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Abstract: The entropy of the partition generated by an n-tone music scale is proposed to quantify
its regularity. The normalized entropy relative to a regular partition and its complementary, here
referred to as the bias, allow us to analyze various conditions of similarity between an arbitrary scale
and a regular scale. Interesting particular cases are scales with limited bias because their tones are
distributed along specific interval fractions of a regular partition. The most typical case in music
concerns partitions associated with well-formed scales generated by a single tone h. These scales are
maximal even sets that combine two elementary intervals. Then, the normalized entropy depends on
each number of intervals as well as their relative size. When well-formed scales are refined, several
nested families stand out with increasing regularity. It is proven that a scale of minimal bias, i.e., with
less bias than those with fewer tones, is always a best rational approximation of log2h.
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1. Introduction

An n-tone music scale En determines a partition of the octave in n intervals. Regarding
their regularity, scales can be of equal divisions of the octave, i.e., with n tones of equal
temperament (n-TET scale), where discretization precision increases as the number of tones
grows, or that of different divisions, where precision increases in two ways: as the size of the
intervals decreases and as their regularity increases. In particular, regarding well-formed
scales of one generator, hereinafter referred to as cyclic scales, if they are non-degenerate
(of equal temperament), they are formed from two elementary intervals [1,2], one longer
than the interval of an n-TET scale and the other of shorter width. These scales also fulfill
the condition of maximum evenness [3,4]; that is, they present the most even distribution,
which does not depend on the relative size of the intervals. In many cases, as the number
of tones of a cyclic scale increases, the regularity of the intervals decreases, still satisfying
the condition of a maximal even set. Therefore, for cyclic scales, it is not obvious how to
quantify precision or the regularity of the partition as the number of tones increases. The
present work had the purpose of analyzing this using partition entropy, as well as studying
the bias from regular temperament in more general cases.

The regularity of the intervals of En can be quantified in several ways. A fairly common
way is from their standard deviation. In the octave, for i ∈ I = {1, . . . , n} the intervals Ai
between consecutive tones, when they are considered a discrete random variable of equal
probability such that ∑i∈I Ai = 1, have expected value t = 1

n , i.e., the size of the elementary
interval of the n-TET scale. A measure of dispersion of these values about the mean is the
standard deviation σ, defined from its square, the variance, σ2 = 1

n ∑i∈I(Ai − t)2. In this
way, it is possible to compare different n-tone scales in terms of the average dispersion
of their intervals relative to the n-TET scale. However, this procedure does not present
interesting properties to deal with, for instance, successive refinements of cyclic scales.
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Another way to measure the regularity of En may be based on the quadratic sum of
its intervals. We consider this case in a more general way. Let us assume that (M, µ) is a
Lebesgue-measurable space such that µ(M) = 1 and α = {Ai}i∈I is a finite measurable
partition of M; that is, µ(∪i∈I Ai) = 1 and µ(Ai ∩ Aj) = 0 if i ̸= j. (Equalities that involve
measures are understood to be true except in a null set; that is, we should strictly write
µ(M\∪i∈I Ai) = 0, but we will not write this to simplify the notation.) Then, the sum of
squares for the partition α relative to the measure µ is S(α) = ∑i∈I µ(Ai)

2. The function S(α)
is a convex function of µ(Ai), which, when constrained to ∑i∈I µ(Ai) = 1, has an absolute
minimum for µ(Ai) =

1
n , ∀i. In this case, S(α) = 1

n is a decreasing function of n. When the
partition is refined, that is, if β = {Bj}j∈J is another partition of the octave, then its sum
α ∨ β = {Ai ∩ Bj}i∈I, j∈J is a refinement of them. In order to make successive refinements,
it would be desirable to be able to express S(α ∨ β) = S(α) + F(α, β) with a function F that
is a linear combination of squares of µ(Ai ∩ Bj), i.e., also a sum of squares of the refinement.
But this is not possible because in F there will necessarily appear cross products.

Fortunately, the notions of regularity and fineness of a partition have, in several fields,
a well-known way of being quantified, which is the partition entropy. The concept of
entropy was introduced by Clasius in thermodynamics (in 1850), Boltzmann applied it to
statistical mechanics (1877), Planck related it to probability theory (1906), Shannon applied
it to information theory (1948), Jaynes used it as a measure of uncertainty (1957), and
Kolmogorov extended it to deterministic systems (1958).

Certainly, entropy has been used in music almost from the beginning of information
theory [5–7] by considering the musical language as a source that produces a sequence
of symbols representing musical tones and by associating them with certain probabilities
according to their frequency of appearance. In particular, a wide range of works have
used entropy to identify music styles (e.g., [8–11]) although results may vary depending
on the preanalytical assumptions made in order to treat the data (scale degrees, pitch
class, octave equivalence, weighting by duration, key-signature dependency, modal bias,
etc.). With the same purpose, cross-entropy (e.g., [12]) has been used to quantify stylistic
similarity between two sequences [13]. An up-to-date review on entropy and other physical
parameters applied to music is provided by Gündüz [14].

