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Summary. The splitting of separatrices for the standard-like maps

F(x, y) =
(

y,−x + 2µy

1+ y2
+ εV ′(y)

)
, µ = coshh, h > 0, ε ∈ R,

is measured. For even entire perturbative potentialsV(y) = ∑
n≥2 Vny2n such that

V̂(2π) 6= 0, whereV̂(ξ) = ∑
n≥2 Vnξ

2n−1/(2n − 1)! is the Borel transform ofV(y),
the following asymptotic formula for the areaA of the lobes between the perturbed
separatrices is established:

A = 8π V̂(2π)ε e−π
2/h[1+O(h2)] (ε = o(h6 ln−1 h), h→ 0+).

This formula agrees with the one provided by the Melnikov theory, which cannot be
applied directly, due to the exponentially small size ofA with respect toh.
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1. Introduction and Main Results

The problem. As already noticed by Poincar´e more than a century ago [Poi99], while he
was studying perturbations of integrable Hamiltonian systems—which he described as
the “fundamental problem of the mechanics”—the separatrices associated with integrable
systems near simple resonances split under general perturbations. Moreover, the amount
of stochastic behaviour near these resonances is measured by the size of such splitting of
separatrices, which turns out to be exponentially small with respect to the parameter of
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perturbation. Thus, this phenomenon could not be detected by the classical perturbation
theory, and it remained unsolved for a long time.

It was not until the last decade that the effective measure of such splitting was fi-
nally proved by several authors [HMS88], [GLT91], [DS92], [Ang93], [Gel93], [Tre94],
[Sau95], but for some concrete problems. For more general systems, exponentially small
upper estimates for the splitting of separatrices in Hamiltonian systems were given in
several papers [Nei84], [Fon93], [Sim94], [Fon95], [FS96], and very recently, asymp-
totic expressions or lower estimates [Gal94], [Gel95], [DGJS96], [DS96], [RW97] have
been obtained by several means.

Hamiltonian systems with two degrees of freedom near resonances can also be studied
via the induced Poincar´e maps, giving rise to different models of families of analytic area
preserving maps close to the identity. For such families of planar maps, exponentially
small upper estimates of the splitting of separatrices have been obtained by several authors
[Nei84], [FS90], [Fon95], [Gel96], whereas the effective measure of the splitting size has
only been formulated for some celebrated entire standard-like maps by V. Lazutkin and
coworkers [Laz84], [LST89], [GLT91], [GLS94], as well as by D. Treschev [Tre96a].

However, a complete proof of the asymptotic formulae for the splitting of separatrices
for these entire maps has not been published yet, in spite of the intensive efforts devoted
to it. An important complexity arises from the fact that these celebrated maps (like the
standard map or the H´enon map) cannot be easily expressed as close enough (also in the
complex field) to an integrable map defined on the whole plane.

In this paper we start with anintegrablestandard-like map, which possesses separa-
trices associated to a fixed point with characteristic multiplierse±h. The parameterh > 0
will be assumed to be small, and therefore the fixed point is weakly hyperbolic. Next,
a general entire standard-like perturbation is considered. Since we want to deal with
analytic perturbations also with respect toh, the sizeε of the perturbation is assumed
to be of the formε = hp for somep ≥ 0. Then, forp > 6, an asymptotic formula
is obtained for the splitting of separatrices, which is exponentially small inh. (Lower
values ofp are also discussed numerically.)

To the best of our knowledge, this is the first time that such a formula is rigorously
proved for a discrete dynamical system. The proof is based on a rigorous justification
of the Melnikov method for maps. This methodology follows an approach suggested by
V. Lazutkin [Laz84], which has been developed already for rapidly forced flows close
to integrable ones [DS92], [DS96].

The model. In the present paper we consider the familyF : R2→ R2 of standard-like
maps

F(x, y) =
(

y,−x + 2µy

1+ y2
+ εV ′(y)

)
, µ = coshh, h > 0, ε ∈ R,

(1.1)
where the functionV : C → C (which will be called theperturbative potential) is
determined by imposingV(0) = 0. We shall assume thatV(y) is an even entire function
such thatV ′′(0) = 0. Its Taylor expansion will be denoted by

V(y) =
∑
n≥2

Vny2n. (1.2)
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Introducing

L = L0+εL1, L0(x, X) = −x X+µ log(1+X2), L1(x, X) = V(X), (1.3)

it is easy to check thatL(x, X) is a twist generating functionfor the map (1.1), i.e.,
F(x, y) = (X,Y) if and only if y = −∂1L(x, X)andY = ∂2L(x, X). As a consequence,
every standard-like map of the family (1.1) is atwist mapand, in particular, is an area
preserving map.

Twist maps are frequently used as good models for return maps associated to Hamil-
tonian systems with two degrees of freedom, as well as for motion inside particle ac-
celerators. A discussion of the adequacy of our model (1.1) for representing a physical
system can be found in [McM71], [Las78].

The unperturbed map is the so-calledMcMillan map[McM71]

F0(x, y) =
(

y,−x + 2µy

1+ y2

)
, (1.4)

which is integrable, with a polynomial first integral given by

H0(x, y) = (x2− 2µxy+ y2+ x2y2)/2γ, γ = sinhh. (1.5)

The origin is a hyperbolic fixed point where Spec[dF0(0, 0)] = {λ, λ−1}with λ = eh;
that is,h is thecharacteristic exponentof the origin. Therefore, for smallh > 0, the
origin is weakly hyperbolic. Moreover, the McMillan map has a separatrix to the origin
in the first quadrant contained in the zero level of the first integralH0 (see Figure 1),
which can be parameterized by

z0(t) = (x0(t), y0(t)) = (ξ0(t − h/2), ξ0(t + h/2)), ξ0(t) = γ secht. (1.6)

This parameterization will be callednatural becauseF0(z0(t)) = z0(t + h), a fact that
can be checked simply by noting thatξ0(t) is a homoclinic solution of the difference
equation

ξ0(t + h)+ ξ0(t − h) = f 0(ξ0(t)), f 0(y) = 2µy

1+ y2
, (1.7)

and thatF0(x, y) = (y,−x+ f 0(y)). All these properties of the McMillan map can be
found in [GPB89], [DR96].

From now on, given the characteristic exponenth > 0, the notations

µ = coshh, γ = sinhh, λ = eh,

will be used without further comment. Also, to avoid a cumbersome notation, the depen-
dence of all functions onh andε is not written explicitly. To end the conventions about
notation, the superscript “0” will denote an unperturbed quantity; that is,ε = 0.

When the perturbation is taken into consideration, the qualitative behaviour of the
map (1.1) changes drastically. For fixedh > 0, andε 6= 0 small enough, the perturbed
invariant curves cross, and the mapF becomes nonintegrable for any nonconstant entire
perturbative potentialV(y) [DR96].
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Fig. 1.The zero level ofH0 for h = 2.

The standard-like map (1.1) isreversiblewith respect to the involutions

R+(x, y) = (y, x), R−(x, y) =
(

x,−y+ 2µx

1+ x2
+ εV ′(x)

)
= (F R+) (x, y),

i.e., F−1 = R±F R±. SinceR±(Wu) = Ws, in order to find a homoclinic orbit, it is
sufficient to search for pointsz± of the unstable curve that intersect the curvesC± :=
{z ∈ R2: R±(z) = z}; see Figure 2. Such an orbit is called areversible homoclinic orbit.
Forε = 0, the unstable curve intersects (transversely) the curvesC0

± just in four points,
excluding the origin; see Figure 1. Thus, for small enoughε there exist at least four
primary reversible homoclinic orbits: two on the first quadrant, and their symmetrical
pairs in the third one. For general perturbations, these four symmetric orbits will be the
only primary homoclinic orbits, and in this case, our measure of the splitting size will
be the algebraic1 areaA of the lobe that remains between the two invariant curves from
z+ to z−; see Figure 2 again. It should be noted that thislobe area Ais a symplectic
invariant; that is, it does not depend on the symplectic coordinates used, and all the lobes
have the same (geometric) area:|A|.

1 The termalgebraicmeans thatA can take negative values. The usual geometric area is|A|. The sign ofA
can be used to know the way in which the perturbed curves cross: Ifη = ηu− ηs, whereηu,s is the path from
z+ to z− insideWu,s, thenA > 0 if and only ifη is traveled clockwise, as in Figure 2.
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Fig. 2. The homoclinic pointsz± and the lobe areaA for
V ′(y) = y3, h = 2, andε = 0.025.

The results. A direct application of the Melnikov theory [DR96], [DR97a] gives the
following formula for the lobe area:

A = ε
∫ h/2

0
M(t)dt +O(ε2), (1.8)

whereM(t) = M(t, h) is the celebratedMelnikov function,

M(t) =
∑
n∈Z

dH0
(
F0(z0(tn))

)
F1(z0(tn)), tn = t + hn, (1.9)

F1 being the perturbation, i.e.,F = F0+ εF1. SinceF is a twist map generated by the
generating functionL = L0+ εL1 given in (1.3), there exists a functionL(t) = L(t, h)
(called theMelnikov potential[DR96]) such thatM(t) = L ′(t), given by

L(t) =
∑
n∈Z
L1(x0(tn), x0(tn+1)), tn = t + hn.

Hence, using equations (1.3) and (1.6), we can express the Melnikov function and the
Melnikov potential as

M(t) = L ′(t), L(t) =
∑
n∈Z

f (t + hn), f (t) = f (t, h) = V(γ sech(t + h/2)).

(1.10)
This formula shows clearly thatL(t), M(t) are doubly periodic functions with periods
h and 2π i (π i for an even perturbative potentialV like the one given in (1.2)). A
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straightforward bound of the Fourier coefficients ofL(t) reveals thatL(t) = constant+
O
(
exp(−π2/h)

)
for realt , and from (1.8), we can conclude that

A = ε
∫ h/2

0
M(t)dt+O(ε2) = ε (L(h/2)− L(0))+O(ε2) = εO

(
exp(−π2/h)

)+O(ε2).

Thus, for fixed h > 0, if ε is small enough, the Melnikov termε(L(h/2) − L(0)),
assumed to be not zero, is the dominant term for the formula of the area of the lobe.
On the contrary, in the case thath > 0 is a small parameter andε = hp—the case that
we are interested in, according to the previous comments—the Melnikov theory above
described is not applicable because it only gives the very coarse estimateA = O(h2p)

and not the desired exponentially small behaviour of the splitting.
Our main result is that forp > 6, the first term of formula (1.8) predicts correctly the

exponentially small asymptotic behaviour of the lobe area, under a general condition on
V .

Theorem 1.1(Main Theorem). Let V̂ : C→ C be the Borel transform2 of the pertur-
bative potential V(y) given in (1.2); that is,

V̂(ξ) =
∑
n≥2

Vn

(2n− 1)!
ξ2n−1. (1.11)

Assume thatε = o(h6 ln−1 h) and h= o(1). Then,

(a) If V̂(2π) 6= 0, there exist exactly four primary homoclinic orbits (the reversible
ones), and all the lobes have the same geometric area|A|, where

A = 8π V̂(2π)ε e−π
2/h[1+O(h2)], (h→ 0+). (1.12)

(b) If V̂(2π) = 0, there may exist more primary homoclinic orbits, but the area of any
lobe isO(εh2 e−π2/h) when h→ 0+.

