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Choosing the representative tones of an abstract Pythagorean scale
with regard to just intonation
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Hellegouarch (1999a) relies on a remark that Euler made to state that the way of choosing the
representatives of an abstract Pythagorean scale should be based on the fact that the sense of
hearing tends to identify with a single ratio all the ratios which are only slightly different from
it. For this reason, the representatives were chosen as the simpler ratios among the possible
tones of the Pythagorean scale. However, this could be a misinterpretation of Euler’s remark,
since there may be single ratios much simpler in the vicinity of the Pythagorean ratios. This
paper is only a brief contribution on the discussion about how to select these representatives
and shows that if Pythagorean tuning is to emulate or replace syntonic just tuning, it is better
to adapt the scale to the key.

Keywords: generated scale; Pythagorean tuning; just intonation; scale temperament;
Pythagorean comma; Syntonic comma

2010 Mathematics Subject Classification: 05C12; 11A05; 54E35

1. Introduction

The 12-tone Pythagorean scale is a particular case of well-formed scale (e.g., Wilson 1974,
1975; Carey and Clampitt 1989, 2012, 2017; Hellegouarch 1999a,b, 2002; Kassel and Kassel
2010; Cubarsi 2020, 2024) consisting of 12 consecutive perfect fifths, i.e., generated by the
3rd harmonic, reduced to one octave, since the octave (the interval corresponding to a
frequency ratio 2:1) is the interval associated with maximum consonance. The starting
tone (say frequency 1) and the twelfth pure fifth (frequency g’—i vy) are identified as if they
had matched perfectly, but actually between them there is the small melodic distance'
corresponding to a Pythagorean comma s = g%, equivalent to 23 cents. Thus, the distance
between the eleventh fifth and the starting tone is a Pythagorean comma narrower. It is
the “false, narrow, wolf” fifth?.

Mathematically, such a construction gives rise to 12 tonal classes of an abstract scale,
meaning that any two tones «, 8 such that g = ;’—1; a belong to the same tonal class.

Each tonal class v in the multiplicative space of frequencies is associated with a pitch
class logy v in the additive space of notes. In the frequency space, the octave can be thought
of as the interval [1,2) with the ends identified. Instead, the notes take values on a unit
circle, i.e. in [0,1) also with the ends identified, or in cents in [0, 1200).

One representative of each tonal class must be chosen in order to gather the twelve
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IThe distance between two scale tones «, 8 is measured as d(«, 3) = min(|logy %|, 1 — |log, %|), although it is
usually given multiplied by a factor 1200 in cents (¢).
2In the 12-tone Pythagorean scale, perfect fifths span 3 chromatic semitones U = 23% (113.69¢) and 4 diatonic

8
semitones D = 3—5 (90.22¢), while narrow fifths span 2 chromatic semitones U and 5 diatonic semitones D.



consecutive fifths composing the 12 tones of a concrete Pythagorean scale. This paper is
just a brief contribution on the discussion about how to select these representatives.

The process of choosing the representatives of the tonal classes is explained in detail
in Hellegouarch (1999a,b, 2002) and Kassel and Kassel (2010). Hellegouarch determines
successive Pythagorean scales with increasing number of tones from a quotient group G/H,
where G is the group generated by the frequency ratios 2 and 3, and H is the group
generated by the comma r,. If 2—: is a convergent of the continued fraction expansion of

log, 3, the comma r, = (g%)(_l)n satisfies r,, — 1 as 22 — log, 3. The representative of

cach tonal class is chosen as the simplest irreducible fraction allowing an isomorphism ¢
between the g, tones in [1,2) and the set {0,1,...,¢, — 1} so that ¢(2) = gy.

The simplest irreducible fraction means the one providing the minimum value of the
height h(3) = sup(a,b) for a positive irreducible fraction 7. To this, Kassel and Kassel
(2010) add a condition that ensures the existence of a unique scale, even if G is a free
abelian group of rank 2.

Although it could seem that the above procedure is a criterion based on mathematical
simplicity, Hellegouarch (1999a) roots it on the following remark made by Euler in 1766:
“The sense of hearing is accustomed to identify with a single ratio, all the ratios which are
only slightly different from it, so that the difference between them be almost imperceptible”.
Hence, he chooses the simplest ratios to represent the tonal classes of the abstract scale.
He proposes to take as representatives the tonal classes generated by the comma g’—i as %—Z
(p,q € Z), the simplest irreducible fractions satisfying that sup(3P,29) be minimal. This
gives rise to the concrete scale
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However, the above criterion may still admit some discussion. The present work will
suggest that, in tonal music, it is better to adapt the scale to the key. The musical arguments
favouring such a proposal can be easily converted into a simple mathematical method based
on elementary linear algebra to use in more general cases.

In order to choose the representatives of the abstract scale, one has several options. For
example, the 12 consecutive fifths may start from the fundamental tone 1 onward. When
they are reduced to one octave, this gives rise to the following tones (and notes), which are
written as consecutive fifths (not in pitch order),

1,3,...,3 (C-G-D-A-E-B-F-C!-GE-DE-ALE!) (2)
or, for example, one may consider forward and backward fifths around 1, as
10 8 2 5
k5138 (G-D-AE-B-F-C-G-D-A-E-B) (3)

Thus, in the above examples, the tones ;’—1; and g—f belong to the same tonal class.

Therefore, there are 12 possible ways of choosing the sequence of 12 consecutive fifths.
In other words, the 12 scale notes can be drawn from any sequence of 12 consecutive tones,
that includes the fundamental tone 1, drawn from the following set
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All of these scales will have the same mathematical properties derived from being built
from 12 consecutive fifths, but with tones that may differ by a Pythagorean comma up or
down, and with the narrow fifth between different tones. Therefore, these scales will show
different properties with regard to tonality.

3

w
w
[\
[\



2. Sound perception

From a practical point of view, these questions may seem uninteresting to a musician
used to play in 12-tone equal temperament (TET) or that uses electronic instruments or
programs capable of virtually perfect just intonation, but, taking for granted the interest for
mathematical theory of music, they are important for musicians who play in just intonation
(JI), i.e., in intervals based on the overtone series expressed as simple frequency ratios, with
acoustic fretless string instruments and with some wind instruments, which are many of
them tuned by fifths, i.e., according to Pythagorean tuning.

