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For well-formed generalized Pythagorean scales it is explained how to fill in a bidimensional table,
referred to as scale keyboard, to represent the scale tones, arranged bidimensionally as iterates and
cardinals, together with the elementary intervals between them. In the keyboard, generalized diatonic
and chromatic intervals are easily identified. Two factor decompositions of the scale tones, which are
particular cases of duality, make evident several properties on the sequence of intervals composing
the octave, such as the number of repeated adjacent intervals and the composition of the generic
step-intervals. The keyboard is associated with two matrix forms. When they are mutual transpose,
the keyboard is reversible, as in the 12-tone Pythagorean scale. In this case, the relationship between
the two main factor decompositions is given by an involutory matrix.

Keywords: generated scale; closure condition; Pythagorean tuning; generated tone system;
well-formed scales; scale temperament; generalized diatonic scales; Myhill’s property

2010 Mathematics Subject Classification: 05C12; 11A05; 54E35

1. Introduction

In the 12-tone Pythagorean (chromatic) scale generated by iterations of the third harmonic, the
ratio between two consecutive scale tones' is either the chromatic semitone A or the diatonic
semitone B. By excluding the fundamental, the minimal and maximal extreme tones of the
scale are the 7-th and 5-th iterates?, respectively. The first iterate has cardinal 7 within the
octave, i.e., its scale-order index is 7, and the scale note with cardinal 1 is the seventh iterate.
Among the 12 elementary intervals composing the octave, 5 are chromatic and 7 diatonic, ordered
as ABABABBABABB. The chromatic semitones, A, come alone; the diatonic semitones, B,
corresponding to the notes of the 7-tone Pythagorean (diatonic) scale, can be single or double.

Nevertheless, the impossibility to provide a complete set of justly intoned concords for each
of the seven diatones has historically led to complete the scale with more than five accidentals.
Several examples of keyboards subdividing the octave with more chromatic notes are described
by Lindley (1980). For instance, Marin Mersenne, in his Harmonie Universelle published in 1636,
urged the adoption of elaborate keyboards comprising 18 pitch classes: “the most economical way
to provide all possible pure concords among the naturals themselves is to have two D’s, one pure
with F and A, and the other, a comma higher, pure with G and B. Then these eight diatonic
notes may be surrounded with chromatic notes giving each natural all six of its possible concords”.
Similarly, Guillaume Costeley in 1558 and Francisco de Salinas in 1577 used temperaments with
19 and even 24 notes per octave.
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LScale tone refers to a scale note in the frequency domain [1,2), i.e., the representative of a frequency class (FC) in the
octave, while in the log, space it is a pitch class (PC) in [0,1).
2We will also refer to one iteration as a fifth, since it corresponds to the musical interval perfect fifth, 5 being the number
of notes of the diatonic scale comprising the interval.



We propose to study how is the process of subdividing the octave in well-formed scales with an
arbitrary number of tones and an arbitrary generator. The above and other properties concerning
the distribution of the scale tones are analyzed in the current work by using the approach for
generalized Pythagorean scales described in Cubarsi (2020) developed in the specific level of the
frequency domain. In particular, we are interested in to represent all these features in a simple
and organized way.

These are properties associated with (non-degenerate) well-formed scales of one generator
(Carey and Clampitt 1989, 2012, 2017), a particular family of generalized Pythagorean scales
generated by a positive real tone h other than a rational power of 2 (otherwise we meet the
degenerate case of an equal temperament scale). Following Cubarsi (2020), such a n-tone scale
will be referred to as a h-cyclic scale® Eﬁ Under this approach, its tones are
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k=0,....n—1 (1)

with [k] = |klogy h| (integer part). When the scale tones are ordered from the lowest to the
highest pitch in (1,2) we find two eztreme tones, the minimum tone v, and the maximum tone
v, which determine the two elementary factors U = v, (from the fundamental up) and D = VLM
(from the fundamental down) associated with the generic widths of the step interval according
to the Myhill’s property (Clough and Myerson 1985, 1986). The indices satisfy n = m + M, all
of them coprime.

The tone v,, = ;E—:H does not belong to the scale E,’}, but provides the closure condition (either
vp — 17 or v, — 27 ) determining the n-order comma r, = min(v,, %), i.e., the error in
closing the scale near the fundamental 1y = 1 with no other scale notes between them. However,
the comma itself does not provide the information about whether v, closes above or below the

fundamental. By using the index*
N=[m]+[M]+1 (2)

it is possible to define the scale closure ~, = g—;, which is a value close to 1, either above or
below. Then, the scale digit 6 = N — [n], taking values 0 or 1, gives such an information, so
that 6 =0 <= v, >1 (v = 1T,y =kp)ord =1 <= 7, <1 (v, = 27,9 =k, '). The
value |logy v, | = logy Ky, multiplied by 1200 measures the distance from v, to 1 in cents.

A n-tone cyclic scale is associated with fractions % providing convergent and semi-convergent
continued fractions expansions of log, h. In particular, optimal scales are those providing the best
approximations from both sides, which is tantamount of getting the best estimations ~, = 1 for
the scale closure, among other properties discussed in Cubarsi (2020).

The family of cyclic scales can be determined by initializing m = M = 1 (for n = 2), so that
the indices of the extreme tones of two consecutive cyclic scales E? C E, satisfy

G )=( ) (i)

3 According to this paper, cyclic scales are well-formed scales that can be obtained for any real positive value h, by
defining the octaves of the fundamental frequency ratio 1 from the monogenous group {w®,k € Z}, for any real number
w > 1, and not only for w = 2. This is a particular subset of the cyclic scales as defined in Jedrzejewski (2006, pp. 169-172),
which are not restricted to well-formed scales. For well-formed scales, the partition of the octave induced by the scale notes
has exactly two sizes of scale steps and each number of generic intervals occurs in two different sizes, while the other scales
have three sizes of scale steps and generic intervals. In both cases, the generator h can be assigned to specific real numbers,
such as the Golden number, e, 7, the Euler constant, etc., as this author explains.

