Practica 3.2

Estudi qualitatiu d’un sistema no lineal en el
pla de fases. El diode tunelg

Departament de Matematica Aplicada IV, UPC

1 Objectius

En aquesta practica es pretén illustrar I’estudi de sistemes no lineals autonoms utilitzant el
pla de fases. Prenent com a exemple un cas real, un oscillador amb diode tunel, es mostra el
significat de les trajectories en el pla de fases, els conjunts limit (punts d’equilibri i cicles limit)
ila seva estabilitat.

2 Introduccio

2.1 Trajectories en el pla de fases

Donat un sistema autonom amb dos graus de llibertat, és a dir, un sistema modelable amb
un sistema d’equacions de la forma,
z' = f(z,y)
Y =g(z,y)

podem representar les solucions (z(t),y(t)) com corbes en el pla de fases, XY, parametritzades
per la variable ¢, que habitualment representa el temps. Aquestes corbes les denominem orbites
o trajectories. En la representacié d’un sistema en el pla de fases es prescindeix del valor del
parametre ¢ en cada punt de la trajectoria, recordant tinicament el sentit amb que es recorren
quan t augmenta.

Donat que cada punt del pla de fases correspon a una de les possibles condicions inicials del
sistema, si es compleixen les condicions d’existéncia i unicitat de solucid, per cada punt del pla
de fases passa una i només una trajectoria. Es a dir, trajectories diferents no poden tallar-se i
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el conjunt de les trajectories cobreixen tota la regié del pla de fases en la qual es compleixen les
condicions anteriors.

Molts sistemes autonoms reals tendeixen a un estat estacionari quan es deixa transcoérrer el
temps suficient des que es déna la condicié inicial. En alguns casos, aquest estat estacionari es
caracteritza perque totes les variables prenen un valor constant. Les solucions constants d’un
sistema es denominen punts d’equilibri.

Donat que les derivades temporals de les variables sén nulles en els punts d’equilibri aquests
poden calcular-se resolent el sistema d’equacions

flz,y) =0
g(z,y) =0

Un altre tipus d’estat estacionari on pot arribar un sistema autonom correspon a una variacié
periodica de les variables del sistema. Aix0 equival a trobar una solucié periddica del sistema
d’equacions diferencials. En el pla de fases, una solucié periodica correspon a una trajectoria
tancada, ja que cada punt de la trajectoria representa un valor de les variables que s’hi arriba
cada cop que transcorre un periode.

Per exemple, exepte el punt d’equilibri en 'origen, totes les trajectories del sistema

=y

Y = —ww
que correspon a un oscillador harmonic, sén trajectories tancades. Recordem que diferents
sistemes ideals, per exemple un sistema massa-molla o condensador-bobina (LC), es comporten
segons les equacions anteriors.
El calcul de solucions periodiques d’un sistema d’equacions diferencials és molt més complicat que
la determinacié de solucions constants o punts d’equilibri. Tot i aixi, en la practica els sistemes
que presenten solucions periodiques tenen molta importancia, ja que es tracta de sistemes que de
forma autonoma generen senyals que varien amb el temps d’una forma definida. Aquest és el cas
dels oscilladors utilitzats en tot sistema de transmisid, o de les bases de temps dels instruments

electronics i també dels circuits de temporitzacié en circuits digitals (per exemple, ordenadors).

2.2 Conjunts limit: estabilitat

Si deixem evolucionar un sistema autonom, després d’un cert temps el sistema arriba a un
estat o un conjunt d’estats que es succeeixen regularment. A aquest comportamnet se’l denomina,
conjunt w-limit. Condicions inicials diferents poden portar a conjunts limit diferents.

Per exemple, un oscillador harmonic ideal (sense fregament) oscilla continuament amb una
amplitut constant, de manera que tots els estats que composen aquesta oscillacid es succeeixen
regularment. En aquest cas, totes les trajectories séon conjunts limit.

