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Abstract. A caustic of a billiard table is a curve such that any billiard trajectory, once
tangent to the curve, stays tangent after every reflection at the boundary. When the
billiard table is an ellipse, any non-singular billiard trajectory has a caustic, which can be
either a confocal ellipse or a confocal hyperbola. Resonant caustics—those whose tangent
trajectories are closed polygons—are destroyed under generic perturbations of the billiard
table. We prove that none of the resonant elliptical caustics persists under a large class of
explicit perturbations of the original ellipse. This result follows from a standard Melnikov
argument and the analysis of the complex singularities of certain elliptic functions.

1. Introduction and main result
Birkhoff [3] introduced the problem of convex billiard tables more than 80 years ago as a
way to describe the motion of a free particle inside a closed convex smooth curve. The
particle is reflected at the boundary according to the law that ‘the angle of incidence
equals the angle of reflection’. Good modern starting points in the literature on the
billiard problem are [14, 21]. Several open problems on billiard dynamics are listed in
the survey [11].

A caustic is a curve such that any billiard trajectory, once tangent to the curve, stays
tangent after every reflection. Caustics are the most distinctive geometric objects related
to billiard tables, since they are a geometric manifestation of the regularity of their tangent
trajectories. For example, integrable billiards have a continuum of caustics, whereas the
non-existence of caustics inside a convex billiard table implies that there are some billiard
trajectories whose past and future behaviours differ dramatically. See, for instance, [16].
Hence, the existence and persistence of caustics are two fundamental questions in billiards.
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Most of the literature deals with convex caustics, since they are easier to understand and
related to ordered trajectories. Two exceptions are [10, §3] and [13].

We summarize the classical existence results as follows. On the one hand, if the
boundary curve is smooth enough and strictly convex, then there exists a collection of
smooth convex caustics close to the boundary of the table whose union has positive
area [7, 15]. On the other hand, Mather [16] proved that there are no smooth convex
caustics inside a convex billiard table when its boundary curve has some flat point. Gutkin
and Katok [10] gave a quantitative version of Mather’s theorem.

The robustness of a smooth convex caustic is closely related to the arithmetic properties
of its rotation number, which measures the number of turns around the caustic per
impact. Caustics with Diophantine rotation numbers persist under small perturbations
of the boundary curve. This follows from standard Kolmogorov–Arnold–Moser (KAM)
arguments [7, 15]. On the contrary, resonant caustics—those whose tangent trajectories
are closed polygons, so that their rotation numbers are rational—are fragile structures that
generically break up. See, for instance, [19].

This raises two complementary questions: the first is to characterize the perturbations
that preserve/destroy a given resonant caustic of a billiard table; the second is to
determine all resonant caustics that are preserved/destroyed under a given perturbation
of an integrable billiard table. These questions have been studied by several authors.
Baryshnikov and Zharnitsky [2] proved that the perturbations preserving a given resonant
caustic of a smooth convex billiard table form an infinite-dimensional Hilbert manifold.
As a sample, we point out that this Hilbert manifold is given by the set of billiard tables
with constant width when the rotation number of the unperturbed caustic is one half [13].
Concerning the second question, Ramírez-Ros [19] gave a sufficient condition for the
break-up of the resonant circular caustics inside a circular billiard table, in terms of the
Fourier coefficients of the perturbation, see Remark 3 below.

In this paper we tackle the second question when the billiard boundary is an ellipse. In
that case, the billiard dynamics is integrable and any billiard trajectory has a caustic [21].
The caustics are the conics confocal to the original ellipse: confocal ellipses, confocal
hyperbolas, and the foci. One can deduce from results of Poncelet [18] that if a billiard
trajectory inside an ellipse is a closed polygon, then all the billiard trajectories sharing its
caustic are also closed polygons. (We refer to [9] for a historical account of Poncelet’s
porisms.) Indeed, if a billiard trajectory tangent to one of the elliptical caustics is an
(m, n)-gon—a closed polygon with n sides that makes m turns around its caustic—then all
the billiard trajectories sharing its caustic are also (m, n)-gons, and their caustic is called
(m, n)-resonant. (These two definitions are not restricted to billiards inside ellipses.) It
is also known that there is a unique (m, n)-resonant elliptical caustic for any relatively
prime integers m and n such that 1≤ m < n/2; see §4. Our main result is that all these
resonant elliptical caustics break up under a large class of explicit perturbations of the
original ellipse; see Theorem 1.1.

The following notation is required to state the main result. Having fixed the ellipse

Q =

{
(x, y) ∈ R2

:
x2

a2 +
y2

b2 = 1

}
, a > b > 0,
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we consider its associated elliptic coordinates (µ, ϕ) given by the relations

x = c cosh µ cos ϕ, y = c sinh µ sin ϕ,

where c =
√

a2 − b2 is the semifocal distance of Q. The equation of the ellipse Q in
these elliptic coordinates is µ≡ µ0, where cosh µ0 = a/c and sinh µ0 = b/c. Hence, any
smooth perturbation Qε of the ellipse Q can be written in elliptic coordinates as

µ= µε(ϕ)= µ0 + εµ1(ϕ)+ O(ε2), (1)

for some 2π -periodic smooth function µε(ϕ).