Let us make some comments on this result.
The conditionV̂(2π) = 0 is of codimension one, and thereforêV(2π) 6= 0 is a

generic property. For instance, it holds for any nonzero polynomialV with rational
coefficients, sinceπ is a transcendental number. When it holds, the perturbed curves
cross and the perturbed map is nonintegrable [Cus78].

The hypothesesV(y) even andV ′′(0) = 0 are of technical character and have been
assumed for the sake of simplicity and brevity. They are intended to preserve some
properties of the unperturbed map. The first one preserves thesymmetry S(z) = −z (i.e.,
F = SFS) and allows us to give in Proposition 2.2 a nice formula for the Melnikov
function,

M(t) = 8π2h−1 e−π
2/h
[
V̂(2π) sin(2π t /h)+O(h2)

]
, t ∈ R. (1.13)

2 We use the definition of Borel transform given in [SS96]: The Borel transform ofyk+1 is ξk/k!, and it is
extended by linearity.
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When the perturbative potentialV(y) is not even, the splitting size in the first quadrant of
Figure 2 is also given in first order by the Melnikov approximation (1.13), but a different
formula holds in the third quadrant.

The conditionV ′′(0) = 0 simply preserves the characteristic exponenth, since then
the linear part of the mapF at the origin does not depend on the perturbation. IfV ′′(0) =
V1 6= 0, one must change the unperturbed characteristic exponenth by the perturbed one
κ = κ(h, ε) > 0 defined implicitly by coshκ = µ+ V1ε in all the above formulae and
bounds. See [DR97b] for a numerical study of this fact.

For entire perturbationsV(y), the expression (1.12) is not a closed formula because
V̂(2π) is given by a series. However, for a polynomialV(y), the Melnikov function
and the Melnikov potential can be expressed explicitly in terms of Jacobian elliptic
functions [DR96].

The main difference in our work with respect to the previous exponentially small
asymptotic formulae for other related problems is the character of the perturbation,
which is anarbitrary even entire functioninstead of a polynomial one as usual. This
general perturbation can be handled because the unperturbed map that we consider is
written in the same way as the separatrices that take place near resonances of integrable
systems. In particular, the separatrix is contained in a neighbourhoodO(h) of the origin,
and the homoclinic solutionξ0(t) = γ secht is boundedup to a distanceO(h) of its
singularities. This is the key property that allows us to consider entire perturbations.

To finish these comments on the results, it is interesting to point out that exponentially
smallupperbounds of the splitting size can be obtained simply by applying the results
in [FS90], [Fon95], giving rise to the following result.

Theorem 1.2(Upper Bound Theorem).Assume thatε = O(hp) for some p> 0. Then,
given anyα ∈ (0, π2), there exists a constant N= N(α) such that the lobe area verifies

A ≤ N(α) e−α/h, (h→ 0+).

Of course, the conclusion of the Main Theorem is sharper than that of the Upper
Bound Theorem because one does not have any control in the way thatN(α) grows
whenα tends toπ2. However, the hypothesisε = O(hp), for somep > 0, of the Upper
Bound Theorem is weaker than the hypothesisε = o(h6 ln−1 h) of the Main Theorem.

The methodology. It should be stressed that the problem considered here is easier than
the one for the standard or H´enon maps. This has to do with the fact that, in the example
considered here, there appear in a natural way two parameters playing a very different
role: a parameterh that creates the hyperbolicity and the separatrix, but preserves the
integrability of the maps, and another (perturbative) parameterε that gives rise to the
splitting. In particular, an integrable map that approximates everywhere the perturbed
map is easily obtained, whereas for the standard or H´enon maps this seems very difficult.
This fact allows us to translate the main ideas of [DS92], [DS96] to maps, since the rapidly
forced systems considered there have a similar behaviour, i.e., they are close to integrable
systems (see also [Gel93], [Ang93]).

Let us note that the proof of the exponentially small asymptotic formulae for rapidly
forced systems follows easily once it is shown that the splitting is given in first order by the
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Melnikov function (a highly nontrivial fact). In [DS92] it is claimed that the problem for
maps is more difficult than for flows, because “the linear difference equations that appear
in that case do not lead to a computational Poincar´e-Melnikov theory, as happens in the
case of flows, and the analysis is more intricate”(sic). Recently, this obstacle has been
overcome. In a previous work [DR96], the authors were able to develop a computational
Melnikov theory for perturbations of an integrable planar map with a separatrix to a
hyperbolic fixed point. Thus, the proof for rapidly forced systems can be adapted to the
case of maps with two fundamental differences. First, difference equations (instead of
differential equations) appear in the study of the invariant curves of the maps. Second,
the Summation Formula given in [DR96] (instead of the Residue Theorem) must be used
in the effective computation of the Melnikov function.

We are able to give a rigorous justification of the Melnikov method by studying the
perturbed invariant curves of the maps (1.1) for complex values of the discrete timet , as
close as possible to the singularities of the unperturbed natural parameterizationz0(t)
given in (1.6). This approach was suggested by Lazutkin [Laz84] for the case of the
standard map.

Our measure of the splitting of the separatrices is given by the so-calledsplitting
function9(s) defined in (2.22) as the graphic of the unstable curve over the stable one,
in some “flow box” canonical coordinates. It is anh-periodic function, whose zeros
give rise to homoclinic orbits, and all the splitting quantities can be obtained from
it. For instance, the lobe areaA is the integral of the splitting function between two
consecutive zeros. Other symplectic invariants used to measure the splitting, like the
Lazutkin homoclinic invariantintroduced in [GLT91] (which is simply the derivative of
the splitting function at some of its zeros) or thearea of the stochastic layer(see [Laz91],
[Tre96b]), can be computed. We have chosen the lobe area because it measures the flux
along the homoclinic tangle, which is related to the study of transport [RW88], [Mei92],
and it has a clear geometric interpretation.

Other applications. As already said, the method used in this paper does not apply to
the standard or H´enon maps, since we do not know which integrable map can play the
role that is played here by the McMillan map. (Several unfruitful attempts have been
done by the authors.) Nevertheless, this method is general enough and can be applied to
many other situations.

As a first example, it can be applied to perturbations of other integrable area preserving
maps such as the standard-like maps given by Suris in [Sur89] or the twist maps associated
to elliptic billiards. (The McMillan map is a particular case of the Suris maps.) For
instance, the paper [LM96] is devoted to the study of a trigonometric Suris map and an
exponentially small prediction for the lobe area is computed via the Melnikov function,
which is likely to be proved by the tools developed here. As for perturbed elliptic billiards,
they have been considered in several papers [LT93], [Tab94], [DR96], [Lom96], [Lev97],
which contain exponentially small predictions for the splitting size, but there is still a
lack of rigorous proof.

As a second application, we mention the study of the splitting of separatrices for
some high-dimensional symplectic maps. A first step in this direction was contained
in [DR97a], where exponentially small asymptotic predictions were computed via Mel-
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nikov methods for some perturbations of the McLachlan map (a high-dimensional gen-
eralization of the McMillan map). We hope that someday these heuristic formulae give
rise to rigorous results in the same way that the heuristic formulae of [DR96] for the
McMillan map have been the inspiration of this work.

As a last application, we consider the splitting of separatrices for volume preserving
high-dimensional maps. In this case, the first results about exponentially small splitting of
separatrices go back to [ACKR92]. We believe that some of the semianalytical arguments
contained in that paper can be developed rigorously by following the ideas contained
here, especially in the part concerning the extension of the unstable curve. Of course,
it will be necessary to consider maps depending on two parameters, as in our current
example.

All these (and other related) topics are currently being researched.

Open issues and numerical tests.The factorV̂(2π) that appears in the asymptotic
formula (1.12) looks amazing. At the present time, we do not know of an ultimate reason
for its appearance (leaving aside the obvious fact that the computations lead to this
factor). Resurgence tools in the same spirit as in [Laz93], [HM93], [Sur94], [Sau95],
[Che95] seem suitable in order to get an insight into this factor.

Our estimates are valid only forε = o(h6 ln−1 h), which is the condition required for
the Extension Theorem 2.1 to hold on a complex rectangleKu

h of values of the discrete
time t , O(h)-close to the singularities of the unperturbed natural parameterizationz0(t)
given in (1.6). Besides, our approach is not applicable on the complex rectangleKu

h for∣∣εh−4
∣∣ big, as it is explained in Remark 2.4. Consequently, it seems possible to improve

slightly the hypothesis about the size of the perturbative parameter (i.e.,p > 4) without
big changes of the method, whereas a proof of the optimal hypothesis (that is,ε = o(1)
according to the numerical results described below) apparently requires a new approach
(maybe a more accurate singularity analysis on a smaller complex rectangle [DMS97],
or the continuous averaging method of D. Treschev [Tre94], [Tre96a], or resurgence
techniques).

There is numerical evidence that the parametersh andε can be takenindependent,
with aO(ε) relative error if one changes slightly the asymptotic formula [DR97b]. Let us
explain this. First, we note that theO(h2) error term in the asymptotic formula (1.12) for
the lobe area is generated by theO(h2) error term in the asymptotic formula (1.13) for the
Melnikov function. (There are higher order errors generated by other approximations.)
Thus, we must compute more accurately the Melnikov function in order to improve
the error. Let

∑
`∈Z v`(h)τ

2` be the Laurent expansion aroundτ = 0 of the function

V(γ / sin(hτ)). Lemma 4.2 implies thatAtheo := ε (L(h/2)− L(0)) = ε ∫ h/2
0 M(t)dt is

given by

Atheo= 8πε
∑
k≥0

q2k+1

1− q2(2k+1)
v̂2k+1(h) = 8πεq

[̂
v1(h)+O(q2)

]
,

whereq = e−π2/h, andv̂k(h) =
∑

`≥1(2πk)2`−1v−`(h)/(2` − 1)! = V̂(2πk) + O(h2).
(̂vk(h) are even entire functions ofh, such that̂vk(0) = V̂(2πk). If V(y) is a polynomial,
v̂k(h) can be computed in a finite number of steps.) Assuming thatv̂1(0) = V̂(2π) 6= 0,
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Table 1.Values ofAtheo, Anum, andρ, for V ′(y) = y3.

h ε Atheo Anum ρ

10−1 10−1 3.58720× 10−42 3.01433× 10−42 −1.59696
10−2 10−2 6.06916× 10−429 5.98027× 10−429 −1.46461
10−3 10−3 1.25846× 10−4287 1.25663× 10−4287 −1.45182

numerical experiments lead us to the following conjecture:

A = Atheo[1+O(ε)], Atheo= 8πεv̂1(h) e−π
2/h[1+O(e−2π2/h)],

whereh andε are independent small parameters, that is, they tend to zero in any indepen-
dent way.3 As an example of this conjecture, we take the cubic perturbationV ′(y) = y3;
thenv̂1(h) = πγ 4[1 + (π /h)2]/3h2. The theoretical valuesAtheo are shown in Table 1,
versus the numerical computed onesAnum, together with the relative errorsρ defined
by Anum= Atheo(1+ ρε), for several values of the parametersh andε. See [DR97b] in
order to learn how these fantastically small quantities can be numerically computed with
a given arbitrary accuracy in a fast way. The key is to use a multiple-precision arithmetic
and expand the local invariant curves to high order. To minimize the computer time, it is
necessary that once the parameters are given, the program itself decides (1) the number
of digits used in the arithmetic and (2) the order used in the curve expansion.

