + O(h?).
(vk(h) are even entire functions bf such thaty(0) = V(Zn K).IfV(y)is anIynomiaI,
k(h) can be computed in a finite number of steps.) Assumingi@ = V (27) # 0,
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Table 1.Values of Apee, Anum, @andp, for V/(y) = y°.

A. Delshams and R. Raraz-Ros

3 Atheo Anum P
101 101 3.58720x 10°% 3.01433x 10°% —1.59696
1072 1072 6.06916x 104%° 5.98027x 10-4%° —1.46461
1073 1073 1.25846x 1074287 1.25663x 1074287 —1.45182

numerical experiments lead us to the following conjecture:

A= Ancdl+ 0], Aneo=8rety(h)e ™ "1+ O 2™,

whereh ande are independent small parameters, that is, they tend to zero in any indepen-
dent way? As an example of this conjecture, we take the cubic perturbation) = y3;
theny(h) = my*[1 + (/h)?)/3h?. The theoretical valuesyeo, are shown in Table 1,
versus the numerical computed oniegm, together with the relative erroys defined

by Anum = Amned(1 + pe), for several values of the parametbrande. See [DR97b] in

order to learn how these fantastically small quantities can be numerically computed with
a given arbitrary accuracy in a fast way. The key is to use a multiple-precision arithmetic
and expand the local invariant curves to high order. To minimize the computer time, it is
necessary that once the parameters are given, the program itself decides (1) the number
of digits used in the arithmetic and (2) the order used in the curve expansion.

Organization of the paper. The rest of the paper is devoted to the proof of the Main
Theorem, except for the appendix, where the proof of the Upper Bound Theorem is
briefly sketched. In Section 2, all the main ideas and tools are introduced. First, in the
Flow Box Theorem it is stated that flow box coordinates can be constructed in a small
neighbourhood of the local stable invariant curve. This is a quite standard result, and
its proof has only been sketched. Next, in the Extension Theorem it is proved that the
unstable curve can be prolonged until it enters into the neighbourhood where the flow
box coordinates are defined. The proof of the Extension Theorem requires some original
ideas, and it is deferred to Section 3 to avoid a premature incursion into technicalities.
Finally, the splitting functionl is defined in the usual way, and its relationship with the
Melnikov function is shown. All these results together give rise to the formulae that we
are looking for.

2. Proof of the Main Theorem

For the sake of simplicity in the notation, the dependenclk en0 ande is usually not
explicitly written, but it is always assumed to be analytic and bounded. (Otherwise it will
be clearly stated.) In the sequilwill be a small enough quantity ard= o(h®In~1 h).

We first look for a local representation of the invariant curves associated to the origin
O = (0, 0) of the mapF (2) givenin (1.1). To such an end, we will put the area preserving

3 Whene is small but fixed anth — 0, A/ Aeotends to a constami (¢), but®(e) = 1+ O(e) # 1. Hence,
the Melnikov method does not work for fixed
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mapF (z) in normal form near the origin. We first normalize its linear p&t{ ®), which
coincides with &°(0), due to the hypothesi¢”(0) = 0.
From the expression (1.6) faP(t) and£°(t), it follows that

+h/2
2(t) = 2y exp(xt) ( gig((:ph/z; ) +yO0@EXpF), t— +oo,

so we introduce the linear change of variables (recall thate")

)\’71/2 )\'l/Z
Z= CC’ C = 23/ ( )\'1/2 )\’71/2 >7 Z= (X9 y), (21)
which satisfielC = O(h) and deC = —8y2. This linear change conjugates the map

F (2) to an area preserving m&(¢) = C~1F(C¢) which isO(h)-close to the identity,

G() = ( g ;31 ) ¢ +h[G¢ ) +eGle ],  G%Gr=o0@d).

The hypothesi&/’(y) = O(y3) has been used to get tm¢3)-behaviour forGP, G
Moreover, sinceV’(y) is odd iny, G(¢) is an odd analytic canonical map which has
the origin as a hyperbolic fixed point, and therefore there exists an odd analytic canon-
ical change of variables that conjuga@sto its Birkhoff normal form This result is
summarized in the following proposition.

Proposition 2.1(Normal Form Theorem).There existp > 0independent of h ang]
and an odd canonical change of variables close to the identity map

¢ = ®(w) = d%w) +0(e) = w + O(w?), 22

real analyticon B := {w € C2 |lw|| < p}, such that conjugates the map@ to its
Birkhoff normal form N= ®~1G® given by

N(w) = (u g ve_hA(')), w = (U, v), | = uv, 2.3)

where
A =A%) +06) =1+ 0(1). (2.4)

Proof. The existence of such canonical change of variables is a celebrated result due
to J. Moser [Mos56]. (See also [Del95] for a modern and more direct treatment.) For
families of maps close to the identity, the neighbourhood of the origin on which the
changed (w) and the normal forniN (w) are convergent is independent of the parame-

ters [FS90], [Fon95]. It is also a well-known fact that the change and the normal form
depend analytically on the parameters, so the perturbed objects are the unperturbed ones
plusO(e) (see [DGJIS96] for a complete proof in the case of Hamiltonian flows). Finally,

the change is odd because the normal form and the original map are odd. O

The variablesv = (u, v) are callechormal coordinatesAs | = uv (or equivalently,
A(l)) is a first integral of the Birkhoff normaN, the orbit insideB, of every point
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w = (u,v) can be explicitly written:N¥(w) = (uehr® ye kA1) In particular,
natural parameterizations for the local invariant cumgs of the mapF can be obtained
immediately, satisfying also several properties that are listed in the next corollary.

Corollary 2.1 (Local Invariant Curves).Let T > 0 be a constant independent of h and
¢ such that T> —21Inp, wherep > 0is the constant given in the previous proposition.
Let 7“5 be the vertical half planes

Ji={teC: Rt<-T2), JT°={teC: %Rt>T/2).

u,s
oc’

Then, there exist analytic parameterizatioti$:z7%5 — W,.., such that

(a) they arenatural parameterizations (z*5(t)) = z"S(t + h).
Moreover, they are uniquely determined by the following properties:

(b) Fore = 0, 2*5(t) coincide with the natural parameterizatiof(z) of the unperturbed
separatrix given in (1.6). Fot # 0, they satisfy the estimates

2t) — 2°(t) = O(che™"), vt e 7Y, (2.5)
21t) — 22(t) = O(che M, vt € J5. (2.6)

(c) They areri-antiperiodic; thatis, 25(t + 7 i) = —z"5(t).

Proof. First, we will prove the unigueness of solutions. Assumezh&t) are analytic
functions verifying properties (a)—(c). L&t = {r € C: |r| < e "/?}. By property (c),
Z"5(t) are 2ri-periodic, so they can be written in terms of the variable: €, giving
rise to the analytic functionsS: V — WS implicitly defined byo(€") = z(t), and
oS(e™t) = z5(t). Now, property (a) implies that

F(cU(r)) = o (Ar), F(o%(r)) = o527 r), (2.7)

whereas property (b) gives rise to

0 doU );1/2 dos )Lll2
a"3(0) = ( 0 ) W(O) =2y ( S12 ) W(O) =2y ( j-112 )

(2.8

A direct computation using Taylor series shows that equations (2.7)—(2.8) have unique
formal solutions, so we have proved the uniqueness'df and hence, the uniqueness
of z¥s.