41t can also be expressed as N = [n — k] 4+ [k] + 1, for 0 < k < n.




In addition, for two consecutive cyclic scales Eg_ C E”, one of the following cases takes place,
(1) m>M=E" =E" . (n) m< M= E'" =E} (3)

Several basic properties of cyclic scales are now reviewed, which will be taken as a starting
point for the current work. Any pair of pseudo-complementary tones v and v,,_j satisfy

Vg Upk =2%; k=1,...,n—1 (4)

The pair (v, %) in the log, space is the spectrum of a step-interval corresponding to a number
of k h-iterates (or iterates, to simplify), with constant spectrum width |log, v, | for all the step-

intervals. In particular, for the unit step-interval, we get v, = “=5 = %. Each pair of pseudo-

complementary tones induces a partition in a set of j octaves. They satisfy

I/]:}_k< 2 )k:2j; ke{l,...,n—1} (5)

VUn—k
where the value calculated from one of the following expressions,

j=(n-k +1) k- [k] (n — k) = Nk — [k]n (6)

is the cardinal of the scale tone v. In particular, for kK = m, equation (6) becomes®

1= ([M]+1) m—[m] M (8)
Another particular case gives the cardinal of the first iterate® vy,
p=N-—[1]n (9)

On the ground of the foregoing properties, we shall analyze, for a generic cyclic scale, how the
tones and elementary intervals are distributed along the octave. To this purpose, the scale tones
will be expressed as the product of integer powers of two factors. It will be referred to as factor
decomposition (FD). FD’s are particular cases of duality (Regener 1973; Carey and Clampitt
1996; Clampitt and Noll 2011), here worked out in the space of the frequency ratios instead of
note intervals. Two main FD’s are studied, although we discuss other possible FD’s.

The first FD is the one provided by the generator/co-generator pair. The reduction of the
iterates in equation (1) to the reference octave Qg = [1,2) is interpreted as follows: it consists in
either increasing the tones by the factor corresponding to the first iteration of the generator, i.e.,
v1 (the fifth, in the case of the 12-tone Pythagorean scale), or decreasing by its complementary
2 (the fourth).

The second FD is obtained from the step/co-step factors (e.g., Noll 2015), that is, it consists in
to determine the partition of the octave from iterations of the two elementary factors associated
with the unit step-interval, U and D, which are the generalization of the chromatic and diatonic
intervals of the Pythagorean scale.

We study the relationship between both main FD’s and analyze the structure of the octave
in a general case of a cyclic scale E". Examples for the Pythagorean scales of 12 and 53 tones
are provided, where the scale temperament is represented in a table and in matrix form, leading

5This equation is equivalent to the following ones, with n, N coprime,

Nm-—-n[m]=1, n(M]+1)-NM=1 (7)

61f the generator is a FC, i.e., it satisfies 1 < h < 2, then [1] = |log, k] = 0 and N is just the cardinal p of the generator.



to the concept of scale keyboard, where the notes of the scale are arranged bidimensionally
according to both main FD’s, together with the corresponding temperament. The singular case
of reversible keyboards for the 12-tone Pythagorean tuning is also described, where the matrices
associated with the keyboards are mutual transpose.

2. Factor decompositions

2.1. Pairs of factors

Although the iteration index of any tone v # vy of the cyclic scale E can be expressed from

two coprime indices @ and b as k = ar — bs, for certain positive integers r, s satisfying 0 < r <
S
2

b, 0 < s < a, it is not always possible to write the scale tones as v = v}, -] , since the powers

of 2 on both sides may not match.
In a general case, we will write the scale tones as satisfying

AN A
= () () .
with indices in Z, and p, g > 0 coprime. Without loss of generality we may assume « > 0. We also

ask the above FD to include the fundamental at the endpoints of the octave. Since for « = =10
we get 19 = 1, in addition, for certain integers ag and g, it must be fulfilled
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LEMMA 2.1 The ezistence of ag, By € Z in the above equation is the necessary and sufficient

condition to obtain the FD of equation (10).

Proof. 1t is obviously necessary in order to determine the extreme 2. Let us prove that it is
sufficient. On the one hand, with regard to the powers of the generator h, it is required pag—qBy =
0. Hence, since p, q are coprime, oy = qz for certain x > 0, and Sy = pz. On the other hand,
with regard to the powers of 2, p'ag — ¢/Bp = —1, hence p'qrz — ¢’pxr = —1. Then, since p, q are
coprime, it is required x = 1. Therefore, it must be fulfilled

d=pq —qp' =1 (12)

and ag = q, By = p. Equation (12) guarantees that the indices «, f in equation (10) are integers,
since this involves the fulfillment of the following two systems,

() =07 2)(5) (5)=a(5 D) (wm)
[¥] P = B )’ B d\ —-p' p [£]

The value d = 1 (determinant of the first system) also guarantees that there is an isomorphism
between the pairs of indices (k, [k]) and (o, 3). |

We point out several particular cases of pairs of factors generating the scale tones:

2\ P
(1) A unique tone v, = % generates the scale tones if, for certain = € Z, it satisfies v/} (3—) = 2.
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That is, ( ) = 2. Hence x = p = 1. Thus, any scale tone can be expressed as

2l»] hP
— ﬂ)s
v = 1] ( 5
which we call first FD.
(2) There is only one case in equation (5), for j = 1, k = m, satisfying the condition of equa-
tion (10). It provides the second FD,
2 S
R
ve =, (VM>

, m
(3) The extreme tones of any cyclic scale E!, C E! satisty v ( 2 ) = 2. Therefore, the

Vgt

condition of equation (10) is fulfilled. Hence, the scale tones of E! can be expressed as

S
v, = U < 2 )
=",
12

Notice that the condition of coprime indices is not sufficient for such a specific FD. If further
requires that they correspond to extreme tones of a cyclic scale.