Organization of the paper. The rest of the paper is devoted to the proof of the Main
Theorem, except for the appendix, where the proof of the Upper Bound Theorem is
briefly sketched. In Section 2, all the main ideas and tools are introduced. First, in the
Flow Box Theorem it is stated that flow box coordinates can be constructed in a small
neighbourhood of the local stable invariant curve. This is a quite standard result, and
its proof has only been sketched. Next, in the Extension Theorem it is proved that the
unstable curve can be prolonged until it enters into the neighbourhood where the flow
box coordinates are defined. The proof of the Extension Theorem requires some original
ideas, and it is deferred to Section 3 to avoid a premature incursion into technicalities.
Finally, the splitting function9 is defined in the usual way, and its relationship with the
Melnikov function is shown. All these results together give rise to the formulae that we
are looking for.

2. Proof of the Main Theorem

For the sake of simplicity in the notation, the dependence onh > 0 andε is usually not
explicitly written, but it is always assumed to be analytic and bounded. (Otherwise it will
be clearly stated.) In the sequel,h will be a small enough quantity andε = o(h6 ln−1 h).

We first look for a local representation of the invariant curves associated to the origin
O = (0, 0) of the mapF(z) given in (1.1). To such an end, we will put the area preserving

3 Whenε is small but fixed andh→ 0+, A/Atheo tends to a constant2(ε), but2(ε) = 1+O(ε) 6≡ 1. Hence,
the Melnikov method does not work for fixedε.
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mapF(z) in normal form near the origin. We first normalize its linear part dF(O), which
coincides with dF0(O), due to the hypothesisV ′′(0) = 0.

From the expression (1.6) forz0(t) andξ0(t), it follows that

z0(t) = 2γ exp(∓t)

(
exp(±h/2)
exp(∓h/2)

)
+ γ O(exp(∓3t)), t →±∞,

so we introduce the linear change of variables (recall thatλ = eh)

z= Cζ, C = 2γ

(
λ−1/2 λ1/2

λ1/2 λ−1/2

)
, z= (x, y), (2.1)

which satisfiesC = O(h) and detC = −8γ 3. This linear change conjugates the map
F(z) to an area preserving mapG(ζ ) = C−1F(Cζ ) which isO(h)-close to the identity,

G(ζ ) =
(
λ 0
0 λ−1

)
ζ + h

[
Ĝ0(ζ, h)+ εĜ1(ζ, h)

]
, Ĝ0, Ĝ1 = O(ζ 3).

The hypothesisV ′(y) = O(y3) has been used to get theO(ζ 3)-behaviour forĜ0, Ĝ1.
Moreover, sinceV ′(y) is odd in y, G(ζ ) is an odd analytic canonical map which has
the origin as a hyperbolic fixed point, and therefore there exists an odd analytic canon-
ical change of variables that conjugatesG to its Birkhoff normal form. This result is
summarized in the following proposition.

Proposition 2.1(Normal Form Theorem).There existsρ > 0 independent of h andε,
and an odd canonical change of variables close to the identity map

ζ = 8(w) = 80(w)+O(ε) = w +O(w3), (2.2)

real analytic on Bρ := {w ∈ C2: ||w|| < ρ}, such that conjugates the map G(ζ ) to its
Birkhoff normal form N= 8−1G8 given by

N(w) = (u eh3(I ), v e−h3(I )
)
, w = (u, v), I = uv, (2.3)

where

3(I ) = 30(I )+O(ε) = 1+O(I ). (2.4)

Proof. The existence of such canonical change of variables is a celebrated result due
to J. Moser [Mos56]. (See also [Del95] for a modern and more direct treatment.) For
families of maps close to the identity, the neighbourhood of the origin on which the
change8(w) and the normal formN(w) are convergent is independent of the parame-
ters [FS90], [Fon95]. It is also a well-known fact that the change and the normal form
depend analytically on the parameters, so the perturbed objects are the unperturbed ones
plusO(ε) (see [DGJS96] for a complete proof in the case of Hamiltonian flows). Finally,
the change is odd because the normal form and the original map are odd.

The variablesw = (u, v) are callednormal coordinates. As I = uv (or equivalently,
3(I )) is a first integral of the Birkhoff normalN, the orbit insideBρ of every point
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w = (u, v) can be explicitly written:Nk(w) = (
u ekh3(I ), v e−kh3(I )

)
. In particular,

natural parameterizations for the local invariant curvesWu,s
loc of the mapF can be obtained

immediately, satisfying also several properties that are listed in the next corollary.

Corollary 2.1 (Local Invariant Curves).Let T > 0 be a constant independent of h and
ε such that T> −2 lnρ, whereρ > 0 is the constant given in the previous proposition.
LetJ u,s be the vertical half planes

J u = {t ∈ C: <t ≤ −T /2}, J s = {t ∈ C: <t ≥ T /2}.
Then, there exist analytic parameterizations zu,s: J u,s→Wu,s

loc , such that

(a) they arenatural parameterizations: F (zu,s(t)) = zu,s(t + h).

Moreover, they are uniquely determined by the following properties:

(b) Forε = 0, zu,s(t) coincide with the natural parameterization z0(t)of the unperturbed
separatrix given in (1.6). Forε 6= 0, they satisfy the estimates

zu(t)− z0(t) = O(εh e3<t ), ∀t ∈ J u, (2.5)

zs(t)− z0(t) = O(εh e−3<t ), ∀t ∈ J s. (2.6)

(c) They areπ i -antiperiodic; that is, zu,s(t + π i) = −zu,s(t).

Proof. First, we will prove the uniqueness of solutions. Assume thatzu,s(t) are analytic
functions verifying properties (a)–(c). LetV = {r ∈ C: |r | ≤ e−T /2}. By property (c),
zu,s(t) are 2π i-periodic, so they can be written in terms of the variabler = et , giving
rise to the analytic functionsσ u,s: V →Wu,s

loc implicitly defined byσ u(et ) = zu(t), and
σ s(e−t ) = zs(t). Now, property (a) implies that

F(σ u(r )) = σ u(λr ), F(σ s(r )) = σ s(λ−1r ), (2.7)

whereas property (b) gives rise to

σ u,s(0) =
(

0
0

)
,

dσ u

dr
(0) = 2γ

(
λ−1/2

λ1/2

)
,

dσ s

dr
(0) = 2γ

(
λ1/2

λ−1/2

)
.

(2.8)
A direct computation using Taylor series shows that equations (2.7)–(2.8) have unique
formal solutions, so we have proved the uniqueness ofσ u,s, and hence, the uniqueness
of zu,s.

To end, we will check that the functions defined byzu,s(t) = C8(wu,s(t)), for
t ∈ J u,s, wherewu(t) = (et , 0) andws(t) = (0, e−t ), verify all the required properties.

First, we note that hypothesisT > −2 lnρ implieset ∈ Bρ for t ∈ J u, ande−t ∈ Bρ
for t ∈ J s, sozu,s(t) are well-defined and analytic onJ u,s. From equations (2.3)–(2.4)
we getN(wu,s(t)) = wu,s(t+h), and property (a) can be deduced by means of the change
z = C8(w). The coincidence ofzu,s(t) andz0(t), for ε = 0, is due to the uniqueness
of solutions in the unperturbed problem. Formulae (2.5)–(2.6) are a consequence of
approximation (2.2), the estimateC = O(h), the definitions ofzu,s(t), and the equalities
z0(t) = C80(wu,s(t)), for t ∈ J u,s. This proves property (b). Finally, property (c)
follows from the fact that8(w) is odd inw.
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Remark 2.1. We have taken advantage of the hypothesesV ′(y) odd,V ′(y) = O(y3), to
obtainπ i-antiperiodic parameterizations,O(e3<t )-close to the separatrix in the asymp-
totic expressions (2.5), (2.6), instead of the standard 2π i-periodic parameterizations,
O(e2<t )-close to the separatrix.

Now, we are ready to state (and prove) a Flow Box Theorem outside of the local
unstable invariant curve, as a direct consequence of the Birkhoff normal form. (It can
be proved without using it [Gel96], a fact that can be important for high-dimensional
situations, since the Birkhoff normal form is usually divergent for such cases.)

Corollary 2.2 (Flow Box Theorem). Let Bρ be the ball where the normal coordinates
are defined, and U= C8(U) withU = {w = (u, v) ∈ Bρ, <v > 0}. Then, there exists
an analytic canonical change of variables

z ∈ U 7−→ (s, e) = P(z) = (S(z), E(z)), (2.9)

such that conjugates the map (1.1) to the flow box map P F P−1 given by

s 7→ s+ h, e 7→ e. (2.10)

Besides, the change verifies the following properties:

(a) The perturbed change is close to the unperturbed one; more precisely,

S(z) = S0(z)+O(ε), E(z) = E0(z)+O(εh3). (2.11)

(b) Along the local stable curve zs(t), the flow box functions (2.9) satisfy

S(zs(t)) = t, E(zs(t)) = 0. (2.12)

(c) The function E0: U → C is a first integral of the unperturbed map F0 such that

E0(z) = H0(z)+O
(
(H0(z))2

)
, (2.13)

where H0: C2→ C is the polynomial first integral given in (1.5).

Proof. Let2(I )be the function determined by the conditions2′(I ) = 3(I ),2(0) = 0.
Then, for anyβ 6= 0, the analytic change of variables

w = (u, v) ∈ U 7→ (s, e) = P(w) = (S(w), E(w)) =
(
− logv

2′(I )
, β2(I )

)
, I = uv,

conjugates the normal form (2.3) to the flow box map (2.10), and possesses constant
Jacobian det[dP(w)] ≡ β.

Now, the change (2.9) is defined as the composition of(s, e) = P(w)with the inverse
of z = C8(w), that is, takingP = P8−1C−1, E(z) = E(w), andS(z) = S(w). We
also chooseβ = detC = −8γ 3 and then, by construction,(s, e) = P(z) is defined on
the openU = C8(U), conjugates the map (1.1) in the flow box map (2.10), and is an
analyticcanonicalchange of variables.
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Property (a) follows from equation (2.4), the definition of2(I ), and the estimateβ =
−8γ 3 = O(h3). Property (b) is a direct consequence of the formulaeS(0, e−t ) = t , and
E(0, e−t ) = 0, together with the definitionzs(t) = C8(0, e−t ), for t ∈ J s, introduced
in the proof of the previous corollary. In order to prove (c), we note thatz= Cw implies
the identityβ I = (x2− 2µxy+ y2)/2γ , wherez= (x, y),w = (u, v), andI = uv, as
usual. Now, using thatz= C8(w) = Cw +O(w3), we deduce that

E0(z) = E0(w) = β20(I ) = β I +O(I 2) = (x2− 2µxy+ y2)/2γ +O(z4),

that is, the quadratic parts at the origin of the first integralsH0(z), E0(z) coincide.
Moreover,H0, E0 are functionally dependent maps, since in the normal coordinates
w = (u, v) they become functions of a single variable:I = uv. In particular, the
reasonings above imply that they take the formβ I + O(I 2). Hence, there exists an
analytic functionκ defined on a neighbourhood of 0∈ C, such thatE0(z) = κ(H0(z)),
κ(0) = 0, andκ ′(0) = 1. This proves (c).

