1. Considereu l’equació diferencial ordinària $x'' + \frac{\omega^2}{9} x = \cos^2(\beta t)$. Doneu una condició necessària i suficient que han de satisfar ω i β per tal que l’equació diferencial ordinària no tingui cap solució periòdica.

Resolució: $p_0 = \frac{2\pi}{\omega^{3/2}} = \frac{6\pi}{\omega}$, $p = \left\{ \text{període de } b(t) = \cos^2(\beta t) = \frac{1 - \cos(2\beta t)}{2} \right\} = \frac{\pi}{\beta}$.

No existeix solució periòdica $\iff \frac{p}{p_0} = \frac{\omega}{6\beta} \in \mathbb{N}$ (o sigui, $\omega = 6\beta n$, amb $n \in \mathbb{N}$) i $\int_0^p b(t) \cos \left(\frac{\omega t}{3} \right) dt \neq 0$ o bé $\int_0^T b(t) \sin \left(\frac{\omega t}{3} \right) dt \neq 0$.

Anem a estudiar les integrals:

$\int_0^p b(t) \cos \left(\frac{\omega t}{3} \right) dt = \frac{1}{2} \int_0^{\pi/\beta} (1 - \cos(2\beta t)) \cos(2\beta nt) dt \neq 0 \iff n = 1$

$\int_0^p b(t) \sin \left(\frac{\omega t}{3} \right) dt = \frac{1}{2} \int_0^{\pi/\beta} (1 - \cos(2\beta t)) \sin(2\beta nt) dt = 0, \ \forall n \in \mathbb{Z}$.

En conseqüència, no existeix solució periòdica $\iff \omega = 6\beta$.

Nota: Recordem que

$\int_0^T \cos \left(\frac{2\pi m}{T} t \right) \sin \left(\frac{2\pi n}{T} t \right) dt = 0, \ \forall n, m \in \mathbb{Z}$

$\int_0^T \cos \left(\frac{2\pi m}{T} t \right) \cos \left(\frac{2\pi n}{T} t \right) dt \left\{ \begin{array}{l} = 0 \ \forall n, m \in \mathbb{Z} \\
\neq 0 \ \text{si } n = m \end{array} \right.$

2. Considereu l’equació $y'' + t \cos(t) y = \sin t$ amb condicions inicials $y(0) = 0$, $y'(0) = a$. Si notem per $(y(t), z(t))$ la solució del sistema de primer ordre associat, el valor de a que fa que a la primera iteració de Picard $z_1(t) = - \cos t$, és:

Resolució: Si $Y = \begin{pmatrix} y \\ z \end{pmatrix}$, amb $z = y' \implies Y' = F(t, Y) = \begin{pmatrix} \sin t - t \cos t y \\ z \end{pmatrix}$

\[
\begin{align*}
Y_0 &= Y_0(t) = \begin{pmatrix} y_0(t) \\ z_0(t) \end{pmatrix} = \begin{pmatrix} 0 \\ a \end{pmatrix} \\
Y_{n+1}(t) &= Y_0 + \int_0^t F(s, Y_n(s)) ds, \ \forall n \geq 1
\end{align*}
\]

$= Y_0 + \int_0^t F(s, Y_0) ds = \begin{pmatrix} y_0 \\ z_0 \end{pmatrix} + \int_0^t \begin{pmatrix} \\sin s - s \cos s \cdot y_0 \end{pmatrix} ds = \begin{pmatrix} 0 \\ a \end{pmatrix} + \int_0^t \begin{pmatrix} \frac{a}{s} \end{pmatrix} ds = \begin{pmatrix} at \\ a - \cos t + 1 \end{pmatrix} \implies y_1(t) = at$,

$z_1(t) = a + 1 - \cos t$

En conseqüència, $z_1(t) = - \cos t \iff a + 1 = 0 \iff a = -1$.
3. Trobeu l’equació diferencial ordinària lineal homogènia i a coeficients constants d’ordre mínim que té les funcions \(y_1(x) = e^x \) i \(y_2(x) = x \) com a solucions.

Resolució:

El polinomi \(P_1(D) = D - 1 \) anul·la \(y_1(x) = e^x \)

El polinomi \(P_2(D) = D^2 \) anul·la \(y_2(x) = x \)

\[\Rightarrow P(D) = \text{mcm}[P_1(D), P_2(d)] = D^2[D - 1] \] anul·la \(y_1(x) \) i \(y_2(x) \). Per tant, l’equació diferencial ordinària és \(P(D)y = 0; (D^3 - D^2)y = 0, y''' - y'' = 0 \).

4. Trobeu l’equació diferencial ordinària lineal homogènia d’ordre 2 que té les funcions \(y_1(x) = e^x \) i \(y_2(x) = x \) com a solucions.

Resolució: Busquem una equació diferencial ordinària d’ordre dos, del tipus \(y'' + P(x)y' + Q(x)y = 0 \)

\(y_1(x) = e^x \) solució \[\Rightarrow 1 + P(x) + Q(x) = 0 \]

\(y_2(x) = x \) solució \[\Rightarrow P(x) + Q(x) = 0 \]

\[\Rightarrow P(x) = -\frac{x}{1 - x}, Q(x) = \frac{1}{x - 1} \] \(\Rightarrow \) L’equació diferencial ordinària és \((x - 1)y''' - xy' + y = 0 \).

5. Trobeu la solució del problema de Cauchy: \(y''' - y'' - 2y = \cosh 2x, \ y(0) = 17/8; y'(0) = 11/12 \).

Resolució: Busquem la solució de la part homogènia: el polinomi característic és \(m^2 - m - 2 = 0 \) \(\Rightarrow \) arrels: \(m_1, m_2 = -2, 1 \) \(\Rightarrow \) \(y_h(x) = c_1 e^{-x} + c_2 e^{2x} \).

Busquem ara una solució particular: \(P_1(m) = m^2 - 4 \) anul·la \(g(x) = \cosh 2x = (e^{2x} + e^{-2x})/2 \).

Taula \(P(m)P_1(m) = (m - 2)^2(m + 2)(m + 1) \)

\begin{array}{c|c|c}
\text{Arrels} & \text{Mult.} & \text{Funcions} \\
\hline
2 & 2 & e^{2x}, xe^{2x} \\
-2 & 1 & e^{-2x} \\
-1 & 1 & e^{-x} \\
\end{array}

\(\Rightarrow y_p(x) = c_3 xe^{2x} + c_4 e^{-2x} \) és un candidat a solució particular.

Imposant que \(y_p(x) \) compleix l’equació diferencial ordinària, veiem que \(c_3 = 1/6 \) i \(c_4 = 1/8 \). Imposant que \(y(x) = y_h(x) + y_p(x) \) compleix les condicions inicials, veiem que \(c_1 = c_2 = 1 \). Per tant, \(y(x) = \frac{2}{3} e^{-x} + \left(\frac{4}{3} \frac{x}{6} \right) e^{2x} + \frac{1}{8} e^{-x} \).