The shape of a galaxy is not much influenced by the potential
as it might seem
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ABSTRACT
The dynamics of a galaxy as a stellar system in statisticailiequm is usually obtained from the
superposition principle, based on the linearity of the Bokinn collisionless equation (BCE) in regard
to the phase space density function. The term statistialiledgum is a notion coming from statistical
dynamics, although, from an analytical dynamics viewpdinshould be associated with an invariant
density function under the BCE in the phase space. Diss@gé#étirces like dynamical friction, which
are essential to statistical dynamics, emerge in analydigaamics via non steady-state phase density
functions angbr potentials as solutions of the BCE. When some kinematisviedge about the stellar
integrals of motion or the velocity distribution functios already known, Jeans’ inverse problem leads,
from an statistical viewpoint, to the most probable tim@eatedent potential function.

For a mixture of several galactic components, the naturptageh is the Jeans’ inverse problem,
by associating a generalised quadratic velocity distigbutvith each stellar population. Then, the BCE
relates the dynamics of each stellar population to a patemtihich is shared by all of the population
components. Therefore, in solving the BCE, the coexistefseveral stellar populations introduces a set
of integrability conditions, which areonditions of consistency for a population mixture, that forces the
potential function to adopt a relatively simple functiofiam, while the velocity or mass distributions,
or the number of stellar populations, have a higher numbdegfees of freedom.

Axially symmetric stellar systems have been mostly usedescdbe general features of galaxies,
although they cannot account for spiral or bar structuresektheless, due to the conditions of con-
sistency, axially symmetric potentials are proven to bk slitable to describe non-axially symmetric
stellar systems. A paradigm of this situation is the pokiglessymmetry model, with rotational symmetry
of order two, devoted to allow mass or velocity distribuiaronsistent with spiral or bar structures. In
such a case, the BCE yields an axially symmetric potentitipagh the mass and velocity distributions
still maintain point-axial symmetry.

1. Introduction

In wide regions of a galaxy the phase space density funcaarbe approximated as depending
on an integral of motion quadratic in the peculiar velositiey leaving free the functional de-
pendency in time and space (Chandrasekhar 1960). Howbeesytmmetry of this distribution
does not allow non-null odd-order central moments, so tmaixaéure of populations is needed
to account for other informative statistics of the velodigtribution. For the whole three di-
mensional space, under the axial symmetry hypothesis,($880) determined the family of
potential functions that are consistent with such a quadnategral of motion, and Cubarsi
(1990) studied what restrictions would apply to the potdritir a mixture of stellar populations
under the same hypothesis. When the axial symmetry hygetredaxes toward a point-axial
model, i.e. rotational symmetry of 18@o account for mass distributions consistent with ellip-
soidal, spiral or bar structures, Chandrasekhar's equattso yield an axisymmetric potential
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(Sanz-Subirana 1987, Juan-Zornoza 1995). The parametetsed in the distribution function
of a single population are detailed in the Appendix. By ushregvariables = %wz and/ =
the potential satisfies
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These equations depend on the population specific funckeftst), ks(t) andK,(6). In addi-
tion, there are three integrability conditions dependinghed-derivativesK; (6, t) andK(6).

2. Conditions of consistency

2.1. Axisymmetric potential

The constank, does not appear in Eq. 1, so that the axisymmetric potenties chot con-
straint the velocity distribution in the rotation direatiolrhe common solution of Eqg. 1, planned
for each population, is of course valid for populations hgvihe parameterk,, ks and K,
proportional. However, we must reject such a case becausads to extremely constrained
populations, with the sameftirential movement and proportional velocity ellipsoidst, for
the rotation direction.

2.2. Point-axial symmetric distribution

One or several populations may have a point-axial distobutven with an axisymmetric po-

tential. Therefore, the potential does not depend on theifsp@opulation parametef,(6).

Then, we are led to the following conditions,
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which yield a potential = Uy (7 + £, 1) + == H{ Us(¢ /1)

It is worth noticing that the same conditions are obtainedhipyosing the consistency with
one or several populations having a flat velocity distribtK, — 0, which is also equivalent
to a velocity distribution isothermic in thedirection.