From the Renaissance to the middle of the 18th century, just tuning, including several
variants of meantone temperament, was a common practice, but gradually 12-TET was
adopted, which firstly applied to the piano became the standard tuning. As Yanakiev (2018)
says, "This attitude of limiting the hearing to the pitch categories of the 12-TET scale
does not expand the musicians’ capabilities of pitch discrimination towards their limits."
Nevertheless, in the second half of the 20th century, on the one hand modern practice of
historically informed approach, and on the other hand microtonal music (in particular,
spectral music, whose material is often derived from the harmonic series), tended towards
recovering performance in JI.

The question that arises is how do we distinguish such small differences in tuning?

From the point of view of categorical perception, i.e., the process whereby continuous
acoustic variation is transformed into a discrete set of auditory events, the 12-TET scale
presents some good properties in order to be categorized, such as that it is a proper scale
(Rothenberg 1977a,b, 1978), i.e., there is some interval class which is the same size as the
next larger one, but none which is strictly larger®. In a specifically musical context, categor-
ical perception consists in basically two tasks, identification of music intervals and discrim-
ination of pairs of intervals presented at different pitch levels (e.g., Burns and Ward 1974,
Siegel and Siegel 1977; Burns and Campbell 1978; Burns 1999). In summary, their conclu-
sions are that highly trained musicians with excellent relative pitch typically have learned
just enough about tonal intervals to differentiate the musically relevant cues, although their
ability to differentiate different examples of the same musical interval is extremely limited.
Untrained subjects show no evidence of categorical perception.

In view of these results*, it seems that categorical perception works in the opposite
direction we are wishing to, i.e., it seems that we should not worry too much about distin-
guishing whether the notes belong to a 12-TET scale, a Pythagorean scale, or a JI scale.
Consequently, our analysis must be rooted in other criteria.

Pierce (1999) gives an overview of the nature of musical sound, from which we highlight

3For instance, for the diatonic scale, the one step intervals are the semitone and the tone (2 semitones), the
two step intervals are the minor third (3 semitones) and major third (4 semitones), the three step intervals are the
fourth (5 semitones) and the tritone (6 semitones), the four step intervals are the fifth (7 semitones) and the tritone
(6 semitones), etc. This scale is proper but not strictly proper because the three step intervals and the four step
intervals share an interval size (the tritone), causing ambiguity.

4Siegel and Siegel (1977) conclude that “in music, categorical perception allows one to recognize the melody, even
when the notes are out of tune, and to be blissfully unaware of the poor intonation that is characteristic of good
musical performance.” This is consistent with some explanations about possessors of absolute pitch by Ward (1999),
when he mentions Abraham (1901), “...a given tune may be heard in many different keys. How can a child develop
absolute recognition of a particular frequency, say 261 Hz, if it is called “do” today and “re” tomorrow or if it is heard
when he presses the white key just left of the two black keys in the middle of the piano at home but a completely
different key (perhaps even a black one) at grandfather’s house? Considering all the factors that conspire to enhance
the development of relative pitch at the expense of absolute pitch”. Thus, Ward says that perhaps an inborn potential
for developing absolute pitch was relatively widespread, but that it is simply trained out of most of us. Similarly,
quoting Watt (1917), “... perhaps a highly favoured auditory disposition gives them the power to maintain their
absoluteness of ear in spite of the universality of musical relativity. In that case we should all naturally possess
absolute ear and then proceed to lose it or to lose the power to convert it into absolute nomenclature.” Therefore,
musical categorical perception would provide the auditory system with an adaptive mechanism to recognize diverse
realizations of one musical entity which is never presented exactly in the same way.



the following statements, which are appropriate for the present study.

“What we hear is out there, not inside our heads.” “The very fact that it is useful to repre-
sent musical sounds by a spectrum, a sum of sine waves, tells us a good deal about musical
instruments, musical sounds, and about the mechanism of hearing.” “Still, the vibrating
strings and air columns of musical instruments and the early mechanical stages of the hu-
man auditory system are linear enough to make sine waves and the representation of sound
waveforms by spectra (by collections of sine waves, or partials) useful in studies of musical
sound.” “In instruments in which the vibration is forced, the partials are nearly harmonic,
and the chief components of the spectrum must be at least approximately harmonics of
the fundamental frequency.”

Finally, he vindicates the explanations of Helmholtz (1863) and Plomp (1966) of conso-
nance and dissonance: “The association of dissonance with interaction of sine waves close
in frequency is thus a plausible explanation of musical consonance.”
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Figure 1. Sensory dissonances (left) Ag(400,500,600), (middle) Ag(40,50,60), (right) As(4,5,6).

Based on Plomp and Levelt (1965), sensory dissonance® (Sethares 1998) allows to un-
derstand some aspects of consonance and timbre. It accounts for the sensation of disso-
nance associated with the beats produced in interfering a weighted mixture of single waves.
However, since the beats produced depend on the pitch height, the sensory dissonance is
not appropriate to characterize the abstract concept of relative dissonance or consonance
between simple frequency ratios and pitch classes (Cubarsi 2019). In Fig. 1, sensory disso-
nances for the frequency sets (1, %, %) -z, for x = 400,40, 4 are compared. It is clear that
they depend on the actual frequencies and when they are calculated for single harmonics
(or for small frequency ratios), the sensory dissonance loses its meaning, since it is not

intended for this purpose.
3. Tuning to single ratios
Fortunately, Langner (2015, p180) gives us a clue. “The harmonic structure of tones as

generated by musical instruments is not a product of careful manufacturing. Instead, it
arises from resonances where the delays due to travel times in tubes or on strings are

5The sensory dissonance of a spectrum F = {v1,...,v,} is computed as
1
As(F) = 5 3" min(a;, a5) (e7hrlimvsl - embesislvivil) (5)
i#j

with s;; = 00307 mino(fﬁuj)-‘—l&gﬁ and the constants by = 3.51, b2 = —5.75. It measures the sensation of dissonance
produced by the union F' U rF of two spectra composed of tones that maintain mutually a frequency ratio r and
it allows to detect which are the ratios producing a minimum of sensory dissonance. Generally, since the scale of
dissonance is arbitrary, it will be appropriate to compare relative dissonances. In particular, more than the value
itself, it is important to know where the relative minima are placed. The curve of Eq. 5 for a set F' of n tones has

up to 2n(n — 1) relative minima, corresponding to ratios that provide a greater sensation of consonance.



compensated by the periods of the harmonics (depending on boundary conditions, integer
multiples of the delays or the periods may have the same effect). Similarly, the integer
relationships of horizontal harmony arise —in the spirit of Pythagoras— as inevitable math-
ematical consequences of the neuronal correlation analysis. Our coincidence neuron would
prefer certain harmonically related tones even if such relationships were not also observ-
able in our acoustic environment. In other words, our harmonic sense for pitch relations
has mathematical reasons and is not, or at least not primarily, due to the adaptation of
our auditory system to the physical conditions of our environment. As a result, our brain,
or at least our hearing system, reacts almost like a musical instrument and therefore obeys
the same mathematical laws as the physical environment.”