THEOREM 1.1. Let µ1(ϕ) be a 2π -periodic entire function. If µ1(ϕ) is not constant
(respectively, µ′1(ϕ) is not π -antiperiodic), then none of the (m, n)-resonant elliptical
caustics with odd n (respectively, even n) persists under the perturbation (1).

Our proof is based on the study of the persistence of the resonant rotational invariant
circles (resonant RICs) of some twist maps by means of a first-order Melnikov method.
Only convex caustics can be related to the RICs of those twist maps. Thus, there is no
direct way to extend the same procedure to the non-convex caustic hyperbolas, but we
believe that the same results hold for them.

Remark 1. If µε(ϕ) is constant, then the perturbed curves Qε are ellipses, so all caustics
(resonant or not) are preserved. Hence, the hypothesis thatµ1(ϕ) is non-constant is natural,
since we are using a first-order method. Nevertheless, we can still state some results when
this hypothesis fails. More precisely, let us assume that

µε(ϕ)= µ0 + εµ1 + · · · + ε
i−1µi−1 + ε

iµi (ϕ)+ O(εi+1),

for some µ0, . . . , µi−1 ∈ R and some non-constant 2π -periodic entire function µi (ϕ).
Then:
• all the (m, n)-resonant elliptic caustics with odd n break up. This result is a corollary

of Theorem 1.1. It suffices to consider δ = εi as the new perturbative parameter,
Q∗ε = {µ≡ µ0 + · · · + ε

i−1µi−1} as the unperturbed ellipse, and to realize that Qε

is an O(δ)-perturbation of Q∗ε whose first-order term in δ satisfies the hypotheses of
Theorem 1.1;

• if n is even, we believe that all (m, n)-resonant elliptical caustics also break up, even
if µ′i (ϕ) is π -antiperiodic, but we should use a second-order Melnikov method in
order to prove this. Unfortunately, the computations become too cumbersome.

Remark 2. If we write the perturbed ellipse Qε in Cartesian coordinates as

x2/a2
+ y2/b2

+ εP1(x, y)+ O(ε2)= 1,

then

2(a2 sin2 ϕ + b2 cos2 ϕ)µ1(ϕ)+ abP1(a cos ϕ, b sin ϕ)= 0.

In particular, the function µ1(ϕ) is π -antiperiodic when P1(x, y) is odd.
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Remark 3. The case of perturbed circular tables was studied using similar techniques
in [19], but the final result was quite different. Let us recall it for comparison. Any billiard

trajectory inside a circle of radius r0 has some concentric circle of radius
√

r2
0 − λ

2 as
caustic, where 0< λ < r0 plays the role of a caustic parameter. If λ= r0 sin(mπ/n), then
the circular caustic is (m, n)-resonant. Let us write the perturbed circle in polar coordinates
(r, θ) as

r = rε(θ)= r0(1+ εr1(θ)+ O(ε2)), (2)

for some smooth function rε : T→ R. Let
∑

l∈Z r̂ l
1eilθ be the Fourier expansion of r1(θ)

and n ≥ 2. If there exists some l ∈ nZ\{0} such that r̂ l
1 6= 0, then the (m, n)-resonant

circular caustics do not persist; see [19, Theorem 1]. In particular, it is not known if
the (m, n)-resonant circular caustics with odd (respectively, even) n break up when r1(θ)

is not constant (respectively, r ′1(θ) is not π -antiperiodic).

In §2 we develop a general Melnikov theory to study the persistence of resonant RICs
of twist maps. The general setup is adapted to billiard maps in §3. Finally, Theorem 1.1
is proved in §4 by analysing the complex singularities of certain elliptic functions, an idea
borrowed from [6].

2. Break-up of resonant invariant curves in twist maps
This section is a generalization of [19, §2], since several hypotheses have been weakened.
Namely, the unperturbed map can be non-integrable, the resonant invariant circle does
not need to be horizontal, and the shift on the invariant circles can be non-constant.
Nevertheless, the essential idea does not change. A similar theory is contained in [20].
For a general background on twist maps we refer to [12, §9.3] or [17].

Let T= R/2πZ, and π1 : T× R→ T be the natural projection. Sometimes it is
convenient to work in the universal cover R of T. We will use the coordinates (x, y)
for both T× R and R2. The lines of the form x = constant and y = constant will be called
vertical and horizontal, respectively. A tilde will always denote the lift of a function or set
to the universal cover. If g is a real-valued function, ∂i g denotes the derivative with respect
to the i th variable. We will assume that all the objects considered are smooth. Here,
‘smooth’ means C∞. In particular, all the dependences on the perturbative parameter ε are
assumed to be smooth.

We will consider certain diffeomorphisms defined on an open cylinder of the form
Z = T× Y , for some open bounded interval Y = (y−, y+)⊂ R. Then Z̃ = R× Y is an
open strip of the plane. A diffeomorphism f : Z→ Z is called an area-preserving twist
map when it preserves area and orientation and satisfies the twist condition

∂2π̃1 f̃ (x, y) 6= 0 for all (x, y) ∈ Z̃ .