Si considerem el cas real amb fregament

' =y
Y = w2z — 20y



I'amplitud de les oscillacions decreix amb el temps de manera que la trajectoria en el pla de fase
és una espiral que es va tancant al voltant de ’estat de repds o punt d’equilibri fins a arribar-hi?
En aquest cas, "inic conjunt limit és el punt d’equilibri (origen en el pla de fases).

Si, com en I'tltim cas, totes les trajectories suficientment properes a un punt d’equilibri es man-
tenen proximes i tendeixen a ell quan ¢ — 400, diem que el punt d’equilibri és asimptoticament
estable.

Els punts d’equilibri asimptoticament estables sén estats finals per tot un conjunt de condicions
inicials, el que significa que sén estats facilment observables?. Aquest és el cas del punt de repos
d’un oscillador harmonic.

2.3 Oscilladors

També podem parlar d’estabilitat en altres trajectories, en particular, en trajectories tancades.
Si totes les trajectories properes a un trajectoria tancada tendeixen cap a ella quan ¢ — 400
diem que aquesta trajectoria és un cicle limit (asimptopticament) estable.

L’oscillador harmonic no presenta cap cicle limit, ja que si variem I’amplitud de la oscillacié
simplement saltem a un altre trajectoria i no tornem més a 'amplitud inicial.

Un sistema amb un cicle limit oscilla inicament amb Pamplitud que fixa el matexi cicle. Si es
fa augmentar ’amplitud (donant una condicié inicial en exterior del cicle) apareix una pérdua
neta d’energia que fa disminuir de nou 'amplitud de l'oscillacié. Pel contrari, si es redueix
Pamplitud (interior del cicle limit) algun component del sistem aporta energia suficient per
provocar un augment de I’amplitud de I'oscillacid.

La utilitat d’aquests sistemes és la de generar senyals de forma i amplitud ben definides. Aquest
és el cas real dels sistemes usats com a temporitzadors i generadors de senyal. Tals sistemes
es denominen oscilladors i es caracteritzen perqué tota solucié no estacionaria tendeix al cicle
limit. Aquesta condici6 (condicié d’arrencada) significa que 1'oscillador sempre arribara al cicle
independentment de I’estat inicial en que es trobi el sistema.

Es pot demostrar que cap sistema lineal pot contenir cicles limit i, per tant, no pot comportar-se
com un oscillador. Propiament la part no lineal d’un oscillador és el component encargat de

2Les solucions sén en aquest cas de la forma

z(t) = Ae™"*cos(wt — ¢)
y(t) = ' (1)

que corresponen a oscillacions que s’amorteixen segons e ¢,

3En general no tots els conjunts limit sén facilment observables. Per aixd tan sols cal suposar un punt d’equilibri
en el qual totes (o algunes de) les trajectories properes a ell se’'n allunyin. Aleshores només és possible observar
aquest estat el temps que tardi el sistema en abandonar-lo. El cas descrit es denomina punt d’equilibri inestable.
En rigor, per a que un punt d’equilibri sigui inestable cal que hi hagi trajectories tan properes a ell com volguem,
i que se’n allunyin. Es pot definir conjunt a-limit ananologament al w-limit considerant en aquest cas t - —oo.
En una simulacid, alguns conjunts a-limit poden observar-se si invertim el sentit del temps (substituir ¢ per —¢
en el model).



restaurar ’energia dissipada en la resta del sistema i, per tant, de mantenir 'amplitud de la
oscillacid.

3 Descripcié del sistema escollit

El sistema que es simula en aquesta practica és un oscillador amb diode tinel, ’esquema, del
qual es mostra en la Figura 1.
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Figura 1: Esquema de l'oscillador amb diode tiinel

Aquest sistema, és un oscillador electric que consta d’una autoinduccié L, un condensador C, i
un element no lineal denominat diode tinel que es comporta com una resisténcia no lineal, es
a dir, que no compleix la llei d’Ohm. El diode tinel, com a qualsevol reisténcia no lineal, es
caracteritza per la corba tensié-corrent. Aquesta corba, denominada corba caracteristica®, es
mostra en la Figura 2, i representa un corrent a través del diode en funcié de la tensi6 aplicada
entre els seus extrems, ip = f(vp).