It is worth noting that categorical perception was first developed to describe the results
of speech experiments that used synthetic speech tokens that varied along a single acoustic
continuum. But in music played by an instrument in which the vibration is forced, the
sound produced by a tonal chord in perfect tuning is not like any other sound in the
continuous space of possible sounds, but a singular and clearly identifiable sound. This is
a physical fact beyond categorical perception. For instance, “the first and third degrees
(together) and the first and fifth degrees (together) generate difference tones that reinforce
the first degree” (Rothenberg 1977a, p230). It is easily seen in Fig. 2, with the pitch classes
composing a C major chord, with frequency ratios (1, %, %) In this example, the mediant
reinforces the tonic and the dominant.
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Figure 2. Absolute value |f(¢)| for a superposition of pure waves associated with the first and third degrees in JI
(top, blue) and in Pythagorean tuning (bottom, red), and (upside down) for the first and fifth degrees (green).

In the top panel, the wave f(t) = sin 2wv1t + sin 2wvst (absolute value) produced by the
superposition of waves associated with the dominant and mediant, with frequencies 14 = %
and vy = % (blue) is compared to the superposition of tonic and mediant, with frequencies
v =1 and 1y, = % (green, upside down). In the bottom panel, the compared sounds are
the superpositions with frequencies vy = % and the Pythagorean mediant v = ‘3—2 (red) to

frequencies 1 = 1 and vy = g—i (green). It is clear that the respective amplitude-modulated
sine waves, despite some very similar carrier frequencies in the blue and red curves, have
a different gear with the green curves in both panels. In the former case both sounds
reinforce each other, while in the latter case the interference is much less constructive.
In acoustic resonant instruments such a difference elicits distinguishable vibrations that
should be clearly perceived, not only by the performer, but for the surrounding audience,
since instrument’s timbre and resonance become improved.

Thus, we need a measure for consonance for sets of single frequency ratios not depending
on the pitch height, intensities, etc. In other words, a more symbolic concept of consonance.



At this primary level, it suffices to estimate how a set of pure sine waves reinforces or
annihilate each other.
Helmbholtz’s (1863, 187) Table listed the ratios %’ (for p, g coprime) of the main harmonics

and their intensity of influence (in %) given by

Culpyq) = % (6)

This parameter, referred to as harmonic consonance, is the relative strength of the beats
resulting from the mistuning of the corresponding interval, obtained by modelling the
strength of the sympathetic vibration produced in the Corti’s organ (ibid. Appendix 15,
415). According to Helmholtz, the lower the product pg, the greater the degree of beatings
in mistuning the interval, i.e., the mistuning is more noticeable. This is interpreted as both
harmonics being more consonant (before mistuning).

The harmonic consonance is related to Tenney’s harmonic distance (Tenney 2015, 240-
279) between the fundamental tone 1 and the pitch g, Ap(1, g) = An(p,q) = logs(pq),
which is indicative of the degree of beatings, since it is inversely correlated with the har-
monic consonance, Cy = 100 - 2= An

Harmonic distance informs us of how far away two sine waves of irreducible frequency
ratios of o and 8 match at the lowest common harmonic LCH(«, ) where they become
immersed as a fused sound image, and how far should we go back to find their common

fundamental, i.e., their lowest common ancestor LCA(q, 3), which has the period of the

whole superposition wave. The value Ay (a, 8) = logy %,827% is their harmonic distance,

which for an arbitrary set of frequency ratios was generalized as harmonic dissonance in
Cubarsi (2019). Therefore, it is a measure of how constructive a superposition of waves is.

Now, under the acoustic context explained in the previous section and according to the
harmonic concept of consonance, is how we will henceforth interpret Tenney’s words in
John Cage and the Theory of Harmony (Tenney 2015, 280-304, reproducing a 1983 paper),
which say that in a scale close to JI, such as equal temperament and Pythagorean, the ear
tends to resolve towards the frequency of the nearest JI, i.e., a simple frequency ratio. The
existence of such a vicinity, each one dominated by a single frequency ratio, implies that
there is a finite number of intervals which can be tuned by ear (not as absolute pitch, but
in the reference frame of a tonic, although it also depends on the ear training). Therefore,
we meet again Euler’s remark (e.g., Blaine and Ferré 2021, §20).

This fact is consistent with the fusion theory (Stumpf 1890; Ebeling 2008; Langner 2015).
According to Moore, Peters, and Glasberg (1985), the low harmonics may be out of tune
around the 1-3% respect to their nominal value and still be perceived as belonging to the
same harmonic series. However, the threshold decreases for higher harmonics, and also
depends on conditions such as the intensity of the harmonics and whether the duration of
the sound allows pulsations to be appreciated. As a variation of the 1.5% in the frequency
is roughly equivalent to a Pythagorean comma, we can consider that harmonic distances
of a JI system replace that of the equal temperament or Pythagorean system.

Simple frequency ratios are always more consonant than those of Pythagorean tuning
(or equal consonant if they match). When comparing harmonic distances between tones
in JI and Pythagorean scales it results that for Pythagorean scales the harmonic distance
increases nearly in a linear way in terms of the fifth index (Cubarsi 2019). This produces
some inconsistencies, such as that, in Expression 2, the harmonic distance between C and
Ef (11 perfect fifths) is much greater than between C and G, whereas the size of the interval
Ef-C is smaller than between C and G. All these considerations lead to the fact that the
estimation of consonances should be done with JI notes close to the Pythagorean ones,
instead of those of the Pythagorean ones themselves.



Conversely, we should ask the performer to play as close as possible to these simple
ratios.
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Figure 3. Harmonic consonance C}, and cents within the octave for JI notes (balck marks) and Pythagorean fifths
g—z, either iterated from 1 onward (p > 0) (red marks) or backwards (p < 0) (green marks).

