Existence and non-existence of (convex) caustics Rafael Ramírez-Ros (Available at http://www.mal.upc.edu/~rafael/research.html) Rafael.Ramirez@upc.edu Universitat Politècnica de Catalunya ## **Mission statements** - Define caustics in the frame of convex billiard tables. - Give some (qualitative and quantitative) negative results due to Mather, Gutkin and Katok: There are no convex caustics if the boundary of the billiard table has a flat point. - Explain the string construction and introduce the Lazutkin parameter. - State the positive result of Lazutkin: There exist infinitely many convex caustics close to the border of any sufficiently smooth and strictly convex billiard table. - Clarify the situation in the three-dimensional case: Berger. ## **Convex curves** Let Γ be a smooth closed curve of the plane \mathbb{R}^2 of length L. - ► *Arc length parameterization:* $c : [0, L] \rightarrow \Gamma$, c = c(s), counterclockwise. - Unit tangent vector: t(s) = c'(s). - \triangleright *Unit inward normal vector:* n(s). - Curvature and radius of curvature: $c''(s) = \kappa(s)n(s)$, and $\rho(s) = 1/\kappa(s)$. - ightharpoonup Convexity: $\kappa(s) \geq 0$. - Strict convexity: $\kappa(s) > 0$. - ► *Flat points:* Γ is flat at $c_0 = c(s_0)$ if and only if $κ(s_0) = 0$. - Examples: - 1. The curvature of a circumference is constant: $\kappa \equiv 1/r$, r is the radius. - 2. A straight line has zero curvature. - 3. The region $\Omega = \{(x,y) \in \mathbb{R}^2 : x^4 + y^4 \le 1\}$ is convex, but its boundary has four flat points: $(\pm 1,0)$ and $(0,\pm 1)$. ## **Convex billiards** - ▶ *Billiard table:* $Ω ⊂ \mathbb{R}^2$ is a convex region, Γ = ∂Ω, and L = Length(Γ). - ▶ *Billiard dynamics:* The angle of incidence equals the angle of reflection. - ightharpoonup Configuration space: $\mathbb{T} = \mathbb{R}/L\mathbb{Z}$. - Phase space: $\mathbb{A} = \mathbb{T} \times (0, \pi)$. - ▶ *Billiard coordinates:* Each point $(s, \theta) \in A$ determines the impact point c = c(s) and the angle of incidence-reflection θ . - ▶ *Billiard map*: $f : \mathbb{A} \to \mathbb{A}$, $f(s, \theta) = (s', \theta')$, which is C^r if Γ is C^{r+1} . - ► *Fermat's principle:* Rays of light follow paths of stationary length. - Lagrangian: $h: \mathbb{T}^2 \setminus \{s=s'\} \to \mathbb{R}_+, h(s,s') = |c(s)-c(s')|.$ - ▶ *Lagrangian formulation:* There exists a billiard trajectory from $c_- = c(s_-)$ to $c_+ = c(s_+)$ passing through c = c(s) if and only if $$\partial_2 h(s_-,s) + \partial_1 h(s,s_+) = 0.$$ ► Twist character: $\frac{\partial s'}{\partial \theta} = \frac{h(s,s')}{\sin \theta'} > 0$, so $(0,\pi) \ni \theta \mapsto s' \in \mathbb{T} \setminus \{s\}$ is a diffeo. ## **Convex caustics and invariant circles** Let γ be a smooth convex closed *caustic* of a billiard table Ω . That is, a billiard trajectory, once tangent to γ , stays tangent after every reflection. Then: ► The billiard map $f : \mathbb{A} \to \mathbb{A}$ has two *invariant circles* $\hat{\gamma}^+, \hat{\gamma}^- \subset \mathbb{A}$. More precisely, there exists a Lipschitz function $\delta : \mathbb{T} \to (0, \pi)$ such that $$\hat{\gamma}^+ = \{ (s, \delta(s)) : s \in \mathbb{T} \}, \qquad \hat{\gamma}^- = \{ (s, \pi - \delta(s)) : s \in \mathbb{T} \}$$ are graphs invariant under the billiard f. - ▶ We denote $\hat{\gamma}_0^+ = \{(s,0) : s \in \mathbb{T}\}$ and $\hat{\gamma}_0^- \{(s,\pi) : s \in \mathbb{T}\}.$ - ▶ There exist a smooth diffeomorphism $g : \mathbb{T} \to \mathbb{T}$ of degree one such that $$f(s,\delta(s)) = (g(s),\delta(g(s))).