Inevitablement hi ha una resisténcia R (aquest cop lineal), que modela tant les pérdues propies
del circuit real (resisténcia del fil de la bobina i perdues en el dielectric del condensador) com
I'energia til® que extraiem del sistema. Finalement, una bateria Voo proporciona al circuit
I’energia necessaria pel seu funcionament.

La tensié de la bateria, Voo, la prendrem com a parametre del sistema. Aquest sistema es
comporta com un oscillador inicament en un determinat rang de valors del parametre anterior.
El sistema d’equacions diferencials que descriu 1’oscillador s’obté a través de 1'analisis estandar
del circuit (lleis de Kirchoff), resultant

! _w
=1
{ UI:—%Z'—%’U-F%]"(VCC_U)

4La, caracteristica tensié-corrent en un diode normal té la forma ip = Ip, (e”D/”T - 1), onvr = kT /q = 25mV
a temperatura ambient. En el diode tinel apareix un corrent addicional apreciable inicament en un determinat
rang de valors de vp que s’explica a través de lefecte tinel predit per la Mecanica Quantica. Aquest efecte noms
apareix sota determinades condicions de fabricacié.

Per a utilitzar un oscillador necessitem extreure del matexi una certa energia, ja sigui fonamentalment en
forma de corrent eléctric o tensié.




essent i i v el corrent i la tensié en Pautoinduccié L, respectivament®
Es pot comprovar que el sistema anterior presenta un vnic punt d’equilibri’ en v = 014 =

f(Vee).
Per tal d’analitzar l'estabilitat del punt d’equilibri podem considerar que el diode tunel es
comporta al voltant de aquest punt (vp = Vo) com una resisténcia lineal de valor ms. A

aquesta resistencia se 'anomena resisténcia dinamica del diode. Observi’s que un valor negatiu
de la resisténcia dinamica del diode significa que aquest estd subministrant energia al circuit
LC, mentre que un valor positiu, com és el cas de les resisténcies reals, indica consum d’energia.
La resisténcia efectiva total del circuit, R4, és 'associacié en parallel de la resisténcia R i la
resisténcia dinamica del diode. El signe de R, determinara si el punt d’equilibri és estable
(disipacié d’energia) o inestable (aportacié d’energia).

4 Entorn de treball

Per tal de fer 'estudi del circuit de la Figura 1 usarem el MAPLE, que ens permetra fer la
simulacié del diode tinel.
El diode ttnel utilitzat no correspon a cap diode comercial i t& la caracteristica’ mostrada en
la Figura 2.
Els valors inicials dels components passius que es poden prendre per fer la simullacié del circuit
mitjancant el programa sén els seguents, C=100pF, L=10pH i R=1K(). Aquests valors sén els
adequats per que poguem treballar comodament amb valors de tensié i corrent no massa elevats.
Com ja sabem el programa MAPLE disposa d’un paquet d’eines especial per a equacions difer-
encials: "DEtools”. Per carregar-lo posarem la instruccio:

with(DFEtools);

8 Aquest sistema és equivalent a una equacié de segon ordre que és un cas particular de I’equacié de Lienard
i per a alguns valors de Voc es pot aproximar per equacié de Van der Pol, 2’/ = —z — 2’ + 2’3, estudiada
ampliament en els textes d’equacions diferencials. (Veure per exemple la bibliografia).

"Raonant sobre el sistema real, ja que un punt d’equilibri es caracteritza per mostrar valors constants de v i
i, haura de ser v = 0 si considerem que el valor mig de la tensié en una autoinduccié és nulla. D’aquesta manera
tota la tensi6 de la bateria recau en el diode tinel, on hi circula un corrent igual a f(Vec). Finalment ¢ = f(Vee)
donat que v = 0 i, per tant, no circula corrent alguna ni per la resisténcia ni pel condensador.