If the twist is positive (respectively, negative), then the first iterate of any vertical line tilts
to the right (respectively, left). We also assume, although it is not essential, that f satisfies
some rigid boundary conditions. To be more precise, we suppose that the twist map f
can be extended continuously to the closed cylinder T× [y−, y+] as a rigid rotation on the
boundaries. That is, there exist some boundary frequencies ω± ∈ R, ω− < ω+, such that
f̃ (x, y±)= (x + ω±, y±).
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Let
D = {(x, x ′) ∈ R2

: ω− < x ′ − x < ω+}.

Then there exists a function h : D→ R such that f̃ (x, y)= (x ′, y′) if and only if

y =−∂1h(x, x ′), y′ = ∂2h(x, x ′). (3)

The function h is called the generating function of f . Furthermore, if (x ′′, y′′)= f̃ (x ′, y′),
then

∂2h(x, x ′)+ ∂1h(x ′, x ′′)= 0. (4)

We study the dynamics of f , but it is often more convenient to work with the lift f̃ , so
we will pass between the two without comment and, in what follows, the lift f̃ remains
fixed.

A closed curve ϒ ⊂ Z is said to be a rotational invariant circle (RIC) of f when it
is homotopically non-trivial and f (ϒ)= ϒ . Birkhoff proved that all RICs are graphs of
Lipschitz functions. See, for instance, [17, §IV.C]. Let υ : T→ Y be the Lipschitz function
such that ϒ = graph υ := {(x, υ(x)) : x ∈ T}. If υ is smooth, we say that ϒ is a smooth
RIC.

Twist maps do not form a closed set under composition. For instance, the square of a
twist map is not necessarily a twist map, and indeed typically it is not. Nevertheless, any
power of a twist map is locally twist on its smooth RICs.

LEMMA 2.1. Ifϒ = graph υ is a smooth RIC of an area-preserving twist map f : Z→ Z,
then

∂2π̃1 f̃ n(x, υ̃(x)) 6= 0 for all x ∈ R, for all n ≥ 1.

Proof. Given any point
p = (x, υ̃(x)) ∈ ϒ̃,

let
p j = (x j , υ̃(x j ))= f̃ j (p), t j = (1, υ̃ ′(x j )), and v j = (0, 1).

We identify the tangent planes Tp Z̃ with the Euclidean plane R2. Thus, the vector
t j is tangent to ϒ̃ at the point p j and v j is a vertical vector at p j . The linear map
d f̃ n(p) : Tp Z̃→ Tpn Z̃ is the composition of the linear maps d f̃ (p j ) : Tp j Z̃→ Tp j+1 Z̃
for j = 0, . . . , n − 1. Let a j , b j , c j , d j , αn, βn, γn, δn ∈ R be the coefficients such that

d f̃ (p j ) : t j 7→ a j t j+1 + c jv j+1, v j 7→ b j t j+1 + d jv j+1,

d f̃ n(p) : t0 7→ αn tn + γnvn, v0 7→ βn tn + δnvn .

We note that
b j = ∂2π̃1 f̃ (p j ) and βn = ∂2π̃1 f̃ n(p).

Let us suppose that the twist is positive, so b j > 0. We wish to prove that βn > 0 for any
integer n ≥ 1. The case of negative twist is completely analogous.

We deduce that c j = 0 from the invariance of ϒ̃ . Hence, βn =
∑n−1

j=0 D j−1
0 b j An−1

j+1,

where D j
i =

∏ j
k=i dk and A j

i =
∏ j

k=i ak . Furthermore, we note that d j > 0 because the
two components of C\ϒ are invariant. Finally, we get that a j > 0 from the preservation of
orientation. 2
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Roughly speaking, an RIC is said to be resonant when all its points are periodic, but
we need to be more precise. Let (x, y) ∈ Z be a periodic point of the twist map f , and
let n be its smallest period. Then, there exists an integer m such that its lift satisfies
f̃ n(x, y)= (x + 2πm, y). Obviously, ω− < 2πm/n < ω+. Such a periodic point is said
to be of type (m, n). An RIC is said to be (m, n)-resonant when all its points are periodic
of type (m, n).

Let f be an area-preserving twist map with an (m, n)-resonant smooth RIC ϒ =

graph υ. Considering area-preserving twist perturbations of the form fε = f + O(ε),
we prove in the following lemma that there exist two graphs ϒε = graph υε and ϒ∗ε =
graph υ∗ε O(ε)-close to ϒ and such that f n

ε projects the first graph onto the second along
the vertical direction.

LEMMA 2.2. There exist two smooth functions υε, υ∗ε : T→ Y defined for ε ∈ (−ε0, ε0),
ε0 > 0, such that:
(1) υε(x)= υ(x)+ O(ε) and υ∗ε (x)= υ(x)+ O(ε), uniformly in x ∈ T; and
(2) f n

ε (x, υε(x))= (x, υ
∗
ε (x)), for all x ∈ T.

Proof. We work with the lift of the maps. Having fixed an angle x ∈ R, let y0 = υ̃(x) and

G̃(y, ε) := π̃1 f̃ n
ε (x, y)− x − 2πm.