Figure 3 shows the harmonic consonance C}, of Eq. 6 and position (in cents) within the
octave for the notes of a JI scale and the notes of a Pythagorean scale with frequency ratios
g—z, where red marks are for forward iterates p = 1,2, ... and green marks are for backward
iterates p = —1,-2,....

4. Tonality matters

From a tonal point of view, it is clear that not all notes are of equal importance. Let us
consider that we start the sequence of fifths at the note F (assuming the fundamental tone
is C), and form the scale

11,335 (F-C-G-D-A-E-B-Ff-C%-GF-DP-AF) (7)

This scale is made up of the diatones, which are the notes of the 7-tone Pythagorean scale,
the one just preceding the 12-tone scale in the chain of Pythagorean scales, i.e., made up
of the first seven fifths F-C-G-D-A-E-B (the white keys of the piano), plus the accidentals,
which, in fact, are a refinement of the previous ones, and are interspersed between them.
Namely, F¥, C# G¥, D¥ A (the black piano keys).

The diatones are relevant because they contain the fundamental tone, its previous and
next fifths, F-C-G, and each one is accompanied with the tonal class of its 3-rd overtone
(its fifth) and its 5-th overtone (the major third). In a JI scale they would be F-A,-C
(%—%—1), C-E,-G (1—%—%), G-B,-D (%—1—85—%). Thus, with respect to the fundamental, in a
diatonic scale there appear the most significant degrees of a major scale, i.e., subdominant,
tonic, dominant, supertonic, submediant, mediant and leading tone. Therefore, the C major
diatonic scale is formed by the sequence of fifths F-C-G-D, plus the class of the 5-th overtone
of the first three previous notes, i.e., A-E-B.

On the other hand, if we invert the previous sequence of fifths, D-G-C-F, according to
the 3-rd undertone, and we add the class of the 5-th undertone of the first three of them,
ie., Ag, Dg, G! (%,g,%), we get the natural C minor scale® C—D—D%—F—G—Gg—Ag, containing
the minor third, the minor sixth and the minor seventh degrees of the fundamental. Both
major and minor diatonic scales are depicted in black in Table 1.

The central row is shared by both diatonic scales. With the top row we get the C major JI
scale (circles), with the wolf fifth between D and A,. According to Sara Cubarsi-Fernandez
(2023), this is "the major scale in syntonic just intonation, which was unambiguously
illustrated in Galeazzi’s fingering charts in his Elementi teorico-pratici della musica, con

6The notes of this scale are usually referred to as C-D-E’-F-G-AP-BP, however, to fix a criterion that does not
depend on the key the notes are named according to Table Al. Simple frequency ratios are labelled by adding a
subscript J to the closest Pythagorean, although read in a particular key the name may not correspond to its degree.
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Table 1. The circles contain the notes of the C major diatonic JI scale and squares are for the C minor scale. The
scheme is completed with their missing inverses (dark gray) together with the notes close to the tritone (light gray).
Factors between notes operates in the group of frequency classes.

un saggio sopra l'arte di suonare il violino (1791) and also documented and named as
Gamme grecque’ by physicist Jacques-Alexandre Charles in Course de physique (1802)".
Similarly, by considering the bottom row, we form the C minor JI scale (squares), with

the wolf fifth between Ag and F.
In order that each note has its inverse tonal class in the whole system (radial symmetry

relative to the fundamental C), the above set of tonal classes may be completed by adding
%6, %—g and 1?9, corresponding to the notes B, C§ and EE". In this way, we are able to form
three major JI scales (C, F, and G¥) and three minor JI scales (c, f, and a).

Thus, in Pythagorean tuning the diatones match or come close to (indicated with brack-
ets) the simple ratios 1,3 Vv [2],[2], 2, 3,[5],[22], while the accidentals come close to
(2] BLIEL % V3]

However, to get a JI system covering the twelve notes of the Pythagorean, we must still
add two new single ratios close to the tritone F%. In order to maintain the consistency with
the just intonation viewpoint, we choose % and 1—70 (noted as Gg and Fg), which are mutually
inverse and easy to identify by ear (Sara Cubarsi-Fernandez, personal communication).

The ratios % and %, although less simple than the previous ones, are also an interesting
alternative, since they keep the fifth’s relationship in the first and third row of Table 1, and
like the other alternative pairs of tones they can be considered as enharmonic equivalents
to within a syntonic comma.

Notice that, as shown in Fig. 4, the small interval between g and % is exactly measurable
in terms of the amplitude-modulated waves produced by the intervals associated with the
fifth relative to the tonic and the minor third relative to the dominant, while % is not.

Nevertheless, in the current study these notes are less relevant since they does not belong
to the diatonic scales of the tonic. With the tritones we may form another major scale (C¥)
and another minor scale (e).

Therefore, with the exception of the ratios that already belong to a Pythagorean scale,
the other ratios are simpler and very close to those of the Pythagorean scale.

According to Figure 3, since the ear will tend to resolve towards the more consonant ratio
in the vicinity (which we may consider as a Pythagorean comma, since it is the error allowed
for the Pythagorean scale), the ear will tend to perceive the tone ;’—: (408¢) corresponding
to the note E as it were % (E,, 386¢), or the one of note A, g’—i (906¢), as it were % (A,

884¢), or the one of note B, % (1110¢), as it were % (B,, 1088¢). Nevertheless, we can
make it easier for the ear to do this work of reituning the respective intervals in which
they differ —equivalent to the syntonic comma 23:1—5 (21¢)— , by preferring the Pythagorean

If one more fifth (A) is added in the central row instead of the corresponding note of the upper row, we get the
Gamme européenne, with the wolf fifth between A and E, which prioritizes expressive Pythagorean tuning over JI.
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Figure 4. Absolute value |f(t)| for a superposition of sine waves by using 11 = % (top, blue) and v = g—g (bottom,
red) together with the dominant, compared (upside down, green) with the specified superpositions.

representatives 23%; (F, 384¢), 23%5 (B, 882¢) and 212 (CP, 1086¢), respectively, since they
almost match with those of JI (they differ in 1.95¢, i 1 e., one schisma), despite having lower
harmonic consonance than their Pythagorean alternative representatives.