To end, we will check that the functions defined B{®(t) = C®(w"3(t)), for
t € 7S, wherew'(t) = (¢}, 0) andws(t) = (0, e™), verify all the required properties.

First, we note that hypothesls> —21In p implies€' € B, fort € 7Y, ande™ € B,
fort € J3, soz*S(t) are well-defined and analytic gfi*5. From equations (2.3)—(2.4)
we getN (w'S(t)) = w*S(t+h), and property (a) can be deduced by means of the change
z = C®(w). The coincidence of*“S(t) andZ°(t), for ¢ = 0, is due to the uniqueness
of solutions in the unperturbed problem. Formulae (2.5)—(2.6) are a consequence of
approximation (2.2), the estimafe= O(h), the definitions o£"5(t), and the equalities
2(t) = CPOw"s(t)), fort e J4S. This proves property (b). Finally, property (c)
follows from the fact thatb (w) is odd inw. |
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Remark 2.1. We have taken advantage of the hypothas&g) odd,V'(y) = O(y®), to
obtainz i-antiperiodic parameterizationg(e*'')-close to the separatrix in the asymp-
totic expressions (2.5), (2.6), instead of the standard@eriodic parameterizations,
o(e?'")-close to the separatrix.

Now, we are ready to state (and prove) a Flow Box Theorem outside of the local
unstable invariant curve, as a direct consequence of the Birkhoff normal form. (It can
be proved without using it [Gel96], a fact that can be important for high-dimensional
situations, since the Birkhoff normal form is usually divergent for such cases.)

Corollary 2.2 (Flow Box Theorem). Let B, be the ball where the normal coordinates
are defined, and U= Co /) withif = {w = (u,v) € B,, Rv > 0}. Then, there exists
an analytic canonical change of variables

zeU+— (s,e) = P(2) = (92, E(2), (2.9
such that conjugates the map (1.1) to the flow box map P*Fgiven by
S+ S+ h, e e (2.10

Besides, the change verifies the following properties:

(&) The perturbed change is close to the unperturbed one; more precisely,
S =@ +0(), E@ =E%®2 +0(h’. (2.1D)
(b) Along the local stable curve(), the flow box functions (2.9) satisfy
S(Z(t)) =t, E(Z(t)) = 0. (2.12)
(c) The function B: U — C is a first integral of the unperturbed map’Buch that
E°%2 = H%2 + 0((H°2)?), (213

where H: C? — C is the polynomial first integral given in (1.5).

Proof. Let®(l) be the function determined by the conditigdgl ) = A(l),®(0) = 0.
Then, for anyg # 0, the analytic change of variables

w=(U,v) el (s6=Pw) = (Sw),Ew)) = (—5—%, BO(I )), | = uv,
conjugates the normal form (2.3) to the flow box map (2.10), and possesses constant
Jacobian det[B(w)] = 8.

Now, the change (2.9) is defined as the compositiais,af) = P (w) with the inverse
of z = C®(w), that is, takingP = P®~1C1, E(2) = £(w), andS(2) = S(w). We
also choosg = detC = —8y 2 and then, by constructioits, €) = P(2) is defined on
the opend = C® (), conjugates the map (1.1) in the flow box map (2.10), and is an
analyticcanonicalchange of variables.



330 A. Delshams and R. Raraz-Ros

Property (a) follows from equation (2.4), the definition®(l ), and the estimatg =
—8y3 = O(h®). Property (b) is a direct consequence of the form#lé@ e) = t, and
£(0, e') = 0, together with the definitioe®(t) = C®(0, e™!), fort € 73, introduced
in the proof of the previous corollary. In order to prove (c), we notezhatCw implies
the identity8l = (x? — 2uxy + y?)/2y, wherez = (x, y), w = (u, v), andl = uv, as
usual. Now, using that = C®(w) = Cw + O(w?), we deduce that

E%2) = £%uw) = BO°(1) = Bl + O(12) = (X% — 2uxy + y»)I2y + 02",

that is, the quadratic parts at the origin of the first integtafkz), E°(z) coincide.
Moreover, H?, E° are functionally dependent maps, since in the normal coordinates
w = (u,v) they become functions of a single variable:= uv. In particular, the
reasonings above imply that they take the foin+ O(12). Hence, there exists an
analytic functiorx defined on a neighbourhood of0C, such thatE®(z) = « (H%(2)),

«(0) = 0, andx’(0) = 1. This proves (c). O

Remark 2.2. A more detailed (but, for present purposes, unnecessary) study shows that
H%2), E%2) do not coincide:E%(z) = «(H%(2)), but « is not the identity. This is

in contrast with what happens in the continuous case, in which the unperturbed first
integral constructed via the Flow Box Theorem coincides with the initial unperturbed
Hamiltonian [DS96]. Equation (2.13) is intended to overcome this difficulty; it shows
that H%(z), E®%(2) coincide in the first approximation near the unperturbed separatrix,
where both functions vanish.

Once we have at our disposal of a good local framework, we need some global
knowledge of the invariant curves. In particular, we want to extend the unstable invariant
curve until it enters into the open set where the flow box coordinates are defined.
Roughly speaking, in order to show that the Melnikov method gives the correct behaviour
of the splitting size, it is necessary to see that the perturbed invariant curves are close to
the unperturbed separatrix not only for reabut also for complex. This is not trivial,
because the functior’(t) given by (1.6) has poles on the complex field. The closest
poles to the real line have imaginary partr/2, so we will not be able to control the
growth of the parameterizatiati(t) for 3t = +7/2. Following [DS92], we will restrict
ourselves to a complex rectangle of imaginary width equal/fo— h. The final result
is summarized in the following theorem.

Theorem 2.1(Extension Theorem).lf h = o(1) ande = o(h®In~1h), the natural
parameterization'4at) can be analytically extended to the complex rectangle

Ki={teC: |3t| <n/2—h, Nt <T}.
In addition, the following estimate holds:
24(t) — 2°(t) = 0(eh™), t e Kp. (2.14)

The proof of this theorem involves several technicalities, such as a good choice of
the solutions of the variational linear difference equations associated to the separatrix
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and a suitable space on which to formulate a fixed point equation that allows us to
give quantitative results, using some contraction argument. It is deferred to Section 3,
together with a discussion in Remark 3.2 about the numerical experiments performed
to check the optimality of the Extension Theorem. Here, we only want to state that we
have checked numerically that: (i) bound (2.14) is optimakgn(ii) it holds under the
weaker conditions small,e = o(h3).

Remark 2.3. It has to be noted here that the Extension Theorem can be improved far
from the singularities. Let € (0, =/2] befixed Then, ifh and|e| are small enough, the
following estimate holds:

2'(t) — 2°(t) = O(eh), t e Y. (2.15)

See Remark 3.3 for a proof. The difficulty (and the relevance) of the previous theorem
is to reach a distanag(h) of the singularities.

The unperturbed natural parameterizati(t) arrives and stays at the open &bt
for it > T/2 and|3t] < =w/2. By estimate (2.14), the same happeng'td) for
T/2 <Nt < T and|3t| < 7/2—h. OnU, the flow box functions (2.9) are defined, and
therefore they can be evaluated on the unstable curve, giving rise to the functions

SU(t) = S(Z(t)), EY(t) 1= E(2(1)). (2.16)

Using the fact that"(t) is an analytic natural parameterization and equation (2.10), it
turns out thatS'(t) — t and EY(t) areh-periodic analytic functions, defined far/2 <

oMt < T and|Jt| < n/2— h. By periodicity, they can be considered defined on the whole
complex strip

Th = {t € C: |3t] < 7/2—h}, (2.17)

as well asS'(t).

