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ABSTRACT
Let q� 3 be a period. There are at least two (1, q)-periodic trajectories inside any smooth strictly convex
billiard table. We quantify the chaotic dynamics of axisymmetric billiard tables close to their bound-
aries by studying the asymptotic behavior of the differences of the lengths of their axisymmetric (1,
q)-periodic trajectories as q→ +�. Based on numerical experiments, we conjecture that, if the billiard
table is a generic axisymmetric analytic strictly convex curve, then these differences behave asymptot-
ically like an exponentially small factor q−3e−rq times either a constant or an oscillating function, and
the exponent r is half of the radius of convergence of the Borel transform of the well-known asymp-
totic series for the lengths of the (1, q)-periodic trajectories. Our experiments are focused on some
perturbed ellipses and circles, so we can compare the numerical results with some analytical predic-
tions obtained by Melnikov methods. We also detect some non-generic behaviors due to the pres-
ence of extra symmetries. Our computations require a multiple-precision arithmetic and have been
programmed in PARI/GP.

1. Introduction

Billiards as a dynamical system go back to
Birkhoff [Birkhoff 66]. Let Q be a closed smooth strictly
convex curve in the Euclidean plane. The Birkhoff billiard
models themotion of a particle inside the region enclosed
by Q. The particle moves with unit velocity and without
friction following a straight line; it reflects elastically
when it hits Q. Therefore, billiard trajectories consist
of polygonal lines inscribed in Q whose consecutive
sides obey to the rule “the angle of reflection is equal to
the angle of incidence.” Such trajectories are sometimes
called broken geodesics. See [Katok and Hasselblatt 95,
Kozlov and Treschev 91, Tabachnikov 95] for a general
description.

A (p, q)-periodic billiard trajectory forms a closed
polygon of q sides that makes p turns before closing.
Birkhoff [Birkhoff 66] proved that there are at least
two different Birkhoff (p, q)-periodic billiard trajectories
insideQ for any relatively prime integers p and q such that
1 � p< q.

The length spectrum of Q is the subset of R+ defined
as

LS(Q) = lN ∪
⋃
(p,q)

�(p,q)N,
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where l = Length(Q) and �(p,q) ⊂ R+ is the set of the
lengths of all (p, q)-periodic billiard trajectories inside Q.
The maximal difference among lengths of (p, q)-periodic
trajectories is the non-negative quantity:

�(p,q) = sup�(p,q) − inf �(p,q).

Many geometric and dynamical properties are
encoded in the length spectrum LS(Q) and the dif-
ferences�(p, q).

An old geometric question is:Does the setLS(Q) allow
one to reconstruct the convex curve Q? The length spec-
trum and the Laplacian spectrum with Dirichlet bound-
ary conditions are closely related [Andersson and Mel-
rose 77]. Therefore, the question above can be colorfully
restated as [Kac 66]: Can one hear the shape of a drum?
We refer to the book [Siburg 04] for some results on this
question.

The difference �(p, q) is important from a dynam-
ical point of view, because it is an upper bound of
Mather’s �Wp/q. In its turn, �Wp/q is equal to the flux
through the (p, q)-resonance of the corresponding bil-
liard map [MacKay et al. 84, Mather 86, Meiss 92, Mather
and Forni 94]. Thus, the variation of �(p, q) in terms of
the rotation number p/q � (0, 1) gives information about
the size of the different chaotic zones of the billiard map.
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See Section 2 for a more complete description of these
ideas.

Here, ourmain goal is to gain some insight into the bil-
liard dynamics close to the boundary of the billiard table.
We focus on the (1, q)-periodic billiards trajectories; that
is, we set p = 1. We want to determine the asymptotic
behavior of

�(1,q) = sup�(1,q) − inf �(1,q)

as q → +�.
Let L(1, q) � �(1, q) be the length of a (1, q)-periodic bil-

liard trajectory inside Q. It does not matter which one.
Marvizi and Melrose [Marvizi and Melrose 82] proved
that if Q is smooth and strictly convex, then there exist
some asymptotic coefficients lj = lj(Q) such that

L(1,q) �
∑
j≥0

l jq−2 j, q → ∞. (1–1)

For instance, l0 = l = Length(Q) and l1 =
− 1

24 (
∫
Q κ2/3 ds)3, where κ and ds are the curvature

and the length element of Q, respectively. The symbol �
means that the series in the right-hand side is asymptotic
to L(1, q). That is, for any order J � 0, there exists KJ > 0
such that |L(1,q) −∑J

j=0 l jq
−2 j| ≤ KJq−2J−2 for all period

q � 3. The asymptotic coefficients lj can be explicitly
written as integrals over Q of suitable algebraic expres-
sions of κ and its derivatives. The first five coefficients can
be found in [Sorrentino 15]. The asymptotic series (1–1)
does not depend on the choice L(1, q) � �(1, q), so

lim
q→+∞ qk�(1,q) = 0, ∀k > 0.

That is, the differences�(1, q) are beyond all order in q. In
fact, they satisfy the following exponentially small upper
bound in the analytic case [Martín et al. 14]. IfQ is a closed
analytic strictly convex curve, then there exist constants
K, q0, α > 0 such that

�(1,q) ≤ Ke−2παq, ∀q ≥ q0.

The exponentα is related to thewidth of the complex strip
where a certain 1-periodic angular coordinate is analytic.
If a billiard map (or any analytic exact twist map) has a
rotational invariant circle of Diophantine rotation num-
ber ω, there exist other exponentially small upper bounds
for �(p, q) (or for the residues of (p, q)-periodic orbits)
when p/q → ω. See [Greene 79, MacKay 92, Delshams
and de la Llave 00].

Similar singular behaviors have been observed in
problems about the splitting of separatrices of analytic
maps [Fontich and Simó 90, Gelfreich et al. 91, Delshams
and Ramírez-Ros 98, Delshams and Ramírez-Ros 99,
Gelfreich 99, Gelfreich and Lazutkin 01, Gelfreich and
Sauzin 01, Ramírez-Ros 05, Gelfreich and Simó 08,

Martín et al. 11a, Martín et al. 11b, Baldomà and Martín
12]. All these splittings are not exponentially small in a
discrete big parameter q ∈ N, but in a continuous small
parameter h > 0. Namely, h is the characteristic expo-
nent of the hyperbolic fixed point whose separatrices split.
Thus, wemay think that h= 1/q for comparison purposes.
The splitting size inmany analyticmaps satisfies the expo-
nentially small asymptotic formula:

“splitting size” � A(1/h)h−me−r/h, h → 0+, (1–2)

for some exponent r > 0, some power m ∈ R, and some
function A(1/h) that is either constant or oscillating. The
exponent r and the function A(1/h) are determined by
looking at the complex singularities closest to the real
axis of the homoclinic solution of a limit Hamiltonian
flow related to the map. Such methodology has been rig-
orously established for the standard map [Gelfreich 99],
the Hénon map [Gelfreich and Sauzin 01], and some per-
turbed McMillan maps [Delshams and Ramírez-Ros 98,
Martín et al. 11a, Martín et al. 11b]. It has also been
numerically checked in certain billiard maps [Ramírez-
Ros 05] and several polynomialmaps [Gelfreich and Simó
08], but there are other maps where it fails [Baldomà and
Martín 12]. Let us briefly recall some claims about poly-
nomial standard maps contained in [Gelfreich et al. 91,
Gelfreich and Simó 08]. First, r = 2πδ, where δ is the dis-
tance of these singularities to the real axis. Besides,

A(1/h) = μa/2 + a
J∑

j=1
cos(2πβ j/h + ϕ j), (1–3)

for some μ � {0, 1}, some amplitude a �= 0, and some
phases ϕ j ∈ R, when these singularities are

±δi (if and only if μ = 1),±β1 ± δi, . . . ,±βJ ± δi.

For instance, the limit Hamiltonian flow for the standard
map is a pendulum, so ±π i/2 are the closest singulari-
ties to the real axis and the “splitting size” is the so-called
Lazutkin constant ω0 � 1118.827706 times h−2e−π2/h,
see [Gelfreich 99].

It is also known that, usually, r = ρ/2, where ρ is
the radius of convergence of the Borel transform of the
divergent asymptotic series that approaches the separatri-
ces [Delshams and Ramírez-Ros 99, Gelfreich and Sauzin
01, Ramírez-Ros 05, Gelfreich and Simó 08].

By looking at our billiard problem from the perspec-
tive of those results (and others not mentioned here for
the sake of brevity), it is natural to make the following
conjecture. This conjecture is strongly supported by our
numerical experiments.

Conjecture 1. If Q is a closed analytic strictly convex
curve, but it is neither a circle nor an ellipse, the asymp-
totic series (1–1) diverges for all period q ∈ N, but it is

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Po

lit
ec

 C
at

],
 [

Pa
u 

M
ar

tin
] 

at
 0

3:
01

 0
7 

A
pr

il 
20

16
 



418 P. MARTÍN ET AL.

Gevrey-1, so its Borel transform:∑
j≥0

l̂ jz2 j−1, l̂ j = l j
(2 j − 1)!

, (1–4)

has a radius of convergence ρ � (0, +�). Set r = ρ/2.
If Q is a generic axisymmetric algebraic curve, then

�(1,q) � |A(q)|q−3e−rq, q → +∞, (1–5)

for some function A(q) that is either constant: A(q) = a/2
�= 0, or oscillating:

A(q) = μa/2 + a
J∑

j=1
cos(2πβ jq), (1–6)

with μ � {0, 1}, a �= 0, J � 1, and 0 < β1 < ��� < β J.
The casesA(q)= a/2 andA(q)= acos (2πβ) take place in
open sets of the space of axisymmetric algebraic curves.
All the other cases are phenomena of co-dimension at
least one.

IfQ is a generic bi-axisymmetric algebraic curve,�(1, q)

has the previous asymptotic behavior when q is even and
q → +�, but �(1,q) = O(q−2e−2rq) when q is odd and
q → +�.

We stress that the oscillating function (1–3) has some
phases, but there are no phases in the oscillating func-
tion (1–6). This phenomenon is not new. The asymptotic
formulas for the exponentially small splittings of gener-
alized standard maps with trigonometric polynomials do
not have phases either [Gelfreich and Simó 08].

A curve is axisymmetric when it is symmetric with
respect to a line, and bi-axisymmetric when it is symmet-
ric with respect to two perpendicular lines. A planar curve
is algebraic when its points are the zeros of some polyno-
mial in two variables. We require strict convexity, since
it is already an essential hypothesis in the smooth setup.
We only consider algebraic curves by comparisonwith the
above results about polynomial standard maps. Our alge-
braic curves have no singular points, because we ask them
to be closed and analytic.

IfQ is a circle of radius r0, all its (p, q)-periodic billiard
trajectories have length 2r0qsin (πp/q), so �(p, q) = 0 for
all p/q � (0, 1), and the asymptotic series (1–1) becomes

L(1,q) = 2r0q sin(π/q) = 2r0
∑
j≥0

(−1) jπ2 j+1

(2 j + 1)!
q−2 j,

which converges for all q. In particular, ρ = +�. Ellipses
have analogous properties. This has to do with the fact
that elliptic and circular billiards are integrable. A con-
jecture attributed to Birkhoff claims that the only inte-
grable smooth convex billiard tables are ellipses and
circles [Poritsky 50]. Following the discussion on the
Mather’sβ-function contained in [Sorrentino 15], this old

conjecture is reformulated as:The series in (1–1) converges
for some period q ∈ N if and only if Q is an ellipse or a circle.

In this paper, we present several numerical experi-
ments and some analytical results that support Conjec-
ture 1. For the sake of simplicity, all numerical experi-
ments are carried out using the model tables:

Q = {
(x, y) ∈ R2 : x2 + y2/b2 + εyn = 1

}
. (1–7)

Here, b � (0, 1] is the semi-minor axis, ε ∈ R is the per-
turbative parameter, and n ∈ N, with 3 � n � 8, is the
degree of the perturbation. We will refer to Q as a per-
turbed ellipse when 0 < b < 1 and as a perturbed circle
when b = 1. Next, we explain the four main reasons for
this choice of billiard tables.

