
Singular Separatrix Splitting

and the Melnikov Method: An Experimental Study
Amadeu Delshams and Rafael Ramı́rez-Ros

CONTENTS

1. Introduction

2. The Model

3. The Regular Case

4. The Singular Case

5. The Computations

6. Further Experiments

Acknowledgments

Electronic Availability

References

Keywords: Area-preserving map, singular separatrix splitting,Melnikov method, numerical experiments.AMS Subject Classi�cation (1991): 34C37, 34E05, 34E15, 65L12.

We consider families of analytic area-preserving maps depend-

ing on two parameters: the perturbation strength " and the char-

acteristic exponent h of the origin. For " = 0, these maps are

integrable with a separatrix to the origin, whereas they asymp-

tote to flows with homoclinic connections as h ! 0+. For fixed" =/ 0 and small h, we show that these connections break up.

The area of the lobes of the resultant turnstile is given asymptot-

ically by " exp(��2/ h)�"(h), where �"(h) is an even Gevrey-1

function such that �"(0) =/ 0 and the radius of convergence of

its Borel transform is 2�2. As " ! 0, the function �" tends

to an entire function �0. This function �0 agrees with the one

provided by Melnikov theory, which cannot be applied directly,

due to the exponentially small size of the lobe area with respect

to h.

These results are supported by detailed numerical computations;

we use multiple-precision arithmetic and expand the local in-

variant curves up to very high order.

1. INTRODUCTION

The ProblemWe will consider the family of planar standard-likemaps F (x; y) = (y; �x+ U 0(y));U(y) = �0 log(1 + y2) + "V (y);where V (y) =Pn�1 Vny2n is an even entire function.Provided that �0 + V1" > 1, the origin O = (0; 0)is a hyperbolic �xed point withSpec[dF (O)] = fexp(�h)g;and its characteristic exponent h > 0 is given bycoshh = �0 + V1":Moreover, when " vanishes, F becomes integrablewith a separatrix to the origin. Thus, the map Fcan be considered as a perturbation of an integrablemap, " being the perturbation strength. These twoparameters, h > 0 and ", will be considered theintrinsic parameters of the map F under study.
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30 Experimental Mathematics, Vol. 8 (1999), No. 1Our goal is to show that for " 6= 0 and for a generalperturbation, the separatrix splits and exactly two(transverse) primary homoclinic points, z+ and z�,appear in the quadrant fx; y > 0g. By primaryhomoclinic orbits we mean that these orbits persistfor all " small enough.The pieces of the perturbed invariant curves be-tween z+ and z� enclose a region called a lobe, shownshaded in the �gure on the preceding page. Ourmeasure of the splitting size will be the area A ofthis lobe. This lobe area is a homoclinic symplecticinvariant, that is, it does not depend on the sym-plectic coordinates used, and all the lobes have thesame area. Lobe areas also measure the ux alongthe homoclinic tangle, which is related to the studyof transport [MacKay et al. 1984; 1987; Meiss 1992].Both parameters, h > 0 and ", will be \smallenough", but the exact interpretation of this sen-tence is crucial for understanding the di�erent kindsof results to be presented. Speci�cally, we are goingto deal with the following situations:
1. The regular case: �xed h > 0, and "! 0.
2. The singular case: h! 0+. In its turn this casesubdivides into two subcases:

a. The nonperturbative case: " �xed and h! 0+.
b. The perturbative case: " = o(hp) and h! 0+,for some p � 0.Both analytical and numerical results for the split-ting of separatrices are obtained. The analytical re-sults are expressed in terms of theMelnikov potentialof the problem, which gives explicit formulae for ourmap. This is the reason for our choice of the mapabove as a model for this paper, instead of more cel-ebrated maps like the H�enon map or the standardmap.The name \singular" for the case h! 0+ is due tothe fact that the lobe areas are exponentially smallin h. The measure of such small quantities requiresa very careful treatment, both from a numerical andan analytical point of view.

Outline of ResultsIn the regular case, for0 < j"j < "�(h) = o(exp(��2=h));the discrete version of the usual Melnikov method[Delshams and Ram��rez-Ros 1996; 1997] ensures the

existence of two transverse, primary homoclinic or-bits, and provides a �rst order approximation of thelobe area in terms of the perturbation strength ":A = "AMel +O("2);AMel = e��2=h��0(h) +O(e�2�2=h)�;where �0(h) = Pn�0�0nh2n is an even entire func-tion. If V (y) is a polynomial, �0(h) can be explicitlycomputed in a �nite number of steps. For instance,�0(h) = 8�22h�2 for V 0(y) = y, and �0(h) =83�24h�2(1 + �2h�2) for V 0(y) = y3. The nonpoly-nomial case is harder, although some closed formu-lae can be obtained. In particular, �0(0) = �00 =8�bV (2�), where bV (�) = Pn�1 Vn�2n�1=(2n � 1)! isthe Borel transform of V (y).In the singular case, the result above cannot beapplied, since it requires " to be exponentially smallin h. There are, however, a couple of analyticalresults that hold.In the nonperturbative case, under the assump-tion (V1 + 2V2)" < 1;there exist homoclinic orbits for h > 0 small enough,and an upper bound exponentially small in h > 0 isprovided for the lobe area.In the perturbative case " = o(hp), with p > 6,under the assumption bV (2�) 6= 0, the existence oftwo transverse, primary homoclinic orbits in the �rstquadrant is proved, and an asymptotic expressionfor the area lobe is given:A = "e��2=h�8�bV (2�) +O(h2)� (h! 0+):Most of these analytical results are found in [Del-shams and Ram��rez-Ros 1996; 1997; 1998]. For theconvenience of the reader, we have collected here themain ideas.The heart of this paper is devoted to a numericalstudy of the situations not covered by the analyticalresults for the singular case. The numerical exper-iments have been performed for the simplest evenperturbed potentials, that is, for the linear pertur-bation "V 0(y) = "y and the cubic one "V 0(y) = "y3.In the nonperturbative case, the following asymp-totic expansion for the lobe area A is numericallyestablishedA � "e��2=hXn�0�"nh2n (h! 0+; " �xed):The sign � means that the seriesPn�0�"nh2n is anasymptote, that is, if one retains a �nite number of



Delshams and Ramı́rez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 31leading terms, the error has the order of the �rstdiscarded term:����A� "e��2=h NXn=0�"nh2n���� = O("h2N+2e��2=h):The coe�cients �"n are real numbers such that�"n = (2n)! (2�2)�2n(2n)4��"1 +O(n�1)�as n ! +1, for some nonzero constant �"1. Inparticular, Pn�"nh2n is divergent for all h 6= 0, butits Borel transform c�"(h) = Pn�"n�2n�1=(2n � 1)!is convergent for j�j < 2�2. This implies that thefunction �"(h) � "�1 exp (�2=h)A is Gevrey-1 oftype � = 1=2�2. Recall that a function f(x) �Pn�0 fnxn is said to be Gevrey-r of type � if thereare positive constants C;� > 0 such that jfnj �C�rn�(rn + �), where �(z) stands for the Gammafunction. (We follow the notations of [Ramis andSch�afke 1996].)In the perturbative case, we study the behaviorof the objects �"(h), �"n, �"1, checking that all ofthem tend to well-de�ned limits as "! 0. (That is,for " = o(1). In the notation " = o(hp), this meansthat p = 0.)First, the function �"(h) tends to the Melnikovprediction �0(h) when the perturbation strength "tends to zero; more precisely,�"(h) = �0(h) +O("); uniformly in h 2 (0; 1]:The coe�cients �"n of the Gevrey series for �"(h)also converge to the Taylor coe�cients �0n of the en-tire function �0(h). (For example, �"0 = 8�bV (2�)+O(").) Obviously, this convergence cannot be uni-form in the index n, sincelimn!+1 j�"nj = � 0 if " = 0,+1 otherwise.Finally, lim"!0 �"1 = 0, since �"1 quanti�es thegrowth of the coe�cients �"n, and �0n = lim"!0�"ngives a decreasing sequence. In fact, one has�"1 = "�01 +O("2);where �01 = ��12��4 if V 0(y) = y,� 163 if V 0(y) = y3.
Relation to Other WorkBy now, there is a well-developed literature on sin-gular perturbations for maps. Results showing thatthe splitting size is exponentially small in the char-acteristic exponent h have been obtained by many