The next proposition collects several computations about the Melnikov furidtion
and the function&"(t), EY(t). In particular, it proves the crucial fact that'(t) is given
in first order by the Melnikov approximatiosiM (t), at least on the complex strif,.
Since both functions are-periodic, the difference betwedf!'(t) — Ej andsM(t) is
proved to beo(e*”z’h) for real t, whereEy is the zero order Fourier coefficient of
EY(t). Moreover, the asymptotic behaviour of the Melnikov function and its derivative
is computed explicitly and, finally, the equatisn= S'(t) is inverted on the real line,
preparing the way for the definition of the splitting function.

Proposition 2.2. With the previous notations, definitions, and assumptions,

(a) The following estimates hold:

EYUtt) = eM(t) + O(eh®, £2h™>), vteZn,  (2.18)
EUt) = EJ4+eM(t) +O(h?, eh 2 e ™™ vteR, (2.19)

where = h?! foh EY(t)dt, M(t) is the Melnikov function (1.9), and, is the
complex strip (2.17).
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(b) The equation s= S!(t) can be inverted for real t. Denoting its inverse as ts¥(s),
the functionp!(s) = s¥(s) — s isO(g), analytic, and h-periodic.
(c) Let M(t) be the Melnikov function as defined in (1.10). Then,

M) = 8z2h~te ™ [V (2r)sin@rt/h) + Oh?)], teR, (2.20)
M'(t) = 167%h~2e "M [V(2r) cog2nt/h) + O(h?)],  teR. (2.21)

The proof of this proposition is somewhat technical and is deferred to Section 4. In
particular, the proof of the asymptotic behaviour of the Melnikov function relies strongly
on the theory of elliptic functions.

Remark 2.4. The functionE(z) given in (2.9) isO(h®) on U, due to the factop =
detC = —8y° = O(h®) that appears during the proof of Corollary 2.2. Herfe¥(t) =
E(z'(t)) is O(h®) on the complex strif, given in (2.17). Besides, in Lemma 4.3,
it is stated that thé-th order Fourier coefficient of the Melnikov functia¥l (t) is
O(h~k exp(—2r |k| rp/h)), wherer,, = 7/2 — h. This proves thaM (t) is O(h~1) on
the complex strif¥y, since it has zero mean. Fbrh*ﬂ big, both estimates imply that
on the complex strif,, the dominant term oEY(t) is nots M (t).

Equations (2.12) and (2.16) imply that the local stable caf¢® and the arriving
unstable ong"(t) in the flow box coordinates can be written in parametric form as

(s,) = (S BE)ZM) = (1,0), (s,e) = (S, B)(Z'()) = (S'(1), E"(1).

Therefore, it is very natural to introduce tbplitting function¥ given implicitly by
Y (S'(t)) = EY(t). According to Proposition 2.2, the functi@i is invertible on the real
line, so the splitting function can be given explicitly by

W(s) = EY(s(s)) = EY(s+ ¢"(9)), seR. (2.22
Then, the arriving unstable curve and the local stable one can be written as
e=¢e'(s) = V(s), e=¢€%s) =0, (2.23)

in the system of flow box coordinatés, e). The relation between the splitting function
W (s) and the splitting size is shown in the next proposition.

Proposition 2.3. The splitting function is an h-periodic real analytic function such that

(a) Its real zeros correspond to the primary homoclinic points.

(b) Its integral between two consecutive real zeros is equal to the (algebraic) area of
the lobe between the corresponding primary homoclinic points.

(c) It has zero mean, that igfg = h™! foh Y (s)ds = 0.

(d) For s e R, the following asymptotic estimate holds:

W(s) = 8r2h~te e ™" [V(2r) sinrsih) + O(h?, eh™)] . (2.24)
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Proof. The splitting function (2.22) is analytie-periodic becaus&" andg¢" are also.

(a) is direct from equation (2.23).

(b) also follows from (2.23), since the flow box coordinatgse) are canonical.

(c) is a consequence of the fact that the area of the inner lobes and the outer ones
coincide. This can be seen easily by making one iterate of theFnap? — R? and
using the fact that the total area between the global invariant curves is invariant.

(d) Equation (2.21) implies tha#l’(s) = O(h—2e""M), for s € R, and applying
Taylor's Theorem taMl (s'(s)) = M(s + O(g)) we get

M(s!(s)) = M(s) + O(eh2e™ ™) seR.
By the definition (2.22) ofl (s), and applying (2.19), we have for resal
W(s) = El+eM(s%(5)+0(eh, e2h %) e ™ = EY+eM(s)+0(eh?, e2h %) e ™"

Finally, since the splitting function and the Melnikov function have zero mean, we obtain
that EJ = O(eh3, £2h~5%) e ", and (2.24) follows from (2.20). O

Now, the Main Theorem can be trivially deduced from the previous proposition, and
especially from the asymptotic estimate given in (2.24). Note|that* « h?, because
we are assuming = o(h®In~1h).

3. Proof of the Extension Theorem

3.1. A Simplification

Let 7 be the vertical half plang’ = {t € C: %t < —T}. Let us recall thaF (x, y) =
(y, =x + f(y), where f(y) = fO(y) + eV'(y), and fO(y) = 2uy/(1 + y?). Thus,
using the property of natural parameterizatibiz"(t)) = z'(t + h), there exists a
unique analytic functiog: 7 — C such thatz!(t) can be written in the form

2't) = (E(t —h/2), &t +hl2), Vted. (3.1)

From Corollary 2.1 we deduce théatt) is the unique analytic function verifying the
following properties: (a (t+h)+&(t—h) = f(£(t)), (b) sup,{e~3" |(t) — £°t)|} <
00, and (c)¢ is m i-antiperiodic.

To compare the perturbed solutigtt) with the known unperturbed oré(t) given
in (1.6), we introduce their differencgt) = &(t) — £9(t), as well as the linear operator
n +— Ln defined by

21y

(L) = nt+h) — (FYEO)n®) +nt—h), oy = Try?

(3.2)

and the nonlinear ong— 7 n given by

(Tn)(t) = (t, n(t)), (t, ) = O°t, n) + e@(t, 1), (3.3
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where
o0t n) = FOE°M) + ) — FOEC) — (FOY'(E°t))m,
oLt n) = V'EM) +n). (3.4)

Then,n: J — C is the unique analytic function verifying the following properties:
@) Ln=Tn, (0) sup,{e3" [n(t)|} < oo, and (¢')n is 7 i-antiperiodic.

The idea of the proof is to invert the linear operaltoand solve the resulting fixed
point equation; = L =7 in a suitable Banach space using some contraction argument.
Properties (b’)—(c’), together with that fact thglt(t) has a pole ot = 7 i/2, lead us
naturally to introduce the following complex Banach space:

Y ¢: Ds — C continuous orD; and analytic on its interiof,
8= wi-antiperiodic such that|¢||; < oo ’

where||||; = supp, {€~¥" [¢(t)]}, andD; is the union of the vertical half plang and
a complex rectangl&s

Ds=JUKs, Ks={teC: |0t <T, |3t] <n/2— ). (3.5)

Now, from the relations between the natural parameterizati®@s, z(t) and the
functions£?(t), £(t) given in equations (1.6), (3.1), it follows that the Extension Theorem
is a corollary of the next result on the functigrt) = &(t) — £°(t).