On the other hand, it seems logical that if the ear has to identify the tones 32 (E”, 294¢),
214 (D¥, 318¢) or & (Dg, 316¢, ca. DF), it will do it towards the latter, since DF is only about
2¢ away from It certainly will not resolve towards E* (294¢), which is what Hellegouarch
proposes 1nstead of Df. The same would happen if one had to choose between 2 5T (A"), 23182
(G¥) and 8 (G ! ca. GH), or between > (BY), gii (A%) and 2 (Ag, ca. A), or between —S(Dl’),
23171 (CH and %—g(C ¢ ca. ch.

Therefore, by taking into account Euler’s remark, the representatives of the tonal classes
should be chosen by taking in mind the JI system close to the Pythagorean scale.

5. Pythagorean scales close to just intonation

It is easy to compensate for the syntonic comma associated with the consecutive fifths
A-E-B with the Pythagorean comma of the false closing of the circle of fifths, so that
the main degrees of the scale are maintained with regard to a JI scale. These fifths, as
major thirds of the principal subdominant, tonic, and dominant triads in C major, i.e.,
the Pythagorean scale members four pure fifths forward from F, C, G, respectively, are a
syntonic comma too high. To compensate, to within 2¢, it suffices to replace them by their
enharmonic equivalents a Pythagorean comma (—12 fifths) flat: B*”, F”, C°. That is, by
taking the Pythagorean chromatic scale with B”” initiating the line of perfect fifths, ending
with D, gives a good approximation of the just major scale. As in the actual JI scale the
one deficient fifth is on the second scale degree, here D, by closing the circle of fifths D-B"
it is possible to tune the fifths corresponding to all the diatones correctly or with an error
of one schisma. It is well known that this is sufficient to tune the notes of the C major
scale, but the nice point here is that also two of the chromatic notes come close to the just
ratios. The tritone from the tonic is necessarily G, given the initial B”*, within 6¢ of % (2¢
of 22). In addition, the fifth corresponding to the tone 2 (B®) is also just. In total there
are 9 matches with JI notes, while starting with D”, as Hellegouarch does, there are only
6 of them (with the tritone at 22, F¥).

Table 2 displays the notes of the Pythagorean scale that match or do not differ in more
than 2¢ (in parenthesis, 6¢) to the following notes of a JI scale, which we now order by
increasing pitch,

16 10 9 6 5 4 7 10 3 8 5 16 9 15 f mbb i b ot f b Al
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Table 2. Coincidences of less than one schisma (in parenthesis, up to 6 ¢) between tones of Pythagorean and JI
scales, where p is the power of 3 of the first fifth. In gray those with most matches. Notes between vertical lines are
approximately one semitone apart. The column on the right indicates the diatonic JI scales that can be formed with
a subset of them.

Depending on the choices for the alternative pairs % \% %), % \% %, and %6 \% % we obtain
eight JI scales close to the 12-tone Pythagorean scale (listed as JI-1, ..., JI-8 in Table 3
together with the major or minor diatonic scales they match).

In Figure 5, diatonic scales formed according to the following criteria are compared:
(P/F) Pythagorean scale with the fifths starting at F; (ET) equal temperament scale;
(P/Bbb) Pythagorean scale with the fifths starting at B?*; (MT) quarter-comma meantone
temperament, i.e., fitting well the class of the fifth harmonic in exchange for decreasing in
5¢ the accuracy of the third harmonic®; (JI) syntonic just intonation. The deviation from
the diatonic JI scale is measured by the mean square error (MSE, expressed in ¢2) of the
seven tones. It is worth noticing that the scale P/Bbb is the one more close to JI, even more
than the MT scale.
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Figure 5. Diatonic scales according to several intonation systems (P/F=Pythagorean starting in F, ET=Equal
Temperament, P/Bbb=Pythagorean starting in B MT=Meantone Temperament, JI=Just Intonation). The value
MSE (¢2) is the mean square error relative to the tones of the diatonic JI scale.

8Quarter-comma meantone temperament is a well-formed scale with generator V5.
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6. Mathematical approach

The above procedure can be easily generalized. For j = 1,...,n let p(j) be the vectors
which components are the tones of the n possible Pythagorean scales. That is,
p(l) = (UO) Viyeony Vn—l)T

p(2) = (V—lvy())' .. )Vn—Q)T

P(n) = (V_(n—1)> V—(n-2)»-- -+ 0) "
Hence, by components,
() =vi—j; i=1,...,n; j=1,...,n

Let r be the vector which components are the single ratios of an n-tone JI scale close to
the Pythagorean one. We write its components as
i p

r :qﬁi ;o 1=1,...,n

In order to account for a hierarchy based on tonality, we consider the harmonic distances
of each tone relative to the fundamental,

An(L,r) = Ap(p™, ¢7) = a;logy pi + B;logy g;

Their associated harmonic consonances will be taken as the weights to ponder whether one
note of the Pythagorean scale that matches (or is very close) to one of the JI scale must be
taken more or less into consideration in order to evaluate the dissimilarity between both
scales. Thus, once normalized, the weights are

i Ch(1,7%) '
Z;il Ch(]-7 7»]')7

1=1,...,n
They are used to define the inner product matrix W = diag(w) € M,,x,, which obviously
is positive-definite.

Indeed, we may compare a Pythagorean scale with several JI scales having different
intonation qualities, i.e., with different selections of the single ratios. In such a case, for
k=1,...,m, there will be a set of r(k) vectors, with components (k) and weights w’(k),
and each vector associated with an inner product matrix W (k).

Two approaches are proposed to quantify the degree of coincidence of two scales p(j)
andr(k) (j=1,...,nsk=1,...,m).

(1) Starting from the error vector e(j,k) = p(j) — r(k), the quadratic norm associated
with the inner product provides a measure of the degree of coincidence of the notes of
the respective scales,

leG. &) I3y = (P(7) — x(k))" W(k) (p(j) — (k) (8)

To compare the deviation of the j-th Pythagorean scale relative to the k-th JI scale

11



100

I,

1/1 3/2 4/3 5/3 5/4 6/5 7/5 8/5 9/5 10/7 9/8 10/9 15/8 16/9 16/15

Figure 6. Relative harmonic consonances in logarithmic scale for JI tones.

we may use the mean square error (MSE),

BG 8 = e By )

(2) Alternatively, it is possible to count the number of coincidences or matches between
the notes of the respective scales. We will say that two tones in the i-th component of
the scales p(j) and r(k) coincide at level ¢ if |e*(j, k)| = [p'(j) — r*(k)| < . Then, the
components of the vector of coincidences m.(j, k) and the number of matches at level
e of both scales are given as

LA k) <

i . . . . 2 - i -
mg(J,k)—{Q £ (b > e me(j, k) = [[m(j, k)| —;ma(mk) (10)

The latter norm is unweighted.

