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1 Equacions de primer ordre

1. Considereu el p.v.i. y′ = 2xy2, y(2) = −2/3.

(a) l'equació és homogènia

(b) no podem garantir l'existència i la unicitat de la
solució del p.v.i.

(c) la solució maximal del p.v.i. passa per (0, 2)

(d) la solució maximal del p.v.i. és sempre negativa

2. Les trajectòries ortogonals a la família de corbes 125(y+
a)3 = 1− x, a ∈ R són:

(a) y + 9(1− x)
5
3 + a = 0

(b) y + 2(1− x)
5
3 + a = 0

(c) y + 9(1− x)
2
3 + a = 0

(d) y + 5(1− x)
2
3 + a = 0

3. Sobre p.v.i. y′ = sin(|x|)y2/3, y(x0) = y0, és FALS que

(a) si x0 = 1 i y0 = 1, té una única solució

(b) si x0 = 1 i y0 = 0, té, almenys, dues solucions
diferents

(c) si x0 = 0 i y0 = 0, té, almenys, dues solucions
diferents

(d) si x0 = 0 i y0 = 1, té, almenys, dues solucions
diferents

4. L'equació diferencial de la família de corbes x3+y3 = C
NO és:

(a) lineal

(b) de variables separades

(c) cap de les altres

(d) homogènia

5. Quina de les equacions diferencials següents NO és ho-
mogènia?:

(a) yy′ = x2 + y2

(b) y′ + 1 = ex/y

(c) log x2 = y′ + 2 log(2y)

(d) xy′ = x+ y

6. Les corbes tals que, en cada punt (x, y), la projecció del
segment de normal comprès entre el punt de contacte a
la corba i l'eix OX té punt mig (2x, 0) són:

(a) El.lipses

(b) Paràboles

(c) Hipèrboles

(d) Rectes

7. Considereu el problema de valor inicial y′ = |x|f(y),
y(x0) = y0, on x0, y0 ∈ R i f : R → R és una funció
contínua. Llavors és cert que

(a) Si f és C1, el problema de valor inicial té solució
única

(b) El problema de valor inicial té sempre solució única

(c) Si x0 = 0, el problema de valor inicial té més d'una
solució

(d) El problema de valor inicial té més d'una solució

8. Sigui y′(x) = y(x)α, y(0) = 1; aleshores és FALS que:

(a) Si α = 2 la solució maximal està de�nida ∀x < 1

(b) Si α = 1 la solució maximal està de�nida ∀x ∈ R
(c) Si 1 < α < 2 la solució maximal està de�nida
∀x < 1

α−1

(d) Si 1 < α < 2 la solució maximal està de�nida
∀x ∈ R

9. Podem assegurar que el problema de valor inicial
{y′ = f(x)g(y) , y(1) = 0} té solució única quan:

(a) f ∈ C1((−∞, 1]) i g ∈ C1(R)

(b) f ∈ C1(R) i g derivable a R
(c) f és contínua a (0,+∞) i g ∈ C1(R)

(d) f ∈ C1(R) i g ∈ C1((0,∞))

10. La solució maximal y(x) del problema de valor inicial

y′ = xy2, y(0) = 1

satisfà

(a) y(2) = −1

(b) y(2) = 0

(c) y(2) = 2

(d) No està de�nida per a x = 2

11. Considerem l'equació

y′ +
y

t
= t3y3

És FALS que:

(a) La solució y(t) tal que y(2) = 1
2 està de�nida en

−
√

5 < t <
√

5

(b) Fent el canvi z = y−2 es converteix en lineal

(c) La solució y(t) tal que y(1) = 1 està de�nida en
0 < t <

√
2

(d) Tota solució y(t) té signe constant a l'interval on
esta de�nida

12. Les trajectòries ortogonals a les corbes d'equació
x2 + y2 = 2ax, són les solucions de l'equació:

(a) y′ = y
x−a

(b) x2y′ − y2y′ = 2xy

(c) 2xyy′ = y2 − x2

(d) (y2 − x2)y′ = 2xy

13. Quines són les corbes tals que tot punt és punt mig del
segment de recta tangent en aquest punt comprès entre
els dos eixos?

(a) y = kx

(b) y = k
x

(c) x2 + y2 = R2

(d) Cap de les altres



14. Considerem g : R → R amb g ∈ C1(R) i |g′(x)| > 1.
Sigui el problema de valor inicial y′ = f(x, y), y(a) = b
amb f(x, y) = g(xy ). Quina de les següents a�rmacions
és FALSA ?

(a) El problema té solució única per a a = 1, b = 0

(b) El problema té solució única per a a = 0, b = 1

(c) Es tracta d'una equació de tipus homogeni

(d) L'equació es transforma en una de variables sepa-
rades si s'aplica el canvi z = x

y

15. La família de corbes ortogonals a les hipèrboles
x2

a2
−

y2 = 1 és:

(a) log y + x2

2 + y2

2 = c

(b) log y + x2

2 −
y2

2 = c

(c) log y − x2

2 + y2

2 = c

(d) x2

c2 + y2 = 1

16. Sigui y(x) la solució del p.v.i. y′ = 1 − sin y, y(0) = 0.
En aproximar y(π) pel mètode d'Euler amb 2 iteracions
obtenim

(a) π
2

(b) 1− π
(c) 1

(d) 0

17. Considereu les corbes tals que, per a cadascun dels seus
punts, l'eix Y divideix en dos parts iguals el segment
de recta tangent a la corba comprès entre el punt de
tangència i l'eix X. Aleshores és FALS que

(a) satisfan l'e.d.o. 2xy′ = y

(b) les seves trajectòries ortogonals satisfan yy′+2x =
0

(c) són del tipus: y = C
√
x

(d) són del tipus: y = C√
x

18. La solució del problema de valor inicial

y′ =
y

x
+
y2

x2
, y(1) = 1,

satisfà

(a) limx→e y(x) =∞
(b) limx→0 y(x) =∞
(c) y(e) = −e
(d) y(e) = 0

19. L'equació que satisfan les trajectòries ortogonals a la
família x2 − y2 = kx, k ∈ R, és

(a) y′ = − 2xy
x2+y2

(b) y′ = 2xy
x2+y2

(c) y′ = x2+y2

2xy

(d) y′ = −x
2+y2

2xy

20. Quines d'aquestes corbes satisfan que la projecció sobre
l'eix OY del tros de normal limitat pel punt de la corba
i l'eix OY té longitud 1

2?

(a) x = y2 + C

(b) y = x2 + C

(c) y = − 1
2 lnx+ C

(d) ey =
√
x+ C

21. Sigui l'equació y′ = − 1
x2 − y

x + y2. El canvi de variable
y = 1

x + u la converteix en una del tipus:

(a) Cap de les altres

(b) Bernoulli

(c) Lineal

(d) Homogènia

22. Podem assegurar que el problema de valor inici-

al {y′ = |x− 1||x− 2|+ x cos
(

1
y

)
, y(a) = b} té solució

única quan

(a) a = 1, b = 0

(b) a = 2, b = 1

(c) a = 3, b = 0

(d) Cap de les altres

23. La trajectòria ortogonal a les corbes d'equació
x2 + 2y2 = c, i que passa pel punt (1, 1) és:

(a) y = kx2 ∀k ∈ R
(b) x = ky2 ∀k ∈ R
(c) y = x2

(d) x = y2

24. L'equació resultant de fer el canvi v =
1

cos y
a l'equació

y′ sin y = cos y(1− x cos y) és:

(a) v′ + v = x

(b) v′ = 1− x
v

(c) v′ = 1 + x
v

(d) v′ = v − x

25. Quines són les corbes tals que l'àrea del triangle limitat
per l'eix OY , el radi vector i la recta tangent a un punt
de la corba és igual que l'àrea del triangle limitat per
l'eix OX, el radi vector i la recta normal?