Remark 2.2. A more detailed (but, for present purposes, unnecessary) study shows that
H0(z), E0(z) do not coincide:E0(z) = κ(H0(z)), but κ is not the identity. This is
in contrast with what happens in the continuous case, in which the unperturbed first
integral constructed via the Flow Box Theorem coincides with the initial unperturbed
Hamiltonian [DS96]. Equation (2.13) is intended to overcome this difficulty; it shows
that H0(z), E0(z) coincide in the first approximation near the unperturbed separatrix,
where both functions vanish.

Once we have at our disposal of a good local framework, we need some global
knowledge of the invariant curves. In particular, we want to extend the unstable invariant
curve until it enters into the open setU where the flow box coordinates are defined.
Roughly speaking, in order to show that the Melnikov method gives the correct behaviour
of the splitting size, it is necessary to see that the perturbed invariant curves are close to
the unperturbed separatrix not only for realt , but also for complext . This is not trivial,
because the functionz0(t) given by (1.6) has poles on the complex field. The closest
poles to the real line have imaginary part±π /2, so we will not be able to control the
growth of the parameterizationzu(t) for =t = ±π /2. Following [DS92], we will restrict
ourselves to a complex rectangle of imaginary width equal toπ /2− h. The final result
is summarized in the following theorem.

Theorem 2.1(Extension Theorem).If h = o(1) and ε = o(h6 ln−1 h), the natural
parameterization zu(t) can be analytically extended to the complex rectangle

Ku
h = {t ∈ C: |=t | ≤ π /2− h, |<t | ≤ T}.

In addition, the following estimate holds:

zu(t)− z0(t) = O(εh−3), t ∈ Ku
h. (2.14)

The proof of this theorem involves several technicalities, such as a good choice of
the solutions of the variational linear difference equations associated to the separatrix
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and a suitable space on which to formulate a fixed point equation that allows us to
give quantitative results, using some contraction argument. It is deferred to Section 3,
together with a discussion in Remark 3.2 about the numerical experiments performed
to check the optimality of the Extension Theorem. Here, we only want to state that we
have checked numerically that: (i) bound (2.14) is optimal onKu

h, (ii) it holds under the
weaker conditionsh small,ε = o(h3).

Remark 2.3. It has to be noted here that the Extension Theorem can be improved far
from the singularities. Letδ ∈ (0, π /2] befixed. Then, ifh and|ε| are small enough, the
following estimate holds:

zu(t)− z0(t) = O(εh), t ∈ Ku
δ . (2.15)

See Remark 3.3 for a proof. The difficulty (and the relevance) of the previous theorem
is to reach a distanceO(h) of the singularities.

The unperturbed natural parameterizationz0(t) arrives and stays at the open setU
for <t ≥ T /2 and |=t | < π /2. By estimate (2.14), the same happens tozu(t) for
T /2≤ <t ≤ T and|=t | ≤ π /2− h. OnU , the flow box functions (2.9) are defined, and
therefore they can be evaluated on the unstable curve, giving rise to the functions

Su(t) := S(zu(t)), Eu(t) := E(zu(t)). (2.16)

Using the fact thatzu(t) is an analytic natural parameterization and equation (2.10), it
turns out thatSu(t) − t andEu(t) areh-periodic analytic functions, defined forT /2 ≤
<t ≤ T and|=t | ≤ π /2−h. By periodicity, they can be considered defined on the whole
complex strip

Ih = {t ∈ C: |=t | ≤ π /2− h}, (2.17)

as well asSu(t).
The next proposition collects several computations about the Melnikov functionM(t)

and the functionsSu(t), Eu(t). In particular, it proves the crucial fact thatEu(t) is given
in first order by the Melnikov approximationεM(t), at least on the complex stripIh.
Since both functions areh-periodic, the difference betweenEu(t) − Eu

0 andεM(t) is
proved to beO(e−π

2/h) for real t , where Eu
0 is the zero order Fourier coefficient of

Eu(t). Moreover, the asymptotic behaviour of the Melnikov function and its derivative
is computed explicitly and, finally, the equations = Su(t) is inverted on the real line,
preparing the way for the definition of the splitting function.

Proposition 2.2. With the previous notations, definitions, and assumptions,

(a) The following estimates hold:

Eu(t) = εM(t)+O(εh3, ε2h−5), ∀t ∈ Ih, (2.18)

Eu(t) = Eu
0 + εM(t)+O(εh3, ε2h−5) e−π

2/h, ∀t ∈ R, (2.19)

where Eu
0 = h−1

∫ h
0 Eu(t)dt , M(t) is the Melnikov function (1.9), andIh is the

complex strip (2.17).
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(b) The equation s= Su(t) can be inverted for real t . Denoting its inverse as t= su(s),
the functionφu(s) = su(s)− s isO(ε), analytic, and h-periodic.

(c) Let M(t) be the Melnikov function as defined in (1.10). Then,

M(t) = 8π2h−1 e−π
2/h
[
V̂(2π) sin(2π t /h)+O(h2)

]
, t ∈ R, (2.20)

M ′(t) = 16π3h−2 e−π
2/h
[
V̂(2π) cos(2π t /h)+O(h2)

]
, t ∈ R. (2.21)

The proof of this proposition is somewhat technical and is deferred to Section 4. In
particular, the proof of the asymptotic behaviour of the Melnikov function relies strongly
on the theory of elliptic functions.

Remark 2.4. The functionE(z) given in (2.9) isO(h3) on U , due to the factorβ =
detC = −8γ 3 = O(h3) that appears during the proof of Corollary 2.2. Hence,Eu(t) =
E(zu(t)) is O(h3) on the complex stripIh given in (2.17). Besides, in Lemma 4.3,
it is stated that thek-th order Fourier coefficient of the Melnikov functionM(t) is
O(h−1k exp(−2π |k| rh/h)), whererh = π /2− h. This proves thatM(t) is O(h−1) on
the complex stripIh, since it has zero mean. For

∣∣εh−4
∣∣ big, both estimates imply that

on the complex stripIh, the dominant term ofEu(t) is not εM(t).

Equations (2.12) and (2.16) imply that the local stable curvezs(t) and the arriving
unstable onezu(t) in the flow box coordinates can be written in parametric form as

(s, e) = (S, E)(zs(t)) = (t, 0), (s, e) = (S, E)(zu(t)) = (Su(t), Eu(t)).

Therefore, it is very natural to introduce thesplitting function9 given implicitly by
9(Su(t)) = Eu(t). According to Proposition 2.2, the functionSu is invertible on the real
line, so the splitting function can be given explicitly by

9(s) = Eu(su(s)) = Eu(s+ φu(s)), s ∈ R. (2.22)

Then, the arriving unstable curve and the local stable one can be written as

e= eu(s) = 9(s), e= es(s) = 0, (2.23)

in the system of flow box coordinates(s, e). The relation between the splitting function
9(s) and the splitting size is shown in the next proposition.

Proposition 2.3. The splitting function is an h-periodic real analytic function such that

(a) Its real zeros correspond to the primary homoclinic points.
(b) Its integral between two consecutive real zeros is equal to the (algebraic) area of

the lobe between the corresponding primary homoclinic points.
(c) It has zero mean, that is,90 = h−1

∫ h
0 9(s)ds= 0.

(d) For s∈ R, the following asymptotic estimate holds:

9(s) = 8π2h−1ε e−π
2/h
[
V̂(2π) sin(2πs/h)+O(h2, εh−4)

]
. (2.24)
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Proof. The splitting function (2.22) is analytich-periodic becauseEu andφu are also.
(a) is direct from equation (2.23).
(b) also follows from (2.23), since the flow box coordinates(s, e) are canonical.
(c) is a consequence of the fact that the area of the inner lobes and the outer ones

coincide. This can be seen easily by making one iterate of the mapF : R2 → R2 and
using the fact that the total area between the global invariant curves is invariant.

(d) Equation (2.21) implies thatM ′(s) = O(h−2 e−π2/h), for s ∈ R, and applying
Taylor’s Theorem toM(su(s)) = M(s+O(ε)) we get

M(su(s)) = M(s)+O(εh−2 e−π
2/h), s ∈ R.

By the definition (2.22) of9(s), and applying (2.19), we have for reals

9(s) = Eu
0+εM(su(s))+O(εh3, ε2h−5) e−π

2/h = Eu
0+εM(s)+O(εh3, ε2h−5) e−π

2/h .

Finally, since the splitting function and the Melnikov function have zero mean, we obtain
that Eu

0 = O(εh3, ε2h−5) e−π2/h, and (2.24) follows from (2.20).

Now, the Main Theorem can be trivially deduced from the previous proposition, and
especially from the asymptotic estimate given in (2.24). Note that|ε| h−4¿ h2, because
we are assumingε = o(h6 ln−1 h).

3. Proof of the Extension Theorem

3.1. A Simplification

Let J be the vertical half planeJ = {t ∈ C: <t ≤ −T}. Let us recall thatF(x, y) =
(y,−x + f (y)), where f (y) = f 0(y) + εV ′(y), and f 0(y) = 2µy/(1+ y2). Thus,
using the property of natural parameterizationF(zu(t)) = zu(t + h), there exists a
unique analytic functionξ : J → C such thatzu(t) can be written in the form

zu(t) = (ξ(t − h/2), ξ(t + h/2)), ∀t ∈ J . (3.1)

From Corollary 2.1 we deduce thatξ(t) is the unique analytic function verifying the
following properties: (a)ξ(t+h)+ξ(t−h) = f (ξ(t)), (b) supJ {e−3<t

∣∣ξ(t)− ξ0(t)
∣∣} <

∞, and (c)ξ is π i-antiperiodic.
To compare the perturbed solutionξ(t) with the known unperturbed oneξ0(t) given

in (1.6), we introduce their differenceη(t) = ξ(t)− ξ0(t), as well as the linear operator
η 7→ Lη defined by

(Lη)(t) = η(t + h)− ( f 0)′(ξ0(t))η(t)+ η(t − h), f 0(y) = 2µy

1+ y2
, (3.2)

and the nonlinear oneη 7→ T η given by

(T η)(t) = 8(t, η(t)), 8(t, η) = 80(t, η)+ ε81(t, η), (3.3)
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where

80(t, η) = f 0(ξ0(t)+ η)− f 0(ξ0(t))− ( f 0)′(ξ0(t))η,

81(t, η) = V ′(ξ0(t)+ η). (3.4)

Then,η: J → C is the unique analytic function verifying the following properties:
(a’) Lη = T η, (b’) supJ {e−3<t |η(t)|} <∞, and (c’)η is π i-antiperiodic.

The idea of the proof is to invert the linear operatorL and solve the resulting fixed
point equationη = L−1T η in a suitable Banach space using some contraction argument.
Properties (b’)–(c’), together with that fact thatξ0(t) has a pole ont = π i/2, lead us
naturally to introduce the following complex Banach space:

Xδ =
{
φ: Dδ → C continuous onDδ and analytic on its interior,

π i-antiperiodic such that||φ||δ <∞
}
,

where||φ||δ = supDδ {e−3<t |φ(t)|}, andDδ is the union of the vertical half planeJ and
a complex rectangleKδ

Dδ = J ∪Kδ, Kδ = {t ∈ C: |<t | ≤ T, |=t | ≤ π /2− δ}. (3.5)

Now, from the relations between the natural parameterizationsz0(t), zu(t) and the
functionsξ0(t), ξ(t) given in equations (1.6), (3.1), it follows that the Extension Theorem
is a corollary of the next result on the functionη(t) = ξ(t)− ξ0(t).

