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Equacions de primer ordre

. Considereu el p.v.i. y' = 2xy?, y(2) = —2/3.

(a) l'equacio és homogenia

(b) no podem garantir l’existéncia i la unicitat de la
soluci6 del p.v.i.

(c) la soluci6 maximal del p.v.i. passa per (0,2)
(d) la soluci6 maximal del p.v.i. és sempre negativa

. Les trajectories ortogonals a la familia de corbes 125(y+
a)>=1-1x, a € R son:

(a) y+9(1—2)3 +a=
M) y+21—2)5 +a=0
() y+91—2)5 +a=0
(d) y+5(1—2)5 +a=

. Sobre p.v.i. 3 = sin(|z|)y*/3, y(x0) = o, és FALS que

(a) sizg =11 yp =1, té una unica solucio

(b) si zp = 11 yo = 0, té, almenys, dues solucions
diferents

(c) si zp = 01 yp = 0, té, almenys, dues solucions
diferents

(d) si zp = 01 yo = 1, té, almenys, dues solucions
diferents

. L’equaci6 diferencial de la familia de corbes 23 +y> = C
NO és:

a) lineal

(a)
(b)
(c)

)

(d) homogenia

de variables separades

cap de les altres

. Quina de les equacions diferencials segiients NO és ho-
mogenia?:

(a) yy' =%+

(b) ¥ +1=e/v

(c) loga? =y + 2log(2y)

(d) 2y’ =z +y
. Les corbes tals que, en cada punt (z,y), la projeccié del

segment de normal compreés entre el punt de contacte a
la corba i I’eix OX té punt mig (2, 0) son:

Ellipses

Paraboles

. Considereu el problema de valor inicial ¢y = |z|f(y),
y(ro) = yo, on xo,y0 € Ri f: R — R és una funcié
continua. Llavors és cert que

(a) Si f és C!, el problema de valor inicial té soluci6
Gnica

(b) El problema de valor inicial té sempre soluci6 tnica

(¢) Sizo =0, el problema de valor inicial té més d’una
solucio

(d) El problema de valor inicial té& més d’una solucié

8. Sigui y¥'(z) = y(z)*, y(0) = 1; aleshores és FALS que:

(a) Si @ =2 la soluci6 maximal estd definida Vo < 1
(b) Si a =1 la solucié maximal estd definida Vz € R

(¢) Si 1 < a < 2 la solucié6 maximal estd definida
Va < ﬁ

(d) Si 1 < a < 2 la soluci6 maximal estd definida
Ve eR

9. Podem assegurar que el problema de valor inicial
{y = f(z)9(y), y(1) = 0} té solucib tinica quan:

fecH(~o0,1])igeCl(R)

f €CHR) i g derivable a R

f és continua a (0,+00) i g € C}(R)

(d) feC'(R)igeC'((0,00))

10. La solucié maximal y(z) del problema de valor inicial

y =ay? y(0)=1
satisfa
(a) y(2) = -
(b) ¥(2) =
(c) y(2) =
(d) No esta definida per a x = 2

11. Considerem I'equacio

Es FALS que:
(a) La soluci6 y(t) tal que y(2) = 3 esta definida en
—Vh<t<\B

(b) Fent el canvi z = y~2

es converteix en lineal

(c) La soluci6 y(t) tal que y(1) = 1 esta definida en
0<t<v2
(d) Tota soluci6 y(t) té signe constant a interval on

esta definida

12. Les trajectories ortogonals a les corbes d’equaci6
2% + y2 = 2ax, son les solucions de I'equacio:

(@) ¥ =35

(b) 2y —y*y' =22y

(c) 2zyy’ =y* —a?

(d) (v* —a?)y =2zy

13. Quines sén les corbes tals que tot punt és punt mig del

segment de recta tangent en aquest punt comprés entre
els dos eixos?

(a) y=kz

(b) y=1%

(c) 2%+ y? = R?

(d) Cap de les altres



14.

15.

16.

17.

18.

19.

Considerem g : R — R amb g € CY(R) i |¢/(x)| > 1.
Sigui el problema de valor inicial ¥’ = f(z,y), y(a) = b
amb f(z,y) = g({). Quina de les segiients afirmacions
és FALSA ?

a) El problema té soluci6 tnica per a a =1,b=0
(c

(d) L’equaci6 es transforma en una de variables sepa-
rades si s’aplica el canvi z = %

(a)

(b) El problema té soluci6 tnica per a a = 0,b =1
) Es tracta d’una equaci6 de tipus homogeni
)

2
La familia de corbes ortogonals a les hipérboles T

02
y?=1¢és:
(a) logy+ 5 + % =c
(b) logy + % — % =¢
(c) logy—%+§:c
Sigui y(m) la solucié del p.vi. ¥/ =1 —siny, y(0) = 0.

En aproximar y(m) pel métode d’Euler amb 2 iteracions
obtenim

(a
(b
(c
(d

(=R e i N F

)
)
)
)

Considereu les corbes tals que, per a cadascun dels seus
punts, l'eix Y divideix en dos parts iguals el segment
de recta tangent a la corba comprés entre el punt de
tangéncia i I’eix X. Aleshores és FALS que

(a) satisfan l'e.d.o. 22y’ =y

(b) les seves trajectories ortogonals satisfan yy’ +2x =
0

(c) son del tipus: y = Cy/x

(d) son del tipus: y = %

La soluci6 del problema de valor inicial

L’equacié que satisfan les trajectories ortogonals a la
familia 22 — y? = kx, k € R, és

2
(a) _12.?;2
(b) o' = ;2
2 2
() ¥ =*5"
@) v = 5

2xy

20.

21.

22.

23.

24.

25.

26.

Quines d’aquestes corbes satisfan que la projeccié sobre
I’eix OY del tros de normal limitat pel punt de la corba
i ’eix OY té longitud %?

(a) z=9y*+C

(b) y=22+C

() y=—3lnax+C
)

Sigui l'equacio y' = —;12 -44 y?. El canvi de variable

Yy = % + u la converteix en una del tipus:

(a) Cap de les altres

(b) Bernoulli

(c) Lineal

(d) Homogenia

Podem assegurar que el problema de valor inici-
al {y/ = |z — 1||z — 2| + z cos (i) , y(a) = b} té solucio
Gnica quan

La trajectoria ortogonal a les corbes d’equaci6

22 +2y? = ¢, i que passa pel punt (1,1) és:
a) y=ka®> VkeR
r=ky? VkeR

. . 1 .
L’equacié resultant de fer el canvi v = a ’equacié
cosy

y' siny = cosy(l — z cosy) és

(a) v+v=z
(b) vv=1-2
(c)v'=1+2
(d) vVv=v—2

Quines son les corbes tals que I'area del triangle limitat
per l'eix OY, el radi vector i la recta tangent a un punt
de la corba és igual que l’area del triangle limitat per
I'eix OX, el radi vector i la recta normal?

a) Rectes

(

(b
(c
(d

Circumferéncies

Hipérboles

— — —

Paraboles

Sigui la familia de corbes z?y+zy? = k, k € R. Les cor-
bes normals a les donades s6n les solucions de ’equaci6
diferencial:

(&) 2z —y)yy +z(z+2y) =0
(b) 2z —y)yy' —z(r —2y) =
(c) Rz +y)yy +az(x—2y) =
(d) 2z +y)yy' —z(z+2y) =0



27.

28.

29.

30.

31.

32.

33.