(a) Rectes

(b) Circumferències

(c) Hipèrboles

(d) Paràboles

26. Sigui la família de corbes x2y+xy2 = k, k ∈ R. Les cor-
bes normals a les donades són les solucions de l'equació
diferencial:

(a) (2x− y)yy′ + x(x+ 2y) = 0

(b) (2x− y)yy′ − x(x− 2y) = 0

(c) (2x+ y)yy′ + x(x− 2y) = 0

(d) (2x+ y)yy′ − x(x+ 2y) = 0



27. Considereu el problema (y′)2 = 4x2, y(0) = 0. Quina
de les següents a�rmacions és correcta?

(a) Té diverses solucions

(b) El teorema d'existència i unicitat assegura que té
una única solució

(c) No té cap solució

(d) Té una única solució, tot i que no s'hi pot aplicar
el teorema d'existència i unicitat

28. De quin tipus NO és l'equació diferencial de les trajec-
tòries ortogonals a la família de corbes xy = c?

(a) de tipus homogeni

(b) lineal

(c) de primer ordre

(d) de variables separades

29. La corba que passa per (0, 1) i tal que la recta tangent
en (x, y) talla l'eix OX en el punt (y, 0) és:

(a) y = ex/y

(b) y = e−2x/y

(c) y = e2x/y

(d) y = e−x/y

30. L'equació diferencial de la fam�ølia de corbes
(k − cosx)y = 1, k ∈ R, és

(a) lineal

(b) de variables separables

(c) de tipus homogènia

(d) cap de les altres

31. La corba per la que l'àrea del triangle que formen l'eix
d'abcisses, la tangent a la corba i el radi vector del punt
de contacte (x, y) és constant i igual a a2 veri�ca:

(a) x− y
y′ = 2a2

y

(b) x+ y′

y = 2a2

y

(c) x− y
y′ = 2a2

(d) x+ y′

y = 2a2

32. Per a quin valor d'a la solució del problema

y′ + y = aδ(t− 1), y(0) = 1

veri�ca y(0) = y(1):

(a) 1− e−1

(b) 1 + e−1

(c) 1− e
(d) 1 + e

33. Sigui la família de corbes

x2

a
+

a

y2
=

1
a
, a ∈ R

L'equació diferencial que satisfan les corbes normals a
aquesta família és:

(a) (1 + x2)− xyy′ = 0

(b) (1− x)− xy′ = 0

(c) (1 + x) + xyy′ = 0

(d) (1− x2) + xyy′ = 0

34. La solució del problema de valor inicial

ty′ + (2t+ 1)y = te−2t, y(1) = 0

satisfà que y(2) val:

(a) e−4

(b) 3
4e
−2

(c) 3
4e
−4

(d) 0

35. La família de corbes C = x+y
x2+y2 , C ∈ R, és la solució

general d'una ecuació diferencial de tipus

(a) homogènia

(b) lineal homogènia

(c) separable

(d) lineal no homogènia

36. La corba que pasa pel punt (1, 1) tal que la tangent a
cada punt (x, y) talla l'eix OY a (0, x2) veri�ca que:

(a) y(2) = −3

(b) y(2) = 4

(c) y(3) = −3

(d) y(3) = −6

2 Equacions d'ordre superior

1. Considereu l'equació y′′ + 2ay′ cot ax+ (b2 − a2)y = 0.
Amb el canvi de variable u(x) = y(x) sin ax es transfor-
ma en:

(a) u′′(x) + b2u(x) = 0

(b) u′′(x)− b2u(x) = 0

(c) u′′(x) + a2u(x) = 0

(d) u′′(x)− a2u(x) = 0

2. Sabent que xex cosx és una solució de

yv − 5yiv + 12y′′′ − 16y′′ + 12y′ − 4y = 0,

llavors un sistema fonamental de solucions és

(a) {e−5x, ex cosx, ex sinx, xex cosx, xex sinx}
(b) {e5x, ex cosx, ex sinx, xex cosx, xex sinx}
(c) {ex, ex cosx, ex sinx, xex cosx, xex sinx}
(d) {e3x, ex cosx, ex sinx, xex cosx, xex sinx}

3. Si el wronskià W (x) de dues solucions linealment inde-
pendents de l'equació y′′ + p(x)y′ + q(x)y = 0, de�nida
∀x ∈ R, amb p derivable i p 6≡ 0, és solució de l'equació
diferencial, llavors és FALS que:

(a) p′(x) = q(x)

(b) W ′′ + p(x)W ′ + q(x)W = 0



(c) W ′ + p(x)W = 0

(d) W ′ + q(x)W = 0

4. La solució general de l'equació y′′′ + 2y′′ − 5y′ − 6y = 0
és:

(a) y = C1 exp 2t+ C2 exp(−t) + C3 exp(−3t)

(b) y = C1t
2 exp 2t+C2t

−1 exp(−t) +C3t
−3 exp(−3t)

(c) y = C1 exp 2t+ C2t exp 2t+ C3 exp(−t)
(d) y = (C1 cos t+ C2 sin t) exp 2t+ C3 exp t

5. Considerem dues solucions y1, y2 de l'equació y′′ + y′ +
y cos t = 0. Aleshores és FALS que:

(a) Si W [y1, y2](t0) = 0 llavors {y1, y2} són linealment
dependents en qualsevol interval I ⊂ R

(b) Si W [y1, y2](t0) 6= 0 llavors W [y1, y2] no s'anul.la
mai

(c) {y1, y2} són linealment independents en R si i no-
més si són un sistema fonamental de solucions

(d) L'equació diferencial W [y1, y2, y] = 0 té les matei-
xes solucions que l'equació original.

6. Mitjançant el canvi z = (ln |y|)′, l'equació diferencial
y′′ + ay′ + by = 0, on a, b ∈ R, es transforma en:

(a) z′ + z2 + az + b = 0

(b) z′ + az + b = 0

(c) z′z′′ + (z′)2 + az′ + b = 0

(d) (zz′)′ + az′ + b = 0

7. L'equació
y(n) + an−1y

(n−1) + · · ·+ a6y
(6) + a5y

(5) + y(4) = x2 ,
amb n ≥ 7, admet com a solució algun polinomi de
grau:

(a) 2

(b) 4

(c) 6

(d) n

8. Considereu l'equació

y′′ + f(x)y′ + g(x)y = 0,

on f, g : [a, b] → R són contínues, i siguin y1 i y2 dues
solucions d'aquesta. Llavors és FALS que:

(a) Si y1 i y2 tenen un màxim a x0 ∈ (a, b), llavors són
linealment dependents

(b) Si en x0 ∈ (a, b), y1 té un mínim i y1(x0) = 0,
llavors y1(x) = 0, ∀x ∈ [a, b]

(c) Si y1 té un màxim a x0 ∈ (a, b), i y2 té un mínim
al mateix punt, llavors són linealment dependents

(d) Si y1 i y2 tenen un màxim a x0 ∈ (a, b), llavors
y1(x) = y2(x), ∀x ∈ [a, b]

9. L'equació
y′′ − f(x)y = 0

es transforma, mitjançant el canvi z = y′/y, en l'equació

(a) z′ + z2 = f(x)

(b) z′ + z = f(x)

(c) z′ + 1/z = f(x)

(d) z′ + f(x)z = 0

10. La solució de l'equació diferencial d'ordre 2

y′′ + 4y′ + 8y = (sin 2x+ cos 2x)e2x

NO es pot escriure, per a algun valor de les constants,
com:

(a) y = Ae−2x cos 2x + Be−2x sin 2x + Ce2x cos 2x +
De2x sin 2x

(b) y = Ae−2x cos 2x + Be−2x sin 2x + (Ce2x cos 2x +
De2x sin 2x)x

(c) y = sin 2x(Ae2x −Be−2x) + cos 2x(Ce2x −De−2x)

(d) y = Ae−2x sin 2x+Be−2x cos 2x+ Ce2x sin 2x

11. Sigui x2y′′−2xy′−(x2−2)y = x3. Per a aquesta equació
lineal és FALS que:

(a) cosh(x) és solució de l'equació homogènia

(b) El canvi y(x) = xz(x) la converteix en una equació
amb coe�cients constants

(c) La solució tal que y(0) = y′(0) = 0 no és única

(d) Existeix una solució de la forma cxn, c ∈ R

12. Donada l'equació

y′′ − 4y′ + 4y = (1 + x)e2x + sinx+ x cosx

quina de les següents en pot ser solució particular?

(a) (Ax+B)e2x + (Cx+D) sinx+ (Ex+ F ) cosx

(b) (Ax+B)e2x + C sinx+ (Dx+ E) cosx

(c) x2(Ax+B)e2x + (Cx+D) sinx+ (Ex+ F ) cosx

(d) x2(Ax+B)e2x + C sinx+ (Dx+ E) cosx

13. Podem assegurar que el problema de valor inici-
al {y′′ + 1

xy
′ + x

√
y = 1 , y(a) = b, y′(a) = c} té solució

única quan:

(a) a = c = 1, b = 0

(b) a = 0, b = c = 1

(c) a = b = 0, c = 1

(d) a = b = 1, c = 0

14. xr és solució de l'e.d.o. x3y′′′−6xy′+12y = 0 si i només
si

(a) r = 2, r = 3

(b) r = 2, r = 3, r = −2

(c) r = 2, r = −2

(d) r = 2, r = 1, r = 0

15. Per a quin valor de n la solució general de l'equació
x2y′′ − 2xy′ − (x2 − 2)y = 2xnex

és y(x) = Axex +Bxe−x + x2ex?