8En efecte, si variem lleument la tensié vp en el diode, la variacié del seu corrent es pot aproximar per
dip = f'(vp)dvp, tot comportant-se com la resisténcia citada.

9S’ha modelat la funcié f que apareix en el corrent del diode tinel (em mV) amb la funcié:

p—vm)? (vp —1.094)2

(v
f(vp) = 1.5e™ 2wom 4 35e”  —01

que correspon a la suma de dos funcions gaussaines, on prenem v,, = 0.35 i w = —0.01.

La forma exacta de la corba caracteristica és complexe, es dona aquesta per aproximacié, en el cas d’'un
component comercial es desconeguda. Tot i aixo cal saber interpretar el comportament del diode en cada tram
significatiu de la seva corba caracteristica. Per exemple, haurem de distingir el maxim, el minim, la zona de
pendent negatiu, etc.
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Figura 2: Corba caracteristica d’un diode tinel ip = f(vp)

També carregarem el paquet d’algebra ”linalg”, que necessitarem si cal treballar amb les matrius
de coeficients d’'un sistema linealitzat:

with(linalg);
Aixi, considerant el sistema de la §2.1, les condicions inicials es poden indicar per:

> inicials := [[t1,z(t1), y(t1)], [t2, z(t2), y(t2)], ..., [tn, z(tn), y(tn)]];

La instruccié " DEplot3d” ens permet dibuixar les corbes integrals donat un conjunt de condicions
inicials. Es pot usar'® de diferents maneres, una d’elles:

> DEplot3d(D(z)(t) = f(z,y), D(y)(t) = g(=,y), [z, y], trange, inicials,
xrange,yrange, stepsize, linecolor);

La instrucci6 ”phaseportrait” ens permet dibuixar, donades unes condicions inicials, les orbites
corresponents. Té I'aspecte!!:

> phaseportrait(D(z)(t) =a*z + bxy, D(y)(t) = cx x + d x +y, [z, y], trange, inicial s,
xrange,yrange, stepsize, linecolor);

5 Exercicis

1. Comprovar els calculs del punt d’equilibri i de la matriu Jacobiana del sistema, i discutir
I’estabilitat en primera aproximacio.

0Consultar el help(DEplot3d)
"Consultar el help(phaseportrait).



. Analitzar en funcié del parametre Voo el tipus de trajectories corresponents al sistema

linealitzat (prenent C=100pF, L=10pxH i R=1KQ) per a alguns valors caracteristics de
Veoc, considerant la grafica de la Figura 2.

. Dibuixar les trajectories en el pla de fases de 'oscillador per a diferents valors represen-

tatius de la tensié de la bateria Ve

Trobar aproximadament el rang de valors de V¢ en els que s’aprecia I'existéncia de cicle
limit. Interpretar-ho en funcié de R, i relacionar-ho amb 'estabilitat del punt d’equilibri.

Redibuixar les trajectories ampliant la zona al voltant del punt d’equilibri i comparar amb
els resultats previstos en 1’exercici anterior.

. Triar un punt del pla de fases que no sigui el punt d’equilibri (per exemple un punt en el

cicle limit) i dibuixar les trajectories ampliant una zona al voltant del punt. Comprovar
que el diagrama resultant no s’assembla al de cap punt d’equilibri d’un sistema lineal.

. Suposem que l'oscillador porta un cert temps en funcionamient i que es pot considerar

que esta seguint el cicle 1imit (amb la tensié Voo adequada). Queé passaria si es perturba
el sistema allunyant-lo lleugerament del cicle limit? Quantes oscillacions sén necessaries
per a tornar practicament a la situacié d’equilibri?