2.2. First FD

According to the first case in Section 2.1, starting by vg = 1, a tone v, € E can be obtained
from vy either increasing by a factor v1 > 1if vy i1 < 2, or decreasing by a factor V% < 1if
V1 Vg—1 > 2. Thus, from k=1ton —1,

Vk—1 V1, Vg—1 < V% (14)
vV = -1
Vk-1 (%) , e > 2
Hence, we can write
9\
yk:\Il(a,ﬁ)E(yl)a<—> sa,feN; 0<a+p=k<n (15)
41

By taking into account equation (1), it is satisfied

<ﬂ]fzﬂ ) - < [ﬁﬂ 1+1m > < ?) (16)

The first FD defines univocally the scale tones from the indices (a, ). Thus, for 0 < a <
(14 [1)n — [n] and 0 < S < [n] — [1]n, the scale tones have coordinates

a _ [(1+[1] -1 k
(5) - ) () o
In addition, the values 8 = —a = [n] — [1]n determine the frequency 2.

Let us bear in mind that, when characterizing a tone by the couple (k,[k]) according to
equation (1), the latter value is not informative, since each scale tone corresponds to a different
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value of k. Nevertheless, when representing a tone with the pair (a, ), it is not possible to
determine the tone just from one of the components, since it is possible that different tones
share the same value of any of the previous components. Also notice that not all possible factor
products give rise to scale tones.
The next iteration to v, = ¥(a, 8), with k = a + 3, is
Viar = {\P(a +1,8) <= 1 < (18)
V(a,f+1) < v >

Shos o

2.3. Second FD

According to the second case in Section 2.1, we express an arbitrary tone v, € E” in the following
form,

q
w=ow.a=s () 0<h<n (19)

As justified in Cubarsi (2020), the factors v, and %M are the only two possible ratios (of value
greater than 1) between two consecutive scale tones introducing the non-equal temperament.
The next tone to ®(p, q), by ordering the scale as increasing frequencies, is either ®(p + 1, q)
or ®(p,q+ 1). Therefore, the value j = p+ ¢ is the cardinal of v} counted from the fundamental
(p=qg=0).
By taking into account equation (1), we get the relationship between the corresponding indices,

()= (o oo ) ()

for' 0 <p< M,0<qg<m,and 0 <k <n=m+ M. The extreme tones correspond to ®(1,0)
and ®(M,m — 1). In addition, ®(M,m) = 2.

2.4. Relationship between both FD’s
For the tone v, € E" making ¥(a, 8) = ®(p, q), according to equations (15) and (19) we have

< [[1]] 1+1[[1]] > < g ) B < [[Z]] _([[&Jﬁﬂ 1) ) <§ > (21)

Let us bear in mind that these expressions are valid for o + 8 < n and p + ¢ < n, by excluding
the indices that satisfy a4+ 8 = p + ¢ = n. These FD’s give the coordinates of the scale notes
in two reference systems: one from the generator/co-generator pair and the other one from the
step/co-step factors. Since the determinants of these matrices are non-null, the transformations
are isomorphic.

7Since m, M are coprime we may recall Bézout’s lemma stating that there are two integers a and b that satisfy 1 =
ma — Mb. This equation admits infinitely many pairs of solutions, although there are two solutions satisfying |a| < |M|
and |b| < |m|. Furthermore, since m and M are positive, there exists a unique couple of values (a, b) satisfying 0 < a < M,
0 < b < m. The three pairs (a,b), (a,m), (M,b) are also coprime numbers. The values for (a,b) are those given in
equation (8). If we multiply the above equation by an integer k¥ > 0 and write p = ka,q = kb, we get the Diophantine
equation k = mp — Mg, corresponding to the first component in equation (20). Then, there only exists one pair of values
(p, q) satisfying 0 < p < M, 0 < g < m, although such an equation is also valid for the value k = 0 in the trivial case
p =q=0. It is possible to determine directly the values (p,q) by using the appropriate algorithm by working only with the
first component in equation (20); however, the linear system provides them directly.



The respective coordinates are related according to the following matrices
<a>:A<p> A:<a+mwhw@[Mp4_a+mww> 2
p a)’ [m] — [1]m (M — [M] — 1

(1) (5) o (et )

The tone iterate k = a+ (8 has cardinal is j = p+ ¢. Then, by taking into account equations (2)
and (9), they can be computed as

a+pf=mp-—Mq; p+qg=pa—(n—p)p (24)

2.5. Involution

In Section 5.4 we shall discuss the meaning of the particular case where A~! = A, i.e., when A is
an involutory matrix. Taking into account equations (22) and (23), this is satisfied if (14 [1])m —
[m] = [M] — [1]M + 1. By rearranging terms, we get (1 + [1])m + [1]M = [m] + [M] + 1.
Bearing in mind equations (2) and (9), this condition becomes

m= i (25)

That is, the index of the minimum tone m matches the cardinal p of the first iterate.

In this case, the role of the pairs («, 5) and (p,q) is interchangeable, and will give rise to the
concept of reversible keyboards, where the iterates and cardinals, according to equation (24),
follow a similar scheme

k=mp—Mgq; j=ma-M}p (26)

i.e., if the pair of coordinates refers to the tone cardinal then the number we get is the tone
iteration, but if the same pair refers to the iterate then we get the tone cardinal.

For example, for the Pythagorean scale (h = 3), we have n = 12, N =19, m =7, M = 5,
[1] =1, and p = 7. Hence the matrices A and A~! are the same one:

(3 =2 n
A_<4_3» Al=4

Then, iterates and cardinals satisfy k =7p—5q, j =7a —50.