authors. For the sake of brevity, we review resultsabout analytic area-preserving maps, both from atheoretical and a numerical point of view. For areview of the results concerning ows, we refer to[Delshams and Seara 1997; Delshams et al. 1999],and the references therein.The �rst relevant results are exponentially smallupper bounds of the splitting size for analytic area-preserving maps having a weakly hyperbolic �xedpoint and homoclinic points to it [Neishtadt 1984;Fontich and Sim�o 1990; Fontich 1995; Fiedler andScheurle 1996; Gelfreich 1996]. Roughly speaking,in these papers it is proved that the maps asymp-tote to a Hamiltonian ow with a separatrix whenthe characteristic exponent h tends to zero. Thenthe splitting size is O (exp(��=h)) for any positiveconstant � smaller than 2�d, where d is the analyt-icity width of the separatrix of the limit ow. Noother general results are known. In order to com-pare this result with the next ones, it is convenientto formulate it assplitting size = e��=h�(h),�(h) bounded when h! 0+: (1–1)The next step was the attainment of exponen-tially small asymptotic formulae in some standard-like maps, by V. Lazutkin and coworkers [Lazutkin1984; Lazutkin et al. 1989; Gelfreich et al. 1991]; seealso [Hakim and Mallick 1993; Suris 1994; Treschev1996]. For instance, regarding the standard map andthe H�enon map, in these works it is claimed thatthe splitting has an asymptotic behavior of the form!0h exp(��=h), for some constants !0 6= 0, � > 0,and , that is,splitting size = he��=h�(h);�(h) continuous at h = 0 and �(0) 6= 0: (1–2)

The constant !0 = �(0) is de�ned by means of anonlinear parameterless problem which only can besolved numerically,  is obtained by linearizationabout the separatrix in the complex plane, and � =2�d, where d is again the analyticity width of theunperturbed separatrix. A complete proof of theseasymptotic formulae has not been published yet, butthere is little doubt about its validity. It shouldbe noted that there exist examples where a formulalike (1{2) cannot hold, because the splitting behavesasymptotically like !0h exp(��=h) cos(�=h) with� 6= 0; see [Gelfreich et al. 1991; Scheurle et al.



32 Experimental Mathematics, Vol. 8 (1999), No. 11991]. The maps considered here do not fall intothis class.The strongest analytical results on the regularityof the function �(h) were published in [Gelfreichet al. 1994; Chernov 1995; Nikitin 1995], where it isstated (again without proofs) thatsplitting size = he��=h�(h);�(h) smooth at h = 0 and �(0) 6= 0; (1–3)for the standard map [Gelfreich et al. 1994], theH�enon map [Chernov 1995], and the twist map [Ni-kitin 1995]. All these works contain formulae like![O] � he��=hXn�0 !nh2n;where ![O] stands for the Lazutkin's homoclinic in-variant introduced in [Gelfreich et al. 1991] for somedistinguished symmetric homoclinic orbit O. Only afew coe�cients !n were explicitly computed in theseworks: the �rst �ve coe�cients in [Gelfreich et al.1994], the �rst three in [Nikitin 1995] and just twoin [Chernov 1995]. Then a natural question arises:What is the growth rate of the coe�cients !n whenn! +1? Equivalently, is �(h) somewhat strongerthan smooth?A numerical answer involves the computation ofmany such coe�cients. Recent numerical experi-ments by C. Sim�o suggest that the asymptotic se-ries Pn�0 !nh2n are divergent, though their Boreltransforms are convergent, that is,splitting size = he��=h�(h);�(h) Gevrey-1 at h = 0 and �(0) 6= 0: (1–4)Our numerical results fall just into this class, withthe area A as our measure of the splitting size, andthe coe�cients �"n playing the rôle of !n. The com-putation of !n for relatively large values of n (say upto n = 100), requires the use of expensive multiple-precision arithmetic, so that these experiments areon the edge of the current computer possibilities.Therefore, further numerical results improving theseones are unlikely to appear in the near future.As for rigorous results, to the best of our knowl-edge, the paper [Delshams and Ram��rez-Ros 1998] isthe only place where a behavior like (1{2) has beenrigorously proved for some area-preserving maps.This makes it evident that experimental studies aremuch more advanced than analytical ones. How-ever, numerical results of the form (1{4) open thedoor to new techniques, like resurgence tools, that

have been already applied to the rapidly forced pen-dulum [Sauzin 1995], and may be successful in �llingthis gap between analytical and numerical results.
Outline of the ComputationsThe area of the lobes of the turnstile created whenthe separatrices split is computed using theMacKay{Meiss{Percival action principle [MacKay et al. 1984;Easton 1991], in which the lobe area is interpretedas a di�erence of actions. The numerical compu-tation of such exponentially small lobe areas witharbitrary precision forces us to� use expensive multiple-precision arithmetic,� expand the invariant curves up to an optimal or-der, which is very large, and� take the greatest advantage of symmetries and/orreversors.Clearly, the �rst item is unavoidable, due to thestrong cancellation produced when subtracting the(exponentially close) actions, and also due to the re-quirement of arbitrary precision in the �nal result.The second item is intended to take the initial it-erates far enough from the weakly hyperbolic pointso that the homoclinic points z� can be attainedin (relatively) few iterations: we are able to �nd the(optimal) order which minimizes the computer time.This optimal choice of order avoids an undesirableaccumulation of rounding errors due to the largenumber of operations. Finally, the third item is cru-cial to overcome certain stability problems. Thosealgorithms for computing homoclinic points that donot take into account symmetries and/or reversors(if they exist, of course) have condition numbers in-versely proportional to the splitting size, see for in-stance [Beyn and Kleinkauf 1997, p. 1218]. There-fore, they would be exponentially ill-conditioned forour singular maps!We have improved the methods used in [Lomel��and Meiss 1996] to compute lobe areas. In that pa-per a similar problem was studied, but the invariantcurves were developed only to �rst (linear) order andstandard double-precision arithmetic was used. Dueto this, the computations there only gave accurateresults for lobe areas A � 10�14, that is, for char-acteristic exponents h not smaller than 13 . In thepresent work we have been able to compute lobeareas less than 10�4200 (that is, we have reachedh = 0:001), with a relative error less than 10�900.The computation for such extreme cases takes two



Delshams and Ramı́rez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 33to three days, depending on the potential V (y), ona Pentium 200 machine running Linux. More than5200 decimal digits in the arithmetic and 1300 coe�-cients in the Taylor expansion of the invariant curveswere needed for these accurate computations.So far, and to the best of our knowledge, themost re�ned (published) experiments about singu-lar splittings for maps were those of [Fontich andSim�o 1990], where splittings of order 10�200 were nu-merically computed following the above-mentioneditems. Other experiments with multiple-precisionarithmetic are contained in [Fiedler and Scheurle1996], but only order-one (that is, linear) expan-sions of the invariant curves were used in that pa-per. In [Benseny and Oliv�e 1993] quadruple preci-sion and high-order expansions were used to studythe rapidly forced pendulum.
Outline of the PaperThe rest of the paper is devoted to explaining howour results have been obtained. In the next sec-tion, the model is introduced. In Section 3, theregular case "! 0 and h �xed is discussed. We re-view how to compute the O(")-approximation of thelobe area using the discrete version of the Melnikovmethod. In particular, the entire function �0(h)is introduced. Section 4 is devoted to the singularlimit h ! 0+. The asymptotic behavior of �"(h)is studied and the connection with Melnikov theoryis drawn. The results in this section are the heartof the paper. In Section 5, the algorithm used tocompute lobe areas with arbitrary accuracy is de-scribed. This is the key tool in this work. Thenumerical calculations are complicated by problemsof stability, precision and computer time, so we pro-vide su�cient detail to show how these problemscan be overcome. Finally, further numerical exper-iments related to singular separatrix splittings formaps are proposed in Section 6. They will be thesubject of future research.
2. THE MODELThe family of standard-like maps under study isF (x; y) = (y; �x+ U 0(y));U(y) = �0 log(1 + y2) + "V (y); (2–1)where V (y) =Pn�1 Vny2n is an even entire function.For � := �0 + "V1 > 1;

the origin O = (0; 0) is a hyperbolic �xed point withSpec[dF (O)] = �e�h	, where the characteristic ex-ponent h > 0 is determined by coshh = �.We will consider the characteristic exponent h andthe perturbation strength " as the intrinsic parame-ters of our model. Accordingly, for every h > 0 andevery real ", we rewrite the map (2{1) in the formF (x; y) = (y;�x+ U 0(y));U(y) = U0(y) + "U1(y);U0(y) = � log(1 + y2);U1(y) = V (y)� V1 log(1 + y2): (2–2)