Proposition 3.1. If h is small enough and = o(h®In~1h), there exists a unique
n* € X, verifying the nonlinear difference equatiom = 7 n such that

|[n*]],, = O(eh™>). (3.6)

The rest of this section is devoted to proving Proposition 3.1.

3.2. The Linear Equation

First, we present the method of solution of the linear nonhomogeneous difference equa-
tion associated to the operatomtroduced in (3.2). The tools developed here are inspired
by the ones contained in the papers [Tab94], [Gel96]. In fact, we have adapted the general
setting of [Gel96] to our concrete problem where, once a fundamental set of solutions of
the homogeneous equation is known, the method of variation of parameters is applied
to solve the nonhomogeneous one.

Following this scheme, we consider first the homogeneous equation

Ln=0. 3.7

It is worth noting that (3.7) is the variational difference equation associated to the unper-
turbed homoclinic solutiog®(t); see (1.7). Thus, a solution of this variational equation

is simply the derivative of°(t). Another independent solution also can be computed,
as described in the following lemma, whose proof is straightforward. (It is important to
stress that we will be able to prove Proposition 3.1, due to our explicit knowledge of a
fundamental set of solutions of the homogeneous equation.)
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Lemma 3.1. The general solution of the homogeneous equation (3.7) has the form

Nh(t) = a1(D)n1(t) + c2(t)n2(t), (3.8)
wherea (1), ax(t) are arbitrary h-periodic functions,
tanht
t) = EY't) =— , 39
m) = &) Y ~osht (3.9
and
A1+ Assintft + Ag(t — ¢) tanht
n2(t) = > ,
y2cosht
1 3y
_ 2 —_= - _
AL = s, Ay = 5 Ag o (3.10)

¢ € C being an arbitrary constant.
Moreover, Wt) = 1, where Wt) = W][n1, n2](t) denotes théVronskianof the
fundamental set of solutiogy, n.}; that is,

W(t) = n1(On2(t + h) — n1(t +)na(t) = 1) Ana(t) — n2(t) Ana(t),
whereAn(t) = n(t + h) — n(t).

Remark 3.1. A change of the free constante C only changes),(t) by adding a
multiple of n1(t) to it. We will take advantage of this freedom to get a second solution
n2(t) as regular as possible on its pot§s= +7i/2. For instance, setting= +xi/2,

tpi becomes a simple pole g§(t), instead of a double one. This choiceaddllows us

to assume only the number “6” in the exponentot o(h®In~1h) in the Extension
Theorem, instead of a bigger one.

Now, we are ready to solve formally the nonhomogeneous equation
Ln=¢ (311

using the method of variation of parameters (see, for instance, [Gel96]).

Lemma 3.2. Theformal general solution of the nonhomogeneous equation (3.11) has
the formn(t) = nn(t) + np(t), wherenn(t) is the homogeneous solution (3.8), and a
particular solutionny(t) is

np(t) = ZNk(t)¢(t —khy, Ni(®) = n2(t)na(t —kh) —na2(t —khyne (D). (3.1

k>1

Direct computations yield this lemma. The fact that the Wronskiafwnefn,} is
identically one has been used. Otherwise, the terin— kh) in the formula of the
particular solution would bé (t — kh)/W(t — kh).

In order to invert the linear operatdr, we now study the convergence of the series
in (3.12) fors e [h, n/2]. In the sequelK,, K, andK will denote positive constants
independent of the parametdssh, ande, “x” being any subscript.
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Lemma 3.3. Let0 < h < § < #/2. Then, the linear operator L can be inverted on the
complex spacdy, and its inverse is analytic. Moreover, fore X; and t € Dy,

L) =) NMc®dt —kh),  [N®)] < Ky ?h e, (3.13)

k>1

whereN(t) is the function defined in (3.12).

Proof. We first notice that (t) is 7 i-antiperiodic, butj,(t) is notx i-antiperiodic, due
to the term(t — c) tanht/ cosif t. However, a straightforward computation shows that
the functionNk(t) is r i-periodic and doesot depend on the constaat

Second, ot > 0, n1(t), n2(t) have a singularity = mi/2, whereas ot < 0,
the singularity is at; = —x i/2. Because of this, we shall work separately on the sets
D;t = D;s; N {£Iz > 0} to get the same bound on the whole Bgt

We choose the value

c= tpi ==+mi/2

for the free constart that appears in the expression (3.10)gtt). Then, there exists a
constant<,, such that
()] < K,87%he™, In2t)| < K,h=2e™ vt eDf. (3.14)

The first bound is direct, but the second one requires a detailed verification. We split the
functionna(t) as the sumy,(t) = 72(t) + 72(t), where
2 —sintft — 3(t — t3) tanht
2y2cosht
A+ Agsint?t + Ag(t — t) tanht
cosht

) =

)

na(t) =

with

- A-1 p2-1
A= l2 = 2
14 14

~ As+32 3h—-yuw

o= = =

~ A2+1/2_

=1, Ay = 0,
)/2

On the one hand, sincBy, A; = O(1), Az = 0, ands > h, there exists a constakt,
such that

~ / o— — T — —N
O] < Kis~t < Kh™t < DK eTh~2e™, vt e Dy,

On the other hand, the numerator Bf(t) has a zero at = tgc = =+mi/2, which
compensates the zero of its denominator ¢psh7,(t) is analytic ont = tgt and there
exists a constan{,’; such that

2] < K/h=?e™™ vt eDy.
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Thus, we can tak&, = K;e' +K in the bound ofy,. This ends the proof of
bound (3.14). Now, we are ready to boufgi(t). If Ky = 2(K,,)2, using (3.14), we
deduce the bound in (3.13) @, and hence, of;,

[n1(t — KW 1n20)] + 91D In2(t — kh)| < (K,)?872h~1(e™ "+ &N
Kad2hteh,

V(@

=
=

Let ¢ € Xs. We know that the formal general solution of the equation= ¢ is
n = nn + np, wWhere the functiong, andn, are given in (3.8) and (3.12), respectively.
The particular solutiom, is analytic. Actuallyn, € X, sinceN(t) is r i-periodic, and
— e—2h
H'?DH,S < Kyd7°h™ 1 e lolls (3.15

as the following computation shows:

e o) < e IMD)] [ (t — kb))
k>1
< Ky ligllss™2h Y e " vt eD;.

k>1

(We have used thai (t)| < e ||#]|5, onDs.)

Sincens, 12, andn, are analytic orDs, it turns out that the formal solutiong, + 7,
of Ln = ¢ are analytic orD;, provided that thén-periodic functionsy;(t) andax(t)
in (3.8) are analytic, too. Furthermotig (t)| ~ 2y e and|na(t)| ~ 1y ~2€"™, when
Mt — —oo andJt = 0. Thus,||nnll; < oo if and only if ay(t), ao(t) = 0; that is,
nn(t) = 0. This proves that = 7, is the unique solution ity of the equatiorLn = ¢,
soL is invertible inX; andL 1 is given by (3.12).