This function G̃(y, ε) satisfies the hypotheses of the implicit function theorem at the
point (y, ε)= (y0, 0), since G̃(y0, 0)= 0 and ∂1G̃(y0, 0)= ∂2π̃1 f̃ n(x, υ̃(x)) 6= 0; see
Lemma 2.1. Consequently, there exist ε0, η > 0 such that the equation G̃(y, ε)= 0 has
exactly one solution yε = y0 + O(ε) in the interval (y0 − η, y0 + η) for all ε ∈ (−ε0, ε0).
We recall that G̃(y, ε) had x ∈ R as an extra parameter, but it appeared in a 2π -periodic
smooth way. Hence, ε0 and η can be taken independent of x , the estimate |yε − y0| = O(ε)
is uniform in x , and yε depends in a 2π -periodic smooth way on x . Finally, set υ̃ε(x)= yε
and then υ̃∗ε (x) is determined by means of the relation f̃ n

ε (x, υ̃ε(x))= (x + 2πm, υ̃∗ε (x)).
The functions υ̃ε, υ̃∗ε : R→ Y are 2π -periodic and smooth, so they can be projected
to two smooth functions υε, υ∗ε : T→ Y that satisfy the two claimed properties by
construction. 2

We say that an (m, n)-resonant smooth RIC ϒ of a twist map f persists under an area-
preserving twist perturbation fε = f + O(ε) whenever the perturbed map has an (m, n)-
resonant RIC ϒε for any small enough ε such that ϒε = ϒ + O(ε). The corollary below
follows immediately from this definition.

COROLLARY 2.1. The resonant RIC ϒ persists under the perturbation fε if and only if
ϒε = ϒ

∗
ε .

Therefore, it is quite useful to quantify the separation between the graphs ϒε and ϒ∗ε .

LEMMA 2.3. υ∗ε (x)− υε(x)= L ′ε(x), where Lε : T→ R is a function whose lift is

L̃ε(x)=
n−1∑
j=0

hε(x̄ j (x; ε), x̄ j+1(x; ε)), x̄ j (x; ε)= π̃1 f̃ j
ε (x, υ̃ε(x)), (5)

and hε is the generating function of fε .
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Proof. As long as no confusion results, we will omit the dependence on x and ε. We
write (x̄ j , ȳ j )= f̃ j (x, υ̃(x)) and w̄ j = ∂ x̄ j/∂x for j = 0, . . . , n. Then x̄0 = x and x̄n =

x + 2πm, so w̄0 = w̄n = 1. Furthermore, ȳ0 = υ̃(x) and ȳn = υ̃
∗(x). From the implicit

equations (3), we get that ∂1h(x̄0, x̄1)=−ȳ0, ∂2h(x̄n−1, x̄n)= ȳn , and ∂2h(x̄ j−1, x̄ j )+

∂1h(x̄ j , x̄ j+1)= 0 for j = 1, . . . , n − 1. Therefore,

L̃ ′(x) = ∂1h(x̄0, x̄1)w̄0 +

n−1∑
j=1

(∂2h(x̄ j−1, x̄ j )+ ∂1h(x̄ j , x̄ j+1))w̄ j

+ ∂2h(x̄n−1, x̄n)w̄n = υ̃
∗(x)− υ̃(x).

It is simple to check that L̃ : R→ R is 2π -periodic, so it can be projected to a function
L : T→ R. 2

COROLLARY 2.2. The resonant RIC ϒ persists under the perturbation fε if and only if
L ′ε(x)≡ 0.

We shall say that Lε : T→ R is the subharmonic potential of the resonant RIC ϒ under
the twist perturbation fε . It is quite natural to extract information from the low-order
terms of its expansion Lε(x)= L0(x)+ εL1(x)+ O(ε2). This is the main idea behind
any Melnikov approach to a perturbative problem. The zero-order term L0(x) is constant
(and so of no use), since L ′0(x)= υ

∗

0 (x)− υ0(x)= υ(x)− υ(x)≡ 0. We shall say that
the first-order term L1(x) is the subharmonic Melnikov potential of the resonant RIC ϒ

under the twist perturbation fε . The proposition below provides a closed formula for its
computation.

PROPOSITION 2.1. If hε = h + εh1 + O(ε2), then the lift of L1(x) is

L̃1(x)=
n−1∑
j=0

h1(x j , x j+1), x j = π̃1 f̃ j (x, υ̃(x)).

Proof. Given any x ∈ R, we set x j = x j (x) := x̄ j (x; 0) and z j = z j (x) := ∂2 x̄ j (x; 0) for
j = 0, . . . , n. Then the O(ε)-term of (5) is

L̃1(x) = ∂1h(x0, x1)z0 +

n−1∑
j=1

(∂1h(x j , x j+1)+ ∂2h(x j−1, x j ))z j

+ ∂2h(xn−1, xn)zn +

n−1∑
j=0

h1(x j , x j+1).

Using the implicit equations (3) for the unperturbed twist map, the first summation
vanishes. The terms ∂1h(x0, x1)z0 and ∂2h(xn−1, xn)zn also vanish, since

x̄0(x; ε)= x and x̄n(x; ε)= x + 2πm for all ε ∈ (−ε0, ε0).

Furthermore,

x j = x j (x)= x̄ j (x; 0)= π̃1 f̃ j (x, υ(x)). 2
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Q

FIGURE 1. The billiard map f (ϕ, ϑ)= (ϕ′, ϑ ′).

The following corollary displays the most important property of the subharmonic
Melnikov potential in relation to the goals of this paper.

COROLLARY 2.3. If L1(x) is not constant, then the resonant RICϒ does not persist under
the perturbation fε .