3. Relationship between coordinates

3.1. Tone cardinals

By inverting the system of equation (20), and by taking into account equation (8), we obtain the
following relationship

p= ([M]+ 1)k — M[K]

¢ = [l — m[] 0



Adding both equations, since n =m + M, N = [M] + [m] +1 and j = p + ¢, we get
j = Nk —n[k] (28)
so that,
j=kNmodn, 0<k<n (29)
Since N and n are coprime, for values of k from 0 to n — 1, j also takes all possible values from

0 to n — 1. Equation (29) provides a way for counting the cardinal of the tone iterates v within
the scale, that we shall notate as

U = vy = 0(p,q) (30)
Thus, the cardinal of v is
@ =N modn (31)

More precisely, according to the equations (28) and (31), as already pointed out as a particular
case of equation (6), we get

pw=N—[1]n (32)
Hence, the cardinal p of the first iterate is coprime with n. This is the condition ensuring that a
well-formed scale has similar symmetry properties to a n-TET scale.
Therefore, the cardinal j of v, can also be expressed as
j=kpmodn, 0<k<n (33)
with values 0 < j < n. The one-to-one mapping between the indices of the scale notes given by

equation (33) is one of Carey and Clampitt’s (1989) characterizations of well-formed scales with
regard to preserving rotational symmetry.

3.2. Tone iterates

We shall determine the k-th iteration in terms of the corresponding j-th cardinal. For the first
component in equation (20), since n = m + M, the k-th iteration satisfies

k=jm—qn; 0<j<n, 0<g<m (34)

As m and n are coprime, the bijection between the number of iteration k£ and the cardinal of the
j-th note is given by the relationship

kE=jmmodn, 0<j<n (35)
Similarly, for the second component, since N = [m] + [M] + 1, we get
[k] =j[m] —gN; 0<j<n, 0<g<m (36)
Since [m] and N are coprime, the bijection between the values [k] and j, is given by
[k] =j[m]mod N, 0<j<n (37)
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3.3. Tones next and previous

Next tone refers to the scale tones ordered by pitch in [1,2]. Let us determine what is the iterate
corresponding to each one of the two possible next tones to v, = ®(p,q) (for 0 < k < n), namely
®(p+1,q) and ®(p,q+1).

For v, = ®(p, q) the first equation of equation (20) is satisfied. Then, for ®(p + 1, ¢) we write

p+1)ym—gM =k+m, 0<k4+m<m+M

Therefore k < M, which is equivalent to p < %(q +1).
For ®(p,q+ 1), we have

pm—(q+1)M=k—M, 0<k—-M<m+M

In such a case k > M, which is equivalent to p > %(q +1).
Therefore, the next tone to v, = ®(p, q) is given by

(g+1), k<M
(g+1), k>M (38)

’ O(p,q+1) =vp_p; if p>

3z3lz

Thus, the tone vy increases by a fraction of either U = v, or D = % depending on whether its
index is or is not lower than the index M of the maximum tone®. In particular, the next tone to
vy = ®(M,m — 1), computed according to the previous second case, is ®(M,m) = 2vy, so that
®(M,m) and ©(0,0) represent the fundamental at both endpoints of the octave.

Similarly, the previous tone to v, = ®(p,q) (0 < k < n) is determined as

<I>_(p q) _ (I>(p— 17(]) =Up—m; ifqg< %(p_ 1)’ E>m (39)
’ O(p,q—1) =vpen; ifqg>2(p—1), k<m

Thus, the tone vy decreases by a fraction of either D = % or U = v,,, depending on whether its
index is or is not lower than the index m of the minimum tone. In particular, the previous tone
to vy can be computed as the previous to ®(M,m), according to the above second case, which
is (M, m — 1) = vyy.

3.4. Increasing by the same elementary factor

We may also ask whether starting from v, = ®(p, ¢) it is possible to get a number of i consecutive
tones by increasing only the first argument, i.e., what are the consecutive tones ®(p + 7, q) with
i > 17 These tones, according to equation (19), will all increase by factors U. In such a case, by
assuming the pair (p, q) as corresponding to the k-th iterate, it is satisfied

pm—qgM =k, 0<k<n=m+M

8From the point of view of algebraic combinatorics of words, equation (38) defines the scale as a Christoffel word of the
alphabet {U, D} with slope ; and length n (e.g., Noll 2008). The letter in the position j + 1 is U when the h-iteration
increases from k to k + m, according to the case k < M; hence, owing to equation (35), jm mod n < (j + 1)m mod n.
Otherwise, the letter in the position j+1 is D when the h-iteration decreases from k to k — M, according to the case k > M;
therefore jm mod n > (j + 1)m mod n. This matches the definition of a Christoffel word.



Thus, for ®(p+i, q) we get the identity (p+i)m—qM = k+im, and the condition 0 < k+im < n.
Therefore, since ¢ > 1, the increment of ¢ consecutive tones by a factor U is only possible if

im<mn-—k (40)

Hence, for the iterates & > M it is not possible to increase by a factor U. In particular, the
maximum value of ¢ is obtained for k = 0, so that

mm<n (41)

Similarly, we may also ask for how many consecutive tones it is possible to increase in the
second argument. These tones, according to equation (19), will all increase by factors D. Then,
for ®(p,q + i) we get the identity pm — (¢ +i)M = k —iM and the condition 0 < k —iM < n.
Therefore, since ¢ > 1, the increment of 4 consecutive tones by a factor D is only possible if

iM <k (42)

Hence, for the iterates kK < M it is not possible to increase by a factor D. In particular, the
maximum value of ¢ is obtained for k = n, so that

iM<n (43)

In Section 5 we shall see how to use the equations (41) and (43). Therefore we have proved the
following results:

THEOREM 3.1 Consider the scale tones in cyclic order as {¥o,V1,...}, where each tone is the
result of increasing the previous one by one elementary factor, either U = vy, or D = % The
mazimum number of consecutive U factors is the highest integer 1y satisfying iy m < n. The
mazimum number of consecutive D factors is the highest integer ip satisfying ip M < n. [ |

Since n =m+ M, if m > M, it is 2m > n, which is inconsistent with equation (41) for i = 2.
If M > m, it is 2M > n, which is inconsistent with equation (43) for i = 2. Then,