6 Exemple de full MAPLE

>

with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

>

with(DEtools):

Warning, the name adjoint has been redefined

>

>
>
>

Y

#definicio de la funcio caracteristica;
v1:=0.349:81:=v1/8:52:=4%s1:v2:=v1+4%s2:
f:=vd->(1.5*%exp(-((vd-v1)/s1)"2/2)+(1/(v2-v1) ) *(s2/s1) "2*exp (- ((vd-v2
)/s2)°2/2))/1000;

1 _ (vd—v2)2
592 (172 1522

(vd—v1)2
f:= vd — 001500000000 ¢~/2 =7 ) 4 1000

(v2 — v1)s1?
plot (1000*f (Vd) ,Vd=-0..2*v1,Id=0..3,axes=boxed) ;
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#pendent de la caracteristica
fprima:=x->eval(subs(v=x,diff(f(v),v)));

fprima := z — eval(subs(v = z, 5 f(v)))
#resistencia dinamica del diode
Rd:=x->1/fprima(x);
hd:=2 = fprima(z)
#primera equacio
F:=(i,v)->v/L;

F := (i, v) —

<

#segona equacio
G:=(1,v)->-(1/C)*i-(1/R/C)*v+(1/C)*f (Vcc-v) ;

o 1 v f(Vee —v)
G:=(i,v) = - ]%(7-¥ c

#fixem tensio del diode, resistencia dinamica i punt d’equilibri

Vcc:=0.38; ‘punt_equil_I=°:=f(Vcc); ‘res_dinamica_Rd=‘:=Rd(Vcc);
R:=1000;

‘R_equival=‘:=1/(1/R+1/Rd(Vcc));

C:=1.%10**x(-10);



L:=1.%10%*(-5);

Vee := .38
punt_equil I = := .001180715806
res_dinamica_Rd = := —53.63614441
R :=1000
R_equival = := —56.67602804

C := .1000000000 10~°
L :=.00001000000000
#unes condicions inicials
inicials:=[[0,f(Vcc),-0.05],[0,0.0015,0.3],[0,0.0005,-0.3]];
inicials := [[0, .001180715806, —.05], [0, .0015, .3], [0, .0005, —.3]]

> # retrat de fase amb oscilador
> phaseportrait ({D(i) (t)=F(i(t),v(t)),
> D(v) (£)=G(i(t),v(t))
> },[i(t),V(t)],t=—10**(—6)..10**(—6),inicials,i=—0.001..0.002,
> v=-0.5..0.5, stepsize=10%*(-9),linecolor=[blue,red,greenl]);
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> #corbes integrals
> DEplot3d({D(i) (t)=F(i(t),v(t)),
> D) (t)=G(i(t),v(t))
> },[i(e),v(t)],t=-10%*(-6)..10%*(-6) ,inicials,scene=[t,i,v],
> 1i=-0.001..0.002,v=-0.5..0.5,stepsize=10%*(-9) ,linecolor=[blue,red,gree
> nl);
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#sistema linealitzat: res a veure amb 1l’anterior
J:=evalf (subs({i=f (Vcc) ,v=0},jacobian([F(i,v),G(i,v)],[i,v])));
eigenvects(J);

0 100000.0000

T3 1 1000000000101 1764414404 10°

1705790560 10°, 1, {[—.0006081454257, —1.037368726]}],

[.58623844 107, 1, {[—.0009982860390, —.05852336521]}]
Flin:=(i,v)->J[1,1]*i+J[1,2]*v;
Glin:=(i,v)->J[2,1]1*i+J[2,2] *v;

Flin := (i, v) = Ji,1i+ Ji,2v
Glin := (’i, ’U) — J271 1+ J2721}
phaseportrait({D(i) (t)=Flin(i(t),v(t)),
D(v) (£)=Glin(i(t),v (%))

}, [i(t),v(t)],t=—10%*(-6) ..10**(-6) ,inicials,i=-0.002..0.002,
v=-0.5..0.5, stepsize=10%*(-9),linecolor=[blue,red,green]);
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.10**(-6) ,inicials,scene
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Legend
-0.5..0.5,stepsize

Flin(i(t),v(t)),

=Glin(i(t),v(t))
by [i(e) ,v(£)],t=—10%*(-6) .

i=-0.002..0.002,v

> DEplot3d({D(i) (t)
> mnl);

> D(v) (%)

>
>
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