As a first reason, we know that all the billiard tables
(1–7) are nonintegrable for n � 3 and 0 < ϵ� 1, and so
the dynamics inside them should be far from trivial. The
question ofwhich perturbed ellipses give rise to integrable
billiards is addressed in [Delshams and Ramírez-Ros 96].
Theorem 4.1 of that paper imply that the tables (1–7) are
nonintegrable if 0 < b < 1, n � 4 is even, and ϵ is small
enough. This result can be extended, after some techni-
calities, to odd degrees. Furthermore, all integrable defor-
mations of ellipses of small eccentricities—this includes,
of course, circles—are ellipses [Avila et al. 14], so the
tables (1–7) are nonintegrable if b = 1, n � 3, and ϵ is
small enough.

The second reason is that we want to use some Mel-
nikov methods that are well suited for the study of billiards
inside perturbed ellipses and perturbed circles [Ramírez-
Ros 06, Pinto-de-Carvalho and Ramírez-Ros 13]. We
recall that �(1, q) = 0 for any q � 3 in elliptic billiards.
Besides, from classical Melnikov theory, we deduce that

�(1,q) = �(1,q)(ε) = ε�
(1,q)
1 + o(ε),

for some coefficient �
(1,q)
1 ∈ R that can be computed

explicitly. To be precise, it turns out that if 0< b< 1 then

�
(1,q)
1 � Mnqmne−cq, q → +∞, (1–8)

for some Melnikov exponent c > 0 not depending on n,
some Melnikov power mn ∈ Z, and some Melnikov con-
stant Mn �= 0. These three Melnikov quantities can be
explicitly computed, but we have carried out the computa-
tions only for the cubic (n= 3) and quartic (n= 4) pertur-
bations for the sake of brevity. Besides, limb→1− c = +∞.
TheMelnikovmethod provides no information when n is
odd and q even;�(1,q)

1 = 0 in such case. See Proposition 2
for details.

Which is the relation between the asymptotic for-
mula (1–5) and the first order Melnikov computation (1–
8)? The answer is that r �= c andmn �= −3, so the Melnikov
method does not accurately predict the singular behavior of
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EXPERIMENTAL MATHEMATICS 419

�(1, q). Nevertheless, limϵ→ 0r = c, so some information
can be retrieved from the Melnikov method, at least for
perturbed ellipses.

The case of perturbed circles is harder. See Section 6.
Symmetries are another reason for the choice of

tables (1–7). On the one hand, symmetries greatly sim-
plify the computation of periodic trajectories. To be pre-
cise, we just compute the signed difference Dq between
two particular axisymmetric (1, q)-periodic trajectories,
instead of �(1, q) or �W1/q. Clearly, |Dq| � �(1, q). Often,
|Dq| = �(1, q) = �W1/q. See Proposition 2. On the other
hand, bi-axisymmetric curves are a very particular class
of axisymmetric curves, so our model tables may display
other asymptotic behaviors when n is even. We will check
that this expectation is fulfilled. Concretely,

�(1,q) � |B(q)|q−2e−2rq, q → +∞,

for some constant or oscillating function B(q) when n is
even and q is odd. This asymptotic behavior has several
differences with respect to the generic one conjectured
in (1–5). Both the exponent in e−rq and (if any) the fre-
quencies 0 < β1 < ��� < β J are doubled, the power in
q−3 is increased by one, etc.We think that this new asymp-
totic behavior is generic among bi-axisymmetric algebraic
curves when the period q is odd.

The last reason for the choice of such simple billiard
tables is to reduce the computational effort asmuch as pos-
sible. In particular, we limit the degree of the perturba-
tion to the range 3 � n � 8 for this reason. Recall that
each set �(1, q) is contained in an exponentially small (in
q) interval, so the computation of �(1, q) (or Dq) gives
rise to very strong cancellations. This forces us to use a
multiple-precision arithmetic to compute them. We have
performed some computationswithmore than 12000 dig-
its, based on the open source PARI/GP system [Batut et al.
06]. Similar computations in the setting of splitting of sep-
aratrices of analytic maps can be found in [Delshams and
Ramírez-Ros 99, Ramírez-Ros 05,Gelfreich and Simó08].

Finally, we recall that the exponent r is found by look-
ing at the complex singularities of the homoclinic solu-
tion of a limit Hamiltonian flow in many cases of split-
ting of separatrices.Does such kind of limit problem exist in
our billiard setting? Unfortunately, we do not have a com-
pletely satisfactory answer yet, but we propose a candidate
in Section 3. It is empirically derived by using the Taylor
expansions of the billiard dynamics close to the boundary
given by Lazutkin in [Lazutkin 73]. Let κ(s) be the cur-
vature of Q in some arc-length parameter s ∈ R/lZ. Let
ξ ∈ R/Z be a new angular variable defined by

C
dξ
ds

= κ2/3(s), C =
∫
Q
κ2/3 ds. (1–9)

The constant C is sometimes called the Lazutkin perime-
ter. It is chosen so that ξ has period one. Let δ be the dis-
tance of the set of singularities and zeros of the curva-
ture κ(ξ ) to the real axis. We thought that r = 2πδ, but
our experiments disprove it. We have only obtained that
r � 2πδ, the equality being an infrequent situation. But
there are some good news about our candidate. First, the
Melnikov exponent is c = 2πδ, when Q = {(x, y) ∈ R2 :
x2 + y2/b2 = 1}, with 0 < b < 1. See Proposition 4. Sec-
ond, we have also seen that, if b= 1 and n� 3 is fixed, then
there exist some constantsχn, ηn ∈ R,χn � ηn, such that

r = | log ε|
n

+ χn + o(1), 2πδ = | log ε|
n

+ ηn + o(1),

as ϵ → 0+. The second formula is proved in Proposi-
tion 7, the first one is numerically checked in Section 6.
Therefore, our candidate exactly captures the logarithmic
growth of the exponent r for perturbed circles. Third, our
experiments suggest that r = 2πδ when b = 1, n � {5, 7},
and ϵ� (0, 1/10].

The paper has the following structure. Section 2 con-
tains the dynamical interpretation ofMather’s�Wp/q. We
discuss our candidate for limit problem in Section 3. The
axisymmetric tables and their axisymmetric periodic bil-
liard trajectories are presented inmore detail in Section 4.
The main results about perturbed ellipses and perturbed
circles are described in Sections 5 and 6, respectively. All
proofs have been relegated to the appendices.

2. Twist maps, actions, Mather’s�W, and
billiards

We recall some results about exact twist maps and bil-
liards. We refer to the books [Kozlov and Treschev 91,
Tabachnikov 95, Katok and Hasselblatt 95] and the sur-
veys [Meiss 92, Mather and Forni 94] for a more detailed
exposition.

Let T = R/Z and I = (y−, y+) ⊂ R for some −� �
y− < y+ � +�. Let ω = dx	 dy be the canonical area
form on T × I. Note that ω = − dλ, where λ = y dx. A
smooth diffeomorphism f : T × I → T × I is an exact
twist map when it preserves ω, has zero flux, and satisfies
the twist condition ∂x1

∂y > 0, where F : R × I → R × I,
F(x, y) = (x1, y1), is a (fixed) lift of f.

We also assume that f can be extended as rigid rotations
of angles ϱ± to the boundariesC± = T × {y±}. We know
that ϱ− < ϱ+ from the twist condition. Let E = {(x, x1) ∈
R2 : �− < x1 − x < �+}. Then there exists a function h :
E → R such that h(x + 1, x1 + 1) = h(x, x1) and

y1 dx1 − y dx = dh(x, x1).

This function is called Lagrangian or generating func-
tion. It is determined modulo an additive constant. Twist
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420 P. MARTÍN ET AL.

maps satisfy the following classical Lagrangian formula-
tion. Their orbits are in one-to-one correspondence with
the (formal) stationary configurations of the action func-
tional:

RZ 
 x = (x j) j∈Z �→ W [x] =
∑
j∈Z

h(x j, x j+1).

Note that, although the series forW [x] may be divergent,
∂W
∂x j

only involves two terms of the series, and so 
W is
well defined.

Let p and q be two relatively prime integers such that
p/q � (ϱ−, ϱ+) and q � 1. A point (x, y) ∈ R × I is (p,
q)-periodicwhen Fq(x, y)= (x+ p, y). The corresponding
point (x, y) ∈ T × I is a q-periodic point of f that is trans-
lated p units in the base by the lift. A (p, q)-periodic orbit
is Birkhoff when it is ordered around the cylinder in the
same way that the orbits of the rigid rotation of angle p/q.
The Poincaré–Birkhoff theorem states that there exist at
least two different Birkhoff (p, q)-periodic orbits [Katok
and Hasselblatt 95, Meiss 92]. If O = {(x j, y j)} j∈Z is a (p,
q)-periodic orbit of f, then

h(x j+q, x j+q+1) = h(x j + p, x j+1 + p) = h(x j, x j+1),

so there are only q different terms in the action func-
tional W, which encode the (p, q)-periodic dynamics. In
particular, any (p, q)-periodic orbit O = {(x j, y j)} j∈Z is
in correspondence with a stationary configuration x =
(x0, . . . , xq−1) ∈ Rq−1 of the (p, q)-periodic action:

W (p,q)[x]=h(x0, x1) + h(x1, x2)+· · · + h(xq−1, x0 + p).

We say thatW (p,q)[O] = W (p,q)[x] is the (p, q)-periodic
action of the (p, q)-periodic orbit O. The Birkhoff (p, q)-
periodic orbits provided by the Poincaré–Birkhoff theo-
rem correspond to the minimizing and minimax station-
ary configurations ofW(p, q).

Mather defined the quantity �Wp/q � 0 as the action
of the minimax periodic orbit minus the action of the
minimizing one [Mather 86]. Mather’s �Wp/q has a
nice dynamical interpretation. It is equal to the flux
through any homotopically non trivial curve without self-
intersections passing through all the points of both the
minimizing and the minimax (p, q)-periodic orbits. This
is the MacKay–Meiss–Percival action principle [MacKay
et al. 84]. Thus,�Wp/q gives a rough estimation of the size
of the (p, q)-resonance of the twistmap.We also recall that
the hyperbolic (respectively, elliptic) periodic orbits in a
given resonance are generically minimizing (respectively,
minimax).

Next, we adapt these ideas to billiard maps.
Let Q be a smooth strictly convex curve in the

Euclidean plane. For simplicity, we assume that l =
Length(Q) = 1. Let γ : T → Q, s �→γ (s), be an arc-length

Figure . The billiard map f(s, r)= (s, r).

counterclockwise parametrization ofQ. The bounce posi-
tion of the particle inside Q is determined by the arc-
length parameter s. The direction of motion is measured
by the angle of incidence r � (0, π). Let

f : T×(0, π )→T × (0, π ), f (s, r)= (s1, r1) (2–10)

be the corresponding billiard map. Figure 1 illustrates this
map. The coordinates (s, r) are called Birkhoff coordinates.

Let �(s, s1) = |γ (s) − γ (s1)| be the Euclidean distance
between two impact points on Q. It is easy to prove that

∂�

∂s
(s, s1) = − cos r,

∂�

∂s1
(s, s1) = cos r1.

If we consider the coordinates (x, y) = (s,− cos r) ∈
T × (−1, 1), then the billiard map f becomes a smooth
exact twist map with Lagrangian h(x, x1) = −�(s, s1) and
boundary rotation numbers ϱ− = 0 and ϱ+ = 1. That is,
the action of a periodic billiard trajectory is, up to the sign,
its length. In particular, Mather’s �Wp/q is the length of
the (p, q)-periodic billiard trajectory that minimizes the
action (and so, maximizes the length) minus the length of
the minimax one. Generically,

�Wp/q = H (p,q) − E(p,q),

where H(p, q) and E(p, q) are the lengths of the hyperbolic
and elliptic (p, q)-periodic billiard trajectories inside Q.
For instance,H(1, 2) = 4a, E(1, 2) = 4b, and�W1/2 = 4(a−
b) for the billiard inside the ellipse x2/a2 + y2/b2 = 1 with
0< b< a.