From now on, the subscript 0 will denote an unper-turbed quantity, that is, " = 0, and the followingnotations will be used without further comment:� = coshh;  = sinhh; � = eh: (2–3)

The Unperturbed ModelSetting " = 0 in (2{2), we obtain the McMillan map[McMillan 1971]F0(x; y) = (y; �x+ U 00(y)) = �y; �x+ 2�y1 + y2� ;which is an integrable exact map, with a polynomial�rst integral given byI0(x; y) = x2 � 2�xy + y2 + x2y2:The phase space associated to F0 is rather simple,since it is foliated by the level curves of the �rst in-tegral I0, which are symmetric with respect to theorigin. As � > 1, the zero level of I0 is a lemnis-cate, whose loops are separatrices to the origin (seeFigure 1). From now on, we will concentrate on theseparatrix � in the quadrant fx; y > 0g, which canbe parameterized byz0(t) = (x0(t); y0(t)) = (�0(t� h=2); �0(t+ h=2));�0(t) =  sech t: (2–4)This parameterization is called natural sinceF0(z0(t)) = z0(t+ h);a fact that can be checked simply by noting that�0(t) is a homoclinic solution of the di�erence equa-tion �0(t+ h) + �0(t� h) = U 00(�0(t)): (2–5)A natural parameterization is unique except for atranslation in the independent variable. To deter-mine it, it is worth looking at the reversors of themap.
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FIGURE 1. The unperturbed case; the solid curve isthe zero level of I0 for h = 2.Indeed, the involution R+(x; y) := (y; x) is a re-versor of the McMillan map F0, that is, F�10 =R+ � F0 � R+. The separatrix � is R+-symmetric,that is, R+� = �, and it intersects transversely the�xed set C+ := fz : R+z = zg of R+ in one point z+0 .The parameterization (2{4) of � has been chosen tosatisfy z0(0) = z+0 .The involution R�0 := F0 �R+ is another reversorof F0. The separatrix � is also R�0 -symmetric andintersects transversely the �xed set C�0 of R�0 in onepoint z�0 , and it turns out that z0(h=2) = z�0 . Theassociated orbitsO+0 := fz0(nh) : n 2 Zg;O�0 := fz0(h=2 + nh) : n 2 Zg;are called symmetric homoclinic orbits, sinceR+O+0 = O+0 ; R�0 O�0 = O�0 :
The Perturbed ModelFor " 6= 0, the phase portrait of the exact map (2{2)looks more intricate. The origin is a hyperbolic �xedpoint with the same characteristic exponent h, sincethe perturbation "U 01(y) = O(y3) does not containlinear terms at the origin. We denote by Wu;s itsunstable and stable invariant curves with respectto F . Since the map (2{2) is odd, the invariantcurves are symmetric with respect to the origin, sothat we concentrate only on the positive quadrantfx; y > 0g.
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�3
0 3�3

C+
C�A
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z+ z�

FIGURE 2. After perturbation ("V 0(y)=y3=40; h=2);z+, z� are homoclinic points, A the lobe area.By the form of the perturbation, R+ is also a re-versor of F , as is the involution R� := F � R+,given by R�(x; y) = (x;�y + U 0(x)). Their �xedsets C� = fz : R�z = zg are important becauseR�(Wu) = Ws. Consequently, any point in the in-tersection C� \Wu is a homoclinic point, and givesrise to a symmetric homoclinic orbit. See Figure 2.Since the separatrix � intersects transversely theunperturbed curve C�0 at the point z�0 , there existsa point z� = z�0 + O(") 2 C� \Wu and, therefore,there exist at least two symmetric homoclinic orbitsin the quadrant fx; y > 0g, for j"j small enough.They are called primary since they exist for arbi-trary small j"j.
3. THE REGULAR CASEThroughout this section, the characteristic exponenth > 0 will be considered �xed, and we will make "approach 0. In particular, any sentence like \forj"j small enough" will mean \there exists "�(h) > 0such that for j"j < "�(h)". Typically, "�(h) will beexponentially small in h.
3A. Melnikov Theory for Exact Planar MapsWe now recall some perturbative results to detectthe existence of transverse homoclinic orbits for ex-act maps. For simplicity, we shall assume that allthe objects are smooth and restrict the discussion to



Delshams and Ramı́rez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 35maps on the plane with the usual symplectic struc-ture: the area.Given the symplectic form! = dx ^ dy = d(�y dx)on the plane R 2, a map F : R 2 ! R 2 is called exactif there exists some function S : R 2 ! R such thatF �(y dx)� y dx = dS. The function S is called thegenerating function of F and, except for an additiveconstant, it is uniquely determined.Let F0 : R 2 ! R 2 be an integrable exact dif-feomorphism with a separatrix � to a hyperbolic�xed point z10 . Next, consider a family of exactdi�eomorphisms F" = F0 + "F1 + O("2), as a gen-eral perturbation of the situation above, and letS" = S0+ "S1+O("2) be the generating function ofF".We introduce the Melnikov potential of the prob-lem as the smooth real-valued function L : � ! Rgiven byL(z) =Xn2Z bS1(zn); zn = F0n(z); z 2 �; (3–1)

where bS1 : R 2 ! R is de�ned bybS1 = S1 � y dx(F0)[F1]:(In components, writing F0 = (X0; Y0) and F1 =(X1; Y1), the value of bS1 is simply S1 � Y0X1.) Inorder to get an absolutely convergent series (3{1),bS1 is determined by imposing bS1(z10 ) = 0.The di�erential of L is a geometrical object whichgives the O(")-distance between the perturbed in-variant curves Wu;s" . More precisely, let (t; e) besome cotangent coordinates adapted to �|that is,in these coordinates the separatrix � is given lo-cally by fe = 0g and the symplectic form ! readsas dt^ de|and let fe = Eu;s" (t)g be a part of Wu;s" .(Recall that cotangent coordinates can be de�ned inneighborhoods of Lagrangian submanifolds [Wein-stein 1973].) We showed in [Delshams and Ram��rez-Ros 1997] thatEu" (t)� Es"(t) = "L0(t) +O("2);and that the construction above does not depend onthe cotangent coordinates used.The following result [Delshams and Ram��rez-Ros1997, Theorem 2.1] is a straightforward corollary ofthis geometric construction.