Nevertheless, it seems that entropy as a measure of regularity of music scales has been
neglected. There is a significant difference between discrete state spaces and continuous
state spaces. In most cases, entropy is considered in terms of information theory, where
the natural application is to symbolic frequency analysis. Although Shannon did suggest a
generalization to the continuum through infinitesimal equal measure states, becoming an
integral form of his discrete theory, partition entropy measures an inverse density rather
than a frequency over equal measure.

Therefore, in the current paper, it is proposed to use the normalized entropy as
a measure of the regularity. Its application is illustrated in two cases: first, to study the
similarity between an arbitrary scale and an n-TET scale; and second, to study the regularity
of cyclic scales generated by a tone h and the relationship between their bias and the rational
approximation of log2 h that they provide.

2. Partition Entropy

Following the notation and terminology of Arnold and Avez [15], the entropy of the
partition α is defined from a concave function z(t), as shown below. (The entropy of the
partition is also called metric entropy, and it consists of changing the metric of the theory of
probabilities, i.e., the probability, by a generic metric, where the concepts relative to the
partitions remain.)

H(α)=∑
i∈I

z(µ(Ai)) ; z(t) =

{
−t log2 t, 0 < t ≤ 1

0, t = 0
(1)
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The following relationship is fulfilled,

H(α) = n 1
n ∑i z(µ(Ai)) ≤ n z

(
1
n ∑i µ(Ai)

)
= n z( 1

n ) = log2 n

Let us remember that if the function of a random variable f (x) is concave, the expected
value satisfies E( f (x)) ≤ f (E(x)) (Jensen’s inequality).

Therefore, for a partition of n elements, the value log2 n is the maximum value that the
entropy can reach, and it is reached when the elements of the partition are of equal measure.

Thus, ∑i z(µ(Ai)) = ∑i µ(Ai) log2
1

µ(Ai)
is the weighted average of the values log2

1
µ(Ai)

(in probabilities, it would be the information associated with the measure of the random
variable Ai, i.e., the expected value of the information content or self-information of the
variable Ai). The smaller µ(Ai), the greater the above logarithm; so, this average gives an
idea of how refined the partition is.

Shannon (1948) showed that the entropy defined in this way is the only function that,
except for a multiplicative constant, satisfies the following postulates:

1. H(α) is a continuous function of µ(Ai).
2. If µ(A1) = · · · = µ(An) =

1
n , then H(α) is an increasing function of n.

Let us consider partitions α = {Ai}i∈I and β = {Bj}j∈J and a refinement of both,
α ∨ β = {Ai ∩ Bj}i∈I, j∈J . The conditional entropy of α relative to β is defined as

H(α/β) = ∑j µ(Bj)∑i z(µ(Ai/Bj)) ≡ ∑j µ(Bj)∑i z(
µ(Ai∩Bj)

µ(Bj)
) (2)

where µ(Ai/Bj) is the conditional measure of Ai relative to Bj.

3. The following sub-additivity property holds,

H(α ∨ β) = H(α) + H(β/α) ≤ H(α) + H(β) (3)

(In general, for three measurable partitions, α, β, and γ, then H(α ∨ β/γ) = H(α/γ) +
H(β/α ∨ γ) ≤ H(α/γ) + H(β/γ).)

4. If φ is an automorfism of (M, µ), then φ(α∨ β) = φα∨ φβ and H(α/β) = H(φα/φβ).

Therefore, the partition entropy seems like an appropriate parameter to measure how
much a scale of n arbitrary tones differs from an n-TET scale. It is also the parameter that
provides us with an estimate of how refined a scale is, because the entropy of a scale of n
tones will always be greater than that of a subscale of n−1 tones, and less than or equal
to that of an n-TET scale. This will be useful when dealing with cyclic scales. In addition,
as the intervals of a partition are subdivided, the entropy is additive with regard to the
intervals being refined, which saves calculations.

3. Cyclic Scales

The computation of entropy for cyclic scales requires a brief review of their properties,
which hereinafter are summarized by following Cubarsi [16,17].

A ratio of 2 between frequencies corresponds to the range of one octave. For any
frequency ratio ν ∈ Ω ≡ (0, ∞), the values 2kν, k ∈ Z, define one equivalence class.
The set Ω is a commutative group for multiplication. The set of all the octaves of the
fundamental frequency ratio (ν0 = 1) is a monogenous subgroup of Ω of an infinite
cardinal, Ω2 = {2