Considereu el problema (y')? = 422, y(0) = 0. Quina
de les segiients afirmacions és correcta?
(a) Té diverses solucions

(b) El teorema d’existéncia i unicitat assegura que té
una tnica solucié

(c) No té cap solucio
(d) Té una unica solucio, tot i que no s’hi pot aplicar

el teorema d’existéncia i unicitat

De quin tipus NO és 'equaci6 diferencial de les trajec-
tories ortogonals a la familia de corbes xy = ¢?

a) de tipus homogeni

(

(b
(c
(d

lineal
de primer ordre

de variables separades

o~ — T

La corba que passa per (0,1) i tal que la recta tangent
en (z,y) talla 'eix OX en el punt (y,0) és:

(a) y ="/

(b) y=e /Y

() y=e*/v

(d) y=e"/v

L’equaci6 diferencial de la famglia de corbes

(k—cosz)y=1,keR,és

a) lineal

(a)
(b)
()

)

(d) cap de les altres

de variables separables

de tipus homogeénia

La corba per la que I’area del triangle que formen I’eix
d’abcisses, la tangent a la corba i el radi vector del punt
de contacte (z,y) és constant i igual a a? verifica:

_ ¥ _ 2a%
(a) vy
v _ 24%
(b) =+ % ==
(c)x—%:2a2
(d)x—&—%:QaQ

Per a quin valor d’a la solucié del problema
Y +y=ad(t—1),y(0) =1

verifica y(0) = y(1):

(a) 1—e !
(b) 14+e7!
(c) 1—e
(d) 1+e

Sigui la familia de corbes

2?2 a

1
7+72=*,GER
a vy a

L’equaci6 diferencial que satisfan les corbes normals a
aquesta familia és:

(a) (L+2?) —ayy' =0

34.

35.

36.

(b) A—z) =2y =0
() A+z)+azyy =0
(d) 1-2?)+ayy =0
La soluci6 del problema de valor inicial
ty' + (2t + 1)y = te™ ", y(1)=0

satisfa que y(2) val:

(a) e
(b) de
() 3
(@) 0

La familia de corbes C = %, C € R, és la solucio
general d’una ecuacié diferencial de tipus

(a
(b
(c
(d

homogeénia
lineal homogénia

separable

N N~ —

lineal no homogeénia

La corba que pasa pel punt (1,1) tal que la tangent a
cada punt (z,y) talla I'eix OY a (0, 2?) verifica que:

(a) y(2) = -3
(b) y(2) =4

(c) y(3) =3
(d) y(3) = -6

Equacions d’ordre superior

. Considereu I'equacio y” + 2ay’ cot ax + (b — a?)y = 0.

Amb el canvi de variable u(z) = y(z) sin azx es transfor-
ma en:

(a) v (z) + b%u(z) =0
(b) u"(z) — b*u(x) =0
(c) u"(z) + a’u(x) =0
(d) v’ (z) — a’u(z) =0

Sabent que ze® cos x és una solucié de

y¥ — 5y" + 12y — 16y" + 12y — 4y = 0,
llavors un sistema fonamental de solucions és
a) {7 e®cosw,e® sinx, ze” cos x, re® sin '}

(a)
(b)
)
)

{e5* e cos x, e® sin x, we® cos x, re” sin x'}

(c

(d) {e3*, e® cosx,e” sinx, re® cosx, re® sina}

{e”, e cosx, e” sin x, xe” cos x, xe® sinx}

Si el wronskia W (z) de dues solucions linealment inde-
pendents de l'equaci6 y” + p(z)y’ + q(x)y = 0, definida
Vz € R, amb p derivable i p # 0, és solucié de I’equacid
diferencial, llavors és FALS que:

(a) p'(x) = q(z)
(b) W + p(a)W' + q(z)W =0



(c) W +p(x)W =0
(d) W'+ q(x)W =0

4. La soluci6 general de I'equacio vy +2y"” — 5y’ — 6y =0

és:

y = Crexp2t + Cy exp(—t) + C5exp(—3t)

y = C1t? exp 2t + Cot~ exp(—t) + C3t 3 exp(—3t)
y = C1 exp 2t + Catexp 2t + Cs exp(—t)

y = (Cycost+ Cysint)exp2t + Csexpt

5. Considerem dues solucions ¥, 2 de 'equacié vy + vy’ +
ycost = 0. Aleshores és FALS que:

(a) Si Wy, y2](to) = 0 llavors {y1,y2} sén linealment

dependents en qualsevol interval I C R

(b) Si Wly1,y2](to) # 0 llavors Wy, y2] no s’anulla
mai

(¢) {y1,y2} son linealment independents en R si i no-
més si sén un sistema fonamental de solucions

(d) L’equacio diferencial Wy, yo,y] = 0 té les matei-
xes solucions que ’equaci6 original.

6. Mitjangant el canvi z = (In|y|)’, Pequaci6 diferencial
y' +ay +by=0,o0na,be R, es transforma en:

4+ 22 +ar+b=0

Z4+az+b=0

22"+ ()2 4 a2 +b=0

(a
(b

)
)
(c)
)

(d) (z2/) +az+b=0
7. L’equacid
y(n) _|_ an_ly(nil) + “e. + aGy(G) _|_ a5y(5) _|_ y(4) — 1;2 s

amb n > 7, admet com a soluci6 algun polinomi de
grau:

(a
(b
(c
(d

S N N N
I o N

8. Considereu I’equacio

Y + f(@)y + g(z)y =0,

on f,g: [a,b] — R son continues, i siguin y; i yo dues
solucions d’aquesta. Llavors és FALS que:

(a) Siy iy tenen un maxim a xg € (a,b), llavors sén
linealment dependents

(b) Si en x9 € (a,b), y1 té un minim i y;(xp) = 0,
llavors y1(z) =0, Vz € [a, ]

(c) Siy; té un maxim a zg € (a,b), i y2 té un minim
al mateix punt, llavors sén linealment dependents

(d) Si y1 i y2 tenen un maxim a xy € (a,b), llavors
y1(z) = ya2(x), YV € [a,b]
9. L’equacid
y' = flz)y =0

es transforma, mitjancant el canvi z = 3 /y, en ’equacio

(a) &/ 422 = f(x)
(b) 2+ 2= f(x)

10.

11.

12.

13.

14.

15.

(©) 2/ +1/z = f(x)
(d) 2"+ f(z)z =0

La soluci6 de ’equacié diferencial d’ordre 2
y" + 4y + 8y = (sin 2z + cos 2z)e*”

NO es pot escriure, per a algun valor de les constants,
com:

(a) y = Ae 2% cos2x + Be 2 sin2x + Ce?® cos 2z +
De? sin 2

(b) y = Ae=2* cos2x + Be % sin 2z + (Ce?
De?® sin 2x)x

(C) y = sin 2$(A62I — BeiZI) + cos 21’(0621 _ D672x)
(d) y= Ae*"sin 2z + Be ?* cos 2z + Ce®* sin 2z

T cos2x +

Sigui 2%y” —22y’' — (2®—2)y = 2. Per a aquesta equacio

lineal és FALS que:
(a) cosh(z) és soluci6é de l’equacié homogenia

(b) El canvi y(z) = 2z(z) la converteix en una equacié

amb coeficients constants
(c) La soluci6 tal que y(0) = '(0) = 0 no és unica

(d) Existeix una solucié de la forma cz™, ¢ € R

Donada I’equacié

" — 4y’ + 4y = (1 + x)e** +sinz + rcosx

quina de les segiients en pot ser soluci6é particular?

(a) (Ax + B)e*®* + (Cz + D)sinx + (Ez + F) cosx
(b) (Az + B)e** + Csinz + (Dz + E) cosx
) 2%(Az + B)e** + (Cx + D)sinz + (Ex + F) cos x

(c
(d) 22(Ax + B)e** + Csinz + (Dx + E) cosx

Podem assegurar que el problema de valor inici-
al {y" + Ly +2,/5=1, y(a) =b, y'(a) = c} té soluci6
Gnica quan:

(a) a=c=1,b=0
(b) a=0,b=c=1
(c)a=b=0,c=1
(d) a=b=1,¢=0

x" és solucié de 'e.d.o. 3y’

si

—6xy’ +12y = 0 siinomés

(@) r=2,r=3
(b)y r=2,r=3,r=-2
(c) r=2,r=-2
(d)r=2,r=1,r=0

Per a quin valor de n la solucié general de ’equacio
22y — 2zy — (22 —2)y—2x e®

és y(z) = Aze® + Bre™® + 12e*?