Proof. This follows directly from Corollary 2.2 and the estimate Lε = constant+ εL1 +

O(ε2). 2

3. Break-up of resonant caustics in perturbed billiard tables
Let Q be a closed strictly convex smooth curve in the plane. Let γ : T→ Q be a
counterclockwise parametrization. Let Z = T× (0, π) be an open cylinder. We can model
the billiard dynamics inside Q by means of a map f : Z→ Z , f (ϕ, ϑ)= (ϕ′, ϑ ′), defined
as follows. If the particle hits Q at a point γ (ϕ) under an angle of incidence ϑ ∈ (0, π)
with the tangent vector at γ (ϕ), then, as the motion is free inside Q, the next impact
point is γ (ϕ′), the intersection point with the boundary, and the next angle of incidence is
ϑ ′ ∈ (0, π), as in Figure 1. A straightforward computation shows that f (ϕ, ϑ)= (ϕ′, ϑ ′)
if and only if

|γ ′(ϕ)| cos ϑ =−∂1h(ϕ, ϕ′), |γ ′(ϕ′)| cos ϑ ′ = ∂2h(ϕ, ϕ′), (6)

where h : T2
\{ϕ′ 6= ϕ} → R is given by h(ϕ, ϕ′)= |γ (ϕ)− γ (ϕ′)|. Furthermore, the twist

condition holds: ∂ϕ′/∂ϑ = h(ϕ, ϕ′)/|γ ′(ϕ′)| sin ϑ ′ > 0. Finally, it is geometrically clear
that f satisfies the rigid boundary conditions with ω− = 0 and ω+ = 2π .

A remark is in order. Equations (6) differ slightly from equations (3), but identity (4)
still holds and so the theory developed in the previous section still applies.

Obviously, one could write the map in the canonical coordinates—arc length parameter
for the boundary and cos ϑ as its conjugate—in order to have h as a generating function,
but this is not a wise choice when dealing with ellipses.

Let us assume that there exists a closed convex smooth caustic C contained in the
region enclosed by Q. Then the billiard map f : Z→ Z has two smooth RICs ϒ± =
graph ϑ± ⊂ Z . The functions ϑ± : T→ (0, π) are easy to understand: ϑ+(ϕ) and ϑ−(ϕ)
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2
0
0

C

Q

3

FIGURE 2. Left: A (1, 4)-resonant convex smooth caustic C . Right: Its two smooth RICs ϒ− = graph ϑ− and
ϒ+ = graph ϑ+ in the phase space Z = T× (0, π).

are the angles determined by the two lines tangent to the caustic C from the point
γ (ϕ) ∈ Q; see Figure 2. In particular, ϑ−(ϕ)+ ϑ+(ϕ)= π . To fix ideas, we will assume
that ϒ− and ϒ+ correspond to the billiard motion around C in the counterclockwise
and clockwise senses, respectively. Hence, 0< ϑ−(ϕ) < π/2< ϑ+(ϕ) < π . There is an
explicit formula relating the parametrization of the billiard curve Q, the parametrization of
the caustic C , and the functions ϑ±. See, for instance, [7, 13].

Let Q be a closed strictly convex smooth billiard boundary with an (m, n)-resonant
convex caustic C , so that its RIC ϒ− is (m, n)-resonant and its RIC ϒ+ is (n − m, n)-
resonant. We say that C persists under a perturbation Qε = Q + O(ε) whenever the
perturbed billiard curve has an (m, n)-resonant caustic Cε for any small enough ε such
that Cε = C + O(ε).

Let fε be the billiard map inside Qε and L−1 (ϕ) and L+1 (ϕ) be the subharmonic
Melnikov potentials of the resonant RICs ϒ− and ϒ+ under the area-preserving twist
perturbation fε . Both potentials coincide, due to the time reversibility of the billiard
dynamics. Therefore, we can omit the ± signs. In this context, we will say that L1(ϕ)

is the subharmonic Melnikov potential of the resonant caustic C for the perturbation Qε .

COROLLARY 3.1. If L1(ϕ) is not constant, then the resonant caustic C does not persist
under the perturbation Qε .

4. Break-up of resonant caustics in perturbed elliptic billiard tables
From now on, we will assume that the unperturbed billiard boundary is the ellipse

Q =

{
q = (x, y) ∈ R2

:
x2

a2 +
y2

b2 = 1
}
, a > b > 0.

It is known that the convex caustics of the billiard inside Q are the confocal ellipses

Cλ =

{
q = (x, y) ∈ R2

:
x2

a2 − λ2 +
y2

b2 − λ2 = 1
}
, 0< λ < b.

Let ρ(λ) be the rotation number of the elliptical caustic Cλ. In [4, 8] it is proved that
ρ : (0, b)→ R is an analytic increasing function such that ρ(0)= 0 and ρ(b)= 1/2.
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The second reference is based on the study of Fomenko graphs, whereas the first one
uses the theory of ordered circle homeomorphisms. Thus, there is a unique (m, n)-
resonant elliptical caustic for any relatively prime integers m and n such that 1≤ m <

n/2. We shall see that the caustic parameter λ ∈ (0, b) of the (m, n)-resonant caustic is
implicitly determined by means of an equation containing a couple of elliptic integrals; see
equation (10).