Moreover||L7t||, < Ky872h™te /(1 — e ?); see (3.15). Thus ' is a linear
continuous operator between complex Banach spaces and, therefore, analyticld

3.3. The Nonlinear Equation

Once we know how to solve the linear equation (3.11), we are ready to study the nonlinear

one,Ln = 77n. Since our goal is to prove Proposition 3.1, we shall work in the spaces

Ah, and we shall omit the subscripin the norm oft},, to avoid a cumbersome notation.
IntroducingBgr = {n € Xx: |Inll < R}, we claim that the operators

Br 3 n) > &t n(1) € X, Br 3 nt) “> L0t p1) = LM T(t) € X,

are well-defined and analytic f&® = €37 /4 > 0 (see Lemma 3.5). Thug,c Br C &}
is a solution of the fixed point equation= Fn = L~17p, ifand only if Ly = 7.
Consequently, to prove Proposition 3.1 it suffices to see that, under the hypotheses there
stated, the operatdf has a fixed poing* € A}, such that|n*|| = O(gh®).

In order to solve the fixed point equation, we shall use a contraction argument. Since
F is an analytic operator on a complex Banach space, the usual contraction lemma
admits a stronger formulation. In practice this stronger version does not give anything
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new with regard to the usual one, but it exempts us from the tedious computation that
shows that the operator we consider is a contraction. We learned this trick from [Ang93].
The adaptation of this idea to our setting is the following lemma.

Lemma 3.4(Analytic Contraction Lemma).Let X be a complex Banach space, and
let 7. Br — X be an analytic map, whetBr = {n € X: ||n]| < R}. Assume that

IFnll <a+bllnll+clinll®>+dlinll®, ¥y e B, (3.16)
with
4a < R, 4b + 16ac+ 64a’d < 1. (3.17)
ThenF has a unique fixed point* € X such that|n*|| < 2a.

Proof. Suppose first that (5;) C By, for somer € (0, R) andd < 1/2. Letn € By,
andp =r —||n|| > 0. The Cauchy’s inequality to estimate the derivativg&aoh n gives

NdFI < p~tsupllFell: llg —nll < p} < (r — lInID " sul|Fall: ¢ € B}
< or _ 0 -1
r—or 1-0

where we have used thiat< 1/2. Thus, the restriction ¢f to the ballBy;, is a contraction,
and henceF has a unique fixed point* € By C By 2.

To finish, it suffices to note that hypothesis (3.17) impl#eds;) c By, withr =
4a < Randé = (1+ 4b + 16ac+ 64a2d)/4 < 1/2. O

We will see in Lemma 3.5 that the nonlinear operakosatisfies bound (3.16) with
a= 0(h™3), b= 0(h™®), c=0h"3Inh), d=0(h™),
whenh and|¢| are small. Therefore,
4a=0(ch"®,  4b+ 16ac+ 64a’d = O(¢h~®Inh, e?h719),

and hypotheses (3.17) of the Analytic Contraction Lemma holdchfand |ch=®Inh|
small enough. This proves that, under the hypotheses of Proposition 3.1, the oferator
has a fixed poing* € A}, such that|n*|| < 2a = O(sh™3).

Therefore, Proposition 3.1 and the Extension Theorem are proved.

Remark 3.2. The bounda = O(¢h~2) is the direct responsible of bound (3.6), which in
its turn, together with the bourml= O(h—3In h), is the cause of the hypothesismall
ande = o(h®In~1h) in Proposition 3.1. Besides, the value of the oper&tait the point

0 € A4 can be computed easily, as follows:

FOit L7, 00 =LV (E () = ¢ ZNk(t)v’(go(t — khy),

k>1

and numerical experiments show thgFQ|| ~ ¢h~3, whenh and|e| are small. (The
experiments have been performed with'y) = y3, that is, the simplest perturbation
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satisfying our hypotheses that we can take.) Thus, the bouradi®optimal because
[|FO|| < a.Thisfactleads usto believe that bound (3.6) is optimal. This belief also relies
on additional numerical experiments, which also show that bound (3.6) holds under the
weaker hypothesis small ands = o(h®).

It only remains to prove the properties of the operafoendF we have used before,
and this is the aim of the following lemma.
Lemma 3.5. If hgis small enough, k& (0, hg), and t € Dy, the following bounds hold:

i) |2 +i| = 172
(i) M| < Kah=3 €N, whereNi(t) is the function defined in (3.12).
(iii) Let @(t, n) be the function introduced in (3.3)—(3.4). Then,

3 3
Dt )] < Ko 1Y 0?20 +1el Y nl? |20} Vn e Bua
9=2 =0

Moreover, setting3r = {n € &n: |In]| < R} with R = €37 /4, the nonlinear
operator

Br 3 n(t) — ®(t, n(1) € &

is well-defined and analytic.
(V) Let Mq(t) = Y., exp[3(d — D3t — (3q — k] %t — kh)|>™?, for g =

0,1, 2,3. Then,
Ky, €290t ifq=0,1
Mq(t) < { KpqlInh| et ifq=2
K vch~1 et ifq =3

(v) For R= e 3T /4, the nonlinear operator
Br 3 n(t) ¥ Lo, n(t)) € Xh
is well-defined and analytic or. Furthermore, for ally € Bg,

1Fnll < Keh=3{lel L+ [Inl]) + L+ leD [INh]In]1? + L+ [ehh~ [ In]3}.

Proof. The value ofhy can change along the proof, becoming smaller and smaller,
without explicit mention. Thus, we will use freely bounds like< 1, Inh < —1,
y < 2h, u < 2, or any other one that holds near the limi= 0.

(i) We will obtain the bound separately on the s&tandCy. (RecallthaDy, = JUK;
see equation (3.5).) The bound ghis trivial, since£® tends uniformly to zero o7,
whenh — 0.

We note that®(+h + 7i/2) = i and£%(&h — 7 i/2) = —i, so the bound oy is
more difficult. Letr = Hit, s = Jt. Elementary computations give

y(y — 2sinhr sins) - y(y — 2sinhir|)
sinkr + co®s sint’r 4+ cogs

€0t + P =1+
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If y — 2sinhjr| > O, then|£°(t) + i]z > 1 > 1/4. Otherwise, using the inequality
cogs = coF(3Jt) > sirt h, fort € Ky, we obtain

y(y —2sinh|r|) 1-2a

0 .12
O +i" =1+ sinffr +sirfh +oz2~|—c(h)2

= gn(a),

wherea = y~*sinh|r|, andc(h) = y~*sinh. In particular, |£°(t) + i]z > ming gh,
fort e Kn. Letgo(a) = 1+ (1 — 2a)/(e? + 1). The functiong, converges uniformly
to go on the real line, wheh — 0, and mik go = go((1 + +/5)/2) = 0.382..., so
ming gn > 1/4, forh small enough. This finishes the proof of the boyait) + i| >
1/2, fort € Ky.

The bound orj£°(t) — i| is similar.

(ii) It is a direct consequence of (3.13) fd= h.