Theorem 3.1. Under the notations and hypothesesabove, the nondegenerate critical points of L are as-sociated to perturbed transverse homoclinic orbits.Moreover , when all the critical points of L are non-degenerate, all the primary homoclinic orbits arisingfrom � are found in this way . Finally , if z and z0are nondegenerate critical points of L, consecutivein the internal order of the separatrix , their asso-ciated perturbed homoclinic orbits determine a lobewith area A = "(L(z)� L(z0)) +O("2):
3B. The Regular Analytical ResultWe are now ready to apply the theory above to ourmodel. It is worth noting that the knowledge of thenatural parameterization (2{4) of the unperturbedseparatrix � will be the crucial point to computeexplicitly the Melnikov potential (3{1).The map F = F0 + "F1 + O("2) given in (2{2)is exact with generating function S(x; y) = �xy +U0(y) + "U1(y). Writing its expression in compo-nents F0 = (X0; Y0), F1 = (X1; Y1), it turns out thatX1 = 0, and consequently bS1(x; y) = S1(x; y) =U1(y).The parameterization (2{4) allows us to write theMelnikov potential (3{1) of our problem asL(t) := L(z0(t)) =Xn2ZU1(y0(t+ hn))=Xn2Z �f(t+ hn)� g(t+ hn)�;where f(t) := V (�0(t+ h=2)) ;g(t) := V1 log �1 + �0(t+ h=2)2� :We are now confronted with the computation ofa series for L(t), which is a doubly-periodic func-tion: L(t) = L(t + h) = L(t + �i). Consequently,the explicit computation of L(t) can be performedthrough the study of its singularities for complexvalues of the discrete time t [Delshams and Ram��rez-Ros 1996].For example, Lg(t) :=Pn g(t+hn) is easily com-puted simply by noting that Lg(t) has no singular-ities and, therefore, it must be constant by Liou-ville's theorem. The exact value of the constant isnot important for our purposes, since the intrinsicgeometrical object associated to the problem is L0(t)rather than L(t).



36 Experimental Mathematics, Vol. 8 (1999), No. 1The computation of Lf(t) := Pn f(t + hn) fol-lows the same lines, but is more complicated. Wesketch here the main ideas, and refer to [Delshamsand Ram��rez-Ros 1998] for the details.First, we notice that the singularities of f(t) arelocated only on the set �h=2 + �i=2 + �iZ . Next,we denote byPn2Z vn(h)� 2n the Laurent expansionaround � = 0 of the function � 7! f(�h=2 + �i=2�ih�), and note that each v�n(h) is an even entirefunction such that v�n(0) = Vn, for all n � 1. Fi-nally, we introduce the even entire function�0(h) := 8�Xn�1 (2�)2n�1(2n� 1)!v�n(h)= 8�bV (2�) +O(h2); (3–2)

where bV (�) := Pn�1 Vn�2n�1=(2n � 1)! is the so-called Borel transform of V (y).Then the following asymptotic formula holds forthe Melnikov potential L = Lf � Lg = Lf (moduloan additive constant):L(t) = e��2=h cos(2�t=h)���0(h)=2 +O(e�2�2=h)�:
(3–3)If V (y) is a polynomial, �0(h) can be explicitlycomputed in a �nite number of steps [Delshams andRam��rez-Ros 1996]. For instance, for the perturba-tions used in the numerical experiments,�0(h) = � 8�22h�2 for V 0(y) = y,83�24h�2(1 + �2h�2) for V 0(y) = y3.
(3–4)From formula (3{2), it is clear that if bV (2�) 6= 0and h is small enough, the set of critical points ofthe Melnikov potential (3{3) is hZ =2. All of themare nondegenerate, and parameterize the two unper-turbed, symmetric, primary homoclinic orbits O�0 .Now, the following result is a corollary of Theo-rem 3.1.

Theorem 3.2. Assume that bV (2�) 6= 0. Then, for anysmall enough (but �xed) characteristic exponent h >0, there exists a positive constant "� = "�(h) suchthat the map (2{2) has exactly two transverse, sym-metric, primary homoclinic orbits O� in the quad-rant fx; y > 0g, for 0 < j"j < "�. These orbits de-termine a lobe with area A = "AMel + O("2), wherethe approximation AMel of �rst order in " is givenby AMel = L(h=2)� L(0)= e��2=h��0(h) +O(e�2�2=h)�: (3–5)

Remark 3.3. We note that "AMel is the dominant termfor the Melnikov formula of the lobe area A only ifj"j < "�(h) = o(exp(��2=h)). Otherwise, in thecase " = O(hp), Melnikov theory as described is notuseful, since it only gives the very coarse estimateA = O(h2p), and not the desired exponentially smallasymptotic behavior.
4. THE SINGULAR CASEAlong this section, h ! 0+, and we will study ana-lytically and numerically two di�erent situations forthe parameter ":� The nonperturbative case: " �xed and h! 0+.� The perturbative case: " = o(hp) and h! 0+, forsome p � 0.For the analytical results we only assume that theperturbed potential V (y) is an even entire function.The numerical experiments have been performed forthe simplest even perturbed potentials, that is, forthe linear perturbation "V 0(y) = "y and the cubicone "V 0(y) = "y3.
4A. Singular Analytical Results

The nonperturbative case. The limit h ! 0+ in (2{2)is highly singular, since all the interesting dynam-ics is contained in a O(h) neighborhood of the ori-gin, which becomes a parabolic point of the map forh = 0. To see clearly this behavior, we perform thefollowing linear change of variables:z = Cw; C = h���1=2 �1=2�1=2 ��1=2�with z = (x; y) and w = (u; v); that is, we diago-nalize the linear part of (2{2) at the origin and wescale by a factor h. Then�C�1 � F � C�w = w + hX0(w) +O(h2); (4–1)whereX0(u; v) = �u� �(u+ v)3; �v + �(u+ v)3� ;� = 1� (V1 + 2V2)"; (4–2)is a Hamiltonian vector �eld, with associated Hamil-tonian H0(u; v) = uv � �(u+ v)4=4: (4–3)Expression (4{1) shows clearly that F is O(h)-close to the identity, and that, after the change ofvariables z = Cw, the map (2{2) asymptotes to theHamiltonian ow associated to the vector �eld (4{2)when h ! 0+. In such a situation, it is known



Delshams and Ramı́rez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 37[Fontich 1989] that the map (2{2) will have homo-clinic points to the origin for any small enough h, ifand only if the limit Hamiltonian ow has a homo-clinic orbit to the origin.From the expression (4{3), we see that the zerolevel fH0(u; v) = 0g contains homoclinic connec-tions to the origin if and only if � > 0, that is, if(V1 + 2V2)" < 1: (4–4)Assuming � > 0, the homoclinic orbit of the Ham-iltonian (4{3) is given byw0(t) = ��1=2�cosh t� sinh t2 cosh2 t ; cosh t+ sinh t2 cosh2 t � ;which is analytic on the strip ft 2 C : jIm tj <d := �=2g. In this situation, it is also well-known[Fontich and Sim�o 1990] that the splitting size isO(exp(��=h)), for all � < 2�d = �2. We summarizethese �rst analytical results.
Theorem 4.1. For any real " satisfying (4{4) and any� 2 (0; �2), there exists N = N("; �) > 0 such thatthe area of the lobe between the invariant curves ofthe map (2{2) satis�esjAj � Ne��=h (" �xed; h! 0+):
The perturbative case. The previous theorem gives onlyan upper bound for the lobe area and not an asymp-totic one (the constant N("; �) can blow up when� ! �2). In particular, it does not exclude the caseA = 0, that is, it cannot detect e�ective splitting ofseparatrices. In the perturbative case " = o(hp), forp > 6, the following theorem gives an asymptoticexpression for the lobe area in terms of the Mel-nikov potential, and establishes transversal split-ting of separatrices. The version presented here isslightly more general than the one in [Delshams andRam��rez-Ros 1998], since we have dropped out thehypothesis V 0(0) = 2V1 = 0 of that paper.
Theorem 4.2. Assume that " = o(hp), p > 6. Then,if bV (2�) 6= 0, there exists h� > 0 such that themap (2{2) has exactly two transverse, symmetric,primary homoclinic orbits in the �rst quadrant , forall 0 < h < h�. Moreover , they enclose a lobe withareaA = "e��2=h�8�bV (2�) +O(h2)� (h! 0+):If bV (2�) = 0, there may exist more primary homo-clinic orbits, but the area of any lobe is O("h2e��2=h).
Proof. For V1 = 0, the result above is just the MainTheorem of [Delshams and Ram��rez-Ros 1998]. For