The following lemma on elliptic billiards is useful to simplify the expression for the
subharmonic Melnikov potential later on.

LEMMA 4.1. Let (q j ) j∈Z be any billiard trajectory inside the ellipse Q with caustic Cλ.
Let p j = (q j+1 − q j )/|q j+1 − q j | be the unit inward velocities of the trajectory. Then

ab〈p j−1 − p j , D−2q j 〉 = 2λ for all j ∈ Z,

where D = diag(a, b) is the diagonal matrix such that Q = {q ∈ R2
: 〈q, D−2q〉 = 1}.

Proof. We shall prove that, given any point q = (x, y) ∈ Q and any unit inward vector
p = (u, v) ∈ S1, the line `= {q + τp : τ ∈ R} is tangent to the conic Cλ if and only if

λ=−(bxu/a + ayv/b)=−ab〈p, D−2q〉.

To begin with, we note that the line ` is tangent to the conic Cλ if and only if the
equation of second order in the variable τ given by

(x + τu)2/(a2
− λ2)+ (y + τv)2/(b2

− λ2)− 1= 0

has zero discriminant, which is equivalent to the equation(
xu

a2 − λ2 +
yv

b2 − λ2

)2

=

(
u2

a2 − λ2 +
v2

b2 − λ2

)(
x2

a2 − λ2 +
y2

b2 − λ2 − 1
)
.

After some simplifications, we can rewrite this equation as

(xv − yu)2 = (b2
− λ2)u2

+ (a2
− λ2)v2

= a2v2
+ b2u2

− λ2,

since u2
+ v2
= 1. Next, using the fact that x2/a2

+ y2/b2
= 1, we obtain that

λ2
= (a2v2

+ b2u2)(x2/a2
+ y2/b2)− (xv − yu)2 = (bxu/a + ayv/b)2.

Thus, we have two possibilities: λ= ab〈p, D−2q〉 or λ=−ab〈p, D−2q〉. The first is
discarded because λ > 0 and 〈p, D−2q〉< 0. The second inequality follows from the fact
that the vector p points inward Q at q , whereas D−2q is an outward normal vector to Q
at q .

Finally, we note that −p j−1 = (q j−1 − q j )/|q j−1 − q j | and p j = (q j+1 − q j )/

|q j+1 − q j | are the two unit vectors that point inward Q at the impact point q j and
give the two tangent directions to the caustic Cλ. Therefore, λ= ab〈p j−1, D−2q j 〉 =

−ab〈p j , D−2q j 〉. 2

PROPOSITION 4.1. Let Cλ be the (m, n)-resonant elliptical caustic confocal to the
ellipse Q. Given any angle ϕ ∈ T, let q j = (a cos ϕ j , b sin ϕ j ) be the vertices of the
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(m, n)-gon inscribed in Q and circumscribed around Cλ such that q0 = (a cos ϕ, b sin ϕ).
Then the subharmonic Melnikov potential of the caustic Cλ for the perturbed ellipse (1) is

L1(ϕ)= 2λ
n−1∑
j=0

µ1(ϕ j ). (7)

Proof. The parametrization of the perturbed ellipse (1) is given by

γε(ϕ)= (c cosh µε(ϕ) cos ϕ, c sinh µε(ϕ) sin ϕ)= γ0(ϕ)+ εγ1(ϕ)+ O(ε2),

where γ0(ϕ)= (a cos ϕ, b sin ϕ), γ1(ϕ)= abµ1(ϕ)D−2γ0(ϕ), and D = diag(a, b) as
above. The generating function of the billiard map inside the perturbed ellipse is

hε(ϕ, ϕ
′)= |γε(ϕ

′)− γε(ϕ)| = h0(ϕ, ϕ
′)+ εh1(ϕ, ϕ

′)+ O(ε2).

The first terms of this expansion satisfy the identities h0(ϕ, ϕ
′)= |γ0(ϕ

′)− γ0(ϕ)| and
h0(ϕ, ϕ

′)h1(ϕ, ϕ
′)= 〈γ0(ϕ

′)− γ0(ϕ), γ1(ϕ
′)− γ1(ϕ)〉.

Let (q j ) j∈Z be the billiard trajectory inside the ellipse Q with caustic Cλ such that
q j = γ0(ϕ j ) and ϕ0 = ϕ. The unit inward velocities of this trajectory are

p j =
q j+1 − q j

|q j+1 − q j |
=
γ0(ϕ j+1)− γ0(ϕ j )

h0(ϕ j , ϕ j+1)
.

It follows from Proposition 2.1 that the subharmonic Melnikov potential is

L1(ϕ) =

n−1∑
j=0

h1(ϕ j , ϕ j+1)

=

n−1∑
j=0

〈p j , γ1(ϕ j+1)− γ1(ϕ j )〉

= ab
n−1∑
j=0

〈p j , µ1(ϕ j+1)D
−2q j+1 − µ1(ϕ j )D

−2q j 〉

= ab
n−1∑
j=0

〈p j−1 − p j , D−2q j 〉µ1(ϕ j )

= 2λ
n−1∑
j=0

µ1(ϕ j ).

We have used the periodicity and Lemma 4.1 in the last two equalities. 2

Next, we give a couple of sufficient conditions for the subharmonic Melnikov potential
to be constant. These conditions are trivial. Nevertheless, they play a key role in our
problem. Concretely, we shall check later on that they are also necessary conditions in the
class of 2π -periodic entire functions µ1(ϕ).