Note that any (p, q)-periodic billiard trajectory gives
rise to a (q− p, q)-periodic one by inverting the direction
of motion. This means that �Wp/q = �W(q − p)/q for all
p/q � (0, 1/2).

We have listed the biggest Mather’s �Wp/q for the bil-
liard inside the perturbed circle x2 + y2 + y4/10 = 1. See
Table 1. The rest of Mather’s�Wp/q are smaller that 10−4.
The values in the table suggest that the (1, 2)-resonance
and both (p, 4)-resonances should be the most important
ones. This prediction is confirmed in Figure 2, where we
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EXPERIMENTAL MATHEMATICS 421

Table . The biggest Mather’s�Wp/q for the billiard inside x + y

+ y/= .

(p, q) H(p, q) E(p, q) �Wp/q

(, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .
(, ) and (, ) . . .

display the biggest resonances of the billiard map inside
x2 + y2 + y4/10 = 1.

Mather’s�Wp/q allow us to single out the most impor-
tant resonances, but they do not give an exact measure
of the size of resonances. To begin with, there is not a
unique way to define such size. A choice is the area Ap/q
of the Birkhoff instability region that contains the (p, q)-
resonance. A Birkhoff instability region is a region of the
phase space delimited by two rotational invariant curves
(RICs) without any other RIC in its interior. If we have a
twistmapwith a (p, q)-resonant RIC, then�Wp/q = O(ε)

and Ap/q = O(ε1/2) under generic perturbations of order
O(ε). See [Olvera 01]. This shows up a clear difference
between these two quantities. For instance, the billiard
map inside the circle x2 + y2 = 1 has a (1, 2)-resonant
RIC, which is destroyed under the perturbation x2 + y2/(1

Figure . The biggest (p, q)-resonances of the billiard map
f(s, r) = (s, r) inside the perturbed circle Q = {(x, y) ∈ R2 :
x2 + y2 + y4/10 = 1}. We recall that l = Length(Q). All (p, q)-
resonances with odd period q have q elliptic islands due to the
bi-axisymmetric character of the curve. From bottom to top: (, ),
(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), and their
(q− p, q) symmetric counterparts.

− ϵ)2 = 1. However, this perturbed billiard table is inte-
grable (it is an ellipse), so both quantities can be analyt-
ically computed: �W1/2 = 4ϵ and A1/2 = 8ϵ1/2. We omit
the details.

3. A candidate for limit problem

To begin with, we recall how to obtain the limit problem
for the splitting of separatrices of the generalized standard
map f(x, y) = (x1, y1) given by

x1 = x + y1, y1 = y + εp(x). (3–11)

For simplicity, we assume that p(x) is a polynomial, p(0)=
0, and p′(0) = 1, so the origin is a hyperbolic fixed point
of f with eigenvalues λ = eh and λ−1 = e−h, where ϵ =
4sinh 2(h/2). There is numerical evidence that the split-
ting size in this kind of polynomial standard maps sat-
isfies the asymptotic formula (1–2) for some exponent r
> 0, some power m ∈ R, and some constant or oscillat-
ing function A(1/h). We determine the exponent follow-
ing [Gelfreich and Lazutkin 01].

First, we transform the original map into the map:

x1 = x + μz1, z1 = z + μp(x)

bymeans of the scaling z= y/μ, whereμ = √
ε. Note that

μ�h as ϵ → 0+. The dynamics of this map for small μ
resembles the dynamics of the μ-time flow of the Hamil-
tonianH0(x, z) = z2/2 − �p(x) dx. Besides, the origin is a
hyperbolic equilibrium point of the Hamiltonian system:

x′ = ∂zH0(x, z) = z, z′ = −∂xH0(x, z) = p(x).

If the singular level set {(x, z) ∈ R2 : H0(x, z) ≡
H0(0, 0)} contains a separatrix to the origin, then we
compute the flow on it and we get a homoclinic solution
(x0(ξ ), z0(ξ )) that can be seen as the limit of the map on
its separatrices when ϵ → 0+. Such homoclinic solution
is determined, up to a constant time shift, by imposing

x′′
0 (ξ ) = p(x0(ξ )), lim

ξ→±∞
x0(ξ ) = 0.

It turns out that there exists δ > 0 such that x0(ξ ) is ana-
lytic in the open complex strip Iδ = {ξ ∈ C : |�ξ | < δ}
and has singularities on the boundary of Iδ . Then r =
2πδ. This claim is contained in [Gelfreich and Lazutkin
01], although a complete proof is still pending. How-
ever, Fontich and Simó proved the following exponen-
tially small upper bound in [Fontich and Simó 90]. If α
� (0, δ), then there exist some constants K, h0 > 0 such
that

“splitting size” ≤ Ke−2πα/h, ∀h ∈ (0, h0].
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422 P. MARTÍN ET AL.

Wewant to emphasize an essential, but sometimes forgot-
ten, hypothesis of the Fontich–Simó theorem. Let

σ0(ξ ) = (x0(ξ ), y0(ξ ))

be the original homoclinic solution. The generalized stan-
dard map (3–11) should have an analytic extension to a
complex neighborhood in C2 of σ0(Iα). If p(x) is a poly-
nomial, then f can be extended to the whole C2 and this
hypothesis is automatically fulfilled. On the contrary, it
remains to be checked when p : R → R is just a real ana-
lytic function.

Next, we adapt these ideas to our billiard problem.
Let Q be an analytic strictly convex curve in the

Euclidean plane. Set l = Length(Q). Let κ(s) be the cur-
vature of Q in some arc-length parameter s ∈ R/lZ. Note
that κ(s) > 0 for all s ∈ R/lZ. Let ρ(s) = 1/κ(s) be the
radius of curvature. We are interested in the dynamics
of the billiard map (2–10) when the angle of incidence r
tends to zero.More precisely, we consider that r = O(1/q)
and q → +�.

Lazutkin [Lazutkin 73] gave the Taylor expansion:

s1 = s + 2�(s)r + O(r2), r1 = r − 2�′(s)r2/3 + O(r3)

for the dynamics of the billiard map (2–10) around r = 0.
Once fixed a period q � 1, we take μ = 1/q � 1 as the
small parameter. Then we transform the previous expan-
sion into

s1 = s + μ�(s)v1/2 + O(μ2),

v1 = v − 2
3
μ�′(s)v3/2 + O(μ2),

by means of the change of variables
√

v = 2r/μ. The bil-
liard dynamics for small μ resembles the dynamics of the
μ-flow of the HamiltonianH0(s, v ) = 2

3�(s)v
3/2. That is,

the μ-flow of the Hamiltonian system:

s′ = �(s)v1/2, v ′ = −2
3
�′(s)v3/2.

We compute the flow on the level set HC := {H0(s, v ) ≡
2
3C

3}, for some constant C > 0. If (s, v ) ∈ HC, then the
first equation of the Hamiltonian system reads as

ds
dξ

= s′ = �(s)v1/2 = C�2/3(s),

or, equivalently, as

C
dξ
ds

= κ2/3(s). (3–12)

We only need the following observations to determine C.
We are looking at the (1, q)-periodic trajectories inside
Q. We have approximated the billiard dynamics by the μ-
time of the Hamiltonian flow with μ = 1/q. Any (1, q)-
periodic trajectory gives one turn after q iterates of the

billiard map, so the variable ξ should be increased by one
if s is increased by l = Length(Q). Therefore,

C = C
∫ l

0

dξ
ds

ds =
∫ l

0
κ2/3(s) ds =

∫
Q
κ2/3 ds. (3–13)

Relation (1–9) is obtained by joining equations (3–12)
and (3–13). Let s = s0(ξ ) be the inverse of the solution ξ

= ξ 0(s) of the differential equation (1–9) determined, for
the sake of definiteness, by the initial condition ξ 0(0) =
0. By abusing the notation, let κ(ξ ) = κ(s0(ξ )) be the cur-
vature in the new angular variable ξ ∈ R/Z. Then κ(ξ ) is
a 1-periodic real analytic function which does not vanish
on the reals. Let us assume that there exists δ > 0 such that
κ(ξ ) is analytic and does not vanish on the open complex
strip Iδ and has singularities and/or zeros on the bound-
ary of Iδ . Note that we are avoiding not only singulari-
ties but also zeros of the curvature κ(ξ ). On the one hand,
the results found by Marvizi and Melrose only hold for
smooth strictly convex curves, so the zeros of the cur-
vature are a source of potential problems. On the other
hand, several positive and negative fractional powers of
the curvature appear in the previous computations (see
also below), and such powers are not analytic at the zeros
of the curvature.

Following the numerical evidences in the splitting
problems of the polynomial standard maps, we thought
that r = 2πδ, but our experiments disprove it. We have
obtained that r � 2πδ, the equality being an infrequent
situation.

An explanation of such discrepancy is the following
one. Set σ 0(ξ ) = (s0(ξ ), r0(ξ )), r0(ξ ) = μ

√
v0(ξ )/2 =

Cκ1/3(ξ )/2q. We know that the billiard map (2–10) can
be analytically extended to (R/lZ) × [0, π ); see [Martín
et al. 14, Proposition 5]. However, we do not know
whether it can be analytically extended to a complex
neighborhood in (C/lZ) × C of σ0(Iα) as α → δ− and
q → +� or not. Hence, the inequality r � 2πδ does
not look so bad in the light of the previous discussion
about the Fontich–Simó theorem. In fact, it is commonly
accepted that the magnitude involved in the exponent of
the exponentially small formulas for splitting problems is
not the minimum distance to the real line of the set of
singularities of the time parametrization of the separatrix
but theminimum distance to the real line of the set of sin-
gularities of the perturbation of the system when evaluated
on the time parametrization of the separatrix. See [Guardia
and Seara 12, Baldomà andMartín 12] for some examples.
It seems reasonable to think that one has to compute the
singularities of the Lagrangian evaluated on the solution
of (1–9), which, in its turn, reduces to the study of the sin-
gularities of γ (s0(ξ )). This is a work in progress.
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EXPERIMENTAL MATHEMATICS 423

4. Model tables

We restrict our study to the perturbed ellipses and per-
turbed circles given implicitly in (1–7). To be precise, the
algebraic curve x2 + y2/b2 + ϵyn = 1 has several real con-
nected components when n is odd. Henceforth, we only
consider the one that tends to the ellipse (or circle) x2 +
y2/b2 = 1 as ϵ tends to zero.

Let ϵn = ϵn(b) be the maximal positive parameter such
that

Q is analytic and strictly convex for all ε ∈ In := (0, εn).
(4–14)

On the one hand, In = (0, +�) when n is even. In such
cases, we will reach the value ϵ = 1 in some numerical
computations. On the other hand, if n is odd, the algebraic
curve defined by x2 + y2/b2 + ϵyn = 1 has a singular point
on the y-axis when

ε = ε̄n = ε̄n(b) := 2(n − 2)n/2−1n−n/2b−n. (4–15)

Thus, Q is no longer analytic when ε = ε̄n. Our com-
putations suggest that εn = ε̄n so we restrict our exper-
iments to the range 0 < ε < ε̄n. We note that ε̄3(b) ≈
0.3849/b3, ε̄5(b) ≈ 0.1859/b5, and ε̄7(b) ≈ 0.1232/b7.
We also restrict our experiments to the degrees 3 � n �
8.