COROLLARY 3.2 Ifm>M,iy=1.If M >m, ip =1. |

3.5. Coarser and refined scales

Since, in both cases, one of the elementary factors comes alone, i.e. has no similar adjacents,
it is always possible to merge two consecutive factors U and D as a whole step and consider
the remaining one as a half step. Notice that, by construction, the first step after 1 must be U,
and the last step before 2 must be D, therefore, the whole step must be formed as UD. From
this point of view, it is clear why an alternative approach for the refinement of generic scales
satisfying Myhill’s property consists in to use words in the letters U and D (e.g., Noll 2006, 2007)
(generic scales, however, do not need to satisfy the requirement of beginning by U and ending by
D, since this is a feature of cyclic scales). Thus, given a scale whose factors satisfy UPD? = 2, if
U < D then it can be refined by factorizing D = UD’, otherwise by factorizing U = U'D, and so
on. Notice that, on the contrary, to factorize D = D'U would yield a scale beginning and ending
with the factor U, and to factorize U = DU’ would lead to a scale beginning and ending with
the same factor D, which is inconsistent with the definition of cyclic scales.
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3.6. Generic step-intervals

It is also possible to be more precise about the two sizes of a generic step-interval. Consider two
tones v, = ¥; and vy = ¥ satisfying 0 < A; = j—j" < n. The subtractions of the equations (35)
and (37) respectively for both tones have the following pairs of solutions,

Ap=k—F =Ajmmodn >0, Ay <n; =28, —n<0
Apg = [k] = [F] = Aj[m] mod N >0, Apg < N ; Aﬁk]] =Ap-N<0

Then, according to equation (27), subtracted for both tones and bearing in mind the equa-
tions (7), we have the respective pairs of solutions for the quantities A, = p —p’ > 0 and
Ayj=q—4¢ >0,

Ay = ([M]+1)Ar — MApy A=A, -1
Aq = [[m]]Ak - mAM 3 Ag = Aq +1

Therefore, we meet Myhill’s property,

THEOREM 3.3 An interval of A; > 0 steps is composed of the elementary factors either UBr» DA
when the difference of iterates between endpoints increases, or US»~1 D« when the difference
of iterates decreases. |

4. Generalized diatones

The 12-tone Pythagorean scale, known as chromatic scale, contains the 7-tone Pythagorean scale,
known as diatonic scale, whose tones, the diatones, are basic to the western pitch notation. The
previous cyclic scale to E3,, with indices of the extreme tones m = 7 and M = 5 is E2, which
indices of the extreme tones are m = 2 and M = 5. E3 is the former scale that has been
subdivided by adding accidentals to obtain the next finer cyclic scale E},. For n = 7, according
to the above results, the factors D come alone. The elementary factors follow the scheme

1/0%-1/2%-1/4%-1/6%1/1%-1/3%-1/5%—21/0
90 Lo, Loy, Ly L, Ly, Ly, Loy,

satisfying U D? = 2. The factor U = g—i is greater than D = g—i, hence it can be splitted as
U = U'D, which adds an intermediate tone between U’ and D, and gives rise to the scale E3,,
satisfying (U’)°D” = 2. In such a case, a tone coming after a factor D is a diatone, i.e., a tone
already existing in E2. The complementary set to the diatones is a pentatonic scale, with no two
consecutive notes, which, in the chromatic scale, are interpreted as accidentals of the diatones.
Likewise, the factor D, which is common to both scales, is the diatonic semitone, while the new
factor U’ in E3, is the chromatic semitone.

The study of (hyper)diatonic sets of d tones within a chromatic set of ¢ tones has been largely
studied (e.g., Clough 1979; Agmon 1989; Clough and Douthett 1991) leading to two diatonic
models A (¢ = 2d — 1) and B (¢ = 2d — 2 with d odd), the latter having higher relevance to
the study of harmonic tonality (Noll 2015). It is characterized in several ways in Clough and
Douthett (1991) and is defined as a particular maximally even set, with precisely one tritone for
d # 2, among other properties. In generalized Pythagorean tuning, diatonic sets are scarce. For
instance, if h = 3 a diatonic set of type B exists only for d = 7,c = 12; if h = 5 then the only
diatonic set is for d = 3,c¢ = 4. Diatonicity has been extended to alternative concepts, such as
diatonic/pentatonic systems (Gould 2000), pseudo-diatonic scales (Noll 2006), and generalized
diatonic scales (Jedrzejewski 2009, 2008).
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m > M M>m

[e]

® diatone diatone ®

(] 10%0

accidental accidenta.

Figure 1. Diatones and accidentals in relation to the scale factors.

In the context of generalized Pythagorean tuning, we shall use the concept of diatone in a
generic sense, as a tone already belonging to the previous scale in the chain of cyclic scales. Thus,
any cyclic scale E" will contain the generic diatones, namely the tones of the previous cyclic scale
Eﬁ, C E!, in addition to the new non-adjacent tones, which we consider as the accidentals. Let
us assume that the scale E" has indices of the extreme tones m, M and consider the scale tones in
cyclic order as {0J¢, 91, ...}, where each one of these tones is the result of increasing the previous
one by an elementary factor U or D. According to the cases in equation (3) we have:

THEOREM 4.1

(1) If m > M, the tones composing the diatonic scale E". = EP are those of E that result
from increasing the previous tone by o diatonic elementary factor D, which is common to
both scales.

(1) If M > m, the tones composing the diatonic scale EZ, = Ef\l/[ are those of E" whose next
tone is attained increasing by a diatonic elementary factor U, which s common to both scales.

Proof.

(1) Consider the scale tones ¥; = ®(p, q) whose next ones are 9,41 = ®(p, ¢+ 1), which increase
by one factor D. According to equation (42), with ¢ = 1, this is only possible for the iterates
v satisfying M < k < n, i.e., with indices M, ...,n — 1. Thus, according to the second case
of equation (38), their respective next tones are the iterates vg_pz, i.e. {vg, 1, Vm—1}.

(12) Consider the scale tones ¥; = ®(p, ¢) whose next ones are ;41 = ®(p + 1,¢), increasing by
one factor U. According to equation (40) with ¢ = 1, this is only possible for the iterates v
satistying 0 < k < M, i.e. {vo,v1,...,Vp—1}-

Consequently, owing to Corollary 3.2, if m > M the accidentals are the tones obtained by
increasing the previous one by a factor U, and come alone (see Figure 1). If M > m, the
accidentals are the tones obtained by increasing the previous one by a factor D, and also come
alone. Thus, if M > m the diatones are associated with the first case of equation (38) and, if
m > M with the second case of equation (39).