7. Results

The tones composing the JI scales, i.e., the twelve components of vectors r(k) for k =
1,...,8 are represented as black dots in Table 3.

c|ci|E” D|D! E |F|G F|G|G|A |B AllB,
1|8 W 916 51417 )3 )8 5 |16 9 | 15
15 9 8 5 4 3 5 7 2 5 3 9 5 8

JI-1 || @ | @ e o | e | e | e| @ O | e | e . e o© e | Ffa
JI-2 || e | . o | e e (e e o | e | @ . o e e | Gla
JI-3 || e ° ° o ° e | e | O ° ° ° ° ° o ° Ffa
JI-4 || o | @ e o | e | e |e| 0 e | e | e ) o e e | Gla
JI-5 ° ° o ° . ° ° ° o ° ° ° ° o ° Cf
JI-6 || o | @ o e | o e | o | o o | e | e ) o . . C,Gic
JI-T || o | @ o e | o e | o | O e | o | o ) . o . Ct
JI-8 || o | e o ° ° e | o | O o | o ° ° o ° ° C,Gﬁyc

Table 3. Twelve-tone just intonation scales depending on the choice of the alternative pairs of tones. The column
on the right indicates the JI diatonic scales that can be formed with a subset of them.

The first approach uses the normalized weights corresponding to the harmonic conso-
nances shown in Figure 6. It leads to the results detailed in Figure 7, showing how close
each Pythagorean scale p(j) (j = 1,...,12) is to the JI scale r(k) (k =1,...,8), according
to Eq. 9. It is summarized in Figure 8, where the average MSE for each Pythagorean scale
(relative to all of the JI scales) together with the JI scale which is best fitted (indicated
just below the label of the corresponding Pythagorean scale) are shown.
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Figure 7. MSE of the twelve Pythagorean scales relative to the eight JI scales.
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Figure 8. Pythagorean scales in order of best MSE and best fitted JI scale.

There are two Pythagorean scales providing the best fit of one JI scale. One starts the
fifth iterations at B°?, with the narrow fifth between D and A (B?), similarly as the Gamme
grecque. The best fit is with scale JI-5, matching, in particular, all the notes of the C major
diatonic scale (see Table 3). Scales J-6, J-1, and J-2 also have very low MSE values.

The other one is the Pythagorean scale starting at E’”, with the wolf fifth between G
and D (Ebb). The best fitting scale is JI-1, matching all the notes of the F major diatonic
scale. Scales J-2, J-5, and J-6 also have very low MSE values.

The following two better fits are the Pythagorean’s B (with scale JI-7, matching the F
minor diatonic scale) and F (with scale JI-8, matching C minor diatonic scale).

The second approach does not take into account weights. It only accounts for the num-
ber of matches regardless the consonance level of the tones. Therefore, it is a method
independent of tonality, as it would be the first approach if the weights were not taken
into account. It leads to the results shown in Figure 7. The maximum number of matches,
either at coincidence levels € = 2¢ or 6¢, is reached by the four scales that in the previous
approach led to the lowest MSE’s. Let us remember that the 6¢-level becomes a 2¢-level

by using the less JI tritones % and % instead of % and 1—70.

As shown in Table 4, the Pythagorean scale starting at B” has 9 coincidences with J-7 at
level € = 6¢. We know by Table 2 that the former scale matches Pythagorean F minor and
C* major diatonic scales. Also with 9 coincidences, the scales starting at B” (matching C
major and F” minor) with J-5, the scale starting at F (matching C minor and G major)
with J-8, and the one starting at E*® (matching F major and B”” minor) with J-1.
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Table 4. Number of matches between the JI scales (rows) and the Pythagorean scales (columns, indicating the first
iterate) at level e. In gray, maximum number of coincidences.
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8. Conclusion

By following Euler’s remark, and according to Hellegouarch (1999a,b, 2002) and Kassel and
Kassel (2010), the way of choosing the representatives of a 12-tone abstract Pythagorean
scale should be based on the fact that the sense of hearing tends to identify with a single
ratio all the ratios which are only slightly different from it. For this reason they choose the
representatives as the simpler ratios among the possible tones of the Pythagorean scale.
However, this is a misinterpretation of FEuler’s remark, since there may be single ratios
much simpler in the vicinity of the Pythagorean ratios.

Two viewpoints were adopted to discuss the election of the representatives. The first one
was strictly based on the tonal qualities of the diatonic major and minor JI scales, which
are composed of the simplest single ratios. For the second viewpoint, two mathematical
approaches were proposed, which may substitute the previous analysis when the number
of scale tones is greater or if an alternative selection of JI tones is made. Since there will
always be a wolf fifth in any Pythagorean scale, and there will also be couples of single
ratios that cannot be matched simultaneously, we will need a simple way to count the tones
that match the largest possible number of single ratios while also prioritizing the highest
possible harmonic consonances.

According to the first viewpoint, if the Pythagorean comma is compensated by the syn-
tonic comma by using several iterates backwards from the fundamental, it is possible to
match the single ratios corresponding to the diatones of a JI scale within a coincidence
level of one schisma, and also two more tones of the Pythagorean chromatic scale, one
of them the tritone. Since these single ratios have greater harmonic consonance than the
Pythagorean tones (when they do not match), the ear will tend to identify the JI tones.

By taking the diatonic C major JI scale as reference, the concrete Pythagorean scale
starting at the class of the fifth B*® (9 fifths before the fundamental) has 9 out of 12
matching notes. If an instrument were to be tuned by fifths and were to play a composition
in that mode, by tuning it so that the narrow fifth is between D and A, it would be fully
compatible with JI instruments. The resulting scale is even better than the quarter-comma
meantone temperament. Of course, such a criterion is always relative to the tonic, i.e.,
according to a movable do system. Similarly, if an instrument using Pythagorean tuning
were to play in C minor mode, to match the diatonic minor JI scale tones it should be
tuned starting from the first fifth before the fundamental, with the narrow fifth between
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Af and F. Table 5 shows these choices and the four notes associated with improved the
harmonic consonance, since they become much closer to single ratios.