The symmetries of ourmodel tables simplify the search
of some periodic trajectories. If n is even, Q is symmet-
ric with respect to both axis of coordinates, so Q is bi-
axisymmetric. If n is odd, Q is symmetric with respect
to the y-axis only, so Q is axisymmetric but not bi-
axisymmetric. We say that a billiard trajectory is axisym-
metricwhen its corresponding polygon is symmetric with
respect to some axis of coordinates. We only compute
axisymmetric periodic trajectories, APTs for short.

First, let us focus on the case odd n. The axisymmetric
trajectories insideQ are characterized as the ones with an
impact point on or with a segment perpendicular to the
y-axis. The APTs are characterized as the ones satisfying
twice the former condition. Thus, there are four kinds of
APTs insideQ. Besides, only two of these kinds are possi-
ble depending on the (parity of the) period q.

The classification for even n is richer because the sym-
metry with respect to the x-axis plays the same role. See
Table 2.

We wanted to study the differences �(1, q) and the
Mather’s �W1/q, but instead we will compute the signed
differences Dq between the lengths of the (1, q)-APTs.
Clearly, |Dq|� �(1, q). In some cases, all periodic trajecto-
ries are axisymmetric, and so�(1, q) = �W1/q = |Dq|. See
Proposition 2.

We will fix the semi-minor axis b and the degree n
in our numerical experiments. That is, we will study the

Table . Classification of (, q)-APTs inside bi-axisymmetric and
axisymmetric billiard tablesQ. In each case, the differenceDq is the
length of the (, q)-APT in red minus the length of the (, q)-APT in
blue. The gray lines denote the axis of symmetry.

n q Examples of APTs with minimal periods

Even k+ 

Even k+ 

Even k

Odd k+ 

Odd k

dependence of Dq = Dq(ϵ) on the perturbative parame-
ter ϵ and the period q. The quantity Dq(ϵ) is analytic at ϵ
= 0 because all (1, q)-APTs are so. On the contrary, the
period q is a singular parameter of this problem because
Dq is exponentially small in q. Thus, we will deal with:

� The regular case, where we study the asymptotic
behavior of Dq(ϵ) when ϵ → 0 and q � 3 is fixed;
and
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424 P. MARTÍN ET AL.

� The singular case, where we study the asymptotic
behavior ofDq(ϵ) when q→ +� and ε ∈ R is fixed.

We will see that the classical Melnikov method is suit-
able to study the regular case but it is not so to study the
singular one. Besides, the Melnikov method gives more
information on perturbed ellipses than on perturbed cir-
cles. The singular case is only studied numerically.

5. Perturbed ellipses

In this section we restrict ourselves to the case 0< b< 1.
We begin with the regular case, so the semi-minor axis b,
the degree n � 3, and the period q � 3 are fixed, whereas
ϵ→ 0+. We will check that

�(1,q) = �(1,q)(ε) = ε�
(1,q)
1 + o(ε), (5–16)

for some coefficient �
(1,q)
1 ∈ R. This coefficient can be

computed by using a standard Melnikov method. In fact,
the model tables (1–7) have been chosen in such a way
that the asymptotic behavior of�(1,q)

1 can be determined.
The analytical results for �(1,q)

1 in the cubic and quartic
perturbations are stated below, but we need to introduce
some notation first.

Givenm� [0, 1), the complete elliptic integral of the first
kind is

K = K(m) =
∫ π/2

0
(1 − m sin2 θ )−1/2 dθ.

We also write K′ = K′(m) = K(1 − m).

Proposition 2. If b � (0, 1) and q � 3, the following prop-
erties hold:

(1) �
(1,q)
1 = 0, for odd n and even q.

(2) There exist some constants c, M3, M4, K4 > 0,
depending only on b, such that

�
(1,q)
1 �

⎧⎨
⎩
M3e−cq, for n = 3 and odd q,
K4qe−2cq, for n = 4 and odd q,
M4qe−cq, for n = 4 and even q,

(5–17)

when q → +�. Besides, K4 = 2M4, and

c = πK(b2)
2K(1 − b2)

= πK ′(1 − b2)
2K(1 − b2)

. (5–18)

(3) If n = 3 and q is odd or if n = 4, then there
exists ε̃n = ε̃n(b, q) ∈ In such that all (1, q)-periodic
billiard trajectories inside (1–7) are axisymmetric
when ε ∈ (0, ε̃n). In particular, �(1, q) = �W1/q =
|Dq| for all ε ∈ (0, ε̃n).

See Appendix A for the proof. The explicit values ofM3
andM4 can be found in (A–7). Related computations can
be found in [Pinto-de-Carvalho and Ramírez-Ros 13].

Remark 1. Similar results hold for any degree n � 5,
although it is more cumbersome to compute theMelnikov
constantsMn (andKn if n is even) and theMelnikov powers
mn such that

�
(1,q)
1 �

⎧⎨
⎩
Mnqmne−cq, for odd n and odd q,
Knqmne−2cq, for even n and odd q,
Mnqmne−cq, for even n and even q,

as q→ +�. TheMelnikov exponent c does not depend on
n.

From the first order formula (5–16), we deduce that

lim
ε→0

[
�(1,q)/ε�

(1,q)
1

]
= 1,

for any fixed q � 3. Next, we wonder whether the roles of
ϵ and q are interchangeable; that is, if

lim
q→+∞

[
�(1,q)/ε�

(1,q)
1

]
= 1, (5–19)

for any fixed but small enough ϵ> 0.
We should compute �(1,q)/ε�

(1,q)
1 for big periods q

in order to answer this question, but instead we compute
|Dq|/ε�(1,q)

1 . Both quotients coincide if ϵ is small enough,
see Proposition 2.We do not compute |Dq|/ε�(1,q)

1 for the
cubic perturbation and even periods, because �

(1,q)
1 = 0

for n = 3 and even q.
We show the results obtained for the cubic and quartic

perturbations in Figure 3. These figures are obtained by
taking the semi-minor axis b = 4/5. Other values for the
semi-minor axis give rise to similar figures.

TheMelnikov method does not predict the asymptotic
behavior of �(1, q) in the singular case. That is, limit (5–
19) does not hold. Indeed, if we fix any ϵ > 0, then the
quotient |Dq|/ε�(1,q)

1 drifts away from one as q grows.
The drift appears earlier for odd periods in the case of the
quartic perturbation. As ϵ gets smaller, the drift appears at
larger periods q. Since the computing time grows quickly
when q grows, the computations to see that drift when ϵ
is very small are unfeasible with our resources. This hap-
pens, for instance, when n= 4 and ϵ= 10−30. See Figure 3.

Based on these numerical experiments, we guess that
there exist some critical exponents νn > 0 such that

�(1,q) = �(1,q)(ε)

�
⎧⎨
⎩
Mnεqmne−cq, for odd n and odd q,
Knεqmne−2cq, for even n and odd q,
Mnεqmne−cq, for even n and even q,

when ε = O(q−ν ), q → +�, and ν > νn. Here, Mn,
Kn, mn, and c are the Melnikov quantities introduced in
Proposition 2 and Remark 1. We do not give an asymp-
totic behavior when n is odd and q is even because
we do not have any Melnikov prediction for that case.
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EXPERIMENTAL MATHEMATICS 425

Figure . Thequotient |Dq|/ε�(1,q)
1 versus theperiodq forb=/.

Results about exponentially small asymptotic behaviors
based on Melnikov predictions are common in the liter-
ature. For instance, the rapidly forced pendulum is stud-
ied in [Delshams and Seara 92, Delshams and Seara 97,
Gelfreich and Lazutkin 01, Guardia et al. 10, Guardia
and Seara 12] and some perturbed McMillan maps are

studied in [Delshams and Ramírez-Ros 96, Delshams and
Ramírez-Ros 98, Martín et al. 11a, Martín et al. 11b].

Nevertheless, we are interested in a more natural prob-
lem. Namely, the asymptotic behavior of�(1, q) when q→
+� and ϵ is fixed. As we have said before, we compute the
signed difference Dq instead of �(1, q). We have numeri-
cally checked that, if ϵ is small enough, then there exist a
constant A �= 0, a power m ∈ Z, and an exponent r > 0
such that

Dq � Aqme−rq, (5–20)

as q→+�. In fact, the real behavior is slightlymore com-
plicated, since these three quantities depend on the parity
of q. We summarize our results as follows.

Numerical Result 3. Fix b � (0, 1) and n � 3. Let In
be the maximal interval defined in (4–14). There exists
ε̂n = ε̂n(b) ∈ In such that the billiard inside (1–7) satis-
fies the following properties for all ε ∈ (0, ε̂n). The Borel
transform (1–4) has a radius of convergence ρ � (0,+�).
Set r= ρ/2. There exist two constantsA, B �= 0 such that

Dq �
{
Bq−2e−2rq, for even n and odd q,
Aq−3e−rq, otherwise, (5–21)

as q → +�. The quantities ρ, r, A, and B depend on b,
ϵ, and n. The constant B is defined only when n is even.
Besides, limϵ→ 0r = c, where c is the Melnikov exponent
defined in (5–18).

We stated in Conjecture 1 that the function A(q) that
appears in the exponentially small asymptotic formula (1–
5) is constant when the billiard table belongs to a certain
open set of the space of axisymmetric algebraic curves.
Thus, the previous numerical result fits perfectly into the
conjecture.

It is interesting to compare the Melnikov formulas (5–
17) with the asymptotic formulas (5–21). The asymp-
totic behavior of Dq does not depend on the parity of
q when n is odd. The exponents c and r play the same
role. Finally, the factors q−2 and q−3 in (5–21) cannot be
directly guessed from the Melnikov formulas.

Let us describe our numerical experiments. First, once
the exponent r is determined (see next paragraph), we
compute the normalized differences:

D̂q =
{
q2e2rqDq, for even n and odd q,
q3erqDq, otherwise. (5–22)

We have checked that these normalized differences D̂q
tend to some constant as q → +� in the ranges 1/2 �
b � 9/10 and 0 < ϵ � 1/10. Figure 4 shows this behavior
on three different scenarios for b = 9/10 and ϵ= 1/10.

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Po

lit
ec

 C
at

],
 [

Pa
u 

M
ar

tin
] 

at
 0

3:
01

 0
7 

A
pr

il 
20

16
 



426 P. MARTÍN ET AL.

Figure . The normalized differences D̂q tend to a constant when
q → +� in the ranges / � b � / and  < ϵ � / for the
cubic and quartic perturbations. If n is even, thenwe have to study
the even and odd periods separately.

Let us explain how to compute the exponent r= r(b, ϵ,
n). First, we assume that the exponentially small asymp-
totic formula (5–20) can be refined as

Dq � qme−rq
∑
j≥0

d jq−2 j,

for some asymptotic coefficients d j ∈ R with d0 = A �=
0. This assumption is based on similar refined asymptotic
formulas for the splitting of separatrices of analytic maps
[Gelfreich 99, Martín et al. 11a]. By taking logarithms, we
find the asymptotic expansion:

1
q
log

(
q−mDq

) � −r + 1
q
log

⎛
⎝∑

j≥0

d j

q2 j

⎞
⎠

� −r +
∑
j≥0

α j

q2 j+1 ,

for some coefficients α j ∈ R. Therefore, we can compute r
by using a Neville extrapolation method from a sequence
of differences Dq. The longer the sequence, the more cor-
rect digits in r. We obtain 15 correct digits with the fol-
lowing choices. We fix the perturbed ellipse Q, that is, we
fix b � (0, 1), ε ∈ R, and n � 3. Second, we fix the class
of periods q, so that we are on one of the cases of Table 2.
That is, q = q(k) = 2k + 1, q = q(k) = 4k + 2, q = q(k) =
4k, or q = q(k) = 2k. Then, we compute Dq with at least
400 correct digits on an increasing sequence of 500 peri-
ods qi = q(ki), with ki = k0 + 10i. The initial period q0 is
chosen to be big enough so that |Dq0 | ≤ 10−3000. In fact,
we perform the Neville extrapolation with two different
sequences of 500 periods each which allows us to deter-
mine the number of correct digits in the final result. The
powerm � { − 2, −3} is found by trial-and-error.