(a) 3

(b) 2

(c) 1

(d) 0



16. Suposeu que y1(t) = 1 + t, y2(t) = 1 + t2 i y3(t) =
1 + 2t + 3t2 són solució de y′′ + f(t)y′ + g(t)y = h(t).
Llavors

(a) els coe�cients de l'equació són constants

(b) els coe�cients de l'equació són continus en R
(c) totes les solucions són creixents

(d) les solucions satisfan y(0) = 1

17. L'ordre mínim de l'equació diferencial lineal homogè-
nia amb coe�cients constants que admet com a solució
particular la funció 12t2 + 9t3sin(t)− te13t és

(a) 9

(b) 13

(c) 12

(d) Cap de les altres

18. Siguin f1, f2 : [−1, 1] −→ R tals que f1(x) = {x3 si
x ∈ [−1, 0], 0 altrament}, f2(x) = {0 si x ∈ [−1, 0], x3

altrament}. Considerem l'equació y′′+a(x)y′+b(x)y =
0, amb a(x), b(x) funcions contínues. Llavors:

(a) f1, f2 poden ser sistema fonamental de solucions
per a certes a(x), b(x)

(b) f1, f2 no poden ser sistema fonamental de solucions
perquè són linealment dependents

(c) f1, f2 no poden ser sistema fonamental de solucions
perquè no són de classe C2([−1, 1])

(d) f1, f2 no poden ser sistema fonamental de solucions
perquè W (f1(x), f2(x))=0, per a tot x ∈ [−1, 1]

19. L'equació y′′ − 2
xy
′ + (1 + 2

x2 )y = xex, amb el canvi
y = xv, es transforma en:

(a) v′′ + v = ex

(b) v′′ − v = ex

(c) v′′ + v = xex

(d) Cap de les altres

20. Donada l'equació y′′ + f(t)y′ + g(t)y = 0, quina de les
següents respostes és FALSA ?

(a) Si f(t) + tg(t) = 0, aleshores y(t) = t és solució

(b) Si f(t) + g(t) = −1, aleshores y(t) = et és solució

(c) Si f(t)− g(t) = 1, aleshores y(t) = e−t és solució

(d) Si f(t)− tg(t) = 0, aleshores y(t) = −t és solució

21. Si fem el canvi de variable s = tan t dins l'equació
y′′ − 2 tan t y′ + (1 + tan2 t)2y = 0, s'obté l'equació di-
ferencial en la nova variable s:

(a) y′′ + y′ + y = 0

(b) y′′ − 2sy′ + (1 + s2)2y = 0

(c) y′′ + y = 0

(d) y′′ − 2y′ + y = 0

22. Considereu dues solucions u1, u2 de l'equació diferen-
cial y′′ + p(t)y′ + q(t)y = 0, amb p i q contínues en R.
Aleshores és FALS que:

(a) Si {u1, u2} són linealment dependents en R, llavors
existeix un t0 tal que W [u1, u2](t0) = 0

(b) SiW [u1, u2] s'anul.la en algun punt llavors s'anul.la
en tot punt

(c) Si u1(t0) = u2(t0) per a cert t0, llavors les dues
solucions coincideixen

(d) Si {u1, u2} són linealment independents llavors l'e-
quació diferencial W [u1, u2, y] = 0 té les mateixes
solucions que l'equació original

23. L'equació diferencial y′′ + y = cos t+ t admet solucions
del tipus següent, per a certs valors de les constants:

(a) A cos t+Bt cos t+ a+ bt

(b) At cos t+Bt sin t+ a

(c) A cos t+Bt cos t+ bt

(d) A cos t+Bt sin t+ bt

24. Donada l'equació x2y′′ + 2xy′ − 2y = 0, quina de les
a�rmacions següents és FALSA ?

(a) Existeix alguna solució de la forma xn, n > 0

(b) Existeix alguna solució constant

(c) Existeix alguna solució de la forma xn, n < 0

(d) Existeixen dues solucions que satisfan y(0) =
y′(0) = 0

25. L'equació lineal homogènia amb coe�cients constants
d'ordre més petit que admet com a solució x sinx és:

(a) yıv + 2y′′ + y = 0

(b) y′′ + 2y′ + y = 0

(c) yıv + 8y′′ + 16y = 0

(d) yv + 2y′′′ + y′′ = 0

26. Considereu l'equació lineal homogènia

y′′ − 2
t
y′ +

2
t2
y = 0

La funció y1(t) = t n'és solució. Llavors és FALS que:

(a) La solució y(t) tal que y(1) = 3 i y′(1) = 5 veri�ca
que y(2) = 0

(b) Tota solució y(t) veri�ca que y(0) = 0

(c) La solució y(t) tal que y(1) = 2 i y′(1) = 3 veri�ca
que y(2) = 6

(d) La solució y(t) tal que y(1) = 0 i y′(1) = −1 veri-
�ca que y(2) = −2

27. Sigui y′′′+4y′ = t2 + t cos 2t. Aquesta e.d.o. admet una
solució particular del tipus:

(a) at3 + (c1t+ c2t
2)(A cos 2t+B sin 2t)

(b) at2 + bt+ (At+Bt2) cos 2t+ (Ct+Dt2) sin 2t

(c) at3 + bt2 + ct+ (At+Bt2) cos 2t+ (Ct+Dt2) sin 2t

(d) at3 + bt2 + ct+ t(A cos 2t+B sin 2t)

28. Donades u1(t) = eαt i u2(t) = eβt amb α 6= β, és FALS
que:

(a) {u1(t) , u2(t)} és un sistema fonamental de
W [u1(t), u2(t), y] = 0

(b) {u1(t) , u2(t)} és un sistema fonamental de y′′ −
(α+ β)y′ + αβy = 0



(c) qualsevol equació que tingui u1(t) i u2(t) com a
solucions ha de ser de coe�cients constants

(d) u1(t) i u2(t) són solucions de y′′′ − (α + β)y′′ +
αβy′ = 0

29. Donada l'equació yy′′ − y′(1 + y′) = 0, és FALS que

(a) y = ae
t
b + b, ∀a, b ∈ R

(b) admet alguna solució polinòmica de grau u

(c) ln|y − a
b
| = t

b
, ∀a, b ∈ R

(d) admet alguna solució constant no nul·la

30. Sigui l'equació yiv + 1
2y
′′′+4y′′+2y′ = 0. Les arrels del

seu polinomi característic veri�quen:

(a) te 3 arrels amb part real negativa

(b) existeix alguna arrel amb real positiva

(c) te dues arrels amb part real negativa

(d) te 3 arrels amb part real nul.la

31. Sabent que

ty′′ − y′ + 3
4t
y = 0

admet solucions de la forma tk, k ∈ R, si y(1) = 0 i
y′(1) = 1, llavors y(2) val:

(a) 0

(b)
√

2

(c) 2
√

2

(d) 3
√

2

32. Si te2t i e−t són solucions de l'equació diferencial amb
coe�cientes constants y′′′+a2y

′′+a1y
′+a0y = 0, llavors

a0 val:

(a) −4

(b) 4

(c) −2

(d) No es pot determinar

33. Les solucions de l'equació diferencial

y′′ − yy′ = 0

veri�quen, de�nint p = y′,

(a) p = y2 + C

(b) p = 0

(c) p( dpdy − y) = 0

(d) dp
dy + y = 0

3 Sistemes d'equacions diferencials

1. Sigui Φ una matriu fonamental d'un sistema lineal ho-
mogeni de primer ordre de�nit a Rn, i sigui també
M ∈Mn×n(R). Aleshores,

(a) si det (M) 6= 0, M · Φ és una matriu fonamental

(b) Φ ·M és una matriu fonamental

(c) si det (M) 6= 0, Φ ·M−1 és una matriu fonamental

(d) si det (M) 6= 0, M−1 · Φ ·M és una matriu fona-
mental

2. Sigui el sistema ~x′ = A~x, on A ∈ Mn×n(R). Siguin
~v1 ∈ Ker(A − λI), ~v2 ∈ Ker(A − λI)2\Ker(A − λI).
Aleshores és FALS que:

(a) ~x(t) = eλt(A− λI)~v2 és solució

(b) ~x(t) = eλt~v2 és solució

(c) ~x(t) = eλt[~v2 + t(A− λI)~v2] és solució

(d) ~x(t) = eλt[~v1 + (A− λI)~v2] és solució

3. Suposeu que

x1(t) =
(
et cos t
2et sin t

)
és una solució del sistema ẋ = Ax, on A ∈ M2×2(R).
Llavors

(a) A =
(

1 −1/2
2 1

)
(b) A =

(
1 −2
2 1

)
(c) A =

(
1 −1
1 1

)
(d) A =

(
0 −1
1 0

)
4. Pel sistema ~x′ =

(
3 0 −1
1 4 1
1 0 5

)
~x és FALS que:

(a) existeix una solució del tipus (~v1t + ~v2)e4t amb
~v1 6= ~0

(b) existeix una solució del tipus ~v1e4t amb ~v1 6= ~0

(c) existeixen solucions del tipus ~v1e4t, ~v2e4t lineal-
ment independents

(d) existeix una solució del tipus (~v1t2 + ~v2t + ~v3)e4t

amb ~v1 6= ~0

5. Es considera el sistema ẋ = Ax, amb A =(
0 1 −1
1 2 −3
1 2 −3

)
. Siguin v1 = (0, 1, 1), v2 = (1, 1, 1) i

v3 = (−1, 1, 0). Un sistema fonamental de solucions
del sistema està format per:

(a) e−tv1, v2, v3 + tv2

(b) e−tv1, v2, etv3

(c) e−tv1, tv2, v3

(d) e−tv1, etv2, tetv3

6. La solució del problema Y ′ =
(
−1 1
1 −1

)
Y , Y (0) =

(2, 0), compleix:

(a) Y (1/2) = (1− e−1, 1 + e−1)

(b) Y (2) = (−2 + e−2,−2− e−2)

(c) Y (3) = (1 + e−6, 1− e−6)

(d) Y (1) = (1− e−2, 1 + e−2)

7. La matriu M(t) =
(

sin t 1
0 sin t

)
és matriu fonamen-

tal del sistema lineal homogeni x′ = A(t)x. Llavors és
cert que:

(a) La matriu A(t) és amb coe�cients constants



(b) Els coe�cients de la matriu A(t) tenen discontinu-
ïtats per a t = kπ, amb k enter

(c) La solució que val

(
1
2

)
a t = π/2 és

(
sin t

2 sin t

)
(d) No hi ha cap solució que valgui

(
1
2

)
en t = π/2

8. Quina és la matriu A ∈ M2(R) associada al sistema
~x′ = A~x que té per solucions ~x1(t) = ~v cos t i ~x2(t) =
~w sin t, amb ~v i ~w linealment independents?