COROLLARY 4.1. Let µ1(ϕ) be any 2π -periodic smooth function.
(1) If the period n is odd, then µ1(ϕ) constant⇒ L1(ϕ) constant.
(2) If the period n is even, then µ′1(ϕ) π -antiperiodic⇒ L1(ϕ) constant.
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Proof. The case n odd is obvious. If n is even, the (m, n)-gons inscribed in Q and
circumscribed around Cλ are symmetric with respect to the origin, so ϕ j+n/2 = ϕ j + π

and

L ′1(ϕ)= 2λ
n−1∑
j=0

µ′1(ϕ j )= 2λ
n/2−1∑

j=0

(µ′1(ϕ j )+ µ
′

1(ϕ j + π)).

In particular, n even and µ′1(ϕ) π -antiperiodic⇒ L ′1(ϕ)≡ 0⇒ L1(ϕ) constant. 2

The subharmonic Melnikov potential of the (m, n)-resonant caustic for the perturbed
circle (2) is

L1(θ)= 2r0 sin(mπ/n)
n−1∑
j=0

r1(θ j ), θ j = θ + 2πmj/n; (8)

see [19, Proposition 10]. We recall that λ= r0 sin(mπ/n) is the (m, n)-resonant caustic
parameter of the circle of radius r0. Furthermore, all the (m, n)-gons inscribed in the circle
of radius r0 and circumscribed around the circle of radius λ= r0 sin(mπ/n) are regular,
so their vertices are of the form q j = (r0 cos θ j , r0 sin θ j ) with θ j = θ + 2πmj/n. Hence,
function (8) is the limit of function (7) when both a and b tend to r0.

Although functions (7) and (8) look quite similar, they conceal a crucial difference.
There is a simple formula for the θ j angles, but not for the ϕ j ones. This has to do with the
fact that the billiard trajectories inside a circle of radius r0 sharing a circular caustic with
radius λ= r0 sin(δ/2) have a rigid angular dynamics of the form θ 7→ θ + δ. In contrast,
such a rigid angular dynamics does not take place for elliptic tables when the angle ϕ
is considered, which is a source of technical difficulties in the study of the subharmonic
Melnikov potential (7). Nevertheless, it is possible to define a new angular parameter t
over the ellipse Q in such a way that all billiard trajectories inside Q sharing the elliptical
caustic Cλ have a rigid angular dynamics of the form t 7→ t + δ, for some constant shift
δ = δ(λ).

We need some notation for elliptic functions in order to define this angular parameter t .
We refer to [1, 22] for a general background on elliptic functions. Given a quantity
k ∈ (0, 1), called the modulus, the complete elliptic integral of the first kind is K = K (k)=∫ π/2

0 (1− k2 sin2 φ)−1/2 dφ. We also write K ′ = K ′(k)= K (
√

1− k2). The amplitude
function ϕ = am t is defined through the inversion of the integral

t =
∫ ϕ

0
(1− k2 sin2 φ)−1/2 dφ.

Then the elliptic sine and the elliptic cosine are defined by the trigonometric relations

sn t = sin ϕ, cn t = cos ϕ,

respectively. Dependence on the modulus is denoted by a comma preceding it, so we
can write am(t, k), sn(t, k), and cn(t, k) to avoid any confusion. In the following lemma
it is stated that the angular dynamics becomes rigid in the angular parameter t given by
ϕ = am(t, k). It suffices to find the suitable modulus k for each elliptical caustic Cλ.
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LEMMA 4.2. Having fixed a caustic parameter λ ∈ (0, b), we set the modulus k ∈ (0, 1)
and the constant shift δ ∈ (0, 2K ) by the formulae

k2
=

a2
− b2

a2 − λ2 ,
δ

2
=

∫ ϑ/2

0
(1− k2 sin2 φ)−1/2 dφ, (9)

where ϑ ∈ (0, π) is the angle such that sin(ϑ/2)= λ/b. Let

q j = (a cos ϕ j , b sin ϕ j )= (a cn(t j , k), b sn(t j , k))

be any billiard trajectory inside the ellipse Q with caustic Cλ. Then t j+1 = t j + δ.

Proof. By definition, ϕ j = am(t j , k), so t j+1 − t j =
∫ ϕ j+1
ϕ j

(1− k2 sin2 φ)−1/2 dφ. These
integrals are equal to a constant δ that depends only on Cλ; see [5, p. 1543]. The formula
for the constant shift is given in [5, p. 1540]. 2

Observe that if a = b = r0 then the modulus k is equal to zero, the complete elliptic
integral K is equal to π/2, the amplitude function is the identity, the elliptic sine/cosine
are the usual sine/cosine, the shift δ ∈ (0, π) is given by λ= r0 sin(δ/2), and the dynamical
relation t j+1 = t j + δ becomes ϕ j+1 = ϕ j + δ. Thus, we recover the known rigid angular
dynamics for circular tables as a limit of the formulae for elliptic tables.