(a) 3

(b) 2

(c) 1

(d) 0



16.

17.

18.

19.

20.

21.

22.

Suposeu que y1(t) = 14+ ¢, y2(t) = 1+ 1 y3(t) =
1 + 2t + 3t? soén soluci6 de y” + ft)y + ( )y = h(t).
Llavors

a) els coeficients de I’equacié son constants

(

(b
(c
(d

els coeficients de ’equacié sén continus en R

totes les solucions son creixents

N O~ —

les solucions satisfan y(0) = 1

L’ordre minim de l’equacié diferencial lineal homoge-
nia amb coeficients constants que admet com a solucid
particular la funci6 12t? + 9t3sin(t) — tel3t és

Ne)

(a)

(b) 13

(c) 12

(d) Cap de les altres

— =

Siguin f1, f2 : [-1,1] — R tals que fi(x) = {2° si
x € [-1,0],0 altrament}, fo(x) = {0 si z € [-1,0], 23
altrament}. Considerem 'equaci6 y” +a(z)y’ +b(z)y =
0, amb a(x), b(x) funcions continues. Llavors:

(a) f1,fo poden ser sistema fonamental de solucions
per a certes a(x), b(x)

(b) f1, f2 no poden ser sistema fonamental de solucions
perqué son linealment dependents

(¢) fi1,f2 nopoden ser sistema fonamental de solucions
perqué no sén de classe C*([—1,1])

(d) f1, f2 nopoden ser sistema fonamental de solucions
perqué W(fi(z), f2(x))=0, per a tot x € [—1,1]
amb el canvi

Lequaci6 y” — 2y + (1 + Z)y = xe”,

y = xv, es transforma en:

(a) v +v=¢"

(b) v” =e*

(c) v +v=uze”

(d) Cap de les altres

Donada 'equacié y” + f(t)y’ + g(t)y = 0, quina de les
segiients respostes és FALSA 7

(a) Si f(t) +tg(t) = 0, aleshores y(t) = t és solucio
(b) Si f(t) + g(t) = —1, aleshores y(t) = e és soluci6
(c) Si f(t) —g(t) = 1, aleshores y(t) = e~ és soluci6
(d) Si f(t) —tg(t) =0, aleshores y(t) = —t és solucié
Si fem el canvi de variable s = tant dins ’equaci6

y" — 2tant y’' + (1 +tan?t)%y = 0, s’obté 'equacié di-
ferencial en la nova variable s:

(@) y"+y' +y=0

(b) v —2sy’ + (1 +s?)%y =0
(c) ¥ +y=0

(d) ¥ =2y +y=0

Considereu dues solucions uq, us de l'equacié diferen-
cial y” + p(t)y’ + q(t)y = 0, amb p i ¢ continues en R.
Aleshores és FALS que:

(a) Si{uy,us} son linealment dependents en R, llavors
existeix un o tal que Wiuy, us](to) =0

23.

24.

25.

26.

27.

28.

(b) SiW/uy,us] s’anulla en algun punt llavors s’anulla
en tot punt

(c) Si ui(tg) = ua(ty) per a cert tg, llavors les dues
solucions coincideixen

(d) Si{w1,us} son linealment independents llavors ’e-
quaci6 diferencial Wuy,us,y] = 0 té les mateixes
solucions que ’equaci6 original

L’equaci6 diferencial y” + y = cost + t admet solucions
del tipus segiient, per a certs valors de les constants:
Acost + Btcost + a+ bt

Atcost+ Btsint+ a

Acost + Btcost + bt

Acost + Btsint + bt

(a
(b
(c
(d

N~ —

Donada 'equacié x2y” + 22y’ — 2y = 0, quina de les

afirmacions segiients és FALSA 7

a) Existeix alguna solucié de la forma 2™, n >0

(a)

(b) Existeix alguna soluci6 constant

()

(d) Existeixen dues solucions que satisfan y(0) =
y'(0)=0

L’equacié lineal homogénia amb coeficients constants
d’ordre més petit que admet com a solucié z sin x és:

Existeix alguna soluci6 de la forma 2™, n < 0

(@) ¥ +2y"+y=0
(b) v +2y +y=0
(c) ¥y +8y" + 16y =0
(d) y’U + Q,y/l/ + y// — 0

Considereu ’equacié lineal homogénia

//_2/

La funci6 y; (t) = ¢t n’és soluci6. Llavors és FALS que:

(a) La soluci6 y(t) tal que y(1) = 31 y'(1) = 5 verifica
que y(2) = 0

(b) Tota soluci6 y(t) verifica que y(0) =0

(c) La solucio y(t) tal que y(1) =21 y/'(1) = 3 verifica
que y(2) =6

(d) La solucio y(t) tal que y(1) =01 y'(1) = —1 veri-
fica que y(2) = —2

Sigui y"”’ +4y’ = t? +t cos 2t. Aquesta e.d.o. admet una
solucié particular del tipus:

at3 + (c1t + c2t?)(Acos 2t + Bsin 2t)

at? + bt + (At + Bt?) cos 2t + (Ct + Dt?)sin 2t
at3 4 bt? + ct + (At + Bt?) cos 2t + (Ct + Dt?) sin 2t
at3 + bt? + ct + t(Acos 2t + Bsin 2t)

Donades u;(t) = e i uy(t) = et amb a # 3, és FALS

que:

(a) {u1(t) , ua(t)} és un sistema fonamental de
Wlu 1(t),u (t),y] =0
(b) {u1(t) , ua(t)} és un sistema fonamental de y”

)
(a ﬂ)y +afBy =0



(¢) qualsevol equacio que tingui ui(t) i ug(t) com a
solucions ha de ser de coeficients constants

(d) wi(t) 1 ua(t) som solucions de y"”' — (o + B)y”
afy =0

29. Donada l'equaci6 yy” —y'(1 +9') =0, és FALS que
(a) y =aeb +b, Va,beR
(b) admet alguna soluci6 polindomica de grau u
t
(C) = 5, Va, b S R

(d) admet alguna solucié constant no nul-la

30. Sigui I'equaci6 y™ + 2y +4y” + 2y’ = 0. Les arrels del
seu polinomi caracter1st1c verifiquen:

(a) te 3 arrels amb part real negativa

(b) existeix alguna arrel amb real positiva
) te dues arrels amb part real negativa
)

(c

(d) te 3 arrels amb part real nulla

31. Sabent que

3
ty/lfy,+4tyf0

admet solucions de la forma t*, k € R, si y(1) = 0 i
y'(1) = 1, llavors y(2) val:

(a
(b
(c
(d

)

)

)

) 3v2

32. Si te? i e~? son solucions de I’equacié diferencial amb
coeficientes constants ¥’ +asy” + a1y’ +apy = 0, llavors
ag val:

—4

4

-2

No es pot determinar

(a
(b
(c

)
)
)
(d)

33. Les solucions de I'equacié diferencial
y// _ yy/ — 0
verifiquen, definint p = ¢/,

a) p=y>+C

(a) p
(b) p=
(c) p
(d) 2

(&~ =0
+y—0

3 Sistemes d’equacions diferencials

1. Sigui ® una matriu fonamental d’un sistema lineal ho-
mogeni de primer ordre definit a R™, i sigui també
M € My xn(R). Aleshores,

(a) sidet (M) #0, M - ® és una matriu fonamental

(b) ®- M és una matriu fonamental

. Pel sistema 7' = (

. La matriu M(t) =

(c) sidet (M) #0,®-M~! és una matriu fonamental

(d) si det (M) # 0, M~ -® - M és una matriu fona-
mental

. Sigui el sistema &' = AZ, on A € M, x,(R). Siguin

7 € Ker(A — ), oy € Ker(A — X )?\Ker(A — ).
Aleshores és FALS que:

(a) Z(t) = e (A — M\)Ty és solucid

(b) Z(t) = eMiiy és solucid

(c) Z(t) = e [Ty + t(A — A )¥s] és solucid
(d) Z(t) = e [t + (A — \)T,] és solucio

. Suposeu que

el cost
1 (t) = <2€t sint
és una soluci6 del sistema & = Az, on A € Maoya(R).
Llavors

._.
~
[ V)

~—

a

(a)
(b)
)
)

=

(c
(d

|
=
~—

S S NN

I
e N N N

—O R N N
|
[
~—

ol
=
~—

% 7;) T és FALS que:

==

(a) existeix una solucié del tipus (¥t + ¥)e*' amb
01 #0
(b) existeix una solucio del tipus ;e amb 7 # 0
4 =
y U2

(c) existeixen solucions del tipus @€ et lineal-

ment independents

(d) existeix una solucié del tipus (7t2 + vt + T3)ett
amb 171 ;'é 0

. Es considera el sistema x = Ax, amb A =

01 -1

( 1 2 -3 ) . Siguin vq = (0,1,1), vo = (1,1,1) i
1 2 -3

vz = (—1,1,0). Un sistema fonamental de solucions

del sistema esta format per:

€ tV1, V2, Vg +tV2

(a)

(b)

(c) e7tvy, tva, v3
)

(d) e7tvy, efva, telvy

. La soluci6 del problema Y’ = < _11 _11 )Y, Y (0) =

(2,0), compleix:

sint 1
0 sint

tal del sistema lineal homogeni x’ = A(¢)x. Llavors és
cert que:

és matriu fonamen-

(a) La matriu A(t) és amb coeficients constants



(b) Els coeficients de la matriu A(¢) tenen discontinu-
itats per a t = kw, amb k enter

(c) La soluci6 que val ( ; ) at=m/2és ( QSl?ntt >
(d) No hi ha cap soluci6 que valgui ( ; > ent=m/2

8. Quina és la matriu A € My(R) associada al sistema
2! = AZ que té per solucions ¥ (t) = Tcost i Za(t) =
wsint, amb ¥ i W linealment independents?

(a) No existeix

(1)
@(20)
@ (V)

9. Sigui M(t) una matriu fonamental del sistema 2z’ =
A(t)x, on A(t) és una matriu n X n amb coeficients
continus a R. Llavors és FALS que

(a) si C és una matriu n X n, constant, M (¢)C és ma-
triu fonamental

(b) tota matriu fonamental del sistema és de la forma
M(t)C, on C és una matriu constant n x n

(c) tota solucio del sistema és de la forma M (t)v, ¢ €
RTL

(d) det M(t) #£0,Vt € R

1 0 2 0
10. Si et 0 |+t -1 | + 5 0 és solucio
1 0 1

del sistema x’ = Az, llavors també és soluci6

(a) e | 0
1
0
(b) et [ -1
0
0
(c) e[ 0
1
[/ 1 0
(d) e* 0 |+t -1
\ 1 0

11. El sistema &’ = A(t)Z te per matriu fonamental de so-
lucions, en un cert interval,

X(t) = < ﬁ tgt—i1 >

Llavors es verifica:

(a) A(t) és matriu constant
(b) Sit#0,det A(t) #0

©a0=1(g %)
@ a0=3 (1 % )

12. Quantes solucions li. del sistema '
Man(R), satisfan (1) = k£(0),k € R?

= AZ, A €

(a) Tantes com vectors propis l.i.
propis reals d’A

associats a valors

(b) Tantes com valors propis reals d’A comptats amb
la seva multiplicitat

(d) Cap
13. Sigui A ( :1,) 713 ) Llavors:
~ ( ecos(3) —esin(3)
(a) e = ( esin(3) —ecos(3) )
o - ()
_ ( ecos(l) —esin(1)
(c) et = ( esin(l) —ecos(1) )
= (ot con
14. Sabem que Z(t) = et[( (1) )—l—t( (2) )} és soluci6 de

T = AZ. Aleshores,

(a) < (1) > és vector propi de A

wa-(3 )

(c) et < (1) 20t > és matriu fonamental de solucions

(d) A té 2 valors propis diferents

15. Sigui {0y, s, ¥3,7;} una base de R

—t [~ L2
e U1 + tvz + 5 U3

Si r, =
i @y = ety son solucions del

sistema 7’ = AZ, llavors quina de les segiients NO n’és
soluci6?

16. Sigui V (¢) una matriu fonamental del sistema lineal ho-
mogeni &' = A(t)Z. Suposem que V(t+s) =V (¢)V(s),
per a qualsevol s it de R. Llavors és FALS que

(a) V() =V ()~
(b) la matriu A(t) és constant
(c) V(0)=1Id
(d) V&)V (s) = VI(s)V (1)
17. Sabent que

(t) = (et(1+2t+t;),et(%—i—t;),et(t—i—tj))

és solucié d’un sistema lineal a coeficients constants en
dimensié 3, una altra solucié és

(a) (¢,0,0)
(b) (et(1+ 2t), e

a 1perautott

(14 2t),et(1+1))



(c) (e e, e")
(d) (2¢',2¢",¢")

18. Considerem el sistema # = A(t)Z, on A(t) =
( Z((Z’)) Z((?) ) té coeficients continus a R. Si X (¢) és

una matriu fonamental de solucions i W (¢t) = det X (t)

llavors
(a) W'(t) = (a(t) + d(t))W(t)
(b) W'(t) = (b(t) + c(t))W (¢)
(c) W'(2)
)

19. Sigui A una matriu n X n, constant. Considereu el sis-

|
tema T = EAf' Llavors és FALS que

(a) amb el canvi t = e® es transforma en ¥ = AZ.

(b) si A és valor propi de A i 7 € ker(A — AId), t*7 és
soluci6 del sistema

(c) si t 7 és solucio del sistema, A és valor propi de A.

—

(d) amb el canvi t = e~* es transforma en Z = —AZ.

20. La soluci6 del p.v.i. # = ( Z ?1) ):E', Z(0) = (2,-3),

val, en t = 1,

1 0 0
0 o«cost+ @sint sint és matriu fonamen-
0 [Bcost—asint cost

tal d’un sistema a coeficients constants si

21. V(t) =

(a) a:]-)ﬁ:()
(b) a=0,8=1
(C) a=0,0=-1
(d) Ao, B

1 1 2
22. La soluci6 del problema 7 = 0 2 0 )f amb
0 0 1

2
Z(0) = ( 1 ) compleix que Z(1) val:
1

2¢ + €2
(d) e?
e
1 1 5
23. Sigui [ 3 | +e? +te?| 7 | unasolucié del
4 2 —4

sistema lineal ¥ = AZ. Llavors és FALS que:

(a) A és constant i det A =0

5
(b) e%( 7 > és solucio

—4

1
(c) €2t< -1 > és soluci6
2

(d) A és constant i 2 és valor propi doble

24. Sigui el sistema lineal amb coeficients constants
#' = AZ. Aleshores és FALS :

(a) eA'¥ és solucié només quan ¥ és un vector propi de
la matriu A

(b) et és una matriu fonamental del sistema d’equa-
cions

(c) eA*M és una matriu fonamental si i només si M és
invertible

(d) si N(t) és una matriu fonamental llavors
N~1(t)e”? és sempre una matriu que no depén de ¢
i de determinant no nul

25. Si Z(t) = Uy + Uit + Uat? és una solucié no nulla del
sistema @' = A%, amb A € M3y3(R), aleshores és FALS
que:

(a) Si @ # 0llavors @, # i @ sén solucions linealment

independents

(b) Si @ # 0 llavors Z i & son solucions linealment
independents

(c) Si vy # 0 llavors &' 1 7 son solucions linealment
independents

(d) Si @ # 0 llavors Z, Z i & son solucions linealment
independents

26. Sabent que ¢34t 85 una matriu fonamental del sistema
' = tAZ, i A # 0 és un valor propi real doble de la
matriu A € M,,«,,(R), quina NO és solucio del sistema?