2.3. Sepatrability of the potential

According to the first expression in Eg. 1 and Eq. 2, we have
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Fig. 1. Rupture of axisymmetry in the Galactic plane produced bgl idrces. The bar structure acts as
a quasi-static density wave for the other components ofdtaing disc.
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which implies eitheK, (0, t) = ks(t) or

= 0. In the first case, the resulting potential is
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and, in the separable case, it is
U:A(t)(r+§)+$,if Ki=0; U=A®t)(+2),if Kj#0 (5)

2.4. Unconstrained centroid motions

The separable potentials, Eq. 5, allow unconstrained @ehtmotions in all directions.
However, the non-separable case, Eq. 4, requires the dt@rive independent from the quan-
tity ks/ks. This condition implies a potential with the following form
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In all this cases the velocity and mass distributions depenglthroughK, (and only for the

unrealistic harmonic potential of Eq. 5 throulh). In any case, the potential depends on time
throughA(t) andks(t).
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(6)

3. Bar structure

The rupture of axisymmetry takes place probably by the auigon of close galaxies, where
tidal forces play a crucial role Fig. 1. They produce a transvariation in their mass distri-
butions, by changing them toward a nearly ellipsoidal istion. Each interacting galaxy is
stretched by the gravitational field of the other, and thetmoalsierable components, such as the
gas and stars right at the outer edges of the disc, are shaiheamn their respective galaxy. The
tidal shear acts to twist and compress the gas clouds teetrigtense star formation around the
major axis of the elliptical disc. Part of the gas componimtheir rotation around the galactic
centre, is withheld and feeds an emerging bar structureantigher formation rate by causing
more luminosity.

The tidal force has its maximuntteeiency over the component of one galaxy having a syn-
chronous rotation with the other galaxy. Although for rigpddies only the satellite should be
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l?/ﬁ _ 72— (Left) Rotation velocity curve for a sin-
q4 oy gle population withe = 0.1 andB = 5

in Eq. 8 (arbitrary units). The high slope
at the origin transforms the initial bar into

two spiral arms. As time increases, due
to the vanishing trend of the rotation ve-
G\ locity, the shape of the arms is apparently
maintained, so that the arms act as a static
density wave for the stellar disc compo-
v nents.
o 5w w T (Right) Curve for a mixture of four pop-
“ “ ulations withe = 0.1,0.01,0.001, 0, re-
spectively. If the population factor ip
and the values fopg are in proportions
5:1:0.1:0.1, the bar also produces two spi-
ral arms, but, as time goes by, the flat ro-
tation curve provides two spiral arms. In
this case, the arms act as a rotating den-
—— — —— — sity wave for the other disc components.
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tidally locked around the larger one, for the fluid composesfta galaxy it is likely that one
of the stellar or gas components of the host galaxy to be alafiyt locked with the satellite,
especially if the discs are in a common plane. Such a situaibasically consistent with the
bar structure acting as a quasi-static density wave (Lin & 8964) for the other components
of the rotating disc.

4. Spiral arms

The bar-shaped structure is in the long term unstable fagrakveasons: e.g., the tidal force
weakens because the satellite galaxy merges to the hosgcause the interacting galaxies
move away. Then the bar is left under tieeets of the galactic potential by meeting its natural
circular motion. In the case of galaxies moving away in paliatorbits, the motion of the bar
should depend on the relative motion and rotation direstadrthe interacting galaxies (Toomre
& Toomre 1972), since, in moving away, a resulting torquefiaoth extremes of the bar would
also determine its rotation behaviour.

If the bar is non homogeneous, its composition may be mantgedgh a mixture of pop-
ulations. The rotationféects each population fiierently, since their mean motion depends on
the integrals of motion which are specific of each centroici3Zornoza et al. 1990, Cubarsi
et al. 1990).