If M > m, alterations of a tone exclusively in a number of U elementary factors only modify
the index of its iterate in packs of m steps. On the other hand, if m > M, alterations of a tone
exclusively in a number of D elementary factors only modify the index of its iterate in packs of
M steps. Therefore, consider a scale tone v, € E",

COROLLARY 4.2

(1) For m > M, if k < m, v is a diatone and (k + M) mod m is the index of the previous
diatone, otherwise vy is an accidental and k mod m s the index of the previous diatone. In
both cases, (k — M) mod m is the index of the next diatone.

(2) For M >m, if k < M, vy is a diatone and (k+m) mod M is the index of the next diatone,
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otherwise vy is an accidental and k mod M is the index of the next diatone. In both cases,
(k —m) mod M is the indez of the previous diatone. |

In order infer such features for the next scale E:;, we recall the two possible cases for E,

(@) 6=0<= >l <<= mt=m+M, M"=M < 1<D<U m
(b) 6=1 <= <l mt=m Mt=m+M < 1<U<D (44)

In case (a), for E", we have m* = m + M and M+ = M. Then, D* = D and U* < U, so
that the diatones are the tones following a factor DT. However, whether DT < U™ or DT > U™
will depend on the value 6*. Only if 67 =1 we get U < D and the scale E", is optimal.

According to Cubarsi (2020), an optimal scale can be identified from a changing value of the
scale digit § and, therefore, consecutive optimal scales have alternating values of this digit.

In case (b), for E", we have m* = m and M™ = m + M. Then, D* < D and U" = U, so
that the diatones are the tones previous to a factor UT. Only if 67 = 0 we get DT < U™ and
the scale Eilﬁ is optimal. Therefore,

COROLLARY 4.3 Consecutive optimal scales E" and EZ+ have alternate short and long elemen-
tary factors, i.e., either D < U and UT < DT, or U < D and DY < U™, |

However, the role of these factors with regard to the diatones does not alternate, neither does
the relation between the indices of the extreme tones.

5. Examples of bidimensional representation

5.1. 12-tone Pythagorean scale

For n =12 and h = 3 the scale is optimal. In such a case, the relevant indices are
m=7 M=5 [m]=11, [M]=7 [n]=19, N=19, u=7

Since m > M, the factor D is the one associated with the diatones, according to the genuine name
of the 7-tone Pythagorean scale. The condition of equation (41) is only satisfied for the value
i = 1. According to equation (40), this increment is only possible for fifths satisfying 0 < k < 5.
This is exactly the first case of equation (38). Therefore, these five notes, corresponding to fifths
k =0,...,4 (and by equation (33), to the cardinals j = 0,7,2,9,4) will pass from ®(p,q) to
®(p+1, q) increasing by a factor U, and can no longer be increased further in the first argument.
Thus, the cardinals j = 1,8, 3,10,5 correspond to accidentals. The remaining fifths will increase
in the second argument.

The condition of equation (43) is fulfilled for the values ¢ = 1,2. For ¢ = 1, according to
equation (42) we get the range 5 < k < 12, corresponding to the second case of equation (38).
Therefore, these seven notes, for fifths £k = 5, ..., 11 and cardinals j = 11,6, 1,8, 3, 10, 5, will pass
from ®(p, q) to ®(p, g+ 1) increasing by a factor D. Their following cardinals j = 0,7,2,9,4,11,6
are the diatones and form the 7-tone diatonic scale. In addition, some of these notes may be
increased twice in the second argument. The value ¢ = 2 allows this possibility for the fifths
satisfying 10 < k < 12. Hence, two notes, those of fifth £k = 10,11 and cardinal j = 10,5, will
follow a sequence as ®(p,q), ®(p,q+ 1), ®(p,q + 2).

The elementary factors are U = 23—171, D= g—:, satisfying D < U and associated with the value
0 = 0. The respective intervals measure 113.69 cents for each one of the 5 factors U, corresponding
to the chromatic semitone, and 90.22 cents for each one of the 7 factors D, corresponding to the
diatonic semitone. Then, the factors composing the 12-tone Pythagorean scale follow the order
described below, that can be read as generated by fifths (in the top row) or as increasing cardinals
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(in the bottom row)

Vo —> V7 —> Vo —> Vg —> V) —> V1] > Vg >V —> Vg —> V53—V > V5 —= 21

190—>191%192%193%194g195gﬁﬁﬁ%%ﬂs%ﬁg%ﬂlo%ﬁn%1912

For the whole octave, we get U? D7 = 2, according to equation (5) with j =1, k = m.
A fifth corresponds to a factor U3D* of the octave, except for the false fifth closing the octave,
i.e., between v1; and 21y, which corresponds to a factor U?D5.

5.2. 53-tone Pythagorean scale

For n = 53 and h = 3 the scale is optimal. In such a case, the relevant indices are
m=12, M =41, [m]=19, [M]=64, [n]=84, N=84, u=31

Depending on whether the increment is in the first or second argument of equation (38),
consecutive tones will increase by factors U = ;’—1;, D = g%, satisfying D < U and associated
with the value § = 0. Now, since M > m, the factor U is the one associated with the diatones, i.e.
the tones of the 41-tone Pythagorean scale that precede this factor. The corresponding intervals
are 23.46 cents for the 41 factors U and 19.85 cents for the 12 factors D, associated with the
accidentals that precede it. It is fulfilled U*' D12 = 2.

Let us begin by the second argument corresponding to the factor D. The condition of equa-
tion (43) only holds for the value ¢ = 1 and is fulfilled for 41 < k < 53. These 12 notes, which
according to equation (33) have cardinals j = 52,30, 8,39,17,48,26,4,35,13,44,22, no longer
increase further in the second argument. These are the accidentals. All other tones of the scale
will increase in the first argument.