Proposition 3.1. If h is small enough andε = o(h6 ln−1 h), there exists a unique
η∗ ∈ Xh verifying the nonlinear difference equation Lη = T η such that∣∣∣∣η∗∣∣∣∣h = O(εh−3). (3.6)

The rest of this section is devoted to proving Proposition 3.1.

3.2. The Linear Equation

First, we present the method of solution of the linear nonhomogeneous difference equa-
tion associated to the operatorL introduced in (3.2). The tools developed here are inspired
by the ones contained in the papers [Tab94], [Gel96]. In fact, we have adapted the general
setting of [Gel96] to our concrete problem where, once a fundamental set of solutions of
the homogeneous equation is known, the method of variation of parameters is applied
to solve the nonhomogeneous one.

Following this scheme, we consider first the homogeneous equation

Lη = 0. (3.7)

It is worth noting that (3.7) is the variational difference equation associated to the unper-
turbed homoclinic solutionξ0(t); see (1.7). Thus, a solution of this variational equation
is simply the derivative ofξ0(t). Another independent solution also can be computed,
as described in the following lemma, whose proof is straightforward. (It is important to
stress that we will be able to prove Proposition 3.1, due to our explicit knowledge of a
fundamental set of solutions of the homogeneous equation.)
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Lemma 3.1. The general solution of the homogeneous equation (3.7) has the form

ηh(t) = α1(t)η1(t)+ α2(t)η2(t), (3.8)

whereα1(t), α2(t) are arbitrary h-periodic functions,

η1(t) = (ξ0)′(t) = −γ tanht

cosht
, (3.9)

and

η2(t) = A1+ A2 sinh2 t + A3(t − c) tanht

γ 2 cosht
,

A1 = µ2, A2 = −1

2
, A3 = −3γµ

2h
, (3.10)

c ∈ C being an arbitrary constant.
Moreover, W(t) ≡ 1, where W(t) = W[η1, η2](t) denotes theWronskianof the

fundamental set of solutions{η1, η2}; that is,

W(t) = η1(t)η2(t + h)− η1(t + h)η2(t) = η1(t)1η2(t)− η2(t)1η1(t),

where1η(t) = η(t + h)− η(t).

Remark 3.1. A change of the free constantc ∈ C only changesη2(t) by adding a
multiple of η1(t) to it. We will take advantage of this freedom to get a second solution
η2(t) as regular as possible on its polest±p = ±π i/2. For instance, settingc = ±π i/2,
t±p becomes a simple pole ofη2(t), instead of a double one. This choice ofc allows us
to assume only the number “6” in the exponent ofε = o(h6 ln−1 h) in the Extension
Theorem, instead of a bigger one.

Now, we are ready to solve formally the nonhomogeneous equation

Lη = φ (3.11)

using the method of variation of parameters (see, for instance, [Gel96]).

Lemma 3.2. Theformal general solution of the nonhomogeneous equation (3.11) has
the formη(t) = ηh(t) + ηp(t), whereηh(t) is the homogeneous solution (3.8), and a
particular solutionηp(t) is

ηp(t) =
∑
k≥1

Nk(t)φ(t − kh), Nk(t) = η2(t)η1(t − kh)− η2(t − kh)η1(t). (3.12)

Direct computations yield this lemma. The fact that the Wronskian of{η1, η2} is
identically one has been used. Otherwise, the termφ(t − kh) in the formula of the
particular solution would beφ(t − kh)/W(t − kh).

In order to invert the linear operatorL, we now study the convergence of the series
in (3.12) forδ ∈ [h, π /2]. In the sequel,K∗, K ′∗, andK ′′∗ will denote positive constants
independent of the parametersk, h, andε, “∗” being any subscript.
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Lemma 3.3. Let0< h ≤ δ ≤ π /2. Then, the linear operator L can be inverted on the
complex spaceXδ, and its inverse is analytic. Moreover, forφ ∈ Xδ and t ∈ Dδ,

L−1φ(t) =
∑
k≥1

Nk(t)φ(t − kh), |Nk(t)| ≤ KN δ
−2h−1 ekh, (3.13)

whereNk(t) is the function defined in (3.12).

Proof. We first notice thatη1(t) isπ i-antiperiodic, butη2(t) is notπ i-antiperiodic, due
to the term(t − c) tanht / cosh2 t . However, a straightforward computation shows that
the functionNk(t) is π i-periodic and doesnot depend on the constantc.

Second, on=t ≥ 0, η1(t), η2(t) have a singularity att+p = π i/2, whereas on=t ≤ 0,
the singularity is att−p = −π i/2. Because of this, we shall work separately on the sets
D±δ = Dδ ∩ {±=z≥ 0} to get the same bound on the whole setDδ.

We choose the value

c = t±p = ±π i/2

for the free constantc that appears in the expression (3.10) ofη2(t). Then, there exists a
constantKη such that

|η1(t)| ≤ Kηδ
−2h e<t , |η2(t)| ≤ Kηh

−2 e−<t , ∀t ∈ D±δ . (3.14)

The first bound is direct, but the second one requires a detailed verification. We split the
functionη2(t) as the sumη2(t) = η̂2(t)+ η̃2(t), where

η̂2(t) =
2− sinh2 t − 3(t − t±p ) tanht

2γ 2 cosht
,

η̃2(t) =
Ã1+ Ã2 sinh2 t + Ã3(t − t±p ) tanht

cosht
,

with

Ã1 = A1− 1

γ 2
= µ2− 1

γ 2
= 1, Ã2 = A2+ 1/2

γ 2
= 0,

Ã3 = A3+ 3/2

γ 2
= 3(h− γµ)

2hγ 2
.

On the one hand, sincẽA1, Ã3 = O(1), Ã2 = 0, andδ ≥ h, there exists a constantK ′η
such that

|̃η2(t)| ≤ K ′ηδ
−1 ≤ K ′ηh

−1 ≤ π
2

K ′η eT h−2 e−<t , ∀t ∈ D±δ .

On the other hand, the numerator ofη̂2(t) has a zero att = t±p = ±π i/2, which
compensates the zero of its denominator cosht , soη̂2(t) is analytic ont = t±p and there
exists a constantK ′′η such that

|̂η2(t)| ≤ K ′′ηh−2 e−<t , ∀t ∈ D±δ .
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Thus, we can takeKη = K ′η eT +K ′′η in the bound ofη2. This ends the proof of
bound (3.14). Now, we are ready to boundNk(t). If KN = 2(Kη)

2, using (3.14), we
deduce the bound in (3.13) onD±δ , and hence, onDδ,

|Nk(t)| ≤ |η1(t − kh)| |η2(t)| + |η1(t)| |η2(t − kh)| ≤ (Kη)
2δ−2h−1(e−kh+ ekh)

≤ KN δ
−2h−1 ekh .

Let φ ∈ Xδ. We know that the formal general solution of the equationLη = φ is
η = ηh + ηp, where the functionsηh andηp are given in (3.8) and (3.12), respectively.
The particular solutionηp is analytic. Actuallyηp ∈ Xδ, sinceNk(t) isπ i-periodic, and

∣∣∣∣ηp

∣∣∣∣
δ
≤ KN δ

−2h−1 e−2h

1− e−2h
||φ||δ , (3.15)

as the following computation shows:

e−3<t
∣∣ηp(t)

∣∣ ≤ e−3<t
∑
k≥1

|Nk(t)| |φ(t − kh)|

≤ KN ||φ||δ δ−2h−1
∑
k≥1

e−2kh, ∀t ∈ Dδ.

(We have used that|φ(t)| ≤ e3<t ||φ||δ, onDδ.)
Sinceη1, η2, andηp are analytic onDδ, it turns out that the formal solutionsηh+ ηp

of Lη = φ are analytic onDδ, provided that theh-periodic functionsα1(t) andα2(t)
in (3.8) are analytic, too. Furthermore,|η1(t)| ∼ 2γ e−<t and|η2(t)| ∼ 1

4γ
−2 e<t , when

<t → −∞ and=t = 0. Thus,||ηh||δ < ∞ if and only if α1(t), α2(t) ≡ 0; that is,
ηh(t) ≡ 0. This proves thatη = ηp is the unique solution inXδ of the equationLη = φ,
soL is invertible inXδ andL−1 is given by (3.12).

Moreover
∣∣∣∣L−1

∣∣∣∣
δ
≤ KN δ−2h−1 e−2h /(1− e−2h); see (3.15). ThusL−1 is a linear

continuous operator between complex Banach spaces and, therefore, analytic.

3.3. The Nonlinear Equation

Once we know how to solve the linear equation (3.11), we are ready to study the nonlinear
one,Lη = T η. Since our goal is to prove Proposition 3.1, we shall work in the spaces
Xh, and we shall omit the subscripth in the norm ofXh, to avoid a cumbersome notation.

IntroducingBR = {η ∈ Xh: ||η|| < R}, we claim that the operators

BR 3 η(t) T7−→ 8(t, η(t)) ∈ Xh, BR 3 η(t) F7−→ L−18(t, η(t)) = L−1T η(t) ∈ Xh,

are well-defined and analytic forR= e−3T /4> 0 (see Lemma 3.5). Thus,η ∈ BR ⊂ Xh

is a solution of the fixed point equationη = Fη = L−1T η, if and only if Lη = T η.
Consequently, to prove Proposition 3.1 it suffices to see that, under the hypotheses there
stated, the operatorF has a fixed pointη∗ ∈ Xh such that||η∗|| = O(εh3).

In order to solve the fixed point equation, we shall use a contraction argument. Since
F is an analytic operator on a complex Banach space, the usual contraction lemma
admits a stronger formulation. In practice this stronger version does not give anything
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new with regard to the usual one, but it exempts us from the tedious computation that
shows that the operator we consider is a contraction. We learned this trick from [Ang93].
The adaptation of this idea to our setting is the following lemma.

Lemma 3.4(Analytic Contraction Lemma).Let X be a complex Banach space, and
letF : BR→ X be an analytic map, whereBR = {η ∈ X : ||η|| < R}. Assume that

||Fη|| ≤ a+ b ||η|| + c ||η||2+ d ||η||3 , ∀η ∈ BR, (3.16)

with

4a < R, 4b+ 16ac+ 64a2d < 1. (3.17)

ThenF has a unique fixed pointη∗ ∈ X such that||η∗|| < 2a.

Proof. Suppose first thatF(Br ) ⊂ Bθr , for somer ∈ (0, R) andθ < 1/2. Letη ∈ Bθr
andρ = r −||η|| > 0. The Cauchy’s inequality to estimate the derivative ofF in η gives

||dF(η)|| ≤ ρ−1 sup{||Fφ|| : ||φ − η|| < ρ} ≤ (r − ||η||)−1 sup{||Fφ|| : φ ∈ Br }
≤ θr

r − θr =
θ

1− θ < 1,

where we have used thatθ < 1/2. Thus, the restriction ofF to the ballBθr is a contraction,
and henceF has a unique fixed pointη∗ ∈ Bθr ⊂ Br /2.