$$ - ▶ Using that g'(s) > 0, we deduce that $\gamma \subset \Omega$. - ▶ The phase space \mathbb{A} can be decomposed into three invariant regions with non-empty interior, so the billiard map f is not ergodic. # Convex caustics and the mirror equation ▶ *Mirror equation:* Let A and B be the signed distances from the support points a and b to the impact point x. By convention, A > 0 if the incoming beam focuses before the reflection, and B > 0 if the reflected beam focuses after the reflection. Then $$\frac{1}{A} + \frac{1}{B} = \frac{2\kappa}{\sin \theta}.$$ - **Example:** If Γ is a straight line, then $\kappa = 0$ and B = -A. - ► *Important*: If γ is a convex caustic of a convex curve Γ, then $A, B \ge 0$. - ▶ *Proof:* We can assume, without loss of generality, that x = c(0), where $c : \mathbb{T} \to \Gamma$ is the arc length parameterization of $\Gamma = \partial \Omega$. Next, we consider the length function $$D(s) = |c(s) - a| + |c(s) - b|.$$ Rays of light follow paths of stationary length, so D'(0) = 0. Infinitesimally close rays from a also reflect to rays through b, so D''(0) = 0, which is equivalent to the mirror equation. QED. ## Non-existence of convex caustics: Glancing orbits - Theorem (Mather): If the border of the convex billiard table has some flat point, then there are no smooth convex caustics inside the table. - ➤ *Proof:* It is a corollary of the mirror equation, although Mather used another method based on the Lagrangian formulation. - ▶ Glancing trajectories: A billiard trajectory is positively (resp., negatively) ϵ -glancing if, for some bounce, the angle of reflection with the positive (resp., negative) tangent vector is smaller than ϵ . Mather deduced, under the same flat point assumption, the existence of billiard trajectories that are both positively and negatively ϵ -glancing for any $\epsilon > 0$. - ▶ *Open problem:* To bound the number of impacts $n = n(\epsilon)$ of such glancing billiard trajectories between its positive and negative ϵ -bounces as $\epsilon \to 0$. ## The string construction and the Lazutkin parameter - \triangleright *Questions:* How can be constructed a billiard table Ω with a prefixed smooth convex caustic γ ? How many of such tables do exist? - String construction: For any $S > \text{Length}(\gamma)$, let us wrap a closed inelastic string of length S around γ , pull it tight at a point and move the point around γ to enclose a billiard table Ω . Hence, $\Gamma = \partial \Omega$ is an *involute* of γ , whereas γ is an *evolute* of Γ . - Example: If γ is the segment with endpoints a and b, then Γ is the ellipse with foci a and b whose major axis is equal to S |a b|. - Theorem: The billiard tables obtained through the string construction are the only ones with γ as caustic. - ▶ *Lazutkin's parameter:* $Lz(\gamma;\Gamma) := S Length(\gamma) > 0$. Clearly, - 1. $\Gamma \to \gamma$ as $Lz(\gamma; \Gamma) \to 0^+$; and - 2. Γ looks like a "big circumference centered at γ " as $Lz(\gamma;\Gamma) \to +\infty$. - ► Rotation number: Rot(γ ; Γ) ∈ (0, 1/2] is the number of turns (in average) around γ per bounce. Clearly, Rot(γ ; Γ) \rightarrow 0⁺ as $\gamma \rightarrow$ Γ. ## Non-existence of convex caustics: Quantitative results Let Ω be a smooth convex billiard table and $\Gamma = \partial \Omega$. - Let $\underline{\kappa} = \min \kappa(s)$ and $\overline{\kappa} = \max \kappa(s)$, where $\kappa(s)$ is the curvature of Γ. - Let *L* be the length of the curve Γ . - Let d, w, and r be the the *diameter*, the *width*, and the *inradius* of the table Ω. - ► Theorem (Gutkin & Katok): If some of the following geometric conditions holds, then the table Ω contains a region Ω0 free of convex caustics. | Condition | Description of Ω_0 | |---|--| | $\sqrt{2}\underline{\kappa}d^2 \leq r$ | A disc of radius r_0 such that $r_0 > r - \sqrt{2} \kappa d^2$ | | $\sqrt{2}\underline{\kappa}d^2 \leq w/3$ | A disc of radius r_0 such that $r_0 > w/3 - \sqrt{2}\kappa d^2$ | | $\sqrt{2}\underline{\kappa}\overline{\kappa}d^2\leq 1$ | A disc of radius r_0 such that $\overline{\kappa}r_0 > 1 - \sqrt{2}\underline{\kappa}\overline{\kappa}d^2$ | | $\sqrt{2}\underline{\kappa}\overline{\kappa}d^2 \leq 1$ | A convex set such that $Area(\Omega \setminus \Omega_0) \leq \sqrt{2}\underline{\kappa}d^2L$ | - ► *Example 1:* If Γ has a flat point, then $\underline{\kappa} = 0$, so $\Omega_0 = \Omega$. - Example 2: If Ω is an ellipse with semiaxes a > b, then $\underline{\kappa} = b/a^2$, $\overline{\kappa} = a/b^2$, d = 2a, w = 2b and r = b, so none of these conditions hold. ## **Existence of convex caustics** Let Ω be a sufficiently smooth and strictly convex billiard table and $\Gamma = \partial \Omega$. - ► Theorem (Lazutkin): There exists a collection of smooth convex caustics $\{\gamma_y : y \in C\} \subset \Omega$, $\lim_{y\to 0^+} \gamma_y = \Gamma$, whose union has positive area. - ► Equivalent formulation: The billiard map has 2 collections of invariant circles $\{\hat{\gamma}_y^{\pm}:y\in\mathcal{C}\}\subset\mathbb{A}$, $\lim_{y\to 0^+}\hat{\gamma}_y^{\pm}=\hat{\gamma}_0^{\pm}$, whose union has positive area. - ▶ *Corollary:* The billiard map $f : \mathbb{A} \to \mathbb{A}$ is not ergodic. - ▶ The original statement asked for C^{553} regularity; Douady reduced it to C^6 . - \triangleright *C* is a Cantor subset of $\mathbb R$ with positive length and ∞ gaps of the form $$\mathcal{C} = \mathcal{C}_{\lambda,\tau,y_*} := \{ y \in (0,y_*) : |y - m/n| \ge \lambda n^{-\tau}, \quad \forall n \in \mathbb{N}, m \in \mathbb{Z} \}$$ for some constants $\lambda > 0$, $\tau > 2$, and $0 < y_* \ll 1$. We note that $0 \in \overline{\mathcal{C}}$. ▶ Rot(γ_y ; Γ) = $y \in C$, which implies that all the rotation numbers of these caustics are poorly approximated by rational numbers. (Generically, there are no caustics whose rotational numbers are close to rational values.) ## Lazutkin's coordinates ▶ The billiard map $f : \mathbb{A} \to \mathbb{A}$, $f(s, \theta) = (s', \theta')$, verify the approximation $$\begin{cases} s' = s + 2\rho(s)\theta + 4\rho(s)\rho'(s)\theta^2/3 + O(\theta^3) \\ \theta' = \theta - 2\rho'(s)\theta^2/3 + (4(\rho'(s))^2/9 - 2\rho(s)\rho''(s)/3)\theta^3 + O(\theta^4) \end{cases}$$ where $\rho(s) = 1/\kappa(s)$ is the radius of curvature of Γ , for small values of θ . ▶ We introduce the coordinates $\xi = \xi(s, \theta) \in \mathbb{R}/\mathbb{Z}$, $\eta = \eta(s, \theta) > 0$ given by $$\xi = K \int_0^s \kappa^{2/3}(s) ds$$, $\eta = 4K\rho^{1/3}(s)\sin(\theta/2)$, $K^{-1} = \int_0^L \kappa^{2/3}(s) ds$. - These coordinates are well-defined for small angles of incidence θ . We note that $\eta(s,0) \equiv 0$. In particular, $0 < \theta \ll 1 \Leftrightarrow 0 < \eta \ll 1$. - The billiard map in these new coordinates becomes really simple: $$\begin{cases} \xi' = \xi + \eta + O(\eta^3) \\ \eta' = \eta + O(\eta^4) \end{cases}.$$ # Invariant Curve Theorem (a "toy" KAM-like theorem) - Let $f(\xi, \eta) = (\xi', \eta')$ be a sufficiently smooth map such that: - 1. It has the previous simple form for $\xi \in \mathbb{R}/\mathbb{Z}$ and $|\eta| < \eta_*$; and - 2. $f(\hat{\gamma}) \cap \hat{\gamma} \neq \emptyset$ for any closed circle $\hat{\gamma}$ homotopic —and sufficiently close— to the curve $\{\eta = 0\}$. - ► *ICT* (*Kolmogorov*, *Arnold*, *Moser*, *Lazutkin*): Under these assumptions, there exists a close-to-the-identity smooth change of variables $(\xi, \eta) \mapsto (x, y)$ defined for $|y| < y_*$ such that the map in the new coordinates has the form $$\begin{cases} x' = x + y + O(y^3) \\ y' = y + O(y^4) \end{cases}$$ but both $O(y^3)$ and $O(y^4)$ terms vanish identically for all $y \in C$. Then the curves $y = \text{constant} \in \mathcal{C}$ are invariant under the map f(x,y) = (x',y'), being y their rotational numbers. These curves are transformed under the changes $(x,y) \mapsto (\xi,\eta) \mapsto (s,\theta)$ into the invariant circles $\{\hat{\gamma}_y^+ : y \in \mathcal{C}\}$ close to $\theta = 0$ we were looking for. QED. ## Non-persistence of convex resonant caustics - Question: Do convex resonant caustics exist/persist? - Answer: Generically not, since they are too fragile objects. - ► Claim: Let γ be a convex caustic such that $\text{Rot}(\gamma;\Gamma) = n/m \in \mathbb{Q}$, and let $\hat{\gamma}^{\pm}$ be its associated invariant circles. Then the billiard map $f: \mathbb{A} \to \mathbb{A}$ verifies that $f^n = \text{Id on } \hat{\gamma}^{\pm}$. These invariant circles —called *resonant*, since they are composed of periodic points—, are easily destroyed under arbitrarily small perturbations of the billiard table. - **Example** (*RRR*): Let Γ_0 be a circle of radius R_0 , so its concentric circle γ_0 of radius $R_0 \cos(m\pi/n)$ is a convex caustic with rotation number m/n. Let Γ_ϵ be the perturbed circle that in polar coordinates (r, φ) has the form $$r = R_{\epsilon}(\varphi) = R_0 + \epsilon S(\varphi) + O(\epsilon^2), \qquad S(\varphi) = \sum_{j \in \mathbb{Z}} \hat{S}_j e^{ij\varphi}.$$ If there exists some $j \in n\mathbb{Z} \setminus \{0\}$ such that $\hat{S}_j \neq 0$, then the caustic γ_0 does not persist. That is, there does not exist a "perturbed" convex caustic γ_{ϵ} such that $\text{Rot}(\gamma_{\epsilon}; \Gamma_{\epsilon}) = m/n$ for all ϵ small enough. #### On the 3D case - **>** Suppose that a smooth surface σ is a caustic of another smooth surface Σ. - ► Then the tangent cone to σ from any point $x \in \Sigma$ is a symmetric cone whose axis is perpendicular to Σ at x. - ▶ Let $a_0, b_0 \in \sigma$ and $x_0 \in \Sigma$ be three points such that: - 1. The line l_0 from a_0 to x_0 is tangent to σ at a_0 ; - 2. The line m_0 from x_0 to b_0 is tangent to σ at b_0 ; and - 3. The line l_0 is reflected onto the line m_0 at x_0 . - ▶ Let \mathcal{A} and \mathcal{B} be the sets of lines tangent to σ at points close to a_0 and b_0 . - Vising the reflection at Σ, we construct a one-to-one correspondence A ∋ l \mapsto m = g(l) ∈ B such that l \cap g(l) ∈ Σ. - ► Hence, dim $\{l \cap g(l) : l \in A\} \le \dim \Sigma = 2$, which is hard to accomplish since dim A = 3. - ► Theorem (Berger): This degenerate situation can take place if and only if Σ and σ are pieces of confocal quadrics. This is a local result: the existence of just two pieces of caustic already has strong consequences on Σ. ## Existence and non-existence of caustics: References - 1. M. Berger, Seules les quadriques admettent des caustiques, *Bulletin Soc. Math. France*, **123**:107–116 (1995). - 2. E. Gutkin and A. Katok, Caustics for inner and outer billiards, *Comm. Math. Phys.*, **173**:101–133 (1995). - 3. V. F. Lazutkin, The existence of caustics for a billiard problem in a convex domain, *Math. USSR Izvestija*, **7**:185–214 (1973). - 4. J. Mather, Glancing billiards, Ergodic Theory Dyn. Syst., 2:397–403 (1982). - 5. P. M. Gruber, Only ellipsoids have caustics, Math. Ann., 303:185–194 (1995). - 6. J. Pöschel, A lecture on the classical KAM theorem. (arXiv: 0908.2234v1) - 7. R. Ramírez-Ros, Break-up of resonant invariant curves in billiards and dual billiards associated to perturbed circular tables, *Phys. D*, **214**:78–87 (2006). - 8. C. L. Siegel and J. K. Moser, *Lectures On Celestial Mechanics*, Springer-Verlag, New York-Heidelberg, 1971. - 9. S. Tabachnikov, Billiards, Panor. Synth. 1, Soc. Math. France, Paris, 1995. - 10. S. Tabachnikov, Geometry and billiards, Amer. Math. Soc., Providence, 2005.