Pyth C D D E° F’ F G’ G A’ B B’ (o}
B 8% By Ffp Bl e Dfyr AOfpe Sy 2fp 2Bfp 2y 22 37
¢ 0.00 9022 203.91 294.13 384.36 498.04 588.27 701.96 792.18 882.40 996.09 1086.31

J5  1/1 16/15  9/8  6/5  5/4  4/3  7/5  3/2 8/5  5/3  16/9 158
¢ 0.00 111.73 20391 31564 386.31 498.04 58251 701.96 813.69 884.36 996.09 1088.27

Pyth C ct D Df E F F! G Gt A At B
F 30/20 37/211 32/23 39/214 34/26 22/31 35/29 3‘/21 38/212 33/24 3’0/215 35/27
& 0.00 113.69 203.91 317.60 407.82 498.04 611.73 701.96 815.64 905.87 1019.55 1109.78

78 1/1 16/15 9/8  6/5 5/4  4/3 10/7 3/2 8/5 5/3  9/5 15/8
¢ 000 111.73 203.91 315.64 386.31 498.04 617.49 701.96 813.69 884.36 1017.60 1088.27

Table 5. Pythagorean scales with the closest JI scales (matching tones in light gray). Pyth BY" matches the diatonic
major JI scale and Pyth F the diatonic minor JI scale. In dark gray, notes that improve Hellegouarch’s choice.

In the second viewpoint, both mathematical approaches have confirmed the previous
analysis. The first approach quantified the dissimilarity of two scales (in the present case,
one Pythagorean, the other JI), by means of the quadratic norm of the vector composed of
the respective differences of their tones, in cents. Since tonality matters, we used weights
to be proportional to the harmonic consonance of the JI scale tones. The method was
applied to test the twelve possible concrete Pythagorean scales in front of height JI scales
generated by the diatonic major and minor JI scales, which were completed up to get a
set of twelve single ratios close to those of the Pythagorean scale. By taking into account
the tonal hierarchy of the scale tones, it was possible to evaluate which are the closest
scales. Two Pythagorean scales provided the lowest MSE’s, by matching all the tones of
two diatonic major JI scales (the maximum number of tones that can be heard as simple
ratios is 9). The Pythagorean scale that begins the circle of fifths at B’ contains a whole
major diatonic JI scale in C and the scale that begins the circle of fifths at E”” contains a
whole diatonic major JI scale in F.

There are also two Pythagorean scales with low MSE’s that coincide with 9 tones of two
dibatonic minor JI scales. One scale begins the fifth iterations at F and the other begins at
B’.
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Table 6. (Left) The Pythagorean scale rising fifths from B’® contains the notes between blue marks (as in reading
direction), which match the C major diatonic JI scale. The Pythagorean scale rising fifths from F (descending fifths
from A") (notes between red marks) matches the C minor scale. (Right) The Pythagorean scale rising fifths from
E"® (notes between blue marks) matches the F major scale. The Pythagorean scale rising fifths from B® (descending
fifths from D*) (notes between red marks) matches the F minor scale. All of these scales match 9 out of 12 JI notes.

According to Table 1, in the relation of major to minor scales, there is a dualism that
connects the best Pythagorean B?” for C major to the best Pythagorean F for C minor
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(Table 6, left panel). In C major, the framework is rising fifths from B’ to D, i.e., from
23;; to ;’—z, using the notes B"’-F’-C? in the first row of Table 6 (left panel) to capture the

syntonic corrections to A-E-B on the flat side. The tritone G” is therefore determined, as
well as B? in the second row. The nine matching notes with those of JI are the two upper
rows except E”> (between the notes marked in light blue, as in reading direction), with the
narrow fifth in D-A.

For C minor, dually we take the chain of descending fifths (rising fourths), where the
corrected tones are for the minor thirds of the principal triads on G-C-F (under major
thirds of D-G-C), that is, A*-D#-G*. Again, the tritone comes for free F*, as well as C¥.
Thus the reversal, from Af to F, i.e., from 3—12 to 23—2, i.e. forward fifths Pythagorean F. The

nine matching notes with those of JI are the two lower rows except B’ (between the notes
marked in light red, as in reading direction), with the narrow fifth in A%F.

A similar reasoning connects the best Pythagorean E?” for F major to the best
Pythagorean B’ for F minor. In F major, the framework is rising fifths from E” to G,
ie., from g—iﬁ to %, using the first row of Table 6 (right panel) to capture the syntonic

corrections on the flat side. The tritone C” is therefore determined, as well as G” in the
first row. The nine matching notes with those of JI are the two upper rows of Table 6 (right
panel) except D, with the narrow fifth in G-D.

For F minor, we take the chain of descending fifths, from D¥ to B, i.e., from 23% to ?)’—z,

i.e. forward fifths Pythagorean B’. The nine matching notes with those of JI are the two
lower rows except Af, with the narrow fifth in E*-B.

The second mathematical approach only considers the number of matching tones at a
specific level of coincidence without taking consonance into account. It clearly identifies
the previous four Pythagorean scales that have 9 matching tones at level € = 6¢ and 8
matching tones at level € = 2¢, although 9 matches at level € = 2¢ by using the tritones
5 5

As displayed in Table 2, it is not possible to tune at the same time, according to just
intonation, some pairs, such as G§-AJ and Gﬁ-BJ, which would be the ones needed to play
in the harmonic minor or melodic minor just intonation modes. These are out of tune by
a syntonic comma. Therefore, if Pythagorean tuning is to emulate or replace syntonic just
tuning, one should always carry such a difference of one syntonic comma towards the three
harmonically least relevant notes (according to the musical key) and keep it in tune just
the other 9 notes.