To finish, it suffices to note that hypothesis (3.17) impliesF(Br ) ⊂ Bθr , with r =
4a < R andθ = (1+ 4b+ 16ac+ 64a2d)/4< 1/2.

We will see in Lemma 3.5 that the nonlinear operatorF satisfies bound (3.16) with

a = O(εh−3), b = O(εh−3), c = O(h−3 ln h), d = O(h−4),

whenh and|ε| are small. Therefore,

4a = O(εh−3), 4b+ 16ac+ 64a2d = O(εh−6 ln h, ε2h−10),

and hypotheses (3.17) of the Analytic Contraction Lemma hold forh and
∣∣εh−6 ln h

∣∣
small enough. This proves that, under the hypotheses of Proposition 3.1, the operatorF
has a fixed pointη∗ ∈ Xh such that||η∗|| < 2a = O(εh−3).

Therefore, Proposition 3.1 and the Extension Theorem are proved.

Remark 3.2. The bounda = O(εh−3) is the direct responsible of bound (3.6), which in
its turn, together with the boundc = O(h−3 ln h), is the cause of the hypothesish small
andε = o(h6 ln−1 h) in Proposition 3.1. Besides, the value of the operatorF at the point
0 ∈ Xh can be computed easily, as follows:

F0: t 7→ L−18(t, 0) = εL−1V ′(ξ0(t)) = ε
∑
k≥1

Nk(t)V
′(ξ0(t − kh)),

and numerical experiments show that||F0|| ' εh−3, whenh and |ε| are small. (The
experiments have been performed withV ′(y) = y3, that is, the simplest perturbation
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satisfying our hypotheses that we can take.) Thus, the bound ona is optimal because
||F0|| ≤ a. This fact leads us to believe that bound (3.6) is optimal. This belief also relies
on additional numerical experiments, which also show that bound (3.6) holds under the
weaker hypothesish small andε = o(h3).

It only remains to prove the properties of the operatorsT andF we have used before,
and this is the aim of the following lemma.

Lemma 3.5. If h0 is small enough, h∈ (0, h0), and t∈ Dh, the following bounds hold:

(i)
∣∣ξ0(t)± i

∣∣ ≥ 1/2.
(ii) |Nk(t)| ≤ KNh−3 ekh, whereNk(t) is the function defined in (3.12).

(iii) Let 8(t, η) be the function introduced in (3.3)–(3.4). Then,

|8(t, η)| ≤ K8

{
3∑

q=2

|η|q ∣∣ξ0(t)
∣∣3−q + |ε|

3∑
q=0

|η|q ∣∣ξ0(t)
∣∣3−q

}
, ∀η ∈ B1/4.

Moreover, settingBR = {η ∈ Xh: ||η|| < R} with R = e−3T /4, the nonlinear
operator

BR 3 η(t) T7−→ 8(t, η(t)) ∈ Xh

is well-defined and analytic.
(iv) Let Mq(t) =

∑
k≥1 exp[3(q − 1)<t − (3q − 1)kh]

∣∣ξ0(t − kh)
∣∣3−q

, for q =
0, 1, 2, 3. Then,

Mq(t) ≤
KM e2q<t if q = 0, 1

KM |ln h| e4<t if q = 2
KMh−1 e6<t if q = 3.

(v) For R= e−3T /4, the nonlinear operator

BR 3 η(t) F7−→ L−18(t, η(t)) ∈ Xh

is well-defined and analytic onBR. Furthermore, for allη ∈ BR,

||Fη|| ≤ KFh−3
{|ε| (1+ ||η||)+ (1+ |ε|) |ln h| ||η||2+ (1+ |ε|)h−1 ||η||3}.

Proof. The value ofh0 can change along the proof, becoming smaller and smaller,
without explicit mention. Thus, we will use freely bounds likeh < 1, lnh < −1,
γ < 2h, µ < 2, or any other one that holds near the limith = 0.

(i) We will obtain the bound separately on the setsJ andKh. (Recall thatDh = J∪Kh;
see equation (3.5).) The bound onJ is trivial, sinceξ0 tends uniformly to zero onJ ,
whenh→ 0.

We note thatξ0(±h+ π i/2) = i andξ0(±h− π i/2) = − i, so the bound onKh is
more difficult. Letr = <t , s= =t . Elementary computations give∣∣ξ0(t)+ i

∣∣2 = 1+ γ (γ − 2 sinhr sins)

sinh2 r + cos2 s
≥ 1+ γ (γ − 2 sinh|r |)

sinh2 r + cos2 s
.
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If γ − 2 sinh|r | ≥ 0, then
∣∣ξ0(t)+ i

∣∣2 ≥ 1 > 1/4. Otherwise, using the inequality
cos2 s= cos2(=t) ≥ sin2 h, for t ∈ Kh, we obtain∣∣ξ0(t)+ i

∣∣2 ≥ 1+ γ (γ − 2 sinh|r |)
sinh2 r + sin2 h

= 1+ 1− 2α

α2+ c(h)2
=: gh(α),

whereα = γ−1 sinh|r |, andc(h) = γ−1 sinh. In particular,
∣∣ξ0(t)+ i

∣∣2 ≥ minR gh,
for t ∈ Kh. Let g0(α) = 1+ (1− 2α)/(α2 + 1). The functiongh converges uniformly
to g0 on the real line, whenh → 0, and minR g0 = g0((1+

√
5)/2) = 0.382. . . , so

minR gh > 1/4, for h small enough. This finishes the proof of the bound
∣∣ξ0(t)+ i

∣∣ ≥
1/2, for t ∈ Kh.

The bound on
∣∣ξ0(t)− i

∣∣ is similar.
(ii) It is a direct consequence of (3.13) forδ = h.
(iii) Let us recall that8 = 80 + ε81. In order to bound the function80, we write

80 = 8̂0+ 8̃0, where

8̂0(t, η) = 2µ
P̂(ξ0(t))

Q(ξ0(t), η)
ξ0(t)η2, 8̃0(t, η) = 2µ

P̃(ξ0(t))

Q(ξ0(t), η)
η3,

with

P̂(ξ) = ξ2− 3, P̃(ξ) = ξ2− 1, Q(ξ, η) = (1+ ξ2)2
[
1+ (ξ + η)2] .

Now, we can control the size of the denominatorQ(ξ0(t), η) using (i). In particular,∣∣Q(ξ0(t), η)
∣∣ ≥ 2−8, ∀η ∈ B1/4, ∀t ∈ Dh.

Moreover, there exists a constantK P such that∣∣P̂(ξ0(t))
∣∣ , ∣∣P̃(ξ0(t))

∣∣ ≤ KP, ∀t ∈ Dh,

sinceξ0(t) = γ secht is uniformly bounded onDh, and P̂(ξ), P̃(ξ) are polynomial
functions. Thus, using thatµ < 2,

∣∣80(t, η)
∣∣ ≤ 210K P

3∑
q=2

|η|q ∣∣ξ0(t)
∣∣3−q

, ∀η ∈ B1/4, ∀t ∈ Dh. (3.18)

We now proceed to bound81(t, η) = V ′(ξ0(t) + η). As y = 0 is a triple zero of
V ′(y), V ′(y)/y3 is an entire function. In particular, there exists a constantKV such that∣∣81(t, η)

∣∣ ≤ KV

∣∣ξ0(t)+ η∣∣3
≤ 3KV

3∑
q=0

|η|q ∣∣ξ0(t)
∣∣3−q

, ∀η ∈ B1/4, ∀t ∈ Dh. (3.19)

(We have used again the fact thatξ0(t) is uniformly bounded onDh.) The bounds (3.18)
and (3.19) imply the first part of (iii); it suffices to takeK8 = max{210K P, 3KV }.
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In order to get the properties of the operatorT , let us fix a functionη ∈ BR. Then,

|η(t)| ≤ e3<t ||η|| < e3T R= 1/4, ∀t ∈ Dh.

Therefore, the functiont 7→ T η(t) := 8(t, η(t)) is analytic onDh, because8(t, η) is
analytic on(t, η) ∈ Dh × B1/4. Moreover, an easy computation shows thatT η ∈ Xh, so
the operatorT is well-defined and analytic.

(iv) There exists a constantKe such that
∑

k≥1 e−nhk ≤ (1− e−nh)−1 ≤ Keh−1, for
n = 2, 4, 6, 8. Set

τ =
{

t − π i/2 if =t ≥ 0
t + π i/2 otherwise.

Then, there exists a constantKξ such that

∣∣ξ0(t)
∣∣3−q ≤

{
Kξh3−q e(3−q)<t onJ
Kξh3−q |τ |q−3 onKh

∀q = 0, 1, 2.

The caseq = 3 is easy:

M3(t) = e6<t
∑
k≥1

e−8kh ≤ Keh−1 e6<t , ∀t ∈ Dh. (3.20)

Now, we consider the caseq 6= 3. We again work separately on the setsJ , Kh. On
J the bound is

Mq(t) ≤ Kξh
3−q e2q<t

∑
k≥1

e−(2+2q)kh ≤ KξKeh2−q e2q<t ,

and settingK ′M = KξKe,

Mq(t) ≤
{

K ′M e2q<t if q = 0, 1
K ′M |ln h| e4<t if q = 2

∀t ∈ J . (3.21)

To end, let us assume that there exists a constantK ′′M verifying

Mq(t) ≤
{

K ′′M if q = 0, 1
K ′′M |ln h| if q = 2

∀t ∈ Kh. (3.22)

Then, settingKM = max{K ′M, e4T K ′′M, Ke}, (iv) follows from equations (3.20)–(3.22).
We now proceed to prove bound (3.22). Givent ∈ Kh, let ` = `(t) be the smallest

positive integer such thatt − `h ∈ J , and split the seriesMq(t) as

Mq(t) = Mq(t − `h)+
`−1∑
k=1

exp[3(q − 1)<t − (3q − 1)kh]
∣∣ξ0(t − kh)

∣∣3−q

≤ max
t∈J
Mq(t)+ Kξ e3T h3−q

`−1∑
k=1

|τ − kh|q−3 , t ∈ Kh.
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We remember that|=τ | ≥ h, and−T /h + ` − 1 ≤ <τ /h ≤ T /h. Using the bound∑`−1
k=1 f (k) ≤ maxR f + ∫ `1 f , valid for any positive continuous functionf such that it

is increasing on(−∞, r ) and decreasing on(r,+∞) for somer ∈ R, we get

h3−q
`−1∑
k=1

|τ − kh|q−3 ≤ h3−q
`−1∑
k=1

|<τ − kh+ h i |q−3 =
`−1∑
k=1

|<τ /h− k+ i |q−3

≤ 1+
∫ `

1
|<τ /h− u+ i |q−3 du = 1+

∫ <τ /h−1

<τ /h−`
|v + i |q−3 dv

≤ 1+
∫ T /h−1

−T /h−1

dv

(1+ v2)(3−q)/2
=
{

O(1) if q = 0, 1
O(ln h) if q = 2.

Now, bound (3.22) follows from these last two estimates and bound (3.21).
(v) The fact thatF is well-defined and analytic onBR is obvious, because it is the

composition of two operators,T : BR → Xh and L−1: Xh → Xh, well-defined and
analytic. Consequently, we fix our attention on the bound.