(a) No existeix

(b)

(
0 1
1 0

)
(c)

(
0 1
−1 0

)
(d)

(
0 −1
1 0

)
9. Sigui M(t) una matriu fonamental del sistema x′ =
A(t)x, on A(t) és una matriu n × n amb coe�cients
continus a R. Llavors és FALS que

(a) si C és una matriu n× n, constant, M(t)C és ma-
triu fonamental

(b) tota matriu fonamental del sistema és de la forma
M(t)C, on C és una matriu constant n× n

(c) tota solució del sistema és de la forma M(t)~v, ~v ∈
Rn

(d) detM(t) 6= 0, ∀t ∈ R

10. Si e2t

 1
0
1

+ t

 0
−1

0

+
t2

2

 0
0
1

 és solució

del sistema x′ = Ax, llavors també és solució

(a) e2t

 1
0
1


(b) e2t

 0
−1

0


(c) e2t

 0
0
1


(d) e2t

 1
0
1

+ t

 0
−1

0


11. El sistema ~x′ = A(t)~x te per matriu fonamental de so-

lucions, en un cert interval,

X(t) =
(
t t2

t t2 + 1

)
Llavors es veri�ca:

(a) A(t) és matriu constant

(b) Si t 6= 0, detA(t) 6= 0

(c) A(t) =
1
t

(
1 2t
0 0

)
(d) A(t) =

1
t

(
1− t2 t2

1− t2 t2

)

12. Quantes solucions l.i. del sistema ~x′ = A~x, A ∈
Mnxn(R), satisfan ~x(1) = k ~x(0), k ∈ R?

(a) Tantes com vectors propis l.i. associats a valors
propis reals d'A

(b) Tantes com valors propis reals d'A comptats amb
la seva multiplicitat

(c) 1

(d) Cap

13. Sigui A =
(

1 −3
3 1

)
. Llavors:

(a) eA =
(
e cos(3) −e sin(3)
e sin(3) −e cos(3)

)
(b) eA =

(
e cos(3) −e sin(3)
e sin(3) e cos(3)

)
(c) eA =

(
e cos(1) −e sin(1)
e sin(1) −e cos(1)

)
(d) eA =

(
e cos(1) −e sin(1)
e sin(1) e cos(1)

)
14. Sabem que ~x(t) = et

[(
0
1

)
+ t
(

2
0

)]
és solució de

~x′ = A~x. Aleshores,

(a)

(
0
1

)
és vector propi de A

(b) A =
(

1 2
0 1

)
(c) et

(
0 2t
1 0

)
és matriu fonamental de solucions

(d) A té 2 valors propis diferents

15. Sigui {~v1, ~v2, ~v3, ~v4} una base de R4. Si ~x1 =
e−t

(
~v1 + t~v2 + t2

2 ~v3

)
i ~x2 = e−t~v4 són solucions del

sistema ~x′ = A~x, llavors quina de les següents NO n'és
solució?

(a) e−t(~v3 − ~v4)

(b) e−t(~v2 + t~v3)

(c) e−t(~v1 + t~v2)

(d) e−t~v3

16. Sigui V (t) una matriu fonamental del sistema lineal ho-
mogeni ~x′ = A(t)~x. Suposem que V (t+ s) = V (t)V (s),
per a qualsevol s i t de R. Llavors és FALS que

(a) V (t) = V (t)−1 per a tot t

(b) la matriu A(t) és constant

(c) V (0) = Id

(d) V (t)V (s) = V (s)V (t)

17. Sabent que

x(t) =
(
et
(

1 + 2t+
t2

2

)
, et
(

2t+
t2

2

)
, et
(
t+

t2

2

))
és solució d'un sistema lineal a coe�cients constants en
dimensió 3, una altra solució és

(a) (et, 0, 0)

(b) (et(1 + 2t), et(1 + 2t), et(1 + t))



(c) (et, et, et)

(d) (2et, 2et, et)

18. Considerem el sistema ~x′ = A(t)~x, on A(t) =(
a(t) b(t)
c(t) d(t)

)
té coe�cients continus a R. Si X(t) és

una matriu fonamental de solucions i W (t) = detX(t)
llavors

(a) W ′(t) = (a(t) + d(t))W (t)

(b) W ′(t) = (b(t) + c(t))W (t)

(c) W ′(t) = detA(t)W (t)

(d) detX ′(t) = (a(t) + d(t))W (t)

19. Sigui A una matriu n× n, constant. Considereu el sis-

tema ~̇x =
1
t
A~x. Llavors és FALS que

(a) amb el canvi t = es es transforma en ~̇x = A~x.

(b) si λ és valor propi de A i ~v ∈ ker(A− λId), tλ~v és
solució del sistema

(c) si tλ~v és solució del sistema, λ és valor propi de A.

(d) amb el canvi t = e−s es transforma en ~̇x = −A~x.

20. La solució del p.v.i. ~̇x =
(

6 1
4 3

)
~x, ~x(0) = (2,−3),

val, en t = 1,

(a) (e2 + e7, e2 − 4e7)

(b) (e2 − 4e7, e2 + e7)

(c) (e2 + e7,−4e2 + e7)

(d) (4e2 − e7, e2 + e7)

21. V (t) =

(
1 0 0
0 α cos t+ β sin t sin t
0 β cos t− α sin t cos t

)
és matriu fonamen-

tal d'un sistema a coe�cients constants si

(a) α = 1, β = 0

(b) α = 0, β = 1

(c) α = 0, β = −1

(d) 6 ∃α, β

22. La solució del problema ~x′ =

(
1 1 2
0 2 0
0 0 1

)
~x amb

~x(0) =

(
2
1
1

)
compleix que ~x(1) val:

(a)

0@ 3e+ e2

e2

e

1A
(b)

0@ e
e
e

1A
(c)

0@ 3e2

e2

0

1A
(d)

0@ 2e+ e2

e2

e

1A

23. Sigui

(
1
3
4

)
+e2t

(
1
−1
2

)
+te2t

(
5
7
−4

)
una solució del

sistema lineal ~x′ = A~x. Llavors és FALS que:

(a) A és constant i detA = 0

(b) e2t
(

5
7
−4

)
és solució

(c) e2t
(

1
−1
2

)
és solució

(d) A és constant i 2 és valor propi doble

24. Sigui el sistema lineal amb coe�cients constants
~x′ = A~x. Aleshores és FALS :

(a) eAt~v és solució només quan ~v és un vector propi de
la matriu A

(b) eAt és una matriu fonamental del sistema d'equa-
cions

(c) eAtM és una matriu fonamental si i només siM és
invertible

(d) si N(t) és una matriu fonamental llavors
N−1(t)eAt és sempre una matriu que no depèn de t
i de determinant no nul

25. Si ~x(t) = ~v0 + ~v1t + ~v2t
2 és una solució no nul.la del

sistema ~x′ = A~x, amb A ∈M3×3(R), aleshores és FALS
que:

(a) Si ~v1 6= ~0 llavors ~x, ~x′ i ~x′′ són solucions linealment
independents

(b) Si ~v1 6= ~0 llavors ~x i ~x′ són solucions linealment
independents

(c) Si ~v2 6= ~0 llavors ~x′ i ~x′′ són solucions linealment
independents

(d) Si ~v2 6= ~0 llavors ~x, ~x′ i ~x′′ són solucions linealment
independents

26. Sabent que e
1
2At

2
és una matriu fonamental del sistema

~x′ = tA~x, i λ 6= 0 és un valor propi real doble de la
matriu A ∈Mn×n(R), quina NO és solució del sistema?