From now on, k and δ will denote the modulus and the constant shift defined in (9).
Thus, we shall ignore the dependence of the elliptic functions on the modulus. We note
that Cλ has eccentricity k. Furthermore, Cλ is the (m, n)-resonant elliptical caustic if and
only if

nδ = 4K m. (10)

This identity has the following geometric interpretation. When a billiard trajectory makes
one turn around Cλ, the old angular variable ϕ changes by 2π , so the new angular variable t
changes by 4K . On the other hand, we have seen that the variable t changes by δ

when a billiard trajectory bounces once. Hence, a billiard trajectory inscribed in Q and
circumscribed around Cλ makes exactly m turns around Cλ after n bounces if and only
if (10) holds.

PROPOSITION 4.2. Let µ1(ϕ) be any 2π -periodic entire function.
(1) If the period n is odd, then L1(ϕ) constant⇔ µ1(ϕ) constant.
(2) If the period n is even, then L1(ϕ) constant⇔ µ′1(ϕ) π -antiperiodic.

Proof. Let 1= 2K + 2K ′i and z(t)= cn t + i sn t . If ϕ = am t , then

eiϕ
= cos ϕ + i sin ϕ = cn t + i sn t = z(t),

e−iϕ
= cos ϕ − i sin ϕ = cn t − i sn t = z(t +1).

We have used the fact that the elliptic sine is 1-antiperiodic, and the elliptic cosine is
1-periodic. We also recall that the elliptic sine/cosine are 2K -antiperiodic meromorphic
functions on the whole complex plane whose unique singularities are the points of the form

τr,s = 2Kr + (1+ 2s)K ′i, r, s ∈ Z.

Furthermore, these singularities are just simple poles whose residues are

res(cn; τr,s)= (−1)r+s+1i/k, res(sn; τr,s)= (−1)r/k.
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Thus, z(t) is a 2K -antiperiodic meromorphic function whose unique singularities are the
points of the set

P = {τr,2s+1 : r, s ∈ Z} = τ∗ + 2KZ+ 4K ′iZ, τ∗ = τ0,−1 =−K ′i.

As before, these singularities are just simple poles.
Let

∑
l∈Z µ̂leilϕ be the Fourier expansion of µ1(ϕ). Then

µ1(am t)= µ1(ϕ)=
∑
l∈Z

µ̂le
ilϕ
= µ̂−(z(t +1))+ µ̂0 + µ̂+(z(t)),

where µ̂−(z)=
∑
∞

l=1 µ̂−l zl and µ̂+(z)=
∑
∞

l=1 µ̂l zl . We note that the functions µ̂±(z)
are entire, because µ1(ϕ) is entire. Furthermore,

L1(am t)= L1(ϕ)= 2λ
n−1∑
j=0

µ1(ϕ j )= 2λ(L−(t)+ nµ̂0 + L+(t)), (11)

where

L−(t)=
n−1∑
j=0

µ̂−(z(t +1+ jδ)) and L+(t)=
n−1∑
j=0

µ̂+(z(t + jδ)).

Let us study the behaviour of these two functions around the point τ∗ =−K ′i . Concretely,
we shall prove that L−(t) is analytic at t = τ∗, whereas L+(t) has a non-removable
singularity at t = τ∗ provided µ1(ϕ) is non-constant and n is odd, or provided µ′1(ϕ) is not
π -antiperiodic and n is even.

We begin with a couple of simple observations. If j ∈ {0, . . . , n − 1}, then:
(a) =(τ∗ +1+ jδ)= K ′, so τ∗ +1+ jδ 6∈ P; and
(b) τ∗ + jδ ∈ P⇔ 4K mj/n = jδ ∈ 2KZ⇔ 2 jm ∈ nZ⇔ 2 j ∈ nZ⇔ j ∈ {0, n/2}.

Here, we have used the fact that δ ∈ R, equation (10), and gcd(m, n)= 1. Further-
more, we stress that the equality j = n/2 can only occur when n is even.

We deduce the following results from the above observations.
(1) L−(t) is analytic at t = τ∗, because so are z(t +1+ jδ) for j = 0, . . . , n − 1.
(2) If n is odd and µ1(ϕ) is non-constant, then:

– the function µ̂+(z) is non-constant and entire;
– the function L+(t)− µ̂+(z(t))=

∑n−1
j=1 µ̂+(z(t + jδ)) is analytic at t = τ∗;

– the composition µ̂+(z(t)) has a non-removable singularity at t = τ∗; and
– the function (11) is non-constant, since it has a non-removable singularity at

t = τ∗.
(3) If n is even and µ′1(ϕ) is not π -antiperiodic, then:

– the sum σ̂ (z)= µ̂+(z)+ µ̂+(−z)= 2
∑
∞

l=1 µ̂2l z2l is a non-constant entire
function;

– z(t + nδ/2)= z(t + 2K m)= (−1)m z(t)=−z(t), since m is odd;
– µ̂+(z(t))+ µ̂+(z(t + nδ/2))= σ̂ (z(t));
– the function L+(t)− σ̂ (z(t)) is analytic at t = τ∗;
– the composition σ̂ (z(t)) has a non-removable singularity at t = τ∗; and
– the function (11) is non-constant, since it has a non-removable singularity at

t = τ∗.
Therefore, the proof follows by combining the above results with Corollary 4.1. 2
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Finally, we note that our main result (Theorem 1.1) follows directly from Corollary 3.1
and Proposition 4.2.
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