“(I+ 3t2(A — \I))7, amb 7 € Ker(A — \I)?
e2 5, amb 7 € Ker(A — M)
A5 amb 7 € R"
(d) e3 (I +12(A — A))#, amb ¥ € Ker(A — 31)?
27. La soluci6 z(t) del problema de valor inicial

= (00 )er () w0=( 1)

compleix que:
—Tr
-1

1
0
0
1
28. Sigui A € Ms«2(R). Suposeu que etA( 1 ) =

(1) o] i °



(a) et4 = ( tZZ 629 ) (a) W(t) = V(¢)C és una altra matriu fonamental
(b) W(t) = CV(t) és una altra matriu fonamental
2 42
(b) et = < tZ?t tZQt ) (c) V(t) és tinica perque es verifica el teorema d’exis-
téncia i unicitat
2t
(c) et4 = ( ¢ 0 29 ) (d) W(t) =V (t)C satisfa el sistema
e
o2t o2t 34. La soluci6 del problema &' = AZ amb
(d) et = ( 2t 2t 2t ) 1 2
te™ e™ +te Z(0) = (}) iA= < 01 ) verifica que Z(—1) val:

29. Siguin V(¢)y W (¢) matrius fonamentals del sistema amb

coeficients constants ¥ = AZ. (a) (?;2)
(a) Si existeixen vectors tals que V(t)éi = W(t)és, (b) (%2)

Nlavors V (t) = W(t) © ()

c

(b) V(t) + W(t) és una altra matriu fonamental 1/16/
(c) V(t) = MW(t) sent det(M) # 0 @ (5,2)
(d) Si per a cert to, V(to) = W(to), llavors V(t) =

W(t)

Y 4 Estudi qualitatiu
—1¢2 43¢
30. Sabent que e? —t és solucié d’un sistema
1

1. Considerem el sistema &' = f(Z). Siguin Zp, un punt

amb coeficients constants, llavors també n’és solucio: d’equilibri, i p()), el polinomi caracteristic de D f (7).

3t Aleshores és FALS que:
(a) —t et
0 (a) si p(A) té totes les arrels amb part real < 0, Zo és
0 asimptoticament estable
(b) ( (1] )6% (b) si &y és inestable, p(A) no té totes les arrels amb
part real < 0
(c) _B/Q 122t (c) si p(\) té alguna arrel amb part real 0, Zy no pot
0 ser asimptoticament estable
1 (d) si totes les arrels de p(A) tenen part real < 0, @
(d) | o |e* pot ser inestable
0
b o 2. Sigui el sistema
a
1. Elsi 7 =AF,A=| 0 b |, N .
3 sistema, T z, 0 8 b ), O admet com (x) _ Play), Fley) = (a:2 +aly — 12))
a matriu fonamental de solucions: Yy 1422y —y
1 obt Lp?e? a € R. A partir de I'estudi dels valors propis del jacobia
(@) e | 0 1 bt de F calculat en el punt d’equilibri (p.e.) corresponent
0 0 1 podem afirmar que:
. 1 a b (a) si @ =0, aleshores (0, 1) és un p.e. inestable
¢
(b) e 8 (1) ClL (b) si @ > 0, aleshores no podem decidir sobre ’esta-
bilitat del p.e. (0,1)
1 bt 12 . ) SR
at 5 (c) si a@ < 0, aleshores (0,1) és un p.e. asimptotica-
(c) e 0 b bt t establ
90 2 ment estable

d) sia>0,elpe (0,1) es establ
(d) e (I+ (A —al)t + (A - al)?#?) (d) si >0, clpe. (0,1) es estable

~ 3. Les solucions de & = (%) Z tendeixen a zero quan
32. Sigui 2/ = AF amb A € M3y3(R) i e (vp + vit + v5t?) t — +oo0 si i només si:
una solucié del sistema, amb v3 no nul. Es FALS que:

(a) a+d<0iad—bc>0

(a) eM(vg + vit) sigui solucio (b) a+d>0iad—bc>0

(b) ey sigui solucio (¢c) a+d<0iad—bc<0

(c) eM (v + 2u3t) sigui solucié ) at+d>0iad—be<0

(d) v sigui vector propi

4. Considereu el sistema & = A(t)z, on A(t) = (Bl fZ) .

33. Sigui V/(t) matiru fonamental del sistema d’equaciones
diferencials amb coeficients constants X’ = AX. Si
C € M, xn(R) llavors es verifica que: (a) totes les seves solucions sén inestables

Llavors es compleix que



(b) totes les seves solucions sén estables perd no asimp-
toticament estables

(c) totes les seves solucions son asimptoticament esta-
bles

(d) té solucions estables i inestables

r=xz—eY+1

5. Sigui { J/ = sinhy

(a
(b
(c

(d) Té un sol punt d’equilibri, que és inestable

T = ny
y/ — 7xy2

) No té cap punt d’equilibri

) Té un sol punt d’equilibri, que és estable
) Té més d’un punt d’equilibri

)

6. Sigui el sistema

Es pot afirmar que:
(a) el sistema linealitzat al punt (0,1) té orbites pa-
ral.leles a l'eix OY

(b) el sistema linealitzat al punt (0, 0) és del tipus punt
de sella

(c) quatre de les orbites son semirectes

(d) té un punt d’equilibri aillat a Porigen, es a dir,
hi ha un entorn de l'origen en el que ’inic punt
d’equilibri és ’origen

7. Sigui x. un punt d’equilibri del sistema de quatre equa-
cions diferencials x = f(x), i sigui A la matriu jacobiana
de f en x.. Es cert que:

(a) Si els valors propis de A sén —1 + v/2i i —1 — /24,
amb multiplicitat 2, llavors la solucié d’equilibri és
estable

(b) Si 0 és valor propi de A, llavors la solucié d’equili-
bri és inestable

(c) Si els valors propis de A s6n —3, —2, 4, —i, simples,
llavors la solucié d’equilibri és estable

(d) Si A és diagonalitzable llavors la soluci6 d’equilibri
és estable

8. El punt d’equilibri del sistema x = < 411 _? >x és:

(a) Un coll (o punt de sella)
(b)
(c)

)

(d) Un node inestable

Un focus inestable

Un centre

P2
9. Qué es pot afirmar sobre el sistema { x, v g
y=y—-xy

(a) Té infinits punts d’equilibri asimptoticament esta-
bles

(b) (0,0) és un punt d’equilibri estable
(c) La recta y = —5x conté tres orbites

(d) La recta y = 5x conté tres punts d’equilibri: un
d’estable 1 dos d’inestables

10. Considereu lequacio ' = f(x), on f: R — R és una
funci6é estrictament creixent, de classe C! i tal que

lim, o f(z) = —00 1 limy 400 f(z) = +00. Obser-
veu que ’equacié té un tnic punt d’equilibri. Llavors
és cert que:

(a) El punt d’equilibri és estable

(b) Hi ha una soluci6 no constant que tendeix al punt
d’equilibri quan t — +o0

(c) Hi ha solucions que tendeixen al punt d’equilibri
quan t — —oo

(d) La estabilitat del punt d’equilibri depén del valor
de f’ en el punt d’quilibri

11. Com s6n les solucions del sistema 2/ =
0 1 0 0
0 0 1 0 =
oo o1 |”"
-4 0 -4 O
a) Inestables

L’estabilitat depén de les condicions inicials

(
(b
(c

Periodiques

N~ —

(d) Asimptoticament estables
12. Considerem el sistema lineal & = AZ amb
A= ( ‘5 Cll ) El punt d’equilibri (0,0) és

(a
(b
(c
(d

) un focus per algun valor de a
) estable <= a # 0
) un node quan a # 0
) estable <= a <0
13. Considereu el sistema { § : %:c 42

Es FALS que
(a) (0,0) és un punt d’equilibri estable pero no asimp-
toticament estable

(b) el sistema té dos punts d’equilibri, un d’estable i
un d’inestable

(c) T'orbita que passa pel punt (0,1/v/3) tendeix a
(1,0) quan t — +oo

(d) el sistema no té orbites periddiques
14. Considerem el sistema lineal no homogeni

' —y = cost
y +x =sint

Llavors les solucions sén

(a
(b
(c

(d) no periddiques i inestables

) periodiques i estables

) periodiques i inestables
) no periodiques i estables
)

15. Les solucions de l’equacié

1

y W 42" 42" + 2 +ay =0

son:



(a) Asimptoticament estables si a € [0, 1] i inestables
a la resta.