In the end, such a just intonation criterion for choosing the notes of a Pythagorean
scale, has followed another Hellegouarch’s remark (Hellegouarch 2002): “players who are
not slaves to a fixed pitch and can distinguish between C* and D’ will gain in expressivity”.
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Appendix A. Notation used for the scale tones

EJ, H B3 (E}) H E;{f (Eif) ” Bl H supersubharmonics
k v ¢lp g Vp ¢ ¢ v v ¢ v ¢ T v ¢
0]1.0000 0.00{| 0 0{1.0000 0.00 C ||85 53|1.9958 1196.38 1.0000 0| 1/1{1.0000 0.00
1{1.0132  22.64|[12 19|1.0136  23.46 65 41(1.0115 19.84
2|1.0265 45.28||24 38(1.0275 46.92 46 29(1.0253  43.30
3|1.0400  67.92{|36 57|1.0415 70.38 27 17(1.0393  66.76
411.0537  90.57||48 76(1.0557  93.84 8 5[1.0535 9022 D° 1.0595 100
5(1.0676 113.21| 7 11{1.0679 113.69 C* |73 46|1.0656 110.07 090 16/15|1.0667 111.73
6(1.0816 135.85\119 30(1.0824 137.15 54 34|1.0802 133.53
711.0959 158.49(|31 49(1.0972 160.61 35 22(1.0949 156.99
8|1.1103 181.13|(43 68|1.1122 184.07 16 10|1.1099 180.45 E* 10/9(1.1111 182.40
911.1249 203.77|| 2 3|1.1250 203.91 D |81 51|1.1227 200.29 1.1225 200\ 9/8(1.1250 203.91
10{1.1397 226.42|(14 22|1.1403 227.37 62 39|1.1380 223.75 8/7|1.1429 231.17
11(1.1547 249.06|[26 41{1.1559 250.83 43 27(1.1535 247.21
12{1.1699 271.70|(38 60{1.1717 274.29 24 15|1.1692 270.67 7/6|1.1667 266.87
13]1.1853 294.34|(50 79|1.1877 297.75 5 3|1.1852 294.13 E” |[1.1892 300
14{1.2009 316.98| 9 14{1.2014 317.60 DF |70 44|1.1988 313.98 6/5(1.2000 315.64

15(1.2167 339.62|(21 33(1.2177 341.06 51 32|1.2152 337.44
16(1.2328 362.26|[33 52(1.2344 364.52 32 20(1.2318 360.90

17(1.2490 384.91|(45 71{1.2512 387.98 13 8[1.2486 384.36 F° 5/4(1.2500 386.31
18]1.2654 407.55|| 4 6]1.2656 407.82 E |78 49|1.2630 404.20 1.2599 400
19(1.2821 430.19[16 25]1.2829 431.28 59 37|1.2802 427.66 9/7(1.2857 435.08

20]11.2990 452.83(|28 44|1.3004 454.74 40 25(1.2977 451.12
21|1.3161 475.47{{40 63|1.3181 478.20 21 13|1.3154 474.58
22|1.3334 498.11||52 82|1.3361 501.66 2 1]1.3333 498.04 F |/1.3348 500| 4/3]1.3333 498.04
2311.3509 520.75(|11 17|1.3515 521.51 Ef |67 42|1.3487 517.89

24(1.3687 543.40(|23 36(1.3700 544.97 48 30(1.3671 541.35 11/8(1.3750 551.32
25|1.3867 566.04 (135 55|1.3887 568.43 (29 18|1.3858 564.81 7/511.4000 582.51
26(1.4050 588.68 (|47 74(1.4076 591.89 10 6[1.4047 588.27 G° L4149 oo |45/32|1.4063 590.22
27(1.4235 611.32| 6 9|1.4238 611.73 F* |75 47[1.4209 608.11 : 64/45|1.4222 609.78
28(1.4422 633.96||18 28(1.4433 635.19 56 35(1.4402 631.57 10/7|1.4286 617.49

29(1.4612 656.60(|30 47|1.4629 658.65 37 23(1.4599 655.03
30{1.4805 679.25|/42 66|1.4829 682.11 18 11[1.4798 678.49 A"
31(1.4999 701.89| 1 1|1.5000 701.96 G |83 52|1.4969 698.34 1.4983 700/ 3/2|1.5000 701.96
32(1.5197 724.53|[13 20(1.5205 725.42 64 40(1.5173 721.80
33(1.5397 747.17||25 39|1.5412 748.88 |45 28(1.5380 745.26

3411.5600 769.81(|37 58|1.5622 772.34 26 16|1.5590 768.72 14/9|1.5556 764.92
35|1.5805 792.45((49 77|1.5836 795.80 7 4[1.5802 792.18 A® |[1.5874 800

36/1.6013 815.09| 8 12|1.6018 815.64 G*|72 45|1.5985 812.02 8/5(1.6000 813.69
37]11.6224 837.74{|20 31|1.6237 839.10 53 33|1.6203 835.48 13/8]1.6250 840.53
38]1.6437 860.38(|32 50|1.6458 862.56 34 21)1.6424 858.94

39]1.6654 883.02(|44 69|1.6683 886.02 15 9]1.6648 882.40 B 5/3(1.6667 884.36
40(1.6873 905.66| 3 4|1.6875 905.87 A |80 50{1.6840 902.25 1.6818 900

41(1.7095 928.30(|15 23(1.7105 929.33 61 38|1.7070 925.71 12/7(1.7143 933.13
42(1.7320 950.94 |27 42(1.7339 952.79 42 26(1.7302 949.17

43(1.7548 973.58||39 61(1.7575 976.25 23 14|1.7538 972.63 7/4|1.7500 968.83
44(1.7779 996.23 |51 80(1.7815 999.71 4 2/1.7778 996.09 B® |1.7818 1000 16/9|1.7778 996.09
45(1.8013 1018.87[10 15[1.8020 1019.55 A%||69 43(1.7983 1015.93 9/5(1.8000 1017.60

46(1.8250 1041.51 (|22 34|1.8266 1043.01 50 31{1.8228 1039.39
47(1.8491 1064.15 |34 53|1.8515 1066.47 31 19]1.8477 1062.85
48(1.8734 1086.79(146 72(1.8768 1089.93 12 7/1.8729 1086.31 C 1.8877 1100 15/8(1.8750 1088.27
49(1.8981 1109.43|| 5 7|1.8984 1109.78 B |77 48(1.8945 1106.16 ’
50]1.9230 1132.08(|17 26|1.9243 1133.24 58 36|1.9203 1129.62
51]1.9484 1154.72{|29 45|1.9506 1156.70 39 2411.9465 1153.08
52|1.9740 1177.36||41 64|1.9772 1180.16 20 12|1.9731 1176.54
5312.0000 1200.00{[53 84|1.0021 3.62 0 0]2.0000 1200.00 C

Table Al. Pythagorean scales Ef’Q, Eié‘o’ (alternating stripes) and E533. T indicates equal temperament scales.
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