In Figure 5, we display the exponent r= r(ϵ) for several
values of b for the cubic and quartic perturbations. We
also depict theMelnikov exponent c at ϵ= 0 in full circles.
Note that limϵ→ 0r = c and r is decreasing in ϵ.

Next, let us relate the exponent rwith the radius of con-
vergence ρ of the Borel transform (1–4). Once fixed b �
(0, 1), ε ∈ R, and n � 3, we compute ρ = ρ(b, ϵ, n) as
follows.

First, we compute the length L(1, q) of one of the (1,
q)-APTs inside Q for the same sequences of periods (qi)
used for computing Dq. We use a precision of 3000 cor-
rect digits in these computations. The choice of the APT
does not matter, since |Dqi | ≤ 10−3000 for any period qi �
q0. Second, we obtain the first asymptotic coefficients lj
in the expansion (1–1) by using the Neville extrapolation
method again. Third, we determine the number of cor-
rect digits in each coefficient lj by comparing the results
obtained with two different sequences of periods. The
number of correct digits in lj decreases as j grows. We
always get at least 1500 correct digits in l0 and at least 40
correct digits in l450.

It turns out that the coefficients lj increase at a facto-
rial rate, so the asymptotic series (1–1) is Gevrey-1 and
diverges for any q. Indeed, we have found that there exist
a radius of convergence ρ = ρ(b, ϵ, n)> 0 and a constant
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EXPERIMENTAL MATHEMATICS 427

Figure . The exponent r versus the perturbative parameter ϵ. We
also display the points (, c) in solid circles, where c is theMelnikov
exponent. We note that limε→0+ r = c. Red: b = /. Green: b =
/. Blue: b= /. Magenta: b= /. Black: b= /.

γ = γ (b, ϵ, n)> 0 such that

l̂ j � γ j−2ρ−2 j, j → +∞,

provided ϵ is small enough. That is, the Borel trans-
form (1–4) has a singularity at z = ρ. In particular,

ρ = lim
j→∞

∣∣∣l̂ j/l̂ j+1

∣∣∣1/2 .
We see this asymptotic behavior in Figure 6.

The rough approximation:

ρ ≈
∣∣∣l̂449/l̂450∣∣∣1/2

only gives about 3 correct digits. If we use an extrapolation
method based on the asymptotic expansion:∣∣∣l̂ j/l̂ j+1

∣∣∣1/2 � ρ +
∑
i>0

βi j−i,

the radius of convergence is improved up to 8 correct dig-
its. This is the limit value plotted in Figure 6. We stress

Figure .
∣∣∣l̂ j/l̂ j+1

∣∣∣1/2 versus j for b= /, ϵ= /, and n= . The

dashed line corresponds to the limit value ρ obtained by extrapo-
lation.

that this asymptotic expansion in powers of j−1 is proba-
bly wrong since the extrapolation becomes unstable after
a few steps.

The radius of convergence ρ does not depend on the
parity of the periods of the sequence (qi). Thus, the value
of ρ obtained by sequences of different paritiesmust coin-
cide. This provides another validation to the number of
correct digits of ρ.

Remark 2. Taking into account relation r = ρ/2, we have
two different ways of computing the exponent r, the direct
method and the Borel one. The Borel method is computa-
tionally much cheaper. Indeed, the precision required to
compute the differencesDqi increases along the periods qi
whereas it is fixed when computing the lengths L(1,qi).

At this point, we have established the relations among
the Melnikov exponent c, the exponent r, and the radius
of convergence ρ. Next, we relate c with the distance δ

provided by our candidate for limit problem, since we
are only able to analytically compute δ for unperturbed
ellipses.

Proposition 4. Let b � (0, 1). Let κ(s) be the curvature
of the unperturbed ellipse E = {(x, y) ∈ R2 : x2 + y2/b2 =
1} in some arc-length parameter s. Let ξ ∈ R/Z be the
angular variable defined by (1–9). Let δ be the distance of
the set of singularities and zeros of the curvature κ(ξ ) to the
real axis. Then 2πδ = c, where c is the Melnikov exponent
defined in (5–18).

This proposition is proved in Appendix B.
We have numerically checked that the inequality r <

2πδ holds in the ranges 1/2 � b � 9/10 and 0< ϵ� 1/10
for the cubic and quartic perturbations. The case b = 4/5
is displayed in Figure 7.
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428 P. MARTÍN ET AL.

Figure . The exponent r (continuous lines with points) and the
quantity πδ (continuous lines) versus ϵ for b = /. Red: n = .
Blue: n= .

Remark 3. The distance δ is numerically computed as fol-
lows. First, we write the curvature κ and the length ele-
ment ds of the perturbed ellipse (1–7) in terms of the ver-
tical coordinate y. It turns out that there exist three poly-
nomials r(y), p(y), and q(y) such that

κ2/3 ds = g(y) dy := p2/3(y)√
r(y)q(y)

dy.

For instance, r(y) = 1 − y2/b2 − ϵyn and deg[p] =
deg[q] = 2n − 2. Let y± be the roots of r(y) that tend
to ±b when ϵ → 0. The points (0, y±) are the vertices
on the vertical axis of the perturbed ellipse (1–7). Then
δ = |� ξ�|/C, where

C =
∫
Q
κ2/3 ds = 2

∫ y+

y−
g(y) dy, ξ� =

∫ y�

0
g(y) dy,

and y� �= y± is the root of p(y), q(y), or r(y) that gives the
closest singularity ξ� ∈ C/Z to the real axis. That is, y�

minimizes δ. The path from y = 0 to y = y� in the sec-
ond integral should be contained in an open simply con-
nected subset of the complex plane where the function
g(y) is analytic. See Appendix C for more details about
the function g(y) and their domain of analyticity, although
that appendix deals with perturbed circles only.

We note that the cusp that appears in the graph of 2πδ

for the quartic perturbation correspond to a perturbative
parameter ϵ for which two different roots of p(y), q(y), or
r(y) give rise to the same δ = |�ξ�|/C.

6. Perturbed circles

In this section, we take b = 1 in the model tables (1–
7). This setting is harder than the one of the perturbed
ellipses both in the regular and singular cases. Let us
explain it.

We begin with the regular case, so we fix the degree
n � 3 and the period q � 3 whereas ϵ tends to zero.
First, we note that the Melnikov exponent c in (5–18)
tends to infinity as b tends to one, since K(0) = π /2 and
limm→1− K(m) = +∞. This suggests that the Melnikov
method gives little information for perturbed circles. In
fact, in [Ramírez-Ros 06], it is proved that the first order
coefficient �(1,q)

1 in (5–16) vanishes for every period q /∈
Qn, where

Qn=
{{3, 5, . . . , n − 2, n}, for odd n,
{2, 4, . . . , n − 2, n} ∪ {2, 3, . . . , n/2}, for even n.

Wemight use a higher orderMelnikovmethod to look for
an order k = k(n, q) ∈ N such that

�(1,q) = εk�
(1,q)
k + O(εk+1),

with�
(1,q)
k �= 0. ThisMelnikov computation is not easy so

we have performed a numerical study instead. As before,
we do not study�(1, q) but the difference Dq.

Numerical Result 5. Set

k = k(n, q) =

⎧⎪⎪⎨
⎪⎪⎩
1 + 2

⌈ q−n
2n
⌉
, for odd n and odd q,

2�q/2n�, for odd n and even q,
�2q/n�, for even n and odd q,
�q/n�, for even n and even q.

If n� 3 and q� 2, then there exists dk = dk(n, q) �= 0 such
that

Dq(ε) = dkεk + O(εk+1). (6–23)

This numerical result has two nice consequences on
the breakup of the resonant caustics of the circular bil-
liard under the perturbation x2 + y2 + ϵyn = 1 with any
fixed degree n � 3. First, all (1, q)-resonant caustics break
up, because, once fixed the period q � 2, �(1, q) �= 0 for
ϵ small enough. Second, there are breakups of any order,
because the map q �→ k(n, q) ∈ N is exhaustive.

We numerically compute the order k in (6–23) by not-
ing that

k � log
(

Dq(ε)

Dq(ε/e)

)
.

For instance, if n = 7, q = 36, and ϵ = 10−10, then we
obtain the approximation:

k � 5.99999999999999999401 . . . ,

so k = 6. We have tested the formulas listed in Numerical
Result 5 for all degrees 3 � n � 8 and all periods 3 � q �
100. Note that, once fixed n,

k = k(n, q) �
{
2q/n, for even n and odd q,
q/n, otherwise, (6–24)

as q → +�. Next, we focus on the singular case.
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EXPERIMENTAL MATHEMATICS 429

Figure . Examples with a constant asymptotic behavior of the normalized differences D̂q.

Figure . Examples with a periodic asymptotic behavior of the normalized differences D̂q. We recall that A(q)= acos (πβq) and B(q) =
b̄+ b cos(4πβq). Besides, a 
 . and β ≈ 3/8 in Figure (c); a 
 . and β 
 . in Figure (f ); and b̄ ≈ −4.9257, b 

., and β 
 . in Figure (i).

Numerical Result 6. Fix n � 3. Let In be the maximal
interval defined in (4–14). If ϵ� In, then the Borel trans-
form (1–4) has a radius of convergence ρ � (0,+�) . Set r
= ρ/2. There exist two non-zero quasiperiodic functions
A(q) and B(q) such that

Dq �
{
B(q)q−2e−2rq, for even n and odd q,
A(q)q−3e−rq, otherwise,

as q → +�. Besides, there exists χn ∈ R such that

r = | log ε|
n

+ χn + o(1) (6–25)

as ϵ→ 0. Finally, there exist a partition In = Cn�Pn�Rn
satisfying the following properties:
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430 P. MARTÍN ET AL.

Figure . Transition of the functionsA(q) (left column) and B(q) (right column) from constant behavior (top row) to periodic behavior (bot-
tom row). The transition takes place approximately at the perturbative parameter used in the third row.We plot the normalized differences
D̂q versus q for n= .
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EXPERIMENTAL MATHEMATICS 431

Figure . Logarithmic growth of the exponent r as ϵ→ +. Red: n= . Green: n= . Blue: n= . Magenta: n= . Cyan: n= . Black: n=
.

(1) Cn and Pn are open subsets of In, whereas Rn is a
set of isolated perturbative parameters.

(2) If ϵ � Cn, both functions A(q) and B(q) are con-
stant.

(3) If ϵ � Pn, both functions A(q) and B(q) are peri-
odic. Namely, they have the form:

A(q) = a cos(2πβq), B(q) = b̄+ b cos(4πβq),

for some average b̄ �= 0, some amplitudes a, b> 0,
and some “shared” frequency β > 0. We note that
b̄ �= b/2.

All these numerical results strongly support Conjec-
ture 1. For instance, we conjectured that the function
A(q) is either constant: A(q) � a/2, or periodic: A(q) =
acos (2πβq) in open sets of the space of axisymmetric
algebraic curves, whereas all other cases are phenomena
of co-dimension at least one. This claim agrees with the
fact thatCn and Pn are open subsets of In, whereas Rn only
contains the perturbative parameters where a transition
between constant and periodic cases takes place.

The functions A(q) and B(q) and the exponent r
depend on the degree n and the perturbative parameter
ϵ, although B(q) is defined only for even n. Both func-
tions A(q) and B(q) “share” the frequency in the periodic
case. To be precise, the frequency of B(q) is twice the fre-
quency of A(q). It makes sense because the exponent in
the asymptotic formula containing the function B(q) is
also twice the exponent in the one containing A(q).

The logarithmic behavior of the exponent r stated
in (6–25) is closely related to the asymptotic formula (6–
24). Indeed, if we roughly try to fit the regular behav-
ior (6–23) when ϵ → 0 with the singular behavior Dq =
O(qme−rq) when q → +�, then we get

O(qme−rq) = Dq = O(εk) � O(εq/n) = O(e−q| log ε|/n),

so we guess that r � |log ϵ|/n. This reasoning is informal
but it is confirmed by our experiments. Let us describe
them.