Let η ∈ BR, and setKF = KN K8KM. Then, using the bounds from (ii)–(iv), we
get

e−3<t |Fη(t)| ≤ e−3<t
∑
k≥1

|Nk(t)| |8(t − kh, η(t − kh))|

≤ KN K8h−3
∑
k≥1

e−3<t+kh

{
3∑

q=2

|η(t − kh)|q ∣∣ξ0(t − kh)
∣∣3−q

+ |ε|
3∑

q=0

|η(t − kh)|q ∣∣ξ0(t − kh)
∣∣3−q

}

≤ KN K8h−3

{
3∑

q=2

||η||qMq(t)+ |ε|
3∑

q=0

||η||qMq(t)

}
≤ KFh−3

{|ε| (1+ ||η||)+ (1+ |ε|) |ln h| ||η||2+ (1+ |ε|)h−1 ||η||3} ,
for all t ∈ Dh.

Remark 3.3. Let δ ∈ (0, π /2] befixed, i.e., independent ofh. Then, the analysis onDδ
is simpler than the one onDh, since we are far from the singularities. The bounds (i)
and (iii) of the previous lemma are the same, whereas the bounds (ii) and (iv) can be
improved in the following way:

|Nk(t)| ≤ KNh−1 ekh, Mq(t) ≤ KMh2−q e2q<t , q = 0, 1, 2, 3,

for all t ∈ Dδ. Thus, repeating the argument of (v), the operatorF is well-defined and
analytic onBR = {η ∈ Xδ: ||η||δ < R}, and verifies bound (3.16) as before, but now
with

a = O(εh), b = O(ε), c = O(h−1), d = O(h−2),

whenh and|ε| are small. Therefore,

4a = O(εh), 4b+ 16ac+ 64a2d = O(ε),
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and the hypotheses (3.17) of the Analytic Contraction Lemma are verified forh and|ε|
small enough. This proves that, under these hypotheses, the operatorF has a fixed point
η∗ ∈ Xδ such that||η∗||δ < 2a = O(εh). Hence, in the same way that we have proved
the Extension Theorem, bound (2.15) follows. We omit the details, since they do not
require any new idea.

4. Proof of Proposition 2.2

(a) Let B be the matrix such thatH0(z) = 1
2z>Bz+ O(h−1z4). A direct computation

shows thatBC = O(h), and hence dH0(z) = O(h), for z ∈ U = C8(U). Assume that
T /2≤ <t ≤ T and|=t | ≤ π /2−h. Then, bounds (2.14) and (2.6) hold, andzu,s(t) ∈ U .
Applying Taylor’s Theorem toH0(zu,s(t)) = H0(zu,s(t))− H0(z0(t)), we get

H0(zu(t)) = O(εh−2), H0(zs(t)) = O(εh2).

These estimates, together with equations (2.11)–(2.13), imply

Eu(t) = E(zu(t))− E(zs(t)) = E0(zu(t))− E0(zs(t))+O(εh3)

= 1(t)+O(εh3, ε2h−4), (4.1)

where

1(t) = H0(zu(t))− H0(zs(t))

= H0(zu(t−m))− H0(zs(tm))+
m−1∑

n=−m

H0(zα(n)(tn+1))− H0(zα(n)(tn)),

for all m > 0, wheretn = t + hn, andα(n) stands for u ifn < 0, and for s ifn ≥ 0.
Since limm→∞ zu(t−m) = limm→∞ zs(tm) = O = (0, 0), andzu,s(tn) = F(zu,s(tn−1)),
we obtain, by passing to the limit,

1(t) =
∑
n∈Z

H0(zα(n)(tn+1))− H0(zα(n)(tn)) =
∑
n∈Z
(H0 ◦ F − H0)(zα(n)(tn)).

Adding and subtractingεM(t)—M(t) being the Melnikov sum (1.9)—we get

1(t) = εM(t)+ εQ(t), Q(t) =
∑
n∈Z
{R(zα(n)(tn))− R0(z0(tn))}, (4.2)

whereR= ε−1
(
H0 ◦ F − H0

)
, for ε 6= 0, andR= R0 = (dH0 ◦ F0

) · F1, for ε = 0.
SetQ = Q+ + Q0+ Q−, with

Q+(t) =
−N∑

n=−∞

{
R(zu(tn))− R0(z0(tn))

}
,

Q0(t) =
−1∑

n=1−N

{
R(zu(tn))− R0(z0(tn))

}
,

Q−(t) =
+∞∑
n=0

{
R(zs(tn))− R0(z0(tn))

}
,
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N ≤ 2T h−1 being the smallest natural such thatt−N ∈ J u; i.e.,<t − Nh ≤ −T /2.
First, we focus our attention on the termQ0. In order to bound it, we must estimate the

size of the differencesR(zu(tn))− R(z0(tn)), and this requires a better knowledge of the
function R. LetÄ = {z= (x, y) ∈ C2: y 6= ± i }. Using the equalitiesH0 ◦ F0 = H0,
F = F0 + εF1, it turns out thatR = R0 + εR1, hR0(z, h) andhR1(z, h, ε) being
analytic for allz ∈ Ä, andh, ε ∈ C. (The denominator 2γ = O(h) in the formula (1.5)
for the first integralH0 forces us to put the factorh, whereas the denominator 1+ y2 in
the definition of the McMillan mapF0(z) forces us to work onz ∈ Ä.) Hence, given a
compact setÄ0 ⊂ Ä, there exists a positive constantK such that∣∣R(zu)− R0(z0)

∣∣ ≤ ∣∣εR1(zu)
∣∣+ ∣∣R0(zu)− R0(z0)

∣∣ ≤ K h−1
[|ε| + ∣∣zu− z0

∣∣] , (4.3)
for all zu, z0 ∈ Ä0.

LetÄ0 be the compact subset ofÄgiven by{z= (x, y) ∈ C2: |z| ≤ 2, |y± i | ≥ 1/2}.
Item (i) of Lemma 3.5 implies thatz0(Kh) ⊂ Ä0, for small enough values ofh. On
the other hand, equation (2.14) provides the boundzu(tn) − z0(tn) = O(εh−3), since
tn ∈ Kh, for 1− N ≤ n ≤ −1. Therefore,zu(tn), z0(tn) ∈ Ä0, for 1− N ≤ n ≤ −1.
Then, equation (4.3) provides the estimateR(zu(tn)) − R0(z0(tn)) = O(εh−4), and
Q0 = O(εh−5), because there areN − 1= O(h−1) terms in the sum, each one of order
O(εh−4).

The termsQ± can be estimated along the same lines. Of course, their bounds are
smaller than the one forQ0, because one uses the bounds (2.5)–(2.6), instead of the
bigger one (2.14). The result isQ± = O(εh−1).

Collecting the bounds forQ0 and Q±, we obtainQ = O(εh−5), and thus (2.18)
follows from (4.1)–(4.2).

To end, we simply estimate the Fourier coefficientsEu
k of Eu = ∑k Eu

k e2π ikt /h, for
k 6= 0, shifting along complex lines=t = ±rh, with rh = π /2− h:

Eu
k = h−1 e−2π |k|rh/h

∫ h

0
Eu(s± irh) e2π iks/h ds= εMk(h)+O(εh3, ε2h−5) e−π

2|k|/h,

where Mk(h) stand for the Fourier coefficients of the Melnikov function, and esti-
mate (2.19) follows readily.

(b) In [DS96, Proposition 2.6], an analogous result is proved. Therefore, we only
sketch the proof. The functionSu(t)− t is analytic andh-periodic on the complex strip
Ih introduced in (2.17). ForT /2≤ <t ≤ T , using the Flow Box Theorem together with
the Extension Theorem, we get

Su(t)−t = S(zu(t))−t = S0(zu(t))−t+O(ε) = S0(z0(t))−t+O(εh−3, ε) = O(εh−3),

sinceS0(z0(t)) = t , as a special case of (2.12). On the one hand, estimating now the
Fourier coefficients ofSu(t)− t and also those of its derivative (which has zero mean),
we arrive at

Su(t)− t = Su
0 +O(εh−3) e−π

2/h,

dSu(t)/dt − 1 = O(εh−4) e−π
2/h, ∀t ∈ R. (4.4)
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ThereforeSu(t) can be inverted for realt . On the other hand, repeating the computations
above for realt , but using estimate (2.15), instead of the worst one (2.14), we get

Su(t)− t = O(ε), t ∈ R, (4.5)

and in particularSu
0 = O(ε) for the zero order Fourier coefficientSu

0 of Su(s) − s that
appears in formula (4.4).

Finally, using formulae (4.4) and (4.5), we obtain for the inverse functions = su(t)
of s= Su(t) thatφu(s) = su(s)− s is O(ε), analytic, andh-periodic.

(c) Formula (2.20) was proved in [DR96] for even polynomial perturbative potentials
V(y). Unfortunately, the reasoning given there does not apply to a series as in (1.2), and
we must change our approach. Along this proof, we do not assume thatV1 = V ′′(0) = 0
because it is not used.

From formula (1.10),M(t) is odd real andh-periodic, and its Fourier expansion can
be written in the following way:

M(t) =
∑
k∈Z

Mk(h) exp(2πk i t /h) =
∑
k≥1

mk(h) sin(2πkt/h), (4.6)

whereM0(h) = 0 andM±k(h) = ∓ 1
2mk(h) i for some realmk(h), if k ≥ 1. The idea of

the proof is to get the asymptotic behaviour of the first harmonicm1(h) and to bound the
higher order ones. The first step is to get a uniform control on the Laurent coefficients
fn(h) of f (t) around its singularities.

Lemma 4.1. The function f(t) = f (t, h) defined in (1.10) has isolated singularities
just on the set−h/2+ π i/2+ π iZ, being symmetric with respect to this set. Let∑

n∈Z
fn(h)(t − tp)

2n

be its Laurent expansion around the singularity tp = −h/2+ π i/2. Then, there exists a
constant b independent of n and h such that∣∣( ih)−2n f−n(h)− Vn

∣∣ ≤ bh2, ∀n ≥ 1, 0< h¿ 1. (4.7)

Proof. The first part is trivial. In order to get the second one, it is very convenient to
introduce the function

v(τ) = v(τ, h) = V(σ (τ, h)), σ (τ, h) =
{
γ / sin(hτ) if h 6= 0
τ−1 if h = 0.

The singularities ofv(τ) are located on the setπh−1 iZ, so τ = 0 is the unique
singularity on the ball|τ | < 2, assumingh small enough. Therefore,v(τ) can be
expressed in terms of its Laurent series

∑
n∈Z vn(h)τ 2n aroundτ = 0. From the definition

of v(τ), it turns out that ifh = 0, v(τ) = ∑
n≥1 Vnτ

−2n, whereas ifh 6= 0, v(τ) =
f (tp− ihτ). Thus,

v−n(h) =
{
( ih)−2n f−n(h) if h 6= 0
Vn if h = 0

∀n ≥ 1.
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(Here,τ is an inner-like variable, similar to the one used in [HM93] to study the behaviour
of the separatrices of the standard map near its singularities.)

Now, these two results together lead to the bound

∣∣( ih)−2n f−n(h)− Vn

∣∣ = ∣∣∣∣ 1

2π i

∫
|τ |=1

(v(τ, h)− v(τ, 0)) τ 2n−1dτ

∣∣∣∣
≤ (2π)−1

∫
|τ |=1
|v(τ, h)− v(τ, 0)| dτ,

and the lemma follows since there exists a constantb independent ofτ andh such that

|v(τ, h)− v(τ, 0)| ≤ bh2, ∀ |τ | = 1, 0< h¿ 1.