V1 6= 0, the perturbative potential U1(y) = V (y) �V1 log(1+y2) in (2{2) is no longer an entire function,due to the term g(y) := V1 log(1+y2), and that MainTheorem cannot be applied directly.However, Theorem 4.2 follows from these obser-vations:
1. As seen in Section 3B, the Melnikov potentialL(t) is not a�ected by the contribution of Lg(t).
2. One can easily bound g0(�0(t) + �) in such a waythat the estimates of Lemma 3.5 in [Delshamsand Ram��rez-Ros 1998] do not change.The rest of the arguments in that paper remain ap-plicable, and the result follows. �To the best of our knowledge, this and the theo-rems in [Delshams and Ram��rez-Ros 1998] are the�rst analytical results about asymptotics for singu-lar separatrix splitting with a complete and rigorousproof.
4B. Singular Numerical ResultsIn the regular case, we have the formula (3{5) forthe lobe area A, in terms of an even analytic func-tion �0(h), with a fairly simple expression (3{4) forV 0(y) = y; y3.These regular results suggest that in the singularcase, for every �xed " satisfying (4{4), the actualformula for the lobe area may have the formA= "e��2=h��"(h)+O(e�2�2=h)� (�xed "; h! 0+);

(4–5)for a function �"(h) given by an asymptotic seriesof the form�"(h) �Xn�0�"nh2n (�xed "; h! 0+): (4–6)The sign � means that the seriesPn�0�"nh2n neednot be convergent, but only asymptotic; that is, ifone retains a �nite number of leading terms, theerror has the order of the �rst missing term:�����"(h)� NXn=0�"nh2n���� = O(h2N+2):We are interested in computing a relevant numberof the coe�cients �"n for some signi�cant perturba-tions "V 0(y), in such a way that we can measuretheir asymptotic behavior, and describe the analyt-ical properties of the function �"(h).To this end, once we have chosen a perturbation"V 0(y), we compute the lobe area A with a relative



38 Experimental Mathematics, Vol. 8 (1999), No. 1error less than �, for a net N of values of the char-acteristic exponent h. We take a net equidistant inh2, due to the fact that we expect that the asymp-totic series (4{6) will contain only even powers of h.That is, we takeN = fhj := j1=2 � : j = 1; : : : ; l + 1gfor some (relatively) small positive number � andsome (relatively) large natural number l.We have chosen the values� = 10�900; � = 0:001; l = 99: (4–7)Other choices are also possible, but for our purposesit is not worth taking values of � much smaller thanexp (�2�2=hl+1). We explain this remark.We do not know how to compute directly thefunction �"(h), but only how to approximate it by"�1 exp (�2=h)A. Once the approximate values of�"(h) on the net N are obtained, they will be theinput of some algorithm which computes the �rstl+ 1 asymptotic coe�cients �"n. This explains whyit is pointless to take � too small, � � exp (�2�2=h)being the greatest accuracy we can expect on ap-proximating �"(h) by "�1 exp (�2=h)A. Since all thevalues in the net are computed with the same accu-racy, we must take � not much smaller thanexp ��2�2=hl+1� = max1�j�l+1 exp ��2�2=hj� :An interpolation method based on Neville's al-gorithm has been used to compute the asymptoticcoe�cients of �"(h) from the values on the net N.

That is, we compute the polynomialP "(h) = lXn=0 P "nh2nthat interpolates �"(h) on N, and we approximate�"n by P "n, for n = 0; : : : ; l. Although equidistantinterpolation using polynomials of high degree (inour case, degree l in h2) is in some cases an ill-conditioned problem, we have checked that the coef-�cients �"n so obtained are accurate enough for ourpurposes. Concretely, with the choice (4{7), thismethod gives at least 860 � 9n signi�cant decimalsdigits for �"n, n = 0; : : : ; 95. (The accuracy de-creases as n increases, but this seems unavoidable.)This has been checked simply by studying the de-pendence of the coe�cients �"n on the precision �and the degree l.
The nonperturbative case. To avoid the empirically ob-served factorial increase of the coe�cients �"n, weintroduce other coe�cients �"n de�ned by�"n = (2n)! (2�2)�2n(2n)4 �"n;expecting that the coe�cients �"n will tend to a cer-tain constant �"1, as n!1. Figure 3 shows clearlythis behavior for the two di�erent perturbations: thelinear case V 0(y) = y and the cubic case V 0(y) = y3.The limit constants �"1 are found by applying an ex-trapolation method to the coe�cients �"n (see alsoTable 1 on page 40).In particular, we have j�"nj � C�2n�(2n + 5) forsome constant C and � = 1=2�2, that is, the func-tion �"(h) of (4{6) is Gevrey-1 of type � = 1=2�2with respect to the variable h.

20 40 60 80�:14�:12�:1
�:08�:06�:04�:020

20 40 60 80�:4
�:3
�:2
�:1
0

FIGURE 3. �"n versus n, for " = 0:1. The dotted lines correspond to the limit value �"1, found by extrapolation.Left: V 0(y) = y and �"1 = �9:7737740885 : : :� 10�3. Right: V 0(y) = y3 and �"1 = �4:6302913918 : : :� 10�1.
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FIGURE 4. Graphs of h 7! �"(h) (left) and h 7! (�"(h) � �0(h))=" (right), for V 0(y) = y (top) and V 0(y) = y3(bottom). The values of " for the curves in each graph are as follows, from top to bottom: Top and bottom left," = 0; 0:01; 0:03; 0:05; 0:07; top right, " = 10�5; 10�4; 10�3; 10�2; bottom right, " = 0:04; 0:02; 0:01; 0:001.We now summarize these numerical results.
Numerical Result 4.3. For the linear and cubic pertur-bations, the following asymptotic expansion for thelobe area A holdsA � "e��2=hXn�0�"nh2n (" �xed; h! 0+);
where the coe�cients �"n satisfy�"n = (2n)! (2�2)�2n(2n)4��"1 +O(n�1)�;as n ! +1, for some constant �"1 6= 0. (�"1 < 0for " > 0.)In other words, formula (4{5) for the lobe area holdsfor an even �"(h) such that its Borel transformc�"(h) = Pn�"n�2n�1=(2n � 1)! is convergent forj�j < 2�2.Of course, we believe that the numerical resultabove holds for any even entire perturbative poten-tial "V (y).

The perturbative case. We now check that all the pre-vious objects �"(h), �"n, �"1, tend to well-de�nedlimits as "! 0.We begin by describing the results connecting theGevrey-1 function �"(h) with the Melnikov predic-tion �0(h) given in (3{2). Applying formula (3{4),we immediately get�0(h) = 8�22h�2= 8�2�1 + 13h2 + 1645h4 + 8315h6 +O(h8)�for the linear perturbation "V 0(y) = "y, and�0(h) = 83�24h�2(1 + �2h�2)= 83�4�1 + �1 + 23�2�h2 + � 23 + 15�2�h4+ � 15 + 34945�2�h6 +O(h8)�for the cubic case "V 0(y) = "y3.Figure 4 shows numerical results comparing �"(h)with �0(h), for " ! 0. The left-hand side graphs
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FIGURE 5. �"n versus ", for n = 0; 1; 2; 3, from top to bottom. The marked points correspond to the values �0n|that is, " = 0|obtained by the Melnikov approach. Left: V 0(y) = y, where �00 = 8�2, �01 = 8�2=3, �02 = 16�2=45,and �03 = 8�2=315. Right: V 0(y) = y3, where �00 = 8�4=3, �01 = 8�2(3 + 2�2)=9, �02 = 8�2(10 + 3�2)=45, and�03 = 8�2(189 + 34�2)=2835.show that �"(h) tends uniformly to �0(h) as "! 0,whereas on the right-hand side we see that"�1(�"(h)��0(h))tends uniformly to some continuous function. Thus,we conclude that�"(h) = �0(h) +O("); uniformly for h 2 (0; 1]:Next, we compare the coe�cients �"n in the ex-pression (4{6) of the function �"(h) with the co-e�cients �0n in the Taylor expansion of �0(h), as"! 0.The results about the convergence of some of thecoe�cients are shown in Figure 5, where one cansee that �"n tends to �0n as " ! 0. It is worthnoting that we cannot expect any kind of uniformconvergence in n � 0, since �"(h) is a Gevrey-1function (in particular, divergent), whereas �0(h) isan entire function.Finally, we study the behavior of the limit con-stant �"1 that appears in Numerical Result 4.3, for"! 0.We give in Table 1 the values of "�1�"1 for severalvalues of the perturbation strength ". It is evidentfrom this table that "�1�"1 = �01 + O("), where�01 = �12��4 for the linear perturbation and �01 =� 163 for the cubic one.We now summarize the numerical results foundfor the perturbative case.
Numerical Result 4.4. For the linear and cubic per-turbations, the objects �"(h), �"n, �"1, introduced in