(a) e
1
2λt

2
(I + 1

2 t
2(A− λI))~v, amb ~v ∈ Ker(A− λI)2

(b) e
1
2λt

2
~v, amb ~v ∈ Ker(A− λI)

(c) e
1
2At

2
~v, amb ~v ∈ Rn

(d) e
1
2λt

2
(I + t2(A− λI))~v, amb ~v ∈ Ker(A− λ

2 I)2

27. La solució x(t) del problema de valor inicial

ẋ =
(

0 −1
1 0

)
x+

(
cos t
sin t

)
, x(0) =

(
0
1

)
compleix que:

(a) x(π) =
(
−π
−1

)
(b) x(π) =

(
1
0

)
(c) x(π) =

(
0
1

)
(d) x(π) =

(
π
π

)

28. Sigui A ∈ M2×2(R). Suposeu que etA
(

1
0

)
=

e2t
[(

1
0

)
+ t

(
0
1

)]
. Llavors



(a) etA =
(

e2t 0
te2t e2t

)
(b) etA =

(
e2t te2t

te2t e2t

)
(c) etA =

(
e2t 0

0 e2t

)
(d) etA =

(
e2t e2t

te2t e2t + te2t

)
29. Siguin V (t)yW (t) matrius fonamentals del sistema amb

coe�cients constants ~x′ = A~x.

(a) Si existeixen vectors tals que V (t)~c1 = W (t)~c2,
llavors V (t) = W (t)

(b) V (t) +W (t) és una altra matriu fonamental

(c) V (t) = MW (t) sent det(M) 6= 0

(d) Si per a cert t0, V (t0) = W (t0), llavors V (t) =
W (t)

30. Sabent que e2t
(

− 1
2
t2 + 3t
−t
1

)
és solució d'un sistema

amb coe�cients constants, llavors també n'és solució:

(a)

(
3t
−t
0

)
e2t

(b)

(
0
0
1

)
e2t

(c)

(
−1/2

0
0

)
t2e2t

(d)

(
1
0
0

)
e2t

31. El sistema ~x′ = A~x, A =

(
a b 0
0 a b
0 0 a

)
, NO admet com

a matriu fonamental de solucions:

(a) eat

 1 bt 1
2b

2t2

0 1 bt
0 0 1


(b) eAt

 1 a b
0 1 a
0 0 1


(c) eat

 1 bt 1
2b

2t2

0 b b2t
0 0 b2


(d) eat

(
I + (A− aI)t+ 1

2 (A− aI)2t2
)

32. Sigui ~x′ = A~x amb A ∈ M3×3(R) i eλt(~v0 + ~v1t+ ~v2t
2)

una solució del sistema, amb ~v2 no nul. Es FALS que:

(a) eλt(~v0 + ~v1t) sigui solució

(b) eλt ~v2 sigui solució

(c) eλt(~v1 + 2~v2t) sigui solució

(d) ~v2 sigui vector propi

33. Sigui V (t) matiru fonamental del sistema d'equaciones
diferencials amb coe�cients constants X ′ = AX. Si
C ∈Mn×n(R) llavors es veri�ca que:

(a) W (t) = V (t)C és una altra matriu fonamental

(b) W (t) = CV (t) és una altra matriu fonamental

(c) V (t) és única perque es veri�ca el teorema d'exis-
tència i unicitat

(d) W (t) = V (t)C satisfà el sistema

34. La solució del problema ~x′ = A~x amb

~x(0) =
(
1
1

)
i A =

(
1 2
0 1

)
veri�ca que ~x(−1) val:

(a)
(
3/e
1/e

)
(b)

(
1/e
1/e

)
(c)

(
0

1/e

)
(d)

(−1/e
1/e

)

4 Estudi qualitatiu

1. Considerem el sistema ~x′ = f(~x). Siguin ~x0, un punt
d'equilibri, i p(λ), el polinomi característic de Df(~x0).
Aleshores és FALS que:

(a) si p(λ) té totes les arrels amb part real < 0, ~x0 és
asimptòticament estable

(b) si ~x0 és inestable, p(λ) no té totes les arrels amb
part real < 0

(c) si p(λ) té alguna arrel amb part real 0, ~x0 no pot
ser asimptòticament estable

(d) si totes les arrels de p(λ) tenen part real ≤ 0, ~x0

pot ser inestable

2. Sigui el sistema(
ẋ
ẏ

)
= F (x, y), F (x, y) =

(
x2 + α(y − 1)
1 + 2xy − y2

)
,

α ∈ R. A partir de l'estudi dels valors propis del jacobià
de F calculat en el punt d'equilibri (p.e.) corresponent
podem a�rmar que:

(a) si α = 0, aleshores (0, 1) és un p.e. inestable

(b) si α > 0, aleshores no podem decidir sobre l'esta-
bilitat del p.e. (0, 1)

(c) si α < 0, aleshores (0, 1) és un p.e. asimptòtica-
ment estable

(d) si α > 0, el p.e. (0, 1) es estable

3. Les solucions de ~x′ =
(
a b
c d

)
~x tendeixen a zero quan

t→ +∞ si i només si:

(a) a+ d < 0 i ad− bc > 0

(b) a+ d > 0 i ad− bc > 0

(c) a+ d < 0 i ad− bc < 0

(d) a+ d > 0 i ad− bc < 0

4. Considereu el sistema ẋ = A(t)x, on A(t) =
(
−1 e7t

0 −3

)
.

Llavors es compleix que

(a) totes les seves solucions són inestables



(b) totes les seves solucions són estables però no asimp-
tòticament estables

(c) totes les seves solucions són asimptòticament esta-
bles

(d) té solucions estables i inestables

5. Sigui

{
x′ = x− ey + 1
y′ = sinh y

(a) No té cap punt d'equilibri

(b) Té un sol punt d'equilibri, que és estable

(c) Té més d'un punt d'equilibri

(d) Té un sol punt d'equilibri, que és inestable

6. Sigui el sistema {
x′ = yx2

y′ = −xy2

Es pot a�rmar que:

(a) el sistema linealitzat al punt (0, 1) té òrbites pa-
ral.leles a l'eix OY

(b) el sistema linealitzat al punt (0, 0) és del tipus punt
de sella

(c) quatre de les òrbites són semirectes

(d) té un punt d'equilibri aïllat a l'origen, es a dir,
hi ha un entorn de l'origen en el que l'únic punt
d'equilibri és l'origen

7. Sigui xc un punt d'equilibri del sistema de quatre equa-
cions diferencials ẋ = f(x), i sigui A la matriu jacobiana
de f en xc. És cert que:

(a) Si els valors propis de A són −1 +
√

2i i −1−
√

2i,
amb multiplicitat 2, llavors la solució d'equilibri és
estable

(b) Si 0 és valor propi de A, llavors la solució d'equili-
bri és inestable

(c) Si els valors propis de A són −3, −2, i, −i, simples,
llavors la solució d'equilibri és estable

(d) Si A és diagonalitzable llavors la solució d'equilibri
és estable

8. El punt d'equilibri del sistema ẋ =
(

1 2
4 −1

)
x és:

(a) Un coll (o punt de sella)

(b) Un focus inestable

(c) Un centre

(d) Un node inestable

9. Què es pot a�rmar sobre el sistema

{
x′ = x− x2y
y′ = y − xy2

(a) Té in�nits punts d'equilibri asimptòticament esta-
bles

(b) (0,0) és un punt d'equilibri estable

(c) La recta y = −5x conté tres òrbites

(d) La recta y = 5x conté tres punts d'equilibri: un
d'estable i dos d'inestables

10. Considereu l'equació x′ = f(x), on f : R → R és una
funció estrictament creixent, de classe C1 i tal que
limx→−∞ f(x) = −∞ i limx→+∞ f(x) = +∞. Obser-
veu que l'equació té un únic punt d'equilibri. Llavors
és cert que:

(a) El punt d'equilibri és estable

(b) Hi ha una solució no constant que tendeix al punt
d'equilibri quan t→ +∞

(c) Hi ha solucions que tendeixen al punt d'equilibri
quan t→ −∞

(d) La estabilitat del punt d'equilibri depèn del valor
de f ′ en el punt d'quilibri

11. Com són les solucions del sistema ~x′ = 0 1 0 0
0 0 1 0
0 0 0 1

−4 0 −4 0

 ~x

(a) Inestables

(b) L'estabilitat depèn de les condicions inicials

(c) Periòdiques

(d) Asimptòticament estables

12. Considerem el sistema lineal ~x′ = A~x amb

A =
(
a 1
0 a

)
. El punt d'equilibri (0, 0) és

(a) un focus per algun valor de a

(b) estable ⇐⇒ a 6= 0

(c) un node quan a 6= 0

(d) estable ⇐⇒ a ≤ 0

13. Considereu el sistema

{
ẋ = y
ẏ = −x+ x2

És FALS que

(a) (0, 0) és un punt d'equilibri estable però no asimp-
tòticament estable

(b) el sistema té dos punts d'equilibri, un d'estable i
un d'inestable

(c) l'òrbita que passa pel punt (0, 1/
√

3) tendeix a
(1, 0) quan t→ +∞

(d) el sistema no té òrbites periòdiques

14. Considerem el sistema lineal no homogeni{
x′ − y = cos t
y′ + x = sin t

Llavors les solucions són

(a) periòdiques i estables

(b) periòdiques i inestables

(c) no periòdiques i estables

(d) no periòdiques i inestables

15. Les solucions de l'equació

y(4) + 2y′′′ + 2y′′ + 2y′ + ay = 0

són:



(a) Asimptòticament estables si a ∈ [0, 1] i inestables
a la resta.