(b) Asimptoticament estables si a € (0, 1), estables si
a = 01 inestables a la resta.

(c) Asimptoticament estables si a € (0, 1), estables si
a = 11 inestables a la resta.

(d) Asimptoticament estables si a € (0, 1), estables si
a =00 a=11inestables a la resta.
/
=1
v tay té:

16. El sistema { =+ y?

(a) Dos punts d’equilibri estables

(b)

(c)
)

(d) Un unic punt d’equilibri, que és inestable

Un punt d’equilibri estable i un d’inestable

Dos punts d’equilibri inestables

17. Considereu ’equacié diferencial iy’ = g(x)y, on g : R —
R és continua. Llavors és FALS que

(a) per a tot parell zg,yp € R, ’equaci6 té una tnica
solucio6 y(z) tal que y(zo) = yo

(b) si [y g(x) dw = —oo, llavors totes les solucions sén
asimptoticament estables

(c) si fy° g(x) dw = +oo, llavors totes les solucions s6n
inestables

(d) si les solucions son estables, llavors necessariament
g(x) < 0 per a tot x

18. Sigui una equacié lineal homogeénia tal que el seu po-
linomi caracteristic presenta totes les arrels amb part
real negativa excepte una, que és A = 0. Aleshores,

(a) Les solucions sén asimptoticament estables
(b

) Les solucions son estables
(c) Si 0 és doble, les solucions sén inestables
)

(d) Si 0 és simple, les solucions sén inestables

. . 2’ = a®y + cosat
19. Considerem el sistema { Y = —€2z + bsinat
a,b # 0. En quin dels segilients casos NO existiran
solucions periddiques? (Indicaci6: transformeu-ho en

una equacié de segon ordre).

amb

(a) 2 =1,ab#1
(b) € =1,ab=1
(c) € #1,ab=1
(d) € #1,ab#1
20. Sigui el sistema ' = —x + 2y, ¥ = y — xy. A partir

de 'estudi de ’aproximaci6 lineal del sistema al voltant
dels seus punts d’equilibri, podem afirmar que:

€
€

(a) Té un punt d’equilibri inestable

(b) Té un punt d’equilibri estable

¢) Té un punt d’equilibri asimptoticament estable
(d)

d) Té una recta de punts d’equilibri

21. Sigui (z(t),y(t)) una soluci6 del sistema ¢ .
Y=

2
Del retrat de fases es pot deduir que és FALS que

(a) y(t) no canvia mai de signe

(b) si (z(0),y(0)) = (0,1), llavors y(t) — 0 quan
t— —o0

(c) si (z(0),y(0)) = (0, —%), llavors y(t) — 400 quan
t — +oo

(d) y(t) és sempre creixent

22. Considerem el sistema lineal ¥ = AZ amb A =
a —1 0
1 0 0 |.Elpuntdequilibri (0,0, 0) és asimp-

-1 2 -1
toticament estable si i només si:

(a) a <0
(b) a>0
(c) a>1
(d) a<1
23. La solucié6 del p.v.i.

y' 4+ 2y +y=2coszx
{ y(0) =a, y'(0) =b
és una funcio6 periodica
(a) per atot a,b € R,
(b) noméssia=0ib=1
(¢c) noméssia=1ib=0
)

(d) cap de les altres

24. Considerem el sistema autonom que en coordenades po-
lars esta expressat per

dr 9 9
i r(r 1)(rc=9),

do
— =1.
dt

Aleshores,

(a) hi ha un punt d’equilibri estable
(b) {r =3} és una orbita periodica estable
(c) {r =1} és una orbita periodica estable
(d) hi ha infinits punts d’equilibri

/

. . ¢ = y(x? —y?)
25. Sigui el sistema { Y = —a(a?—y?) Podem afir-

mar que

(a) el punt d’equilibri (0,0) és estable pero no asimp-
toticament estable

(b) el punt d’equilibri (1, 1) és estable

(c) el punt d’equilibri (—1,1) és inestable

(d) tots els punts d’equilibri sobre la recta y = x tenen
el mateix tipus d’estabilitat

26. Les solucions de y® + 2y®3) 4 3y(2) 4+ 4y/ + ky = 0 sén

(a) asimptoticament estables per a k € [0,2] i inesta-

bles per a la resta

(b) asimptoticament estables per a k € (0, 2), estables
per a k = 2 i inestables per a la resta

(c) asimptoticament estables per a k € (0,2), estables
per a k = 0 i inestables per a la resta

(d) asimptoticament estables per a k € (0,2), estables
per a k =21k = 01iinestables per a la resta

27. Considereu el sistema lineal amb coeficients constants
T = AZ. Llavors



(a) si Z(t) = 0 és estable, tots els valors propis de A
tenen part real negativa

(b) si el sistema té una soluci6 inestable, totes les so-
lucions sén inestables

(c) si els valors propis de A tenen part real menor o
igual que 0, les solucions sén estables

(d) si els valors propis de A tenen part real més gran
o igual que 0, les solucions sén inestables

28. Considereu el sistema lineal

x\ [ -1 €e* x
y) \ 0 -1 y
Llavors es compleix que

(a) hi ha solucions estables i inestables
(b) totes les solucions son inestables
(c) Vorigen és estable perd no asimptoticament estable
(d) totes les solucions sén estables
29. Sigui & = AZ amb A € M,,;,(R), VA valor propi,

Re(A) < 013X amb Re(A) = 0. Els punts d’equili-

bri sén:

(a)

(b)

(c)

(d) Inestables si hi ha un valor propi multiple de part
real nulla

Estables no asimptoticament
Inestables

Estables si tots els valors propis sén simples

30. Considerem # = f(#) un sistema no lineal autonom.
Sigui Zyp un punt d’equilibri aillat i 0 el corresponent
punt d’equilibri del sistema linealitzat.