For the h-iterations allowing to increase in the first argument, i.e. by the factor U, the condition
of equation (41) holds for indices i = 1,2,3,4. All theses cases will lead to diatones. For i = 4,
the fifths satisfying equation (41) fulfill 0 < k£ < 5 and can be increased 4 times. These fifths
correspond to the cardinals j = 0,31,9,40, 18. Therefore, the notes immediately subsequent,
of cardinal 1,32,10,41,19, can be increased 3 times, those of cardinal 2,33,11,42,20 can be
increased 2 times, and those of cardinal 3,34, 12,43,21 can be increased 1 time.

For ¢ = 3, the fifths that will increase 3 times are those that meet 0 < k < 17 and correspond
to the cardinals of the above case ¢ = 4 and j = 0,31,9,40,18, in addition to the cardinals
1,32,10,41,19, as we had discussed, and also the new tones of cardinal 49, 27, 5, 36, 14, 45, 23.

For ¢ = 2, the fifths allowed to increase 2 times are those that meet 0 < k < 29 and correspond
to the above cardinals, in addition to 50,28, 6,37,15,46,24,2,33,11,42,20. Finally, for ¢ = 1, the
fifths fulfilling 0 < k < 41 can increase 1 time. These are, in addition to all the previous ones,
those of cardinals 51,29, 7,38,16,47, 25,3, 34,12,43, 21.

5.3. Scale Keyboards

The above procedure is better understood and easier evaluating with the help of the following
tables. The tones, ordered by fifths, are written in smaller font size and follow increasing ordering
from left to right in the same row. The note cardinals increase from top to bottom in each column.
This scheme is a scale keyboard, either defined by fifths or by cardinals. The way the scheme is
filled in is according to the reverse order: starting from the last row and by filling in each row from
right to left according to the iterates, with m columns. These m tones are written in gray and will
increase a by factor D to attain the next tone, while the remaining tones will increase by a factor
U. Rows are indexed by number of fifth £ and, just below, the cardinal j is calculated according
to j = kp mod n (equation (33)). Columns are indexed by cardinal j and, just above, the fifth is
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calculated according to k = jm mod n (equation (35)). The value U or D on the right-hand side
column is the factor between two consecutive tones of the scale in the same column, the second
in the row immediately below.

n=53,m=12, M=41 |

ke€[0,n—4m) o 1 2 3 4 ||U

j=kp modn 31 9 40 18 i
ke[p3-4m53—3m) [ 5 6 7 8 9 10 11 12 13 14 15 16 | U
i149 27 5 36 14 45 23 1 32 10 41 19 || 4
 k€ln—3mm—2m) | 17 18 19 20 21 22 23 24 25 26 271 28 || U
1950 28 6 37 15 46 24 2 33 11 42 20 |||

" ken—2m,M) |29 30 31 32 33 34 35 36 37 38 39 40 | U
j|151 29 7 38 16 47 25 3 34 12 43 21 |||

ke[M,n—1) | 41 42 43 44 45 16 A7 48 49 50 51 52 D

152 30 8 39 17 48 26 4 35 13 44 22| |

Table 1. 53-tone Pythagorean keyboard with m = 12 columns. The horizontal order is by fifths & and the vertical by tone
cardinals j. The values U (diatonic factor) and D are the factors between consecutive cardinals. Diatones in black and
accidentals in gray.

For the 53-tone Pythagorean keyboard listed in table 1, when the bottom of a column is
reached, the following tone is always on the top of another column, although for the 12-tone
keyboard of table 2 it is not always so. In such a case, the notes that follow the cardinals 5 and
10 are in the same row and are simultaneously on the top and bottom of their own column.
In this case, the next cardinals to 5 and 10 are also obtained by multiplying by a factor D. In
table 1, since M > m, the tones preceding a factor D are accidentals, written in gray, while those
preceding a factor U are the diatones, i.e. the tones of the previous cyclic scale. Each column
contains at most one accidental as a result of the refinement of the 41-tone Pythagorean scale’.
This approach allows to account for the alterations of the scale notes (Hook 2007; Douthett and
Hook 2009) from a different perspective.

The scheme of the 12-tone scale is also filled in the reverse order: starting from the last row
and by filling in each row from right to left according to iterates. The tones of the second row
will increase by a factor D and those of the first row by a factor U. Since m > M, the accidentals
are those preceded by a factor U, written in gray, while those preceded by a factor D are the
diatones of the 7-tone Pythagorean scale. In this case, the equality m = p is fulfilled. That is, the
condition of equation (25) is satisfied together with equation (32). This makes the role of fifths
and cardinals interchangeable, as seen in table 2, although not with regard to the factors U, D.

n=12,m=7,M=5

kelo,M) 0 1 2 3 4 U
j=kp mod n 07 2 9 4 i

keMmn—1)| 5 6 7 &8 9 10 11 ||« D
j111 6 1 8 3 10 5 )

Table 2. 12-tone Pythagorean scale keyboard with m = 7 columns. The horizontal order is by fifths k and the vertical by
tone cardinals j. The values U and D (diatonic factor) are the factors between consecutive cardinals. Diatones in black and
accidentals in gray.

9The cyclic scales with n = 17,29,41, 53 have the same index m and factor U, therefore, they are also represented in
this keyboard if the respective rows are eliminated, beginning by the bottom. Then, the last factor should accumulate the
ones removed, namely D' = UD for n =41, D’ =UUD for n =29, and D’ = UUUD for n = 17.
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5.4. Matrixz form and reversible keyboards

The keyboards of tables 1 and 2 can also be defined in matrix form. Each element of the matrix
represents a key that can be labeled either as iterate or as cardinal, i.e., we use only one of the
indices in the table. The key of the fundamental is 0 for iterates as well as for cardinals and
occupies the position (1,1). By labeling the keys as iterates, the value k of the iterate in the row
¢ >1and columnnp >1is

k(& n) = [(n—1) + (£ = 1)m] mod n (45)

By labeling them as cardinals, the value j of the cardinal in the row £ and column 7 is

J(&mn) = [ =1)+ (n—1)p] modn (46)

A keyboard is reversible if k(&,n) = j(n,€) for all £ and 7. Since 0 < m < n and 0 < p < n,
this equality is fulfilled only when

m= (47)

In such a case, for the respective matrices and keyboards, iterates and cardinals are transposable
for each other with regard to the indices. The condition of equation (47) is the same than the
involution condition of equation (25) in Section 2.5, bearing in mind equation (32).