(iii) Let us recall thatd = @0 + ¢®*. In order to bound the functio®®, we write
@0 = $° 4 $°, where

PE%(t)) e
QESt),

P(£0(t))

0 2 50 _
7(?(50(0’”)%‘ 91/ O(t, ) = 2u

ot m) = 2u
with
P& =§-3  P®=&-1 Q¢ n=A+E[1+E+n7.
Now, we can control the size of the denomina@£°(t), ») using (i). In particular,
|QE°t), )| =28 VpeBus VteDh
Moreover, there exists a constdfp such that

IPE°M)|, [PE°®)| < Kp,  VteDy,

since£%(t) = y secht is uniformly bounded orD;, and ﬁ(é), 5(5) are polynomial
functions. Thus, using that < 2,

3
0%t m| <2%Kp > I [e°®".  VneBun VteDn (318
gq=2

We now proceed to bound(t, ) = V/(£°%(t) + ). Asy = 0 is a triple zero of
V'(y), V'(y)ly2 is an entire function. In particular, there exists a conskapsuch that

IA

|oX(t, )| < Ky [£°%1) +n[°

A

3
3—
3Ky Z Inl® [€°(t)| I Vn € Bya, VteDh (3.19)
=0

(We have used again the fact tl§8tt) is uniformly bounded o;,.) The bounds (3.18)
and (3.19) imply the first part of (iii); it suffices to take, = max{2'°Kp, 3Ky }.
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In order to get the properties of the operdfarlet us fix a functiom € Bg. Then,
Inl <™ |l < €T R=1/4  VteDy

Therefore, the functioh— 75(t) ;= ®(t, n(t)) is analytic onDy,, becauseb (t, n) is
analytic on(t, n) € Dy x By Moreover, an easy computation shows thate A}, so
the operatof/ is well-defined and analytic.

(iv) There exists a constate such thaty",_, ek < (1 — e"M)~1 < Kch71, for
n=24,86,8.Set -

| t—mil2 if3t=0
“ | t+mi/2 otherwise.

Then, there exists a constéft such that

0 3-q Kg h3—q e(3—q).‘Rt onj _
2] < { Keh>9 1292 onk vqg=0,1,2
The case] = 3 is easy:
Ms(t) =€) e N < Keh'e®,  vteDy (3.20)

k>1

Now, we consider the casp# 3. We again work separately on the sgtskC,. On
J the bound is

./\/lq(t) < KE h3—q e2q§)\‘t Z e—(2+2q)kh < Kg KehZ—q e2qmt’
k>1

and setting<’,; = KK,

K\, €24 ifg=0,1
Mq(t) < { K’y lInh| Mt jfgq=2 vVte J. (3.2

To end, let us assume that there exists a constgptverifying

K’ ifg=0,1
Mq(t) < { Kitlinhl if g =2 Vvt € Kh. (3.22
Then, settind< »s = max K/, €T K/ ,. Ke}, (iv) follows from equations (3.20)—(3.22).
We now proceed to prove bound (3.22). Gitea Ky, let £ = £(t) be the smallest
positive integer such that— ¢h € 7, and split the seried1q(t) as

-1
Mq(t) = Mq(t —eh) + Y exp[3(q — it — (3q — Dk |2t — khy|**
k=1

IA

-1
3T h3- _ khia-3 .
maxMg (1) + K €T h k; lt —kh|9=3,  tekh
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We remember thattz| > h, and—T/h+ ¢ — 1 < Rr/h < T/h. Using the bound
Zﬁj f(k) <maxg f + ff f, valid for any positive continuous functiofh such that it
is increasing orf—oo, r) and decreasing of, +-o0) for somer € R, we get

-1 -1 -1
93 e —khj%2 < h393" e —kh+hi[92 = ) ote/h -k + 1972
k=1 k=1 k=1
¢ Nr/h—1
< 1+/ |.‘)ir/h—u+i|q_3du=1+/ lv+ ]9 3dv
1 NRe/h—¢
T/h-1 . _
51+/ dv _Jow ifg=01
_ther (A4 UZ)(3_q)/2 O(nh) if g= 2.

Now, bound (3.22) follows from these last two estimates and bound (3.21).

(v) The fact thatF is well-defined and analytic oBir is obvious, because it is the
composition of two operatorg: Bg — A, andL™: A4, — A4, well-defined and
analytic. Consequently, we fix our attention on the bound.

Letn € Bg, and setK » = Ky K¢ K aq. Then, using the bounds from (ii)—(iv), we
get

e Fnt)] < e Y N D (t — kh, n(t — kh))]
k>1
3
< KNKd)hSZe3§Ht+kh{2“7(»[_kh)|q|éo(t_kh)|3_q
k>1 q=2
3 3
+lel Y In(t — kb [€%(t — kh)] “}
q=0
3 3
< KNK¢h-3{Z||n||wq<t)+|e|Z||n||‘*Mq<t>}
q=2 q=0
< Keh?{lel @+ InlD) + @+ leD Inh[ 19112+ L+ [eDh 0]},
forallt € Dy. O

Remark 3.3. Let§ € (0, /2] befixed i.e., independent df. Then, the analysis obs
is simpler than the one o, since we are far from the singularities. The bounds (i)
and (iii) of the previous lemma are the same, whereas the bounds (ii) and (iv) can be
improved in the following way:

NI < Kyh™ e Mgt < Ky 99, q=0,1,2,3,

for all t € Ds. Thus, repeating the argument of (v), the operatds well-defined and
analytic onBgr = {n € Xs: |Inll; < R}, and verifies bound (3.16) as before, but now
with

a = 0(h), b = O(e), c=0(h™), d =0(h™?),
whenh and|s| are small. Therefore,
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and the hypotheses (3.17) of the Analytic Contraction Lemma are verifidddiod |¢|

small enough. This proves that, under these hypotheses, the opEtaaisra fixed point

n* € X5 such thai|n*||; < 2a = O(eh). Hence, in the same way that we have proved
the Extension Theorem, bound (2.15) follows. We omit the details, since they do not
require any new idea.

4. Proof of Proposition 2.2

(a) Let B be the matrix such thatlo(z) = 3z" Bz+ O(h~'z%. A direct computation
shows thaBC = O(h), and hence H%(z) = O(h), for z e U = C® (/). Assume that
T/2 < %t < T and|3t| < #/2—h. Then, bounds (2.14) and (2.6) hold, aid(t) € U.
Applying Taylor's Theorem td4°%(z5(t)) = HO(z"5(t)) — HO(Z(t)), we get

HOZ'() = O(ch™®),  H°%Z()) = O(eh?).
These estimates, together with equations (2.11)—(2.13), imply
EYt) = E2'(1) — E(2(t)) = E%2'(t) — E%(2(t)) + O(eh®)
= A(t) + O(h®, £2h™), (4.1)
where

At) = H2(t) — HOZ(1))

m—1
HOZ (tm) — HOZ(tm) + Y HOZ™ (t1)) — HOZ ™ (t)),

n=—m

for allm > 0, wheret, =t + hn, anda(n) stands for u in < 0, and for s ifn > 0.
Since liMn_ o0 2'(t_m) = liMm_o Z°(tm) = O = (0, 0), andz*3(ty) = F(2*5(th-1)),
we obtain, by passing to the limit,

AM) =) HAZ(thi1) — HOZ ™ (t) = Y (H°o F — HO(@™ (o).

nez nez

Adding and subtractingM (t)—M (t) being the Melnikov sum (1.9)—we get
A =eM®) +eQt), Q) =) {RZ™t) - R}, (42

nez
whereR =& (H%0 F — H?), fore # 0, andR = R® = (dH® 0 F?) - F, fore = 0.
SetQ = Q. + Qo+ Q_, with

—N
Qi) = Y {R@'(t) — R},
-1
Q) = Y {R@'(t)) — Rt}
n=1-N
+00
Q1) = Y {REZ(t) — R(Z(tn)}.

n=0
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N < 2Th~! being the smallest natural such thag, € JY; i.e.,, %\t — Nh < —T/2.
First, we focus our attention on the tef@g. In order to bound it, we must estimate the

size of the differenceR(z"(t,)) — R(Z°(t»)), and this requires a better knowledge of the

functionR. LetQ = {z = (X, y) € C% y # =+i}. Using the equalitie$i® o F® = HO,

F = FO4 ¢F?%, it turns out thatR = R® + ¢R!, hR(z, h) andhR(z h, ¢) being

analytic for allz € @, andh, ¢ € C. (The denominatorj2 = O(h) in the formula (1.5)

for the first integraH °© forces us to put the factdr, whereas the denominatortly? in

the definition of the McMillan mag-C(z) forces us to work oz € .) Hence, given a

compact seR2° C , there exists a positive constafitsuch that

|IR@") — R%2)| < [eRY (2| + |R%(2Y) — R%(®)| < Kh*[le| + |2 = 2°

]. @3

for all 24, 20 € Q°.