5. Rotation curve

The rotation velocity curve produced by the ellipsoidal midd not consistent with the nearly
flat velocity curves provided by models accounting for dagktter (Rubin et al. 1980). However,



Fig. 3.
7 (Left) Rotation velocity curve for a
_—— 1 / I two-population mixture not far from a
rigid rotation, witha = 0.001 0, and
pB in proportions 10:1. At the origin,
the linear behaviour and small slope

produces a rotation of the bar with
r no spiral structure. The non-vanishing
asymptotic trend makes the bar rotate

with a slightly spiral shape far from the
centre.

v (Right) Curve for a two-population
S T R o mixture with a higher initial slope and
“ “ a slightly decreasing asymptotic trend,
a = 0.01,0.001, andpgB in proportions
10:1. The loss of linearity at the ori-
gin produces the curvature of the bar
toward a spiral. The non-vanishing ro-
tation at large distances from the origin
induces an apparent rotation of the spi-
R S S P ral structure.
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such a rotation curve is altered by the mixture nature of tefas system, so that the total
rotation curve is, at every point, the weighted mean of theupettion rotation curves with their
respective relative stellar densities, by resulting a sreamilar to the envelope of their single
population rotation curves. Forpopulations, with respective fractiopd, we have
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computed from local values of the second moments. Deperatintpe values ofr we may
have a variety of curves ranging from an asymptotically shimg rotation velocity, as in Fig.
2 (left), to the linear rotation curve of a constant angukogity, whena — 0. If pye >> g,
we obtain a rapidly increasing curve at the origin, as in Bigwhile if ug — us, the curve
has a soft slope at the origin, as in Fig. 3. For a mixture gbstidal populations, we may get
a number of asymptotic trends, including flat rotation caras Fig. 2 (right).

Notice that the case of nearly constant angular velocitpmsistent with the subpopulation
of early-type stars (named population Al in Alcobé & Cuba®95) with approximately no net
radial motion (Cubarsi & Alcobé 2006). This stellar compahwas also found as associated
with one of the prominent modes (around the Hyades strearttjeo¥elocity distribution for
disc stars with absolute velocity lower than 51 km €Sample IV in Cubarsi 2010) and also
with one of the main subpopulations of the disc stars witleetiecity e < 0.15, associated with
the Hyades and Pleiades stellar groups (Cubarsi 2010).



6. Discussion

The mixture of point-axial stellar systems with a symmetlgng maintains the axial sym-
metry of the velocity distribution in this plane in all theses but for the harmonic potential,
although it produces an apparent vertex deviation of thelevhelocity distribution due to the
unconstrained mean velocity of the populations, that majude a net radial motion. As the
interaction that breaks the axial symmetry disappearshdnevolves under thaxial gravita-
tional field toward an spiral arm structure, that dependsheraverage rotation velocity of its
stellar components. The spiral arms maintain the poirsgdayimmetry until they are dissolved
within the disc after a number of turns, and the galaxy wobkhtrecover the axial symme-
try of the initial mass distribution thanks to the potentlzt has not lost its initial symmetry.
It lasts however to evaluate whether the introduction of mmegtry plane is the cause of the
nearly axial symmetry of the velocity distributionn= 0, produced b¥K; = 0, or whether, by
relaxing this hypothesis, we might get a clear point-axébueity distribution in this plane.

Appendix

For a single stellar population, a generalised quadratmcity distribution function in the pe-
culiar velocities (1, Uz, us) may be written ad (Q + o(r,1)), Q = 3; ; Aj;(r,t) uiu;, whereA;
are elements of a symmetric, positive definite matrix. TH@r; o is an isolating integral of
the star motion, which is a combination of some of the cladsntegrals. Under the point-axial
symmetry hypothesis and symmetry plane 0, the elements of the second-rank ten&aare
(e.g., Juan-Zornoza & Sanz-Subirana 1991):

Avo = K1 +KiZ2, Ay = %(Ki + K;2)

Aoz = K4z, Ay = K + low? + K} 2 9)

Ki=ki+qsin(® + 1), Ki =k —qgsin(X + ¢1)
Ks=ks+nsin(d +¢y), K; =ki—nsin(X + ¢,)

beingky, ks, g, ¢1 time dependent functions, aikg ks, n, ¢, constants. The uppercase letker
represents a function depending@rthe accents meaning derivatives with respect to it.

(10)
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