For any value of h, the trivial case n = 2, i.e. the scale with tones 1y and vy, always provides
an optimal scale and reversible keyboards. Among optimal and non-optimal Pythagorean scales
(h = 3) there are no more reversible keyboards than for the optimal 12-tone scale and the non-
optimal 3-tone scale. If we analyze the cyclic scales generated by the median (h = 5), the scale
with n = 3 is the only optimal scale with reversible keyboards. The tones of such a scale are
three major thirds arranged consecutively, i.e., 1, %, %, with closure v3 = g—g. Non-optimal scales
with n = 4 and 87 have also reversible keyboards.

The matrices in table 3 make evident the reversibility of keyboards for the 12-tone scale.

Eal

fifths (n=12) 7 | yjm mod n (fifths) — (n=12)

O,
@

EEOHEO |!
EEOGE®
HEOEE® |*
HOEE®
< cardinals

< (cardinals) ]{I,LL mod n
- OEOEHEG

Table 3. Matrix keyboards for the 12-tone Pythagorean scale. On the left, the keyboard is labeled as fifths, k, and on the
right as tone cardinals j.

On the left hand side of table 3 the keyboard is labeled by the number of fifth k corresponding
to each tone. The fifths are arranged consecutively from left to right, while from top to bottom
the sequences correspond to consecutive tones of the scale calculated from k as indicated in
equation (33). On the right, the keyboard is labeled by the cardinal j, following an order from
top to bottom. The fifths then remain arranged consecutively from left to right, calculated from
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Jj as indicated in equation (35). Passing from one note to the next cardinal is done by applying
a factor U if the first tone is circled and D if it is boxed. Consecutive fifths are separated by a
factor U3D*, except the one marked in gray, which precedes a factor U2D?5.

Let us remark that these bidimensional representations, in addition to relate the indices of the
scale tones, inform about the scale temperament, that is, they specify the elementary intervals
existing between the scale tones. Nevertheless, such a feature is not transposable.

6. Conclusions

In order to study the distribution of tones along the octave for any n-tone cyclic scale (Cubarsi
2020), the scale tones are expressed as the product of integer powers of two factors. We deter-
mine the necessary and sufficient condition allowing such factor decompositions (FD), which are
particular cases of duality (Regener 1973; Carey and Clampitt 1996; Clampitt and Noll 2011).
The two main FD’s are analyzed. The first FD is provided by the generator/co-generator pair.
The second FD is obtained from the step/co-step factors. It determines the partition of the oc-
tave from the two elementary factors U = v, and D = %, where m and M are the indices of
the extreme tones. These factors are the generalization of the chromatic and diatonic semitones
of the Pythagorean scale. The sequence of elementary factors composing the scale matches the
definition of a Christoffel word, so that the scale is a Christoffel word of the alphabet {U, D}
with slope §; and length n (e.g., Noll 2008).

According to the third particular case of FD’s, other decompositions are possible by taking into
account the indices of the extreme tones of smaller cyclic scales in the hierarchy. For instance,
for n = 12 with U°D7 = 2, in addition to the first and second FD’s, it is possible to get
other FD’s from the pairs {vp = UD,I%1 = U?D3}(n = 3), {1, = UD,I%3 = UD?*}(n = 5),
{ro=UD, 2 =D}(n="7).

For any n-tone cyclic scale we prove that the maximum number of consecutive U factors is
the highest integer ir; satisfying iy m < n, and the maximum number of consecutive D factors
is the highest integer ip satisfying ip M < n. Hence, if m > M, the U factors come alone
and, if M > m, the D factors come alone. In relation to Myhill’s property, we determine that
the factorization of any generic step-interval is composed of the elementary factors either U®D?
when the difference of iterates between endpoints increases, or U~ D! when the difference of
iterates decreases, for specified non-negative integers a,b .

The generalization of the diatonic intervals of the Pythagorean scale is interpreted in the
following sense. A cyclic scale E contains the tones of the previous cyclic scale EZ_, which
are considered as generic diatones, in addition to the new non-adjacent tones, interpreted as
accidentals. In any cyclic scale E”, they can be identified as follows. If m > M, the diatones
are those that result from increasing the previous tone by a factor D, the diatonic factor that is
shared by both scales. If M > m, the diatones are those whose next tone is attained increasing
by a factor U, which is now the diatonic factor common to both scales. Such a criterion allow us
to conclude that two consecutive optimal scales (those providing the best scale closure, i.e., the
continued fraction convergents of log, h) have alternate short and long elementary factors, either
UorD.

The previous results provide us with a method to fill in, in a simple way, a bidimensional table,
the scale keyboard, to represent the scale tones arranged bidimensionally by iterates and/or by
cardinals, together with their elementary intervals between them, where the generalized diatones
and accidentals become easily identified. The method is valid for any n-tone cyclic scale with an
arbitrary generator h, although the examples shown apply to the 12- and 53-tone Pythagorean
scales. Therefore, we have shown how the refinement of generalized Pythagorean tuning works,
that can also serve to find larger sets of justly intoned concords between their tones, as Mersenne’s
intention was.

The keyboard is associated with two matrix forms, labeled either by tone iterates or by cardi-

17



nals. If both matrix representations of the keyboard are mutual transpose, we say the keyboard
is reversible. It corresponds to the case where the relationship between both main FD’s is given
by an involutory matrix, taking place when the cardinal of the first iterate matches the index of
the minimum tone, as in the rare case of the 12-tone Pythagorean scale.

The current approach provides tools to estimate, for instance, how close the tones of a cyclic
scale are from those of an equally tempered scale, which will be studied in a future work.
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