LetQP be the compact subset@fgivenby{z = (x,y) € C?% |z| < 2, |y +i| > 1/2}.
Item (i) of Lemma 3.5 implies that®(K,) c Q°, for small enough values df. On
the other hand, equation (2.14) provides the bortth) — 2°(t,) = O(sh~2), since
ty € Kn, for1— N < n < —1. ThereforeZ4(t,), 2°(t,) € Q% for1— N <n < —1.
Then, equation (4.3) provides the estim&e(t,)) — RO(Z(t,)) = O(¢h™*), and
Qo = O(¢h™®), because there aié — 1 = O(h~?!) terms in the sum, each one of order
O(eh™.

The termsQ.. can be estimated along the same lines. Of course, their bounds are
smaller than the one foRy, because one uses the bounds (2.5)—(2.6), instead of the
bigger one (2.14). The result @, = O(¢h™Y).

Collecting the bounds fof, and Q., we obtainQ = O(¢h~®), and thus (2.18)
follows from (4.1)—(4.2).

To end, we simply estimate the Fourier coefficieBtsof EY = Y, EYe*kh for
k #£ 0, shifting along complex linedt = +ry,, withr, = /2 — h:

h i 2
Ef = h-te 2rlkin/h f EY(s= irn) €% ds = eMy(h) + O(eh®, 2h~5) e~ K/,
0

where My (h) stand for the Fourier coefficients of the Melnikov function, and esti-
mate (2.19) follows readily.

(b) In [DS96, Proposition 2.6], an analogous result is proved. Therefore, we only
sketch the proof. The functio®'(t) — t is analytic anch-periodic on the complex strip
Ty introduced in (2.17). Fof /2 < %t < T, using the Flow Box Theorem together with
the Extension Theorem, we get

S'(t)—t = SZ'(t))—t = S(2'(1))—t+0(e) = A1) —t+0(eh 3, &) = O(eh~3),

sinceS’(2°(t)) = t, as a special case of (2.12). On the one hand, estimating now the
Fourier coefficients 084(t) — t and also those of its derivative (which has zero mean),
we arrive at

S+ 0oh 3 e,
ds'ty/idt —1 = och e ™™™ vteR. (4.4)

SU(t) —t
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ThereforeS!(t) can be inverted for real On the other hand, repeating the computations
above for reat, but using estimate (2.15), instead of the worst one (2.14), we get

Si(t) —t = O(e), t e R, (4.5)

and in particulal§] = O(e) for the zero order Fourier coefficie®} of S'(s) — s that
appears in formula (4.4).

Finally, using formulae (4.4) and (4.5), we obtain for the inverse funciens!(t)
of s = SU(t) thatg!(s) = s¥(s) — sis O(e), analytic, anch-periodic.

(c) Formula (2.20) was proved in [DR96] for even polynomial perturbative potentials
V (y). Unfortunately, the reasoning given there does not apply to a series asin (1.2), and
we must change our approach. Along this proof, we do not assumétkalv”(0) = 0
because it is not used.

From formula (1.10)M (t) is odd real andh-periodic, and its Fourier expansion can
be written in the following way:

M(t) =) Mi(h) exp2rkit/h) = > " my(h) sin2rkt/h), (4.6)
keZ k>1

whereMgp(h) = 0 andM_(h) = :F%mk(h)i for some reamy(h), if k > 1. The idea of

the proof is to get the asymptotic behaviour of the first harmonid) and to bound the
higher order ones. The first step is to get a uniform control on the Laurent coefficients
fn(h) of f(t) around its singularities.

Lemma 4.1. The function {t) = f (t, h) defined in (1.10) has isolated singularities
just on the set-h/2 + 7 i/2 4+ 7 iZ, being symmetric with respect to this set. Let

> fath(t — )™

nez

be its Laurent expansion around the singularjyt —h/2 4 7 i/2. Then, there exists a
constant b independent of n and h such that

|(ih)™2" f_n(h) — Vu| < bh?, vn>1 0<h«1 4.7

Proof. The first part is trivial. In order to get the second one, it is very convenient to
introduce the function

o) =v(r, ) =V(e@h), o(h = {’T’ff'n(hf) 7 o

The singularities ofu(r) are located on the seth~tiZ, sot = 0 is the unique
singularity on the ballr| < 2, assumingh small enough. Thereforey(r) can be
expressed in terms of its Laurent se}€g, ,, vn(h)t?" aroundr = 0. From the definition
of v(z), it turns out that ith = 0, v(r) = 3., Va2, whereas ith # 0, v(r) =
f (t, — iht). Thus, -

[ f_(hy ifh#0
v_n(h) = {Vn fheo vn > 1.
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(Here,r is aninner-like variable, similar to the one used in [HM93] to study the behaviour

of the separatrices of the standard map near its singularities.)
Now, these two results together lead to the bound

(i)™ f_n(h) — Va| =

i[ (v(z, h) = v(r, 0)) 2" dr
21| Ir|=1

IA

(271)1/|_1|v(t, h) — v(z, 0)| dr,

and the lemma follows since there exists a condtantiependent of andh such that
lu(z,h) —v(r,0)| <bh?>, V|r|=1,0<h<« 1l

Indeed, a bound of this kind, with another constant, trivially holds for the function
o (t, h)—it is sufficient to use that sin= z[1 + O(z%)] andy = h[1 + O(h?)]—and

the composition with the entire functiovi(y) only changes the constant, but not the
bound. 0

During the computation of Melnikov functions for maps, elliptic functions appear in
a natural way [GPB89], [DR96], [Lev97]. Thus, some notations must be introduced. For
a general background on elliptic functions, we refer to [AS72], [WW27]. We follow the
notation of the first reference.

Given theparameter me [0,1], K = K(m) = fo”lz(l — msin®)~Y2dy is the
complete elliptic integral of the first kindk’ = K’(m) = K(1 — m) andg = q(m) =
e "K'K is thenome If any of the numbersn, K, K’, K'/K, or q is given, all the rest
are determined. For our purposes, it is convenient to determine the value of the quotient

K’IK by imposing
K'IK = n/h,

whereh is the characteristic exponent. From now on, we can consider the quamtities
g, andK as functions oh. For instance,

a=qh) =e"".

Now, let us introduce the elliptic functiog (t) defined by

2K \? 2K t
YO =it h) = (T) dn2<T m>.