(b) Asimptòticament estables si a ∈ (0, 1), estables si
a = 0 i inestables a la resta.

(c) Asimptòticament estables si a ∈ (0, 1), estables si
a = 1 i inestables a la resta.

(d) Asimptòticament estables si a ∈ (0, 1), estables si
a = 0 o a = 1 i inestables a la resta.

16. El sistema

{
x′ = 1 + xy
y′ = x+ y3 té:

(a) Dos punts d'equilibri estables

(b) Un punt d'equilibri estable i un d'inestable

(c) Dos punts d'equilibri inestables

(d) Un únic punt d'equilibri, que és inestable

17. Considereu l'equació diferencial y′ = g(x)y, on g : R→
R és contínua. Llavors és FALS que

(a) per a tot parell x0, y0 ∈ R, l'equació té una única
solució y(x) tal que y(x0) = y0

(b) si
∫∞
0
g(x) dx = −∞, llavors totes les solucions són

asimptòticament estables

(c) si
∫∞
0
g(x) dx = +∞, llavors totes les solucions són

inestables

(d) si les solucions són estables, llavors necessàriament
g(x) < 0 per a tot x

18. Sigui una equació lineal homogènia tal que el seu po-
linomi característic presenta totes les arrels amb part
real negativa excepte una, que és λ = 0. Aleshores,

(a) Les solucions són asimptòticament estables

(b) Les solucions són estables

(c) Si 0 és doble, les solucions són inestables

(d) Si 0 és simple, les solucions són inestables

19. Considerem el sistema

{
x′ = a2y + cos at
y′ = −ε2x+ b sin at amb

a, b 6= 0. En quin dels següents casos NO existiran
solucions periòdiques? (Indicació: transformeu-ho en
una equació de segon ordre).

(a) ε2 = 1, ab 6= 1

(b) ε2 = 1, ab = 1

(c) ε2 6= 1, ab = 1

(d) ε2 6= 1, ab 6= 1

20. Sigui el sistema x′ = −x + xy, y′ = y − xy. A partir
de l'estudi de l'aproximació lineal del sistema al voltant
dels seus punts d'equilibri, podem a�rmar que:

(a) Té un punt d'equilibri inestable

(b) Té un punt d'equilibri estable

(c) Té un punt d'equilibri asimptòticament estable

(d) Té una recta de punts d'equilibri

21. Sigui (x(t), y(t)) una solució del sistema

{
ẋ = y

ẏ =
ex

2
Del retrat de fases es pot deduir que és FALS que

(a) y(t) no canvia mai de signe

(b) si (x(0), y(0)) = (0, 1), llavors y(t)→ 0 quan
t→ −∞

(c) si (x(0), y(0)) = (0,− 1
2 ), llavors y(t) → +∞ quan

t→ +∞
(d) y(t) és sempre creixent

22. Considerem el sistema lineal ~x′ = A~x amb A =(
a −1 0
1 0 0
−1 2 −1

)
. El punt d'equilibri (0, 0, 0) és asimp-

tòticament estable si i només si:

(a) a < 0

(b) a > 0

(c) a > 1

(d) a < 1

23. La solució del p.v.i.{
y′′ + 2y′ + y = 2 cosx
y(0) = a, y′(0) = b

és una funció periòdica

(a) per a tot a, b ∈ R,
(b) només si a = 0 i b = 1

(c) només si a = 1 i b = 0

(d) cap de les altres

24. Considerem el sistema autònom que en coordenades po-
lars està expressat per

dr

dt
= r(r2 − 1)(r2 − 9),

dθ

dt
= 1.

Aleshores,

(a) hi ha un punt d'equilibri estable

(b) {r = 3} és una òrbita periòdica estable

(c) {r = 1} és una òrbita periòdica estable

(d) hi ha in�nits punts d'equilibri

25. Sigui el sistema

{
x′ = y(x2 − y2)
y′ = −x(x2 − y2) Podem a�r-

mar que

(a) el punt d'equilibri (0, 0) és estable pero no asimp-
tòticament estable

(b) el punt d'equilibri (1, 1) és estable

(c) el punt d'equilibri (−1, 1) és inestable

(d) tots els punts d'equilibri sobre la recta y = x tenen
el mateix tipus d'estabilitat

26. Les solucions de y(4) + 2y(3) + 3y(2) + 4y′ + ky = 0 són

(a) asimptòticament estables per a k ∈ [0, 2] i inesta-
bles per a la resta

(b) asimptòticament estables per a k ∈ (0, 2), estables
per a k = 2 i inestables per a la resta

(c) asimptòticament estables per a k ∈ (0, 2), estables
per a k = 0 i inestables per a la resta

(d) asimptòticament estables per a k ∈ (0, 2), estables
per a k = 2 i k = 0 i inestables per a la resta

27. Considereu el sistema lineal amb coe�cients constants
~̇x = A~x. Llavors



(a) si ~x(t) = ~0 és estable, tots els valors propis de A
tenen part real negativa

(b) si el sistema té una solució inestable, totes les so-
lucions són inestables

(c) si els valors propis de A tenen part real menor o
igual que 0, les solucions són estables

(d) si els valors propis de A tenen part real més gran
o igual que 0, les solucions són inestables

28. Considereu el sistema lineal(
ẋ
ẏ

)
=
(
−1 e2t

0 −1

)(
x
y

)
Llavors es compleix que

(a) hi ha solucions estables i inestables

(b) totes les solucions són inestables

(c) l'origen és estable però no asimptòticament estable

(d) totes les solucions són estables

29. Sigui ~x′ = A~x amb A ∈ Mnxn(R), ∀λ valor propi,
Re(λ) ≤ 0 i ∃λ amb Re(λ) = 0. Els punts d'equili-
bri són:

(a) Estables no asimptòticament

(b) Inestables

(c) Estables si tots els valors propis són simples

(d) Inestables si hi ha un valor propi múltiple de part
real nul.la

30. Considerem ~x′ = ~f(~x) un sistema no lineal autònom.
Sigui ~x0 un punt d'equilibri aïllat i ~0 el corresponent
punt d'equilibri del sistema linealitzat.

(a) Si ~x0 és asimptòticament estable, ~0 també ho és

(b) Si ~x0 és inestable, ~0 també ho és

(c) Si ~0 és asimptòticament estable, ~x0 també ho és

(d) Si ~0 és estable, ~x0 també ho és

31. Les solucions de y′′′ + ay′′ + by′ + y = 0 són asimptòti-
cament estables si i només si

(a) b > 1
a

(b) ab > 0

(c) a > 0 i a > 1
b

(d) ab > 1 i els dos paràmetres amb el mateix signe

32. Suposem que la part homogènia de l'equació y′′ +
p(x)y′+q(x)y = cos(2x) admet la solució sin(2x). Ales-
hores les solucions són:

(a) estables si qualsevol constant és solució de l'homo-
gènia

(b) periòdiques si qualsevol constant és solució de l'-
homogènia

(c) inestables si p(x) = 0

(d) periòdiques si q(x) = 0

33. Les solucions del sistema

~x′ =

(
0 β 0
α 0 α
0 β 0

)
~x+

(
1
1
1

)
eαt

són estables si

(a) α = 0, β < 0

(b) α < 0, β = 0

(c) αβ > 0

(d) αβ < 0

34. El punt d'equilibri del sistema ẋ =
(

4 1
1 −4

)
x és:

(a) Cap de les altres

(b) Un focus

(c) Un centre

(d) Un node

35. Què es pot a�rmar sobre el sistema

{
ẋ = −x+ y2

ẏ = −y + x2

(a) Té dos punts d'equilibri estables

(b) Cap de les altres

(c) Té dos punts d'equilibri, un d'estable i un altre
d'inestable

(d) Té dos punts d'equilibri inestables

36. Sigui el sistema

{
x′ = −3x− y
y′ = (1− a2)x− y Llavors:

(a) Les solucions sempre seran estables

(b) Si a = 2 hi ha in�nits punts d'equilibri estables

(c) Si a = −2 les solucions són asimptòticamente es-
tables

(d) Si a = 0 les òrbites són semirectes

37. Considereu el sistema

{
x′ = 2y
y′ = x2 Podem a�rmar:

(a) El sistema linealitzat al voltant del punt d'equili-
bri té les mateixes solucions d'equilibri que les del
sistema donat