We have set ε ∈ In ∩ Q in all the experiments. First,
we do so because our multiple-precision computations
become a bit faster for rational perturbative parameters.
There is a second reason for that choice. Namely, we
change the precision very often along our computations,
and rational values of ϵ are not affected by such changes,
because they are stored as exact numbers. We have also
tried to deal with “big” perturbations in order to stress
that our results are not perturbative, but we recall that ϵ
should be smaller than the singular value (4–15) when n
is odd.

First, we compute the exponent r = ρ/2 by using the
Borel method, since it is computationally cheaper than
the direct one. See Remark 2. Besides, it is not clear how
to adapt the direct method when the functions A(q) and
B(q) oscillate. We follow the same steps as in the case of
perturbed ellipses. However, the Neville extrapolation is
more unstable for perturbed circles. In order to overcome
this instability, nowwe take sequences (qi) of 1000 periods
such that |Dq0 | ≤ 10−5000.

Once we find r, we compute the normalized differ-
ences D̂q already introduced in (5–22). We have checked
that there exist two non-zero quasiperiodic functions
A(q) and B(q) such that

D̂q �
{
B(q), for even n and odd q,
A(q), otherwise,

as q → +�.
Some paradigmatic examples of the asymptotic behav-

ior of the normalized differences D̂q are displayed in
Figures 8 and 9. All these examples are generic in the sense
that a small change of the perturbative parameter ϵ does
not produce any qualitative change in the pictures.
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432 P. MARTÍN ET AL.

For instance, we see three examples where D̂q tends to
some constant as q → +� in Figure 8. The constant is A
in the second and third subfigures, and B in the first one.

We display a first example of periodic asymptotic
behavior in Figure 9(a) for the cubic perturbation and ϵ
= 1/3. This value ϵ = 1/3 is relatively close to the value
ε̄3(1) ≈ 0.3849 where the algebraic curve x2 + y2 + ϵy3 =
1 becomes singular. Next, we compute the discrete Fourier
transform (DFT) of the last terms of the sequence D̂q. To
be precise, the terms in the range 10, 000< q� 12, 000 for
n = 6 and even q, and in the range 5000< q � 6000 oth-
erwise. We discard the first terms because D̂q � A(q) and
D̂q � B(q), so the last normalized differences are closer to
the periodic functions we want to determine.

TheDFTof the normalized differences D̂q suggests that
the periodic functionA(q) has a dominant harmonic with
amplitude a 
 29.4849 and frequency β ≈ 0.375 = 3/8
when ϵ = 1/3 and n = 3. See Figure 9(b). This explains
why we see eight waves in Figure 9(a), each one with fre-
quency |β − 3/8|. This situation is a source of problems
for the following reason. Let us assume that, due to time
or computational restrictions, we only compute the nor-
malized differences for periods of the form qi = q0 + 8i. In
that case, we would only see one wave and we would get a
wrong frequency. Themoral of this story is that we have to
compute the normalized differences for all periods. Then
we compare the normalized differences D̂q with the cosine
wave A(q) = acos (2πβq) as q → +�. The amplitude a
and the frequency β are determined by mixing several
tools: the DFT, some direct algebraic computations, etc.
The plot in Figure 9(c) shows that

lim
q→+∞

(
D̂q − A(q)

)
= 0.

We study the case n = 6 and ϵ = 1 in Figures 9(d)–
9(i). The most interesting phenomena shown up by those
pictures are the following ones. First, we confirm that
the frequency of the periodic function B(q) is twice the
frequency of the cosine wave A(q). See Figures 9(e) and
9(h). Second, the average of B(q) is not zero. This is a
surprise, because both the periodic functions obtained
in similar splitting problems and the periodic function
A(q) obtained in this billiard problem have generically
zero average. Third, B(q) = b̄+ b cos(4πβq), but b̄ �=
b/2, which sets another differencewith the known asymp-
totic behaviors for splitting problems.

Next, we present some results about the transition
between the two generic —“constant” and “periodic”—
asymptotic behaviors of the normalized differences D̂q.
That is, we intend to visualize what happens at some ϵ∗
� �Cn��Pn�Rn.

We focus our attention on the sixtic perturbation: n =
6. Then the normalized differences have “constant” and

Table . The constants χn and ηn, with χn � ηn, that appear in
formulas (–) and (–), respectively.

n χn ηn

 .… .…
 .… .…
 .… .…
 .… .…
 .… .…
 .… .…

“periodic” asymptotic behaviors when ϵ→ 0+ and ϵ= 1,
respectively. We study the quantities D̂q in a fine grid of
perturbative parameters in the interval (0, 1]. Both func-
tions A(q) and B(q) change at the same transition value.
Indeed, we have checked that

(0, 472/4000] ⊂ C6, [473/4000, 1] ⊂ P6,

so the transition takes place at some ϵ∗ = 4725/40, 000 ±
1/8000. We recall that we still do not have a good limit
problem to find analytically ϵ∗, so we do not compute ϵ∗
with more precision. An example of analytical compu-
tation of transition values for splitting problems can be
found in [Gelfreich and Lazutkin 01, Gelfreich and Simó
08].

We display the normalized differences D̂q for

ε = 4600
40, 000

, ε = 4700
40, 000

,

ε = 4725
40, 000

, ε = 4750
40, 000

in Figure 10 to see the change of the functions A(q) and
B(q). The transition value seems to be very close to the
third value. Following Conjecture 1, we guess that, at the
transition:

A(q) = a/2 + a cos(2πβq)

Figure . The exponent r (dashed lineswith points) and the quan-
tity πδ (continuous lines) versus |log ϵ|. Red: n= . Green: n= .
Blue: n= . Magenta: n= . Cyan: n= . Black: n= .
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EXPERIMENTAL MATHEMATICS 433

for some amplitude a > 0 and some frequency β >

0, so A(q) oscillates between −a/2 and 3a/2. We see
exactly this behavior in Figure 10(e). On the contrary,
B(q) = b̄+ b cos(4πβq) with b̄ �= b/2 at the transition.
See Figure 10(f).

Let us present some numerical results about the log-
arithmic growth (6–25) of the exponent r. We have com-
puted the exponent r= ρ/2 by using the Borel method for
3 � n � 8 in a sequence of perturbative parameters of the
form ϵj = 2−j/10 with j � 0. We have plotted the results
in Figure 11. On the one hand, the curves in Figure 11(a)
look like straight lines with slopes 1/n, as expected. On
the other hand, the curves in Figure 11(b) tend to some
constant values χn > 0. This ends the numerical study of
such phenomenon.

Finally, we see that our candidate for limit problem
captures this logarithmic behavior, although it may not
give the exact value of the exponent r.

Proposition 7. Let n � 3 and ϵ � In. Let κ(s) be the
curvature of the strictly convex curve Q = {(x, y) ∈ R2 :
x2 + y2 + εyn = 1} in some arc-length parameter s. Let
ξ ∈ R/Z be the angular variable defined by (1–9). Let δ be
the distance of the set of singularities and zeros of the cur-
vature κ(ξ ) to the real axis. There exists ηn ∈ R such that

2πδ = | log ε|
n

+ ηn + O(ε2/n log ε), (6–26)

as ϵ→ 0+.

The proof of this proposition is placed in Appendix C.
The constant χn in (6–25) is always smaller than (or

equal to) the constant ηn in (6–26).We compare both con-
stants in Table 3.

Constants χn are computed from the numerical data
used in Figure 11(b). Constants ηn are computed by using
the techniques explained in Remark 3. On the one hand,
we obtain just two significant digits for the constants χn.
On the other hand,we can computeηnwith amuchhigher
precision; here we have just written their first ten decimal
digits. We see that χn < ηn for n � {3, 4, 6, 8}. We do not
discard the equalitiesχ5 = η5 andχ7 = η7. In order to elu-
cidate them, we compare the exponent rwith the quantity
2πδ, as we have done before for perturbed ellipses at the
end of Section 5. The results are displayed in Figure 12,
where we see that our candidate for limit problem gives
the exact exponent r in two cases.

To be precise, our numerical results suggest that:
� If n � {3, 4, 6, 8}, then r < 2πδ for all ϵ � (0, 1/10];
and

� If n � {5, 7}, then r = 2πδ for all ϵ� (0, 1/10].

Appendix A: Proof of proposition 2

We will use many properties of elliptic functions listed
in the books [Abramowitz and Stegun 64, Whittaker and
Watson 96], a couple of technical results about elliptic bil-
liards contained in [Chang and Friedberg 88, Casas and
Ramírez-Ros 11], and the subharmonic Melnikov poten-
tial of billiards inside perturbed ellipses introduced in
[Pinto-de-Carvalho and Ramírez-Ros 13].

We consider the unperturbed ellipse:

E = {
(x, y) ∈ R2 : x2/a2 + y2/b2 = 1

}
, 0 < b < a.

(A–1)

It is known that the convex caustics of the billiard inside
E are the confocal ellipses:

Cλ =
{
(x, y) ∈ R2 :

x2

a2 − λ2 + y2

b2 − λ2 = 1
}
,

0 < λ < b.

There is a unique (p, q)-resonant elliptic causticCλ for any
relatively prime integers p and q such that 1� p< q/2. The
caustic parameter of the (p, q)-resonant elliptic caustic is
implicitly determined by means of equation (A–3).

The complete elliptic integral of the first kind is

K = K(m) =
∫ π/2

0
(1 − m sin2 φ)−1/2 dφ.

Its argument m � (0, 1) is called the parameter. We also
write K′ = K′(m) = K(1 − m). The amplitude function
ϕ = am t is defined through the inversion of the integral:

t =
∫ ϕ

0
(1 − m sin2 φ)−1/2 dφ.

The elliptic sine and elliptic cosine associated to the param-
eterm� (0, 1) are defined by the trigonometric relations:

sn t = sn(t,m) = sinϕ, cn t = cn(t,m) = cosϕ.

If the angular variable ϕ changes by 2π , the angular
variable t changes by 4K. Thus, any 2π-periodic func-
tion in ϕ, becomes 4K-periodic in t. By abuse of nota-
tion, we will also denote the 4K-periodic functions with
the name of the corresponding 2π-periodic ones. For
example, if q(ϕ) = (acosϕ, bsinϕ) is the natural 2π-
periodic parameterization of the ellipse E, then q(t ) =
(a cn t, b sn t ) is the corresponding 4K-periodic param-
eterization. The billiard dynamics associated to an elliptic
caustic Cλ becomes a rigid rotation t �→t + δ in the vari-
able t. It suffices to find the shift δ and the parameter m
associated to each elliptic caustic Cλ. The parameter m is
given in [Chang and Friedberg 88, equation (3.28)] and
the constant shift δ is given in [Chang and Friedberg 88,
p. 1543]. We list the formulas in the following lemma.
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434 P. MARTÍN ET AL.

Lemma 8. Once fixed an elliptic caustic Cλ with λ � (0, b),
the parameter m � (0, 1) and the shift δ � (0, 2K) are

m= a2 − b2

a2− λ2 , δ/2=
∫ ϑ/2

0
(1 − m sin2 φ)−1/2 dφ,

(A–2)

where ϑ� (0, π) is the angle such that sin (ϑ/2)= λ/b. The
segment joining the points q(t) and q(t+ δ) is tangent to Cλ

for all t ∈ R.

From now on, m and δ will denote the parameter and
the constant shift defined in (A–2). Observe that the ellip-
tic caustic Cλ is (p, q)-resonant if and only if

qδ = 4Kp. (A–3)

This identity has the following geometric interpretation.
When a billiard trajectory makes one turn around Cλ,
the old angular variable ϕ changes by 2π , so the new
angular variable t changes by 4K. Besides, we have seen
that the variable t changes by δ when a billiard trajectory
bounces once. Hence, a billiard trajectory inscribed in E
and circumscribed around Cλ makes exactly p turns after
q bounces if and only if (A–3) holds.