Numerical Result 4.3, tend to well-de�ned limits as"! 0. More precisely :
1. �"(h) = �0(h) +O("), uniformly in h 2 (0; 1].
2. �"n = �0n +O("), nonuniformly in n � 0.
3. �"1 = "�01 +O("2), where�01 = ��12��4 if V 0(y) = y,� 163 if V 0(y) = y3.Again, we believe that these numerical results holdfor any even entire perturbative potential "V (y).Concerning the value of �01, we conjecture thatV (y) 2 Q [y] =) �01 2 Q [�]:
5. THE COMPUTATIONSIn this section, we will express the lobe area as adi�erence of homoclinic actions. We also explainhow to compute this exponentially small di�erencewith arbitrary accuracy as fast as possible." "�1�"1V 0(y) = y V 0(y) = y310�1 �0:09773774088 : : : �4:6302913918 : : :10�2 �0:12084203100 : : : �5:2302522778 : : :10�3 �0:12295874638 : : : �5:3224971013 : : :10�4 �0:12316850220 : : : �5:3322442111 : : :10�5 �0:12318945876 : : : �5:3332243659 : : :10�6 �0:12319155423 : : : �5:3333224360 : : :! 0 �0:12319178706 : : : �5:3333333333 : : :

TABLE 1. Computed values of �"1 for the linear andcubic perturbations. The last row contains values of�01 = lim"!0 "�1�"1 found by extrapolation.
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5A. The MacKay–Meiss–Percival Action PrincipleLet F be an exact map on the plane with the usualsymplectic structure ! = dx ^ dy and let S be itsgenerating function: F �y dx � y dx = dS. Assumethat z1 is a hyperbolic �xed point of F and letWu;s be its associated unstable and stable invariantcurves. Given a homoclinic orbit O = (zn)n2Z ofF |that is, O � (Wu \Ws) n fz1g and F (zn) =zn+1|we de�ne its homoclinic action asW [O] =Xn2Z S(zn); (5–1)

where, in order to get an absolutely convergent se-ries, the generating function S has been determinedby imposing S(z1) = 0. Given an integer N , we de-note by �u;s(N) the paths contained in the invariantcurvesWu;s from the hyperbolic point z1 to the ho-moclinic one zN . Then the following formulae hold[MacKay et al. 1984; Easton 1991; Delshams andRam��rez-Ros 1997]Xn<N S(zn) = Z�u(N) y dx; Xn�N S(zn) = Z�s(N) y dx:
(5–2)These formulae are the key tool to get a com-putable expression for the lobe area A. Let z� betwo homoclinic points such that the pieces of theinvariant curves between them do not contain otherpoints of their orbits. These pieces enclose a regioncalled a lobe. Let O� be the homoclinic orbits gen-erated by z�, and set � = �u��s, where �u;s �Wu;sare paths from z+ to z�. Thus, A = H� y dx is thealgebraic area of the lobe; the sign of A depends onthe way the perturbed curves cross: A > 0 if andonly if � is traveled clockwise, as in Figure 2. Fi-nally, from equations (5{1) and (5{2), the lobe areaA can be expressed as a di�erence of homoclinic ac-tions: A =W [O�]�W [O+]: (5–3)

5B. Multiple-Precision ArithmeticTo motivate the multiple-precision arithmetic usedin the computations, we note that the lobe areas wewant compute are O (exp(��2=h)), whereas the ho-moclinic actions W [O�] are much larger since theyare of the same order as the region enclosed bythe unperturbed separatrix, which is O(h3). Thus,equation (5{3) must be carefully used due to thestrong cancellation in the di�erenceW [O�]�W [O+].

Even for moderate values h, this causes an impor-tant loss of signi�cant digits, which can only be over-come by computing the actions with more correctdigits than the lost ones. For instance, setting h =0:1, numerical computations with "V 0(y) = y3=10give W [O+] ' 7:02677� 10�4 'W [O�];A ' 3:01433� 10�42;so that in order to get at least one correct (decimal)digit for the lobe area A one must have approxi-mately 40 correct digits for the actionsW [O�]. Thisexceeds the range of quadruple-precision arithmetic.The number P of decimal digits used in the com-putations is determined by the formulaP = Q+ [�2h�1 log10 e] + 20;where Q is the number of signi�cant decimal digitsrequired for the lobe area (usually Q = 100 or Q =900), and [ � ] stands for integer part. The secondterm is a good approximation for the decimal digitslost by cancellation, and the last one is a securityterm.The multiple-precision routines were implementedfollowing the algorithms contained in [Knuth 1969].We have avoided the use of external packages in or-der to have total control over the program.The use of expensive multiple-precision arithmeticencourages us to study maps as \cheap" as possi-ble. Accordingly, we have restricted the experimentsto the linear and cubic cases (V 0(y) = y; y3). Fornumerical purposes, representation (2{1) is the onethat involves fewest operations. Given " and h > 0,one computes � = coshh, �0 = � � "V1, and then,in the linear case, each evaluation of (2{1) requiresone division, two products, and three sums. In thecubic case, just one more product is needed.
5C. Invariant CurvesLocal invariant curves associated to weakly hyper-bolic �xed points must be developed up to high or-der (see [Sim�o 1990] for general comments). Thisfact is crucial to get the lobe area with the requiredaccuracy as fast as possible: the initial iterates canthen be taken far enough from the hyperbolic �xedpoint and the homoclinic points z� can be attainedin a few iterations. In this way, undesirable accu-mulation of rounding errors due to the large amountof operations is avoided and computing time is re-duced.



42 Experimental Mathematics, Vol. 8 (1999), No. 1It is very well-known that there exist analytic pa-rameterizations �u;s : R ! Wu;s of the invariantcurves such that F (�u(r)) = �u(�r) and F (�s(r)) =�s(��1r), where � is the characteristic multiplier ofthe hyperbolic point. Such parameterizations conju-gate the map F to r ! ��r on the invariant curves,and are determined except for a multiplicative con-stant in the variable r. (A natural parameterizationis obtained via the change of variables r = exp t.)In order to accelerate the numerical computationof these parameterizations we must take advantageof the symmetries, reversors, and peculiarities of themap (2{2).First, �u and �s are odd, since so is F . Second, thereversors R+ and R� = F �R+ allow us to obtain aparameterization of the stable curve in terms of theunstable one:�s(r) := R+(�u(r)) = R�(�u(�r)): (5–4)Finally, the particular form of the map (2{2) impliesthat �u(r) can be written as�u(r) = ��(��1=2r); �(�1=2r)� ; (5–5)for some analytic odd function � : R ! R such that�(�r) + �(��1r) = U 0 (�(r)) : (5–6)Therefore, to get the Taylor expansion of the in-variant curves it is enough to solve equation (5{6).Set �(r) =Pk�0 �kr2k+1 andQ(�(r)) =Xk�0 qkr2k+1;where Q(y) := U 0(y) � 2�y = O(y3). From (5{6),we get ��2k+1 � 2�+ ��(2k+1)� �k = qk, for all k � 0.Since Q(y) begins with cubic terms, q0 is zero and qkonly depends on �0; : : : ; �k�1. Besides, 2� = �+��1(see equalities (2{3)) implies that �l � 2�+ ��l = 0if and only if l = �1. Thus, the coe�cient �0 is thefree parameter that multiplies the variable r, and�k = ��2k+1 � 2�+ ��(2k+1)��1 qk; for k � 1:If all the coe�cients are known up to the index k�1, we can compute successively qk and �k, and thisrecurrence allows us to compute the coe�cients �kup to any �xed index K.To choose �0 appropriately, we take into accountthat in the unperturbed case " = 0 the parameteri-zation �0(r) is given by �0(exp t) = �0(t) (see (2{4)and (2{5)), and it takes the form�0(r) = 2 r1 + r2 = 2Xk�0(�1)kr2k+1; (5–7)