Indeed, a bound of this kind, with another constant, trivially holds for the function
σ(τ, h)—it is sufficient to use that sinz = z[1 + O(z2)] andγ = h[1 + O(h2)]—and
the composition with the entire functionV(y) only changes the constant, but not the
bound.

During the computation of Melnikov functions for maps, elliptic functions appear in
a natural way [GPB89], [DR96], [Lev97]. Thus, some notations must be introduced. For
a general background on elliptic functions, we refer to [AS72], [WW27]. We follow the
notation of the first reference.

Given theparameter m∈ [0, 1], K = K (m) = ∫ π /2
0 (1 − msinϑ)−1/2dϑ is the

complete elliptic integral of the first kind, K ′ = K ′(m) = K (1−m) andq = q(m) =
e−πK ′/K is thenome. If any of the numbersm, K , K ′, K ′/K , or q is given, all the rest
are determined. For our purposes, it is convenient to determine the value of the quotient
K ′/K by imposing

K ′/K = π /h,

whereh is the characteristic exponent. From now on, we can consider the quantitiesm,
q, andK as functions ofh. For instance,

q = q(h) = e−π
2/h .

Now, let us introduce the elliptic functionψ(t) defined by

ψ(t) = ψ(t, h) =
(

2K

h

)2

dn2

(
2Kt

h

∣∣∣∣m) .
From dn2(u|m) = 1−msn2(u|m)and the Fourier expansion of sn2(u|m)given in [WW27,
page 520], the Fourier expansion ofψ(t) follows:

ψ(t) =
∑
k∈Z

ψk(h) e2πk i t /h, ψ±k(h) =
(

2π

h

)2 kqk

1− q2k
, ∀k ≥ 1.

(The value ofψ0(h) is not needed.) The importance ofψ(t) and its Fourier coefficients
stems from the following key lemma.
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Lemma 4.2. Let mk(h) be the coefficients of the sine series of the Melnikov function
M(t), as shown in (4.6). Then,

mk(h) = (−1)k+12hψk(h)̂vk(h) = (−1)k+18π2kh−1 qk

1− q2k
v̂k(h),

where

v̂k(h) =
∑
n≥1

(2πk)2n−1

(2n− 1)!
v−n(h) =

∑
n≥1

(2πk)2n−1

(2n− 1)!
( ih)−2n f−n(h).

Proof. We note that the function

f ′(t) = −γ sinh(t + h/2)

cosh2(t + h/2)
V ′(γ sech(t + h/2))

verifies the properties: (P1) it is analytic onR and only has isolated singularities onC,
(P2) it isT i-periodic withT = π , and (P3) it is exponentially small when|<t | → ∞.
Under these hypotheses, in the Summation Formula given in [DR96, Proposition 3.1],
it is stated that

M(t) =
∑
n∈Z

f ′(t + hn) = −
∑
z∈S

res{χ(z− t) f ′(z); z},

whereS is the set of singularities off ′(z) on the complex strip{0< =z< π}, andχ(z)
is a meromorphic function such thatχ ′(z) = constant+ ψ(π i/2− z).

In our case,S consists of only one pointzp = tp = −h/2+ π i/2. Thus, using that
res{ f (z); zp} = 0, and the Fourier expansion ofψ , we get∑
k∈Z

Mk(h) e2πk i t /h = M(t)

= − res{χ(z− t) f ′(z); zp}
= res{χ ′(z− t) f (z); zp}
= res{ψ(t + h/2− (z− zp)) f (z); zp}
=
∑
k∈Z
(−1)kψk(h) · res

{
exp

[
−2πk i

h
(z−zp)

]
· f (z); zp

}
·e2πk i t /h .

After a little algebra, one obtains

res

{
exp

[
−2πk i

h
(z− zp)

]
· f (z); zp

}
= hv̂k(h) i , ∀k 6= 0,

and the lemma follows, sinceM±k(h) = ∓ 1
2mk(h) i, for all k ≥ 1.

These previous lemmas are intended to prove the following result on the coefficients
mk(h) of the sine series of the Melnikov functionM(t).
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Lemma 4.3. Let V̂ : C → C be the function defined in (1.11). Let V∞ = max{Vn},
where Vn are the Taylor coefficients of the function V(y) defined in (1.2). Let B=
32π2V∞ and rh = π /2− h. Then,

(i) The following asymptotic expression for the first coefficient m1(h) holds:

m1(h) = 8π2h−1 e−π
2/h
[
V̂(2π)+O(h2)

]
.

(ii) The higher order coefficients can be bounded as follows:

|mk(h)| ≤ Bh−1k exp

(
−2πkrh

h

)
, ∀k ≥ 2, 0< h¿ 1.

Proof. Using equation (4.7), the bound
∑

n≥1 u2n−1/(2n−1)! = sinhu ≤ eu, for u > 0,
and the triangle inequality, we deduce that the functionsv̂k(h) introduced in Lemma 4.2
verify∣∣̂vk(h)− V̂(2πk)

∣∣ ≤ be2πk h2, |̂vk(h)| ≤ 2V∞ e2πk, ∀k ≥ 1, 0< h¿ 1.

(i) Let m∗1(h) be the function given implicitly bym1(h) = 8π2h−1q[V̂(2π) +
h2m∗1(h)]. Remember thatq = e−π2/h, so limh→0+(q/h) = 0 andq2 < 1/2 for small
positive values ofh. Direct computations yield

∣∣m∗1(h)∣∣ =
∣∣∣∣∣m1(h)− 8π2h−1qV̂(2π)

8π2hq

∣∣∣∣∣ = h−2

∣∣∣∣ v̂1(h)

1− q2
− V̂(2π)

∣∣∣∣
≤ h−2

[∣∣̂v1(h)− V̂(2π)
∣∣+ q2

1− q2
|̂v1(h)|

]
≤ e2π [b+ 4V∞(q/h)2] = O(1).

(ii) We bound the coefficientsmk(h) in the following way:

|mk(h)| = 8π2h−1 kqk

1− q2k
|̂vk(h)| ≤ 32π2V∞h−1kqk e2πk = Bh−1k exp

(
−2πkrh

h

)
,

for all k ≥ 2 andh > 0 small enough.

Now, we are ready to finish the proof of Proposition 2.2, taking into account the last
lemma. We split the Melnikov function asM(t) = M [1](t)+ M [≥2](t), where

M [1](t) = m1(h) sin(2π t /h), M [≥2](t) =
∑
k≥2

mk(h) sin(2πkt/h).

On the one hand, the termM [1](t) verifies

M [1](t) = 8π2h−1 e−π
2/h
[
V̂(2π)+O(h2)

]
sin(2π t /h).

On the other hand, we bound the termM [≥2](t), for real values oft and small values of
h, in the following way:
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∣∣ ≤ Bh−1

∑
k≥2

k exp(−2πkrh/h)

= Bh−1 (2− exp(−2πrh/h)) exp(−4πrh/h)

(1− exp(−2πrh/h))2

= O
(
h−1 exp(−2π2/h)

) ≤ O
(
h exp(−π2/h)

)
,

and the formula (2.20) holds, as we wanted. Formula (2.21) can be obtained in a similar
way.

Appendix A. Proof of the Upper Bound Theorem

Throughout this paper, we have worked inside a complex strip|=t | ≤ π /2− δ with a
variableδ ≥ h. The computations with afixedδ are easier and give rise to upper bounds
for the splitting of separatrices. Nevertheless, this appendix is devoted to showing that
the Upper Bound Theorem is a direct corollary of the theorem about exponentially small
upper bounds of the splitting size for area preserving analytic maps close to the identity
given in [FS90], [Fon95]. We recall this theorem in a form suitable for our purposes.

Theorem A.1. Let Gh: R2 → R be a family of analytic area preserving diffeomor-
phisms with h> 0 having the form

Gh(ζ ) =
(

eh 0
0 e−h

)
ζ + h

[
G0(ζ )+ hqG1(ζ, h)

]
, G0,G1 = O(ζ 2), (A.1)

whereζ = (ζ1, ζ2), and q> 0. Assume that the vector field

ζ̇ = X 0(ζ ), X 0(ζ ) = (ζ1,−ζ2)+ G0(ζ ) (A.2)

verifies the following properties:

(i) It has a homoclinic orbitζ 0 to the origin analytic onIδ0 := {t ∈ C: |=t | < δ0}.
(ii) There existsδ1 ∈ (0, δ0) such that the mapsGh(ζ ) are analytic on a neighbourhood

of ζ 0(Iδ1), for small enough values of h.

Then, given anyδ ∈ (0, δ1), there exists a constant N= N(δ) such that

splitting size≤ N(δ) e−2πδ/h, (h→ 0+).

Remark A.1. Hypothesis (i) is a necessary and sufficient condition for the existence of
a constanth0 > 0 such thatGh has homoclinic points for allh ∈ (0, h0); see [Fon89].
Thus, it makes sense to speak of splitting size under the above assumptions.

Now, we are ready to sketch the proof of the Upper Bound Theorem. The notations
in the statement of Theorem A.1 must be kept in mind.

Settingε = O(hp) in equation (1.1), the linear change of variables (2.1) conjugates
F(z) to an analytic area-preserving diffeomorphism having the form (A.1), where

G0(ζ ) = (−(ζ1+ ζ2)
3, (ζ1+ ζ2)

3
)
.
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Then, the vector field (A.2) verifies the hypotheses (i)–(ii) for any 0< δ1 < δ0 = π /2.
Namely, since its homoclinic orbitζ 0(t) is given by

ζ 0(t) =
(

cosht − sinht

2 cosh2 t
,

cosht + sinht

2 cosh2 t

)
,

it is immediate thatδ0 = π /2, and an easy computation shows that we can choose an
arbitraryδ1 ∈ (0, δ0) = (0, π /2), takingh small enough.

Consequently, the Upper Bound Theorem follows simply by noting thatδ ∈ (0, π /2)
impliesα = 2πδ ∈ (0, π2). The factorO(h3) due to the linear change has no importance
in front of the exponential decay of the splitting size.

To end, we want to mention that, for fixedε, the Upper Bound Theorem holds if and
only if ε < 1/2V2, whereV2 stands for the coefficient in the quartic term of the Taylor
expansion of the perturbative potentialV(y). The point is that for fixedε, one has

G0(ζ ) = a
(−(ζ1+ ζ2)

3, (ζ1+ ζ2)
3
)
, a = 1− 2V2ε,

so that the vector field (A.2) has a homoclinic orbit to the origin if and only ifa > 0.
We omit the details.
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Gauthier-Villars, Paris, 1892–1899.

[RW88] V. Rom-Kedar and S. Wiggins. Transport in two-dimensional maps.Arch. Rat. Mech.
Anal., 109:239–298, 1988.

[RW97] M. Rudnev and S. Wiggins. Existence of exponentially small separatrix splittings and
homoclinic connections between whiskered tori in weakly hyperbolic near-integrable
Hamiltonian systems. Preprint 97-4,mp arc@math.utexas.edu , January 1997.
To appear inPhys. D.

[Sau95] D. Sauzin. R´esurgence param´etrique et exponentielle petitese de l’ecart des
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