We consider the elliptic coordinates (μ, ϕ) associated
to the semi-lengths 0 < b < a. That is, (μ, ϕ) are defined
by relations:

x = σ coshμ cosϕ, y = σ sinhμ sinϕ, (A–4)

where σ = √
a2 − b2 is the semi-focal distance of E. The

ellipse E in these coordinates reads as μ � μ0, where
coshμ0 = a/σ and sinhμ0 = b/σ . Hence, any smooth
perturbation of E can be written in elliptic coordinates as

μ = μ0 + εμ1(ϕ) + O(ε2), (A–5)

for some 2π-periodic function μ1 : R → R.

Lemma 9. Let p and q be two relatively prime integers such
that 1� p< q/2. Let Cλ be the (p, q)-resonant elliptic caus-
tic of the ellipse (A–1). Let

�(p,q) = ε�
(p,q)
1 + o(ε),

be the maximal difference among lengths of (p, q)-periodic
trajectories inside the perturbed ellipse (A–5). Let μ1(t) be
the 4K-periodic function associated to the 2π-periodic one
μ1(ϕ). Let

L(p,q)
1 (t ) = 2λ

q−1∑
j=0

μ1(t + jδ)

be the subharmonic Melnikov potential of the caustic Cλ

for the perturbed ellipse (A–5). If L(p,q)
1 (t ) does not have

degenerate critical points and ϵ > 0 is small enough, then
there is a one-to-one correspondence between the critical

points of L(p,q)
1 (t ) and the (p, q)-periodic billiard trajecto-

ries inside (A–5). Besides,

�
(p,q)
1 = max L(p,q)

1 − min L(p,q)
1 .

Proof. It follows directly from results contained in [Pinto-
de-Carvalho and Ramírez-Ros 13]. �

We will determine the asymptotic behavior of �(p,q)
1 .

First, we study the asymptotic behavior of the (p, q)-
resonant caustic Cλ as p/q → 0+.

Lemma 10. If Cλ is the (p, q)-resonant elliptic caustic of the
ellipse (A–1), then λ��p/q as p/q → 0+, where

� = �(a, b) := ab
∫ a2

b2

(
s(s − b2)(a2 − s)

)−1/2 ds.

(A–6)

Proof. It follows directly from [Casas and Ramírez-Ros
11, Proposition 10]. �

Lemma 11. The following properties hold for μ1(ϕ) =
cos 2ϕ:

(1) The Melnikov potential L(p,q)
1 (t ) has just two real

critical points (modulo its periodicity), none of them
degenerate.

(2) There exist an exponent ζ = ζ (ω∗, a, b) > 0 and a
quantity�4 = �4(ω∗, a, b, p, q)> 0 such that

�
(p,q)
1 �

{
2�4e−2ζq, for odd q,
�4e−ζq, for even q,

as p/q → ω∗ ∈ {0} ∪ ((0, 1) \ Q).
(3) There exist �4 = �4(ω∗, a, b)> 0 and�4 = �4(a,

b)> 0 such that

�4(ω∗, a, b, p, q) =
{
�4q2, if ω∗ ∈ (0, 1) \ Q,
�4pq, if ω∗ = 0.

(4) ζ (0, a, b) = πK′(1 − (b/a)2)/2K(1 − (b/a)2).

Proof. By definition, if μ1(ϕ) = cos 2ϕ, then

L(p,q)
1 (t ) = 2λ

q−1∑
j=0

cn2(t + jδ).

The square of the elliptic cosine is an elliptic function of
order two, periods 2K and 2K′i, and double poles in the
set:

P = K ′i + 2KZ + 2K ′iZ.

Besides, the principal part of any pole τ � P is −m−1(t −
τ )−2. In particular, L(p,q)

1 (t ) is also an elliptic function of
order two, and so, it can be determined (modulo an addi-
tive constant) by its periods, poles, and principal parts.

We study the cases odd q and even q separately.
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EXPERIMENTAL MATHEMATICS 435

If q is odd, then L(p,q)
1 (t ) has periods 2K/q and 2K′i and

double poles with principal parts−2λm−1(t− τ )−2 in the
set

Pq = K ′i + 2K
q
Z + 2K ′i.

It is known thatK′(m)/K(m) is a decreasing function such
that

lim
m→0+

K ′(m)

K(m)
= +∞, lim

m→1−

K ′(m)

K(m)
= 0.

Therefore, there exists a uniquemq � (0, 1) such that

K ′
q

Kq
:= K ′(mq)

K(mq)
= q

K ′(m)

K(m)
=: q

K ′

K
.

Henceforth, we write that K = K(m), K′ = K′(m), Kq =
K(mq), and K ′

q = K ′(mq) for short. Thus,

L(p,q)
1 (t ) = const. + 2λ(qKq/K)2(mq/m) cn2(qKqt/K,mq),

which has just two real critical points (modulo its period-
icity), none of them degenerate. Besides

�
(p,q)
1 = max L(p,q)

1 − min L(p,q)
1 = 2λ(qKq/K)2(mq/m).

If p/q → ω∗ ∈ (0, 1) \ Q, then q → +� and λ → λ∗ �
(0, b), whereCλ∗ is the elliptic caustic with rotation num-
ber ω∗, so

m → m∗ := a2 − b2

a2 − λ2∗
∈ (0, 1), mq → 0+,

K ′

K
→ K ′

∗
K∗

:= K ′(m∗)
K(m∗)

∈ (0,+∞), Kq → π
2 .

Using [Abramowitz and Stegun 64, 17.3.14 and 17.3.16],
we get the asymptotic formula mq�16e−2ζq, where ζ :=
πK ′

∗/2K∗. Finally, we obtain that

�
(p,q)
1 � 8π2λ∗

m∗K2∗
q2e−2ζq, as p/q → ω∗ and q is odd.

If q is even, then cn2(t + qδ/2,m) = cn2(t,m) and

L(p,q)
1 (t ) = 4λ

q/2−1∑
j=0

cn2(t + jδ,m),

so L(p,q)
1 (t ) has periods 4K/q and 2K′i. In this case,

�
(p,q)
1 � 4π2λ∗

m∗K2∗
q2e−ζq, as p/q → ω∗ and q is even.

Next, we study the case ω∗ = 0, when the (p, q)-
periodic orbits approach the boundary. In this case,

λ∗ = 0, m∗ = 1 − (b/a)2,

ζ (0, a, b) = πK ′(1 − (b/a)2)
2K(1 − (b/a)2)

.

Sinceλ∗ = 0, we need the asymptotic behavior of the caus-
tic parameter λ as p/q → 0+. We recall that λ��p/q in
that case, where� = �(a, b) is the integral defined in (A–
6). Hence,

�4 = 4π2λ∗
m∗K2∗

, �4 = 4π2�(a, b)
(1 − (b/a)2)K(1 − (b/a)2)2

,

and this ends the proof of the lemma. �
Lemma 12. The following properties hold for μ1(ϕ) =
−sinϕ.

(1) If q is even, then L(p,q)
1 (t ) ≡ 0 and�

(p,q)
1 = 0.

(2) If q is odd, then L(p,q)
1 (t ) has just two real critical

points (modulo its periodicity), none of them degen-
erate.

(3) Let ζ (ω∗, a, b) be the exponent introduced in
Lemma 11. If q is odd, then there exists�3 =�3(ω∗,
a, b, p, q)> 0 such that

�
(p,q)
1 � �3e−ζq, p/q → ω∗ ∈ {0} ∪ ((0, 1) \ Q).

(4) There exist �3 = �3(ω∗, a, b)> 0 and�3 = �3(a,
b)> 0 such that

�3(ω∗, b, a, p, q) =
{
�3q, if ω∗ ∈ (0, 1) \ Q,
�3p, if ω∗ = 0.

Proof. If q is even, then p is odd, sn(t + δ/2) = − sn t ,
and L(p,q)

1 (t ) = −2λ
∑q−1

j=0 sn(t + jδ) ≡ 0.
The case odd q follows the lines of the proof of

Lemma 11. The constants are

�3 = 8πλ∗√
m∗K∗

, �3 = 8π�(a, b)
(1 − (b/a)2)1/2K(1 − (b/a)2)

,

whereCλ∗ is the elliptic caustic with rotation number ω∗,
m∗ = (a2 − b2)/(a2 − λ2

∗), andK∗ =K(m∗).We omit the
details. �

Next, we relate the original perturbed ellipses (1–
7) written in Cartesian coordinates, to the perturbed
ellipses (A–5) written in elliptic coordinates (A–4).

Lemma 13. Set 0< b< a.
(1) The perturbed ellipse (A–5) with μ1(ϕ) = −sinϕ

has, up to terms of second order in ϵ, the implicit
equation:

x2

a2
+ (y − εb2/a)2

b2
+ 2

a2 − b2

b4
εy3 = 1.

(2) The perturbed ellipse (A–5) with μ1(ϕ) = cos 2ϕ
has, up to terms of second order in ϵ, the implicit
equation:

x2

α2 + y2

β2 + 2
a2 − b2

b5
εy4 = 1,

for some semi-lengths α = a + O(ε) and β = b+
O(ε).
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436 P. MARTÍN ET AL.

Proof. Let P1 : R2 → R be a smooth function. The per-
turbed ellipse written in Cartesian coordinates as

x2/a2 + y2/b2 + εP1(x, y) + O(ε2) = 1,

and the perturbed ellipse written in elliptic coordinates
as (A–5) are linked through relation:

2(a2 sin2 ϕ+b2 cos2 ϕ)μ1(ϕ)+abP1(a cosϕ, b sinϕ)=0.

The rest of the proof is a tedious, but straightforward,
computation. �

Finally, we get the claims stated in Proposition 2 from
the previous results by using that α = a + O(ε) and β =
b+ O(ε) and by taking a = 1. To be precise, then

c = c(b) = ζ (0, 1, b) = πK ′(1 − b2)
2K(1 − b2)

,

M3 = M3(b) = b4�3(1, b)
2(1 − b2)

= 4πb4�(1, b)
(1 − b2)3/2K(1 − b2)

,

(A–7)

M4 = M4(b) = b5�4(1, b)
2(1 − b2)

= 2π2b5�(1, b)
(1 − b2)2K(1 − b2)2

,

where the elliptic integral�=�(a, b) is defined in (A–6).

Appendix B: Proof of proposition 4

We parameterize the ellipse by using the angular vari-
able ϕ. That is, we use the parametrization σ (ϕ)= (cosϕ,
bsinϕ). The curvature of the ellipse E at the point σ (ϕ) is

κ(ϕ) = b
(sin2 ϕ + b2 cos2 ϕ)3/2

= 1
b2(1 + ν sin2 ϕ)3/2

,

where ν = (1 − b2)/b2 > 0. The arc-length parameter s
and the angular parameter ϕ are related by

ds
dϕ

(ϕ) = ‖σ ′(ϕ)‖ =
√
sin2 ϕ + b2 cos2 ϕ

= b
√
1 + ν sin2 ϕ.

First, we compute the constant

C =
∫
E
κ2/3 ds = 4b−1/3

∫ π/2

0
(1 + ν sin2 ϕ)−1/2 dϕ

= 4b−1/3K(−ν) = 4b2/3K(1 − b2).

We have used [Abramowitz and Stegun 64, 17.4.17] in the
last equality.

The incomplete elliptic integral of the first kind with
amplitude ϕ � (0, π /2) and parameterm � (0, 1) is

F(ϕ|m) =
∫ ϕ

0
(1 − m sin2 θ )−1/2 dθ.

This definition can be extended to complex amplitudes
and any real parameter [Abramowitz and Stegun 64].Note
that F(π /2|m) = K(m).

The curvature κ(ϕ) has no complex zeros but has com-
plex singularities at the points such that sin 2ϕ = −1/ν.
This equation becomes sinh 2ψ = 1/ν under the change ϕ
= iψ . Letψ∗ be the only positive solution of the previous
equation. Any singularity of κ(ϕ) has the form:

ϕ = ϕ±
n := ±iψ∗ + nπ, n ∈ Z.