Fromdrf(ulm) = 1—msr?(u|m) and the Fourier expansion ofgn|m) givenin [WW27,
page 520], the Fourier expansionipft) follows:

2 k
PO =3 @ gy = (2”) kq Vk> 1

- —
keZ h 1- q2

(The value ofirg(h) is not needed.) The importancewft) and its Fourier coefficients
stems from the following key lemma.
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Lemma 4.2. Let mc(h) be the coefficients of the sine series of the Melnikov function
M(t), as shown in (4.6). Then,

qk

m(h) = (=D 2hy ()t (h) = (-1 8r%kh? (),

where

R _ (27Tk)2n_l _ (27Tk)2n_1 o on
vk(h) = ; mv—n(h) = ; m('h) f_n(h).

Proof. We note that the function

sinh(t + h/2) _,

f'¢) = —y———-V h/2
© 4 cost(t + h/2) (v sectit + h/2))

verifies the properties: (P1) it is analytic @nand only has isolated singularities @n

(P2) itisT i-periodic withT = 7, and (P3) it is exponentially small whe$it| — oo.
Under these hypotheses, in the Summation Formula given in [DR96, Proposition 3.1],
it is stated that

M(t) = Z f'(t +hn) = —Zres{x(z—t)f’(z); z},

nez zeS

whereS is the set of singularities of’ (z) on the complex strig0 < Iz < 7}, andy (2)
is a meromorphic function such that(z) = constantt+ (7 i/2 — z).

In our caseS consists of only one poird, = t, = —h/2 + 7 i/2. Thus, using that
req f (2); z,} = 0, and the Fourier expansion ¢f we get

Z Mk(h) eZJTkiI/h — M(t)

keZ
= —regx(z—-1)f'(2): )}
= redx'(z—t)f(2); 2}
= reqy (t +h/2 — (z—zp)) T (2); zp}
= Y (—D*yx(h) - reS{eXp[—znTm(Z—zp)] f(2); zp} -gFmkith,

keZ

After a little algebra, one obtains

2rki
res{exp[—nTl(z - zp)} - f(2); zp} = hok(h)i, vk # 0,
and the lemma follows, sindd_x(h) = :F%mk(h)i, forall k > 1. O

These previous lemmas are intended to prove the following result on the coefficients
m (h) of the sine series of the Melnikov functidvi (t).
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Lemma4.3. LetV: C — C be the function defined in (1.11). Let, V= max{V,},
where , are the Taylor coefficients of the function(y defined in (1.2). Let B=
3272V, and 1, = /2 — h. Then,

(i) The following asymptotic expression for the first coefficiepthmholds:
my(h) = 8x2h~Le ™" [V(2r) + O(h?)].
(i) The higher order coefficients can be bounded as follows:

27'L'kl'h

Imq(h)| < Bh‘lkexp<— ) vk >2 0<h<« 1

Proof. Using equation (4.7), the bouid, _, u"~*/(2n—1)! = sinhu < ", foru > 0,
and the triangle inequality, we deduce that the functiguib) introduced in Lemma 4.2
verify

[Bh) = V2rk)| <be™h? ()] <2V €, Vk>1,0<h< 1l

(i) Let m:(h) be the function given implicitly bymy(h) = 8z2h~1q[V (27) +
h2m(h)]. Remember that = €™M, so lim,_¢: (g/h) = 0 andg? < 1/2 for small
positive values oh. Direct computations yield

my(h) — 872h~1qV (27)
8m2hq

v1(h)

-2 _
2 g

mih| =

\7(27[)‘

IA

. 2
0| I~ Veem |+ o |

e [b + 4V (q/h)?] = O(L).

IA

(il) We bound the coefficientsic(h) in the following way:

kgk K
Img(h)| = 8772h_117qqZk [ok(h)| < 3272V, oh~tkgk €% = Bh~1k exp(- Znh rh>,

for allk > 2 andh > 0 small enough. O

Now, we are ready to finish the proof of Proposition 2.2, taking into account the last
lemma. We split the Melnikov function ad (t) = M (t) + M=2(t), where

MM (t) = my(h) sin(2rt/h), MEZ(t) = " my(h) sinrkt/h).
k>2

On the one hand, the terM!(t) verifies
M (t) = 8z2h~te ™M [V (27) + O(h?)] sin2rt/h).

On the other hand, we bound the teiz2(t), for real values of and small values of
h, in the following way:
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IA

IMEA@®)| < Bh™! Z k exp(—2krn/h)

k>2
Bh-L (2 — exp(—2nrp/h)) exp(—4mrip/h)
(1 — exp(—27rn/h))?
= o(htexp(—27?/h)) < O (hexp(—7%h)),

and the formula (2.20) holds, as we wanted. Formula (2.21) can be obtained in a similar
way.

Appendix A. Proof of the Upper Bound Theorem

Throughout this paper, we have worked inside a complex g¥tip< 7/2 — § with a
variables > h. The computations with fixeds are easier and give rise to upper bounds
for the splitting of separatrices. Nevertheless, this appendix is devoted to showing that
the Upper Bound Theorem is a direct corollary of the theorem about exponentially small
upper bounds of the splitting size for area preserving analytic maps close to the identity
given in [FS90], [Fon95]. We recall this theorem in a form suitable for our purposes.

Theorem A.1. LetG,: R? — R be a family of analytic area preserving diffeomor-
phisms with h> 0 having the form

Gn(t) = ( % e9h >c+h[g°(¢)+hqgl(;, ], ¢%¢'=01?, AL

where¢ = (¢1, £2), and q> 0. Assume that the vector field
=%, X% = (6, -+ 6% (A.2)

verifies the following properties:

(i) It has a homoclinic orbit° to the origin analytic orZ;, := {t € C: |3t] < 8o}
(ii) There exist$; € (0, §p) such that the mapg;, (¢) are analytic on a neighbourhood
of £%(Z;,), for small enough values of h.

Then, given any € (0, §;), there exists a constant M N(8) such that
splitting size< N(8) e~ 27", (h — 0").
Remark A.1. Hypothesis (i) is a necessary and sufficient condition for the existence of

a constanhg > 0 such thaG, has homoclinic points for ath € (0, hp); see [Fon89].
Thus, it makes sense to speak of splitting size under the above assumptions.

Now, we are ready to sketch the proof of the Upper Bound Theorem. The notations
in the statement of Theorem A.1 must be kept in mind.

Settinge = O(hP) in equation (1.1), the linear change of variables (2.1) conjugates
F (2) to an analytic area-preserving diffeomorphism having the form (A.1), where

G°(0) = (@1 + )% (G + 0)°).
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Then, the vector field (A.2) verifies the hypotheses (i)—(ii) for any &, < 89 = 7/2.
Namely, since its homoclinic orbit®(t) is given by

Oty = (cosht — sinht cosht + sinht>
~\ 2cost ' 2cosHt

it is immediate thaty, = 7/2, and an easy computation shows that we can choose an
arbitrarys; € (0, 8p) = (0, 7/2), takingh small enough.

Consequently, the Upper Bound Theorem follows simply by notingdtkat0, 7/2)
impliesa = 278 € (0, 72). The factoro(h®) due to the linear change has no importance
in front of the exponential decay of the splitting size.

To end, we want to mention that, for fixedthe Upper Bound Theorem holds if and
only if ¢ < 1/2V,, whereV, stands for the coefficient in the quartic term of the Taylor
expansion of the perturbative potentia{y). The point is that for fixed, one has

@) =a(-@+% @+07%).  a=1-2Ve,

so that the vector field (A.2) has a homoclinic orbit to the origin if and onby i 0.
We omit the details.
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