(a) Si &y és asimptoticament estable, 0 també ho és
(b) Si &, és inestable, 0 també ho és
(c) Si 0 és asimptoticament estable, Z, també ho és
(d) Si 0 és estable, &, també ho és
31. Les solucions de vy + ay” + by’ + y = 0 s6n asimptoti-
cament estables si i només si
(a) b>1
(b) ab>0
. 1
(c) a>0ia> 5
(d) ab > 11 els dos parametres amb el mateix signe
32. Suposem que la part homogenia de l’equacio y” +
p(2)y’ +q(z)y = cos(2z) admet la solucié sin(2z). Ales-
hores les solucions son:

(a) estables si qualsevol constant és solucié de ’homo-
génia

(b) periodiques si qualsevol constant és soluci6o de 1I'-
homogeénia

(c) inestables si p(x) =0

(d) periodiques si g(z) =0

33. Les solucions del sistema,

0 B8 0 1
= a 0 o |Z+| 1 |e*
0 B8 0 1

sén estables si

34. El punt d’equilibri del sistema x = < 4

—
|

> =

N———
"
[
%

(a) Cap de les altres
(b) Un focus
(c) Un centre
(d) Un node
35. Qué es pot afirmar sobre el sistema { T=-z+ y;
y=-y+zx

(a) Té dos punts d’equilibri estables
(b) Cap de les altres

(¢c) Té dos punts d’equilibri, un d’estable i un altre
d’inestable

(d) Té dos punts d’equilibri inestables

¥ =-3rx—y

v = (1—a)z—y Llavors:

36. Sigui el sistema {

(a) Les solucions sempre seran estables
(b) Si @ = 2 hi ha infinits punts d’equilibri estables

(¢) Si a = —2 les solucions son asimptoticamente es-
tables

(d) Sia =0 les orbites son semirectes

/
37. Considereu el sistema { ;, _ 2 Podem afirmar:

(a) El sistema linealitzat al voltant del punt d’equili-
bri té les mateixes solucions d’equilibri que les del
sistema donat

(b) Les orbites presenten simetria respecte de I’eix OY

(c) L’orbita que passa pel punt (3, —3) tendeix a (0, 0)
quan ¢t — +o0o

(d) El punt d’equilibri és estable

38. Sigui f: R — R continua tal que existeix M > 0 amb
|f(;5 f(s)ds| < M per atot t € R. Llavors és FALS que
les solucions de 'equacié y’ = f(t)y compleixen:

son totes estables

algunes soén estables i altres inestables

estan definides en tot R

son fitades en tot R

5 Transformada de Laplace
1. Lantitransformada de Laplace de F(s) = % +
s+1 P
$242s+5 es:

(a) f(t) =T7(t —2)e?~tu(t — 2) + et sin(2(t + 1))
(b) f(t) = Tte®u(t — 2) + e~ cos(2t)
(¢) f(t)="7(t—2)eX4u(t —2) + e ! cos(2t)



(d) f(t)=7(t

2. La transformada de Laplace X (s) de la soluci6 del pro-
blema de valor inicial 2"/ +tz = 0, 2(0) = xo, 2’(0) = z,
satisfa:

—2)e =% 4 el cos(2t)

(a) X (s) —swg—afp— X'(s) =0

(b) s?X(s) — szg —a( — [; X(0)do =0
(c) s°X(s) — swg — af + [y X(o)do =0
(d) s*X(s) + swo + 2 — [y X(o)do =0

3. Sigui h(t) la resposta impulsional associada a l’equacio
y' + 2y + 2y = f(¢). Aleshores, la soluci6 del problema
de valor inicial y(0) = yo, ¥'(0) = yj, és:

(a) e"tcost,enel cas f(t) =d(t)iyo=1y,H =0
(b) h(t),enelcas f(t)=1iyo=y,=0

(c) 2h(t),enel cas f(t) =d(t) iyo=0,y, =1
(d) 2h(t)«x1,enelcas f(t) =1iyo=0,y95=1

4. Una d’aquestes transformades de Laplace NO és correc-
ta:

(a) L((t+1)%) =e*/s?

(b) L(te*)=1/(s - 3)?

(c) L(sint) =1/(s*+1)

(d) Ll ?u(t—2)) =e /(s —1)

y(0) =0 =14/(0), on u(t) és la funcié de Heaviside, és
(a) y(t) =u(t—1)(1 —cos(t — 1))
(b) y(t) = u(t — 1)(1 — sin(t — 1))
(¢) y(t) = u(t)(1 —cos(t — 1))
(d) y(t) = u(t)(1 —sin(t — 1))

/ y(r)dr = u(t)+6(t—1),

0
y(0) =1, té com a transformada de Laplace

6. La soluci6 del problema y' —

(a) 5 + 2>y
(b) 5 + e’
(c) (e~ +1)
(d) 25 +1)

7. Si una func1o f(t) té transformada de Laplace F(s),

amb [° f(t)dt =11 [ tf(t)dt = a < +o0, se satisfa:
- Fl(s) _
(a) hm5~>0 F((;) = —a
. F'(s
(b) hms~>0 F((s)) =0
. F'(s
(C) hms~>0 F((s)) =0
(d) limy—o F5 = —£(0)
1
8. La funci6 que té per transformada de Laplace 6_55—2 +
1
w2 11 és (u(t) és la funcio de Heaviside)
1
(a) u(t = 1)(t —1) + Fult — 2) sin(2(t - 2))
(b) u(t—1)(t — 1) + u(t — 2) sin(2(t — 2))

9.

10.

11.

12.

13.

14.

15.

(c) u(t—1)t+ %u(t — 2) sin(t)

(d) u(t— 1) —1)+ %u(t ~ 9)sin(2t - 2)

El valor de [ sin(%5%) cos(%)dx és:

2
(a) §cos(5)
(b) 3 sin(3)
(¢) 2acos(2a)
(d) 2asin(2a)

Usant la transformada de Laplace, digueu quina de les
segiients integrals és zero:

—7t gin tdt
fooo e~ ™ cos mtdt
fooo e ™t sin wtdt

Sigui F(s) = L(f)(%).
Laplace de la funcio u(t — a)
funci6 de Heaviside) val:

(a) %F(s —a)
(b) e_:s F(s+a)
(c) 5 F(s)

(d) <=F(s)

Aleshores, la transformada de
Ot_a f(r)dr (on u és la

La funci6 que té per transformada de Laplace
2 )

2253

(a) % sinh(t)

(b) %f sinh(2t)

(c) e? sinh(t)

(d) etsinh(2t)
Sigui F(s) = L[f](s), la transformada de Laplace de f.

Aleshores, la transformada de Laplace de te® f(at) és:
(a) —5F"(*3)

(b) == F'(*3%)

(©) —1F/(t —a)

(d) —=F'(=%*)

L’antitransformada de Laplace de la funcio

1 1

Fls)=-—

() s1—esT
és (u(t) és la funcio de Heaviside)

(a) f(t) =) u(t+kT)

k>0

d) f() =S ult - k7)
E>0
La soluci6 del problema de valor inicial
{y/—y=26(t—1),y(0)=0,y(0)=0} en t = 2

és



16.

17.

18.

19.

20.

21.

(a) O

(b) e—

(c) e

(d) 2
Sigui f : [0,00) — R la funci6 continua tal que la seva
transformada de Laplace és

o5
LNE = 555

Llavors
(a) no hi ha cap funcié continua amb aquesta trans-
formada
(b) la derivada de f no és continua en ¢t = 1

(c) f és de classe C!, perod la segona derivada és dis-
continuaen ¢t =1

(d) f és de classe C?, pero la tercera derivada és dis-
continuaen ¢t =1

Denotem per F(s) la transformada de Laplace de f(¢).
Quina de les segiients igualtats és FALSA ?

(a) LI(L* f)] = F(s)
(b) L[t * f)"] = F(s)
(c) Llcosh(t)f(¥)] = %(F(S — 1)+ F(s+1))

La transformada de Laplace de e f(at) és
(a) zF(:—1)
(b) aF(as)
(©) LF(2 —a)
(d) F(s —a)

Considerem la funci6 y(t), amb transformada Y'(s), tal

que
oo
Z t—n

si H representa la funcié de Heaviside, NO és cert:

)=1

(a) Y(s5) = {555

(b) y(t) =32 0(t —n) 1
(€) y(t) =35 H(t —n)*1
(d) y(t) =32 H(t —n)

Sigui f amb f’ admissible i amb transformada de La-
place L[f(t)] = F(s). Quina de les afirmacions segiients
és FALSA ?

(a) Llte f(t)] = —F'(s — a)

(b) Lltf(at)] = =3 F'(3)

(¢) LItf'(t)] = —F(s) — sF'(s) — f'(0)
(d) Llg fla)] = $F(3) = f(0)

Una d’aquestes transformades de Laplace NO és correc-
ta, on H és la funci6é de Heaviside o de salt unitat:

(a) L[cos2t] = s/(s* +4)

(b) L[te3] =1/(s — 2)3

(c) Llet"tH({t - 1) =e"%/(s - 1)

22.