that is, �0(r) has only odd Taylor coe�cients, givenby (�1)k2.In the perturbed case, we choose �0 = 2 to getcontrolled growth for the coe�cients �k:�k � (�1)k�0 = (�1)k2: (5–8)This stable behavior of the coe�cients �k is particu-larly suitable for their numerical computation, andmakes the previous algorithm very robust in avoid-ing cancellation problems.
5D. Homoclinic PointsIn order to �nd numerically the symmetric homo-clinic points z� 2 C�, we move along the unstablecurve Wu to the �rst point that intersects C�. Weexplain the process for z+; the computation of z�follows the same lines.First, given the number P of decimal digits usedin the arithmetic, and an order K for the invariantcurve expansions, we must choose a positive number� such thatEK(�) := �����(�)�Xk�K �k�2k+1���� = ����Xk>K �k�2k+1����< � := 10�P ;and as large as possible, because the size of � deter-mines the number N of iterates needed to reach thehomoclinic point. From equation (5{8), we getEK(�) < 2�2K+3 < �2K+3;for h small and � 2 (0; 1). Thus, a good choice is�2K+3 = � = 10�P , that is,� = 10�P=(2K+3):Once we have determined �, we �nd the �rst nat-ural N such that FN(�u(�)) and FN+1(�u(�)) =FN(�u(��)) are separated by C+ = fy = xg, sothat the functiong+(r) = �1FN (�u(r))� �2FN (�u(r)) ; (5–9)has a zero r̂+ in the interval [�; �� ]. Here �1(z)and �2(z) stand for the projections on the �rst andsecond components of z, respectively.Next we use Newton's method to determine r̂+with the precision � we are dealing with. For thesake of e�ciency, we �rst work in double precisionand later re�ne the result by doubling the numberof digits in multiple-precision arithmetic after eachNewton iteration. (The convergence of Newton'smethod is quadratic.) In this way, a complete run



Delshams and Ramı́rez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 43of Newton's method takes at most thrice the timethe last iteration takes.Finally, z+ = FN(�u(r̂+)) = �u(r+) is the ho-moclinic point over C+ we are looking for, wherer+ = �N r̂+. In the unperturbed case r+ = 1, be-cause �0(r) = �0(1=r); see (5{7). Therefore, formoderate perturbation strengths ",e�Nh = ��N � r̂+ 2 [�; �� ];where � = 10�P=(2K+3), and we can express (approx-imately) the number of iterates N in terms of thecharacteristic exponent h, the precision P , and theorder K: N � P(2K + 3)h log10 e: (5–10)Numerical experiments show that this �t gives,for h ranging in (0; 0:1] and " in (�0:5; 0:5), a maxi-mum relative error below 4%, so that it can be usedto approximate the index K minimizing the com-puter time. In order to do it, we move along theindex K, determine the number of iterations N bymeans of (5{10), and estimate a priori the computertime counting the total number of products and di-visions performed in the algorithm. We then choosethe index K that gave the smallest estimate. Thismethod is very accurate: experience shows that thetrue optimal choice of K is at most ten per centfaster than our estimate.We explain how, for each value of K, the com-puter time can be estimated a priori. The algo-rithm to get the lobe area A has several parts: theexpansion of the local invariant curves, the New-ton's method to �nd the pair of homoclinic orbits,the computation of the action of each homoclinicorbit, and other negligible parts. For the sake ofbrevity, we shall only discuss how to estimate thetime needed for Newton's method. We can normal-ize the time scale in such a way that one producttakes just one unit of time. Then numerical exper-iments show that one division takes approximately2:75 units of time, for large enough P .Let #� and #� be respectively the number ofproducts and divisions required to evaluate the map(2{1) together with its di�erential. (Of course, #�and #� depend on the perturbation; for instance,in the linear case #� = 6 and #� = 1, whereas inthe cubic one #� = 7 and #� = 1.) Then the eval-uation of the function g+(r) given in (5{9) togetherwith its di�erential takes 4K + (#� + 2:75#�)Nunits of time. The term 4K comes from Horner's

rule for evaluating the Taylor expansions of �u(r)and d�u(r). The second term, (#� + 2:75#�)N ,comes from the computation of FN(z) and its dif-ferential. Therefore, the time spent on Newton'smethod is 6�4K + (#� + 2:75#�)N�, since, as al-ready said, a run of Newton's method takes at mostthrice the time needed for the last iteration, andthere are two homoclinic orbits to compute (6 =2� 3).The other parts of the algorithm can be analyzedin the same way, and so one gets a closed formulaT = T(K) for the estimated computed time T interms of the order K. Then we take as the (es-timated) optimal order the point that realizes theminimum of the function T(K). See Figure 6 for asample of this idea.To conclude, we note that the reversibility of themap allows us to reduce the computation of homo-clinic points to a one-dimensional root-�nding prob-lem, instead of a two-dimensional one. This simpli-�es the study, avoids stability problems and savescomputer time.
5E. Lobe AreasThe lobe area A is a di�erence of actions, accordingto formula (5{3). Therefore, it is enough to com-pute the actions W [O�], but this is not so simple asapplying directly formula (5{1). We describe brieythe problem that this simple method has. For thesake of brevity, we restrict our study to the homo-clinic orbit O+.The problem is to compute the actionW [O+] =Xn2Z S(z+n );where z+n = F n(z+), and z+ = �u(r+) 2 C+ isthe homoclinic point previously computed. Obvi-ously, the action must be computed to the precision� = 10�P � exp (��2=h) we are dealing with. Thesimplest way to get the in�nite sum is to cut o� theterms with jnj > L, for some threshold L chosen insuch a way that ��Pjnj>L S(z+n )�� < �.The generating function of the map (2{1) isS(x; y) = �xy + �0 log(1 + y2) + "V (y): (5–11)From S(z) = O(z2), �u;s(z) = O(hz), and r+ =O(1), we getS(z+n )=�S(�u(��jnjr+))=O(h2e�2jnjh); n!�1,S(�s(��jnjr+))=O(h2e�2jnjh); n!+1.
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FIGURE 6. Estimated computer time T versus the order K, for " = 0:1 and Q = 900. The dotted lines correspondto V 0(y) = y and the continuous ones to V 0(y) = y3. The marked points correspond to the estimated optimalorder. Left: h = 0:01 and the time scale has been chosen in such a way that 106 products with P = 1353 decimaldigits take one unit of time; the estimated optimal orders are 194 (linear case) and 186 (cubic case). Right:h = 0:001 and the time scale has been chosen in such a way that 107 products with P = 5211 decimal digits takeone unit of time; the estimated optimal orders are 677 (linear case) and 644 (cubic case).Now, we note that the lowest natural number L suchthat Pjnj>L h2 exp (�2 jnjh) < � � exp (��2=h) isat least O(h�2). This cost of O(h�2) evaluationsof the function S(z) to compute the action W [O+]becomes prohibitive for small h.We now proceed to explain a better method, re-quiring only O(h�1) evaluations of S(z). First, thereversibility of the map allows us to reduce the com-putational e�ort by half. Indeed, we can write theaction as a di�erence of path integrals, as in (5{2),W [O+] =Xn2Z S(z+n ) = Z�u y dx� Z�s y dx;where �u, �s are the paths contained in the invariantcurves Wu, Ws from the saddle point z1 = (0; 0) tothe homoclinic point z+ = z+0 = (x+; x+) 2 C+.Since �s = R+�u, we getW [O+] = Z�u�y dx� x dy� = Z�u�2y dx� d(xy)�= �(x+)2 + 2Xn<0 S(z+n );where in the last equality we have again used (5{2).To compute the last sum, we split it as follows:Xn<0 S(z+n ) = �1 + �2;�1 = Xn<�N S(z+n );�2 = �1Xn=�N S(z+n );

where N is the number of iterates that it takes to ar-rive at z+ from the fundamental domain in which theTaylor expansion of �u(r) holds with the requiredprecision �.We write the in�nite sum �1 as a path integralalong the path �̂ �Wu from the saddle point z1 tothe homoclinic point z+�N = �u(r̂+), r̂+ 2 [�; ��):�1 = Xn<�N S(z+n ) = Z�̂ y dx= ��1=2 Z r̂+0 �(�1=2r)� 0(��1=2r) dr;which can be computed with the required accuracyusing the Taylor expansion of �(r). The second sumP�1n=�N S(z+n ) is �nite with only N = O(h�1) terms,so it can be computed easily in a relatively fastway. A crucial factor in increasing the e�ciencyof the program is the number of logarithmic evalua-tions required to perform this �nite sum, because ofthe expensive multiple-precision arithmetic we areworking with. Although equation (5{11) contains alogarithm, the sum �1Xn=�N S(z+n )requires just one logarithmic evaluation, since a sumof logarithms can be rewritten as the logarithm of aproduct.Now we are ready to compare the two methods.The �rst one required at least O(h�2) evaluations of



Delshams and Ramı́rez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study 45the generating function S(z), whereas the second re-quires onlyO(h�1) evaluations plus the computationof an integral by Taylor's method, which takes lesstime than the O(h�1) evaluations of S(z). There-fore, the di�erence is at least one order of magnitudein h.To end this section, we show some values of P , K,and N in Table 2. These results were obtained set-ting " = 0:1 and requiring Q = 900 correct decimaldigits for the lobe area. We also display the truecomputer time T in seconds. The choice " = 0:1 hasvery little inuence on the quantities P , K, N , andT . In fact, P does not depend on the perturbation,but only on Q and h. As expected, the computa-tions in the linear case V 0(y) = y are somewhatfaster than in the cubic case V 0(y) = y3. This is fortwo reasons:
1. The evaluation of the map F with a cubic per-turbation requires one more product than withthe linear one.
2. The computation of the Taylor expansion of thelocal invariant curve is more expensive in the cu-bic case, because the recurrence formulae for theTaylor coe�cients require more products.V 0(y) = y V 0(y) = y3h P K N T K N T0:009 1401 204 876 1652 195 916 18790:008 1459 215 974 1935 206 1016 22050:007 1536 230 1096 2369 220 1145 27360:006 1637 248 1264 3038 237 1322 33790:005 1782 271 1511 4134 259 1581 46430:004 1994 305 1879 6195 291 1969 70910:003 2350 356 2532 11154 339 2658 126130:002 3068 447 3951 31614 426 4145 363890:001 5211 677 8869 207007 644 9321 240530

TABLE 2. Values of P (decimals digits in the mul-tiple-precision arithmetic), K (local order), N (it-erations), and T (computing time in seconds), forQ = 900 (decimal digits required for the lobe area)and " = 0:1. The runs were performed on a Pentium200 machine under Linux.
6. FURTHER EXPERIMENTSAn interesting problem is to �nd an algorithm forcomputing the coe�cients �"n in equations (4{5),(4{6), di�erent from the one used in this paper,which is based on the numerical continuation of lobe

areas for many values of h, jointly with an extrapo-lation method. These coe�cients are the unknowncomponent in the exponentially small asymptoticformula for the splitting size. For some celebratedstandard-like maps, similar quantities (such as La-zutkin's constant !0 = 1118:827706 : : : for the stan-dard map) have been de�ned by means of nonlinearparameterless problems that only can be solved nu-merically [Gelfreich et al. 1991; 1994; Hakim andMallick 1993; Suris 1994; Chernov 1995; Nikitin1995; Treschev 1996]. It would be useful to �nd sucha problem for �"n, since the absence of parametersmakes easier its resolution.To perform a similar study for (large or small)perturbations of other integrable maps is the mostnatural continuation of this work.As a �rst example, of which the McMillan map is aparticular case, we mention the integrable standard-like maps given by Suris [1989]. For instance, [Lomel��and Meiss 1996] contains a exponentially small Mel-nikov prediction in the characteristic exponent forthe lobe area in a perturbed trigonometric Surismap, together with a numerical study in double-precision of its validity. It would be interesting towork out these computations in multiple-precision.As a second example, we mention the twist mapsassociated to the perturbations of elliptic billiards.The papers [Levallois and Tabanov 1993; Tabanov1994; Delshams and Ram��rez-Ros 1996; Lomel�� 1996;Levallois 1997] contain exponentially small predic-tions for the splitting size when the eccentricity issmall, that is, when the unperturbed ellipse is neara circle. The numerical experiments can be espe-cially helpful, since there is still a lack of analyticalresults. However, it is worth noting that the numer-ical study of billiards is somewhat harder than theone performed here. This has to do with the factthat the twist maps associated to billiards have noexplicit expressions, since they are de�ned implicitlyby means of their generating functions. Therefore,the evaluation of the map is more expensive: oneneeds to solve implicit equations with trigonometricterms.Volume-preserving maps form the third examplewhere a detailed numerical analysis would be inter-esting. In [Amick et al. 1992; Rom-Kedar et al.1993], one can �nd several families of volume-pre-serving maps, depending on a small parameter h,such that the splitting distance between certain in-variant curves behaves with respect to h as in (1{2).



46 Experimental Mathematics, Vol. 8 (1999), No. 1The arguments in these papers are semi-analytical.It would be interesting to study numerically theasymptotic behavior of these distances. Maybe abehavior like (1{3) or even (1{4) may be establishedif multiple-precision arithmetic is used.As a last application, we consider the symplectichigh-dimensional case. In [Delshams and Ram��rez-Ros 1997] we obtained exponentially small asymp-totic predictions via Melnikov methods for some per-turbations of the McLachlan map (a high-dimen-sional generalization of the McMillan map studiedhere). The computations in the high-dimensionalcase must be performed very carefully. The maindi�culties associated with the increase in dimen-sion are the computation of the invariant manifolds,which takes much longer than in the planar case,and the sensitive dependence of Newton's methodon the initial approximation. Following [Tabacman1995], we suggest a way to overcome these problems.The �rst di�culty can be ameliorated using the La-grangian property of the invariant manifolds of sym-plectic maps, which can be written as graphs of gra-dients of a scalar function called generating functionof the manifold. The idea is to compute the Taylorexpansion of such generating functions instead ofdealing with the invariant manifolds. To overcomethe sensitive dependence of Newton's method on theinitial approximation, one can use �rst the methoddeveloped in [Tabacman 1995] to �nd homoclinicpoints, based on the computation of critical pointsof a scalar function, usually a more robust prob-lem. Then one can re�ne the homoclinic point usingthe Newton's method (or a quasi-Newton method),which converges faster.Finally, we want to mention an outstanding con-jecture, due to C. Sim�o, on the asymptotic behaviorof the splitting size for some area-preserving mapslike the standard map, the H�enon map, the twistmap, and the perturbed McMillan map studied here.Roughly speaking, this conjecture claims thatsplitting size = Xm�1hme�m�=h�m(h),�m(h) Gevrey-1 and �m(0) 6= 0; (6–1)

that is, smaller exponentials must be added to (1{4)in order to get a more exact formula. These expo-nentials do not play any rôle for \small" values of h,but they become signi�cant for \larger" ones. Thereare strong reasons for believing that (6{1) holds, butnowadays there is a lack of analysis and computer

power to tackle this conjecture. We hope that thiswill be a stimulating challenge for some readers.
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