Let ξ±
n be the complex singularity of κ(ξ ) associated to

ϕ±
n through the change of variables:

ξ = C−1
∫ s

0
κ2/3(t ) dt = C−1

∫ ϕ

0
κ2/3(θ )

ds
dϕ

(θ ) dθ.

The complex path in this integral is the segment from 0 to
ϕ.

Next, we compute the complex singularities ξ+
n :

ξ+
n = C−1

∫ ϕ+
n

0
κ2/3(θ )

ds
dϕ

(θ ) dθ

= C−1b−1/3F(iψ∗ + nπ | − ν)

= 2nC−1b−1/3K(−ν) + iC−1b−1/3F(π/2|b2)
= 2nC−1b2/3K(1 − b2) + iC−1b2/3K(b2)
= n/2 + iC−1b2/3K ′(1 − b2).

By symmetry, ξ−
n = −ξ+

−n. We have used formula
[Abramowitz and Stegun 64, 17.4.3] to compute F(iψ∗ +
nπ | − ν), formula [Abramowitz and Stegun 64, 17.4.8]
to compute F(iψ∗| − ν), and formula [Abramowitz and
Stegun 64, 17.4.15] to compute F(π /2|b2).

Therefore, the distance δ of the set of singularities and
zeros of the curvature κ(ξ ) to the real axis is

δ = C−1b2/3K ′(1 − b2) = K ′(1 − b2)
4K(1 − b2)

= c/2π.

Appendix C: Proof of proposition 7

Fix the integer n� 3. We consider the perturbed circles:

Q = {
(x, y) ∈ R2 : x2 + y2 + εyn = 1

}
, (C–1)

where 0< ϵ� 1 is a small perturbative parameter.
Let C = C(ϵ) be the constant defined in (1–9). If ϵ= 0,

then Q is a circle of radius one with curvature κ � 1, so

C(0) =
∫
Q
κ2/3 ds =

∫
Q
ds = Length(Q) = 2π.

We note that (C–1) is a smooth perturbation of a circle of
radius one, so C(ϵ) is smooth at ϵ= 0 and

C = C(ε) = C(0) + O(ε) = 2π + O(ε). (C–2)

We introduce the polynomial r(y)= 1− y2 − ϵyn. Note
that (x, y)�Q if and only if x2 = r(y). By taking derivatives
twice with respect to y the implicit relation x2 = r(y), we
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EXPERIMENTAL MATHEMATICS 437

get the auxiliary polynomials:

p(y) = −x3
d2x
dy2

=
(
r′(y)
2

)2
− r(y)r′′(y)

2
= 1 + εpn−2yn−2 + εpnyn + ε2p2n−2y2n−2,

q(y) = x2 +
(
x
dx
dy

)2

= r(y) +
(
r′(y)
2

)2

= 1 + εqnyn + ε2q2n−2y2n−2,

whose coefficients are pn − 2 = n(n − 1)/2, pn = −(n −
1)(n− 2)/2, p2n − 2 = −n(n− 2)/4, qn = n− 1, and q2n − 2
= n2/4. The length element and the curvature at the point
(x, y) � Q are

ds =
√
1 +

(
dx
dy

)2
dy =

√
q(y)
r(y)

dy,

κ = − d2x
dy2

(
1 +

(
dx
dy

)2
)−3/2

= p(y)
q3/2(y)

.

The curvature should be positive, which explains the
minus sign in the formula for κ(y). Thus, we can relate
any singularity (or any zero) y� ∈ C of the curvature κ(y),
with the corresponding singularities (or zeros) s� ∈ C/lZ
and ξ� ∈ C/Z by means of the formula:

ξ� =
∫ s�

0
κ2/3(s) ds =

∫ y�

0
g(y) dy,

where

g(y) := κ2/3(y)
ds
dy

(y) = p2/3(y)√
r(y)q(y)

.

Let R ⊂ C be the union of the complex rays {αy0: α �
0}, where y0 is a root of p(y), q(y), or r(y). The function
g(y) is analytic in C \ R, so we will avoid the setR when
computing the integral

∫ y�
0 g(y) dy along complex paths.

Lemma 14. Let 0< ϵ� 1 and n ∈ N with n � 3.
(1) The polynomial p(y) has n roots of the form:

zε−1/n + O(ε1/n), zn = 2/((n − 1)(n − 2));
and n − 2 roots of the form:

zε−1/(n−2) + O(ε1/(n−2)),

zn−2 = −(n − 1)(n − 2)/n.

(2) The polynomial q(y) has n roots of the form:

zε−1/n + O(ε1/n), zn = −1/(n − 1);
and n − 2 roots of the form:

zε−1/(n−2) + O(ε1/(n−2)), zn−2 = −4(n − 1)/n2.

(3) The polynomial r(y) has n − 2 roots of the form:

zε−1/(n−2) + O(ε1/(n−2)), zn−2 = −1;

and two real roots of the form y± = ±1 + O(ε).
Besides, each one of these roots depends on some positive

fractional power of ϵ in an analytic way.

Proof. If w0(z) is a polynomial with a simple root z0 and
w1(z) is another polynomial, then w(z)= w0(z)+ μw1(z)
has some root of the form z = z0 + O(μ) which depends
analytically onμ. The roots y± = ±1 + O(ε) of the poly-
nomial r(y) = 1 − y2 − ϵyn are obtained directly with
w0(z) = 1 − z2, w1(z) = −zn, and μ = ϵ.

If we take μ = ϵ2/n, then

p(ε−1/nz) = 1 + pnzn + μ(pn−2zn−2 + p2n−2z2n−2),

q(ε−1/nz) = 1 + qnzn + μq2n−2z2n−2,

and we find the n roots with an O(ε−1/n)-modulus of p(y)
and the n roots with an O(ε−1/n)-modulus of q(y).

If we take μ = ϵ2/(n − 2), then

μp(ε−1/(n−2)z) = zn(pn + p2n−2zn−2)+μ(1 + pn−2zn−2),

μq(ε−1/(n−2)z) = zn(qn + q2n−2zn−2) + μ,

μr(ε−1/(n−2)z) = −z2(1 + zn−2) + μ,

andwe find then− 2 rootswith anO(ε−1/(n−2))-modulus
of p(y), the n − 2 roots with an O(ε−1/(n−2))-modulus of
q(y), and the n − 2 roots with an O(ε−1/(n−2))-modulus
of r(y). �

Lemma 15. If 0< ϵ� 1, n ∈ N with n � 3, and y� ∈ C is
a root of p(y) or q(y) with anO(ε−1/n)-modulus, then there
exists a constant η� ∈ R such that

|�ξ�| = | log ε|
n

+ η� + O(ε2/n log ε),

as ϵ→ 0+.

Proof. For simplicity, we assume that y� is a root of q(y)
such that�y� � 0 and y� � 0. Other cases require minor
changes.

If r0 = (n − 1)−1/n/2, r� = ϵ1/n|y�|, and θ� = arg y�,
then π /2 � θ� < nπ /(n + 1) and r� = 2r0 + O(ε2/n),
because y� = ε−1/nz + O(ε1/n) for some z ∈ C such that
zn = −1/(n − 1)< 0.

We compute ξ� = ∫ y�
0 g(y) dy by integrating over the

path σ� = σ 1�σ 2�σ 3, where

σ1 = {ε−1/nit : 0 ≤ t ≤ r0},
σ2 = {ε−1/nr0eθ i : π/2 ≤ θ ≤ θ�},
σ3 = {ε−1/neθ�ir : r0 ≤ r ≤ r�}.

This path only intersects the set of raysR at its endpoint
y�, since the 2n roots of p(y) and q(y) with an O(ε−1/n)-
modulus have pairwise different arguments when ϵ→ 0+.
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We write ξ� = ∫ y�
0 g(y) dy = ∫

σ�
g(y) dy = ξ1 + ξ2 +

ξ3, where

ξ1 =
∫
σ1

g(y) dy =
∫ r0

0
ε−1/nig

(
ε−1/nit

)
dt,

ξ2 =
∫
σ2

g(y) dy =
∫ θ�

π/2
ε−1/nr0eθ iig

(
ε−1/nr0eθ i

)
dθ,

ξ3 =
∫
σ3

g(y) dy =
∫ r�

r0
ε−1/neθ�ig

(
ε−1/neθ�ir

)
dr.

In order to study ξ 1, we consider the function:

h(t ) : = ε−1/n
√
t2 + ε2/ng

(
ε−1/nit

)
= h0(t ) + O(ε2/n), (C–3)

where h0(t) = (1 + pnintn)2/3(1 + qnintn)−1/2. The func-
tion h0(t) is smooth in the interval [0, r0] and h0(t) = 1.
Besides,

ξ1 = i
∫ r0

0
(t2 + ε2/n)−1/2h(t ) dt = ξ̂1 + ξ̌1 + ξ̃1 + ξ̆1,

where

ξ̂1 = i
∫ r0

0

dt√
t2 + ε2/n

= i argsinh(ε−1/nr0)

= i
| log ε|

n
+ i log(2r0) + O(ε2/n),

ξ̌1 = i
∫ r0

0

h0(t ) − 1
t

dt,

ξ̃1 = i
∫ r0

0

h0(t ) − 1
t

(
t√

t2 + ε2/n
− 1

)
dt

= O(ε2/n log ε),

ξ̆1 = i
∫ r0

0

h(t ) − h0(t )√
t2 + ε2/n

dt = O(ε2/n log ε).

The integral ξ̂1 is immediate. The integral ξ̌1 does not
depend on ϵ. The integral ξ̃1 is bounded using ideas from
the proof of Lemma 23 in [Casas and Ramírez-Ros 11].
The integral ξ̆1 is bounded using (C–3). Hence, we have
already seen that there exists η1 ∈ R such that

|�ξ1| = | log ε|
n

+ η1 + O(ε2/n log ε).

The study of ξ 2 and ξ 3 is easier, because

ξ2 = ξ̌2 + O(ε2/n), ξ3 = ξ̌3 + O(ε2/n),

for some constants ξ̌2 and ξ̌3 that do not depend on ϵ.
For instance, ξ 2 depends on ϵ2/n in an analytic way,

because the integrand ϵ−1/nr0eθ iig(ϵ−1/nr0eθ i) and the

argument θ� are both analytic in ϵ2/n, and all the singu-
larities of the integrand are far from the integration path.
The study of ξ 3 is similar. �

Finally, if δ is the distance of the set of singularities and
zeros of the curvature κ(ξ ) to the real axis, then

2πδ = 2π
C

min
{|�ξ�| : y�

is a root with an O(ε−1/n)-modulus
}

= | log ε|
n

+ η + O(ε2/n log ε),

where the constant η = ηn ∈ R is equal to the smallest
constant η� provided by Lemma 15 among all the roots
of p(y) and q(y) with an O(ε−1/n)-modulus. We have also
used relation (C–2) in the last equality.

We do not care about the roots y± = ±1 + O(ε) of
r(y), since they correspond to points where y is not a true
coordinate over the perturbed circle Q. To be precise, the
points (0, y±) are the two vertices ofQ over the symmetry
line {x = 0}, and the curvature has a finite positive value
at them. Nor do we care about the roots whose modulus
is O(ε−1/(n−2)), because

ε−1/(n−2)g(ε−1/(n−2)z) = ε−1/(3n−6)(l0(z) + o(1)
)
,

where

l0(z) = zn/6−1(pn + p2n−2zn−2)2/3

(1 + zn−2)1/2(qn + q2n−2zn−2)1/2
.

This implies that, if y� ∈ C is one of those farther roots,
then

|�ξ�| = ε−1/(3n−6)(ν� + o(1)
)

for some constant ν� ∈ R. That is, the farther roots give
rise to much bigger imaginary parts.
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