23.

24.

25.

26.

(d) L2sint] =2/(s®>+1)

xe®t, Llavors

(a) fe(t) = ekot

(b) fk(t) = (kil)!tk—leat

(¢) fr(t) = thert

(d) fu(t) = (kl )tk 1o(k—1)at
Si fn(t) =t",n natural llavors

(@) (fn* fm)(t) = (7:‘_:_7;2) tntm

(b) (fn* fm)(t) = mtn—q—m.H
(C) (fn * fm)(t) = %tn+m+2

Sabent que L{f(3t)} = ﬁ

(a) L{f(5t)} %1+(5%9/3)2
(b) L{f(5t)} = %1+(31/5)2
(¢) L{f(50)} = $ 3

(d) L{f(5t)} = 1+(315/5)z

Si F(s) = L{f(t)}(s) v f(t) és soluci6 del proble-
ma f” — f =tcos(t) amb condicions inicials f(0) = 0
if’(0) = 0, llavors:

(a) F(s) = oy
(b) F(s) = 34 ()
(c) F(s) = 57t

(@) F(s) =~ ()

La transformada de Laplace de
() = (t* — 2t)e tu(t — 1)

on u representa la funcié esglad, és:

(© ((3—21)3 _ 3—11> J—

27. La transformada de Laplace de la funcio f(t) = 1 si

0<t<l,if(t)=e'"tsit>1és:

s+1—e %
(&) s(s+1)
(b) 1 _se_s B se;sl
(c) é* (s€+_s1)s
1 1 e ?
(d) s+1  s(s+1) + s(s+1)



28. Si una funcié admisible f(x), amb derivada admisible,
te transformada de Laplace F(s), i els limits segiients
existeixen, llavors és FALS que:

(a) limg—0 sF(s) = lim;— o f(t) — lims—o f(£)
(b) lims_,o sF'(s) = limy_, oo —tf (%)

(¢) limg—g sF(s) = limy_ f(¢)

(d) lims—,o0 $F(s) = limy—,o f(t)

6 Problemes de contorn

1. Del problema de contorn

{ y' —Ay=0
y(0) +y'(0) =0,

podem dir que

y(1)=0

(a) 0 no és autovalor

(b) en cada interval [k, k7 + 7/2), k =0,1,2... hi ha
un dnic autovalor

(c) té autovalors negatius
(d) totes les autofuncions son peridodiques

2. Considerem el problema de contorn y” + Ay = 0 amb
Yy (0) =0,y () =0.
(a) Té solucions no nulles Ginicament per a A = k2,
amb k enter > 0

(b) Existeix un valor de A < 0 per al qual hi ha solu-
cions no nulles

(c¢) Té solucions no nulles per a qualsevol A > 0
(d) L’tnica soluci6 és y(¢) =0

3. Considerem el problema de contorn y” — Ay = 0 amb
y(0) = y(1), ¥'(0) = y/'(1). Llavors és cert que:

(a) A\, = —472k% k=1,2,3,..., sén autovalors, i per
a cada un d’ells 'espai d’autofuncions té dimen-
si6 2

(b) A =0 és un autovalor, i el seu espai d’autofuncions
té dimensi6 2

(¢) M\ = —4m%k?, k =1,2,3,..., s6n autovalors, i per
a cada un d’ells 'espai d’autofuncions té dimen-
si6 1

(d) A =0 no és autovalor

4. Considereu el problema de contorn

y' —Ay=0, y(0)=0, y(1)+2y'(1) =0.

Es compleix que

(a) nomeés té un nombre finit d’autovalors
(b

)

) els autovalors estan fitats inferiorment
(c) els autovalors estan fitats superiorment

)

(d) per a cada autovalor, la dimensi6 de I’espai d’au-
tofuncions és 2

5. Les funcions propies del problema de contorn y"” + Ay =
0,4'(0) = 0,y(1) = 0 s6n, amb n > 0,

(a) cos((n— 3)mz)
(b) sin((n — i)mz)
(c) sin((n — 3)z)
(d) cos((n — 3)x)

6. Considerem el problema de contorn homogeni
{ y'sinz +y' cosx + (L+ Ny =0,z € (a,b)
y(a) +y'(a) = y(b) +y'(b) =0

Es compliran les condicions de Sturm-Liouville si [a, b]
val:

(a) [m/4,3m/4]

(b) [=m/2,7/2]

(c) Mai pot ser d’Sturm-Liouville
)

(d) a#b

7. Sigui el problema de contorn y” + Ay = 0, y(0) = y(7) =
0. Aleshores,

(a) No és un problema de Sturm-Liouville

(b) els autovalors son A\, = k2, k = 0,1,2,..., i les
autofuncions yi (z) = sin(kx)
(c) els autovalors son A\ = k%, k = 1,2,3..., i les

autofuncions yi (z) = sin(kx)
(d) els autovalors son Ay = k% k = 1,2,3..., i les
autofuncions yi (z) = cos(kx)

8. Considereu el problema de contorn
y" +Ae"y =0, y(0)=0,y(1)=0
Llavors és FALS que:

(a) A =0 és autovalor

(b) hi ha infinits autovalors positius

(¢c) Ax — +00 quan k — +00

(d) els autovalors formen una successié ordenada en

forma creixent

9. Donat N € N, sigui y(¢) la soluci6 del problema

Y+ mly =1 (—1)"8(t — n), y(0) = y'(0) = 0,
essent 0 la delta de Dirac i H la funcié de Heaviside o
de salt unitat. Llavors:

(a) y(t) = S°N_ sin(nt)H(t — n)
(b) y(t) = S0 o(—1)" sin(rt) H(t — n)
(¢) y(t) = X p_gsin(r(t —n))H(t - n)

(d) limpy_ 00 y(t) no esta definit

10. Es FALS que pel problema de contorn

{y”—i—/\y:O, x € (0,1)
y(0) +¢'(0) =0, y(1)=0
a) A =0 no és valor propi

(a)

(b) existeixen valors propis que satisfan tan(yv/\) =

VA

(c) = — 1 és funcio6 propia
(d) si A > 0 és valor propi, llavors sin(vz) —
VA cos(v/Az) és funci6 propia



11. Els valors propis i vectors propis del problema de con-
2
torn y" — (23 — Ay = 0,y(0) = y(a) = 0 venen donats

per
(a) Ap = I (k2 — 1) i ¢p(x) = sin(Zkz)

() Ak = Z3(k? — 2) i gx(x) = cos(=L2)

() Ak =T (k2 + 1) i gp(x) = cos(T =)
(d) A = T2 (k2 +1) i ¢p(x) = sin(=hx)

12. Considereu el problema de contorn
y' 4+ (1 + )y =0,
Llavors és FALS que:

(a) A\ =0 és autovalor i la dimensié del seu espai d’au-
tofuncions és 2

(b) Si ¢ ig son autofuncions d’autovalores diferents,
lavors [ e’ ¢ (t)¢a(t) dt =0

(c¢) Els autovalors estan acotats inferiorment

(d) Els autovalors NO estan acotats superiorment

13. Donat el problema de contorn

y' —Xy=0,  y(0)+3(0)=0,y(1)=0

quina resposta és FALSA 7

(a
(b
(c
(d

Existeixen autovalors negatius
Zero és un autovalor

Existeixen autovalors positius

N N~ ~—

Els autovalors estan acotats superiorment

14. Siguin yy (), y2(z) dues solucions Li. de P'equacio y” +
p(x)y + q(x)y = 0 tals que y1(0) - y5(1) = y2(0) - v (1).
Llavors podem assegurar que el problema de contorn
amb condicions de contorn {y(0) =1, ¥/(1) = 1}:

Té infinites solucions

Té soluci6é unica

No té soluci6

Si té solucio, no és tnica
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