(b) Les òrbites presenten simetria respecte de l'eix OY

(c) L'òrbita que passa pel punt (3,−3) tendeix a (0, 0)
quan t→ +∞

(d) El punt d'equilibri és estable

38. Sigui f : R → R contínua tal que existeix M > 0 amb
|
∫ t
0
f(s) ds| < M per a tot t ∈ R. Llavors és FALS que

les solucions de l'equació y′ = f(t)y compleixen:

(a) són totes estables

(b) algunes són estables i altres inestables

(c) estan de�nides en tot R
(d) són �tades en tot R

5 Transformada de Laplace

1. L'antitransformada de Laplace de F (s) = 7e−2s

(s−2)2 +
s+1

s2+2s+5 és:

(a) f(t) = 7(t− 2)e2t−4u(t− 2) + et+1 sin(2(t+ 1))

(b) f(t) = 7te2tu(t− 2) + e−t cos(2t)

(c) f(t) = 7(t− 2)e2t−4u(t− 2) + e−t cos(2t)



(d) f(t) = 7(t− 2)e2t−4 + et cos(2t)

2. La transformada de Laplace X(s) de la solució del pro-
blema de valor inicial x′′+tx = 0, x(0) = x0, x′(0) = x′0,
satisfà:

(a) s2X(s)− sx0 − x′0 −X ′(s) = 0

(b) s2X(s)− sx0 − x′0 −
∫ s
0
X(σ)dσ = 0

(c) s2X(s)− sx0 − x′0 +
∫ s
0
X(σ)dσ = 0

(d) s2X(s) + sx0 + x′0 −
∫ s
0
X(σ)dσ = 0

3. Sigui h(t) la resposta impulsional associada a l'equació
y′′+ 2y′+ 2y = f(t). Aleshores, la solució del problema
de valor inicial y(0) = y0, y′(0) = y′0 és:

(a) e−t cos t, en el cas f(t) = δ(t) i y0 = y′0 = 0

(b) h(t), en el cas f(t) = 1 i y0 = y′0 = 0

(c) 2h(t), en el cas f(t) = δ(t) i y0 = 0, y′0 = 1

(d) 2h(t) ∗ 1, en el cas f(t) = 1 i y0 = 0, y′0 = 1

4. Una d'aquestes transformades de Laplace NO és correc-
ta:

(a) L((t+ 1)2) = es/s2

(b) L(te3t) = 1/(s− 3)2

(c) L(sin t) = 1/(s2 + 1)

(d) L(et−2u(t− 2)) = e−2s/(s− 1)

5. La solució del problema de valor inicial y′′+y = u(t−1),
y(0) = 0 = y′(0), on u(t) és la funció de Heaviside, és

(a) y(t) = u(t− 1)(1− cos(t− 1))

(b) y(t) = u(t− 1)(1− sin(t− 1))

(c) y(t) = u(t)(1− cos(t− 1))

(d) y(t) = u(t)(1− sin(t− 1))

6. La solució del problema y′−
∫ t

0

y(τ)dτ = u(t)+δ(t−1),

y(0) = 1, té com a transformada de Laplace

(a) 1
s−1 + s

s2−1e
−s

(b) 1
s−1 + s

s2−1e
s

(c) s
s2−1 (e−s + 1)

(d) s
s2−1 (es + 1)

7. Si una funció f(t) té transformada de Laplace F (s),
amb

∫∞
0
f(t)dt = 1 i

∫∞
0
tf(t)dt = a < +∞, se satisfà:

(a) lims→0
F ′(s)
F (s) = −a

(b) lims→0
F ′(s)
F (s) = 0

(c) lims→0
F ′(s)
F (s) =∞

(d) lims→0
F ′(s)
F (s) = −f(0)

8. La funció que té per transformada de Laplace e−s
1
s2

+

e−2s 1
s2 + 4

és (u(t) és la funció de Heaviside)

(a) u(t− 1)(t− 1) +
1
2
u(t− 2) sin(2(t− 2))

(b) u(t− 1)(t− 1) + u(t− 2) sin(2(t− 2))

(c) u(t− 1)t+
1
2
u(t− 2) sin(t)

(d) u(t− 1)(t− 1) +
1
2
u(t− 2) sin(2t− 2)

9. El valor de
∫ a
0

sin(a−x2 ) cos(x2 )dx és:

(a) a
2 cos(a2 )

(b) a
2 sin(a2 )

(c) 2a cos(2a)

(d) 2a sin(2a)

10. Usant la transformada de Laplace, digueu quina de les
següents integrals és zero:

(a)
∫∞
0
e−πt sin tdt

(b)
∫∞
0
e−πtt cosπtdt

(c)
∫∞
0
e−πtt sinπtdt

(d)
∫∞
0
e−tt cosπtdt

11. Sigui F (s) = L(f)(t). Aleshores, la transformada de
Laplace de la funció u(t − a)

∫ t−a
0

f(τ)dτ (on u és la
funció de Heaviside) val:

(a) eas

s F (s− a)

(b) e−as

s F (s+ a)

(c) eas

s F (s)

(d) e−as

s F (s)

12. La funció que té per transformada de Laplace
2

s2 − 2s− 3
és

(a) e2t

2 sinh(t)

(b) et

2 sinh(2t)

(c) e2t sinh(t)

(d) et sinh(2t)

13. Sigui F (s) = L[f ](s), la transformada de Laplace de f .
Aleshores, la transformada de Laplace de teatf(at) és:

(a) − 1
aF
′( s−aa )

(b) − 1
a2F

′( s−aa )

(c) − 1
aF
′( sa − a)

(d) − 1
a2F

′( s+aa )

14. L'antitransformada de Laplace de la funció

F (s) =
1
s

1
1− e−sT

és (u(t) és la funció de Heaviside)

(a) f(t) =
∑
k≥0

u(t+ kT )

(b) f(t) = u(t− T )

(c) f(t) = esT

sT

(d) f(t) =
∑
k≥0

u(t− kT )

15. La solució del problema de valor inicial
{y′′ − y = 2δ(t− 1) , y(0) = 0, y′(0) = 0} en t = 2
és



(a) 0

(b) e− e−1

(c) e−1 − e
(d) 2

16. Sigui f : [0,∞) → R la funció contínua tal que la seva
transformada de Laplace és

L(f)(s) =
e−s

(s+ 3)3
.

Llavors

(a) no hi ha cap funció contínua amb aquesta trans-
formada

(b) la derivada de f no és contínua en t = 1

(c) f és de classe C1, però la segona derivada és dis-
contínua en t = 1

(d) f és de classe C2, però la tercera derivada és dis-
contínua en t = 1

17. Denotem per F (s) la transformada de Laplace de f(t).
Quina de les següents igualtats és FALSA ?

(a) L[(1 ∗ f)′] = F (s)

(b) L[(t ∗ f)′′] = F (s)

(c) L[cosh(t)f(t)] = 1
2 (F (s− 1) + F (s+ 1))

(d) (1 ∗ f)(0) = f(0)

18. La transformada de Laplace de eatf(at) és

(a) 1
aF ( sa − 1)

(b) aF (as)

(c) 1
aF ( sa − a)

(d) F (s− a)

19. Considerem la funció y(t), amb transformada Y (s), tal
que

y′ =
∞∑
n=1

δ(t− n), y(0) = 1

si H representa la funció de Heaviside, NO és cert:

(a) Y (s) = 1
s

es

es−1

(b) y(t) =
∑∞
n=0 δ(t− n) ∗ 1

(c) y(t) =
∑∞
n=0H(t− n) ∗ 1

(d) y(t) =
∑∞
n=0H(t− n)

20. Sigui f amb f ′ admissible i amb transformada de La-
place L[f(t)] = F (s). Quina de les a�rmacions següents
és FALSA ?

(a) L[teαtf(t)] = −F ′(s− α)

(b) L[tf(at)] = − 1
a2F

′( sa )

(c) L[tf ′(t)] = −F (s)− sF ′(s)− f ′(0)

(d) L[ ddtf(at)] = s
aF ( sa )− f(0)

21. Una d'aquestes transformades de Laplace NO és correc-
ta, on H és la funció de Heaviside o de salt unitat:

(a) L[cos 2t] = s/(s2 + 4)

(b) L[te3t] = 1/(s− 2)3

(c) L[et−1H(t− 1)] = e−s/(s− 1)

(d) L[2 sin t] = 2/(s2 + 1)

22. Sigui fk(t) = eαt∗
(k)
· · · ∗eαt. Llavors

(a) fk(t) = ekαt

(b) fk(t) = 1
(k−1)! t

k−1eαt

(c) fk(t) = tkeαt

(d) fk(t) = 1
(k−1)! t

k−1e(k−1)αt

23. Si fn(t) = tn, n natural, llavors

(a) (fn ∗ fm)(t) = n!m!
(n+m)! t

n+m

(b) (fn ∗ fm)(t) = 1
(n+m+1)! t

n+m+1

(c) (fn ∗ fm)(t) = n!m!
(n+m+2)! t

n+m+2

(d) (fn ∗ fm)(t) = n!m!
(n+m+1)! t

n+m+1

24. Sabent que L{f(3t)} = 1
1+s2

(a) L{f(5t)} = 5
3

1
1+(5s/3)2

(b) L{f(5t)} = 3
5

1
1+(3s/5)2

(c) L{f(5t)} = 3
5

1
1+s2

(d) L{f(5t)} = 1
1+(3s/5)2

25. Si F (s) = L{f(t)}(s) y f(t) és solució del proble-
ma f ′′ − f = t cos(t) amb condicions inicials f(0) = 0
if ′(0) = 0, llavors:

(a) F (s) = 1
(s2+1)2

(b) F (s) = 1
2
d
ds

(
1

s2+1

)
(c) F (s) = s2−1

s2+1

(d) F (s) = − 1
2
d
ds

(
1

s2+2

)
26. La transformada de Laplace de

f(t) = (t2 − 2t)e−tu(t− 1)

on u representa la funció esglaó, és:

(a)

(
1

(s− 1)2
− 1
s− 1

)
e−s+1

(b)

(
2

(s+ 1)3
− 1
s+ 1

)
e−s−1

(c)

(
2

(s− 1)3
− 1
s− 1

)
e−s+1

(d)

(
1

(s+ 1)2
− 1
s+ 1

)
e−s−1

27. La transformada de Laplace de la funció f(t) = 1 si
0 < t < 1, i f(t) = e1−t si t > 1 és:

(a)
s+ 1− e−s

s(s+ 1)

(b)
1− e−s

s
− e−s

s+ 1

(c)
1
s

+
e−s

(s+ 1)s

(d)
1

s+ 1
− 1
s(s+ 1)

+
e−s

s(s+ 1)



28. Si una funció admisible f(x), amb derivada admisible,
te transformada de Laplace F (s), i els límits següents
existeixen, llavors és FALS que:

(a) lims→0 sF (s) = limt→∞ f(t)− limt→0 f(t)

(b) lims→0 sF
′(s) = limt→∞−tf(t)

(c) lims→0 sF (s) = limt→∞ f(t)

(d) lims→∞ sF (s) = limt→0 f(t)

6 Problemes de contorn

1. Del problema de contorn{
y′′ − λy = 0
y(0) + y′(0) = 0, y(1) = 0

podem dir que

(a) 0 no és autovalor

(b) en cada interval [kπ, kπ + π/2), k = 0, 1, 2... hi ha
un únic autovalor

(c) té autovalors negatius

(d) totes les autofuncions són periòdiques

2. Considerem el problema de contorn y′′ + λy = 0 amb
y′(0) = 0, y′(π) = 0.

(a) Té solucions no nul.les únicament per a λ = k2,
amb k enter ≥ 0

(b) Existeix un valor de λ < 0 per al qual hi ha solu-
cions no nul.les

(c) Té solucions no nul.les per a qualsevol λ > 0

(d) L'única solució és y(t) = 0

3. Considerem el problema de contorn y′′ − λy = 0 amb
y(0) = y(1), y′(0) = y′(1). Llavors és cert que:

(a) λk = −4π2k2, k = 1, 2, 3, . . . , són autovalors, i per
a cada un d'ells l'espai d'autofuncions té dimen-
sió 2

(b) λ = 0 és un autovalor, i el seu espai d'autofuncions
té dimensió 2

(c) λk = −4π2k2, k = 1, 2, 3, . . . , són autovalors, i per
a cada un d'ells l'espai d'autofuncions té dimen-
sió 1

(d) λ = 0 no és autovalor

4. Considereu el problema de contorn

y′′ − λy = 0, y(0) = 0, y(1) + 2y′(1) = 0.

Es compleix que

(a) només té un nombre �nit d'autovalors

(b) els autovalors estan �tats inferiorment

(c) els autovalors estan �tats superiorment

(d) per a cada autovalor, la dimensió de l'espai d'au-
tofuncions és 2

5. Les funcions pròpies del problema de contorn y′′+λy =
0, y′(0) = 0, y(1) = 0 són, amb n > 0,

(a) cos ((n− 1
2 )πx)

(b) sin ((n− 1
2 )πx)

(c) sin ((n− 1
2 )x)

(d) cos ((n− 1
2 )x)

6. Considerem el problema de contorn homogeni{
y′′ sinx+ y′ cosx+ (1 + λ)y = 0, x ∈ (a, b)

y(a) + y′(a) = y(b) + y′(b) = 0

Es compliran les condicions de Sturm-Liouville si [a, b]
val:

(a) [π/4, 3π/4]

(b) [−π/2, π/2]

(c) Mai pot ser d'Sturm-Liouville

(d) a 6= b

7. Sigui el problema de contorn y′′+λy = 0, y(0) = y(π) =
0. Aleshores,

(a) No és un problema de Sturm-Liouville

(b) els autovalors són λk = k2, k = 0, 1, 2, . . . , i les
autofuncions yk(x) = sin(kx)

(c) els autovalors són λk = k2, k = 1, 2, 3 . . . , i les
autofuncions yk(x) = sin(kx)

(d) els autovalors són λk = k2, k = 1, 2, 3 . . . , i les
autofuncions yk(x) = cos(kx)

8. Considereu el problema de contorn

y′′ + λexy = 0, y(0) = 0, y(1) = 0

Llavors és FALS que:

(a) λ = 0 és autovalor

(b) hi ha in�nits autovalors positius

(c) λk → +∞ quan k → +∞
(d) els autovalors formen una successió ordenada en

forma creixent

9. Donat N ∈ N, sigui y(t) la solució del problema

y′′ + π2y = π
∑N
n=0(−1)nδ(t− n), y(0) = y′(0) = 0,

essent δ la delta de Dirac i H la funció de Heaviside o
de salt unitat. Llavors:

(a) y(t) =
∑N
n=0 sin(πt)H(t− n)

(b) y(t) =
∑N
n=0(−1)n sin(πt)H(t− n)

(c) y(t) =
∑N
n=0 sin(π(t− n))H(t− n)

(d) limN→∞ y(t) no està de�nit

10. Es FALS que pel problema de contorn{
y′′ + λy = 0, x ∈ (0, 1)
y(0) + y′(0) = 0, y(1) = 0

(a) λ = 0 no és valor propi

(b) existeixen valors propis que satisfan tan(
√
λ) =√

λ

(c) x− 1 és funció pròpia

(d) si λ > 0 és valor propi, llavors sin(
√
λx) −√

λ cos(
√
λx) és funció pròpia



11. Els valors propis i vectors propis del problema de con-
torn y′′ − (π

2

a2 − λ)y = 0, y(0) = y(a) = 0 venen donats
per

(a) λk = π2

a2 (k2 − 1) i φk(x) = sin(πkxa )

(b) λk = π2

a2 (k2 − 2) i φk(x) = cos(πkxa )

(c) λk = π2

a2 (k2 + 1
2 ) i φk(x) = cos(π(2kx−a)

2a )

(d) λk = π2

a2 (k2 + 1) i φk(x) = sin(πkxa )

12. Considereu el problema de contorn

y′′ + (1 + λet)y = 0, y(0) = 0, y(π) = 0

Llavors és FALS que:

(a) λ = 0 és autovalor i la dimensió del seu espai d'au-
tofuncions és 2

(b) Si φ1 iφ2 són autofuncions d'autovalores diferents,
llavors

∫ π
0
etφ1(t)φ2(t) dt = 0

(c) Els autovalors estan acotats inferiorment

(d) Els autovalors NO estan acotats superiorment

13. Donat el problema de contorn

y′′ − λy = 0, y(0) + y′(0) = 0, y(1) = 0

quina resposta és FALSA ?

(a) Existeixen autovalors negatius

(b) Zero és un autovalor

(c) Existeixen autovalors positius

(d) Els autovalors estan acotats superiorment

14. Siguin y1(x), y2(x) dues solucions l.i. de l'equació y′′ +
p(x)y′ + q(x)y = 0 tals que y1(0) · y′2(1) = y2(0) · y′1(1).
Llavors podem assegurar que el problema de contorn
amb condicions de contorn {y(0) = 1, y′(1) = 1}:

(a) Té in�nites solucions

(b) Té solució única

(c) No té solució

(d) Si té solució, no és única

RESPOSTES

1 2 3 4 5 6

1 D A C C C B
2 A C B C A A
3 D D A A C A
4 A A D A A C
5 A D A D A A
6 C A D A A A
7 A C B A A C
8 D D A A A A
9 C A A C B A
10 D B C C B A
11 A A D C D D
12 B C A C D A
13 B D B D B C
14 A B B A D D
15 A A C D B
16 A D A C C
17 D B C D D
18 D D A C A
19 A A C A C
20 B D C A C
21 B C A A B
22 B C A A B
23 C D C B D
24 D D A C B
25 A A A A A
26 D A D D B
27 A C A B A
28 B C A B A
29 D C D C
30 B D D C
31 A B C C
32 A B A A
33 D C D D
34 C D A
35 A C
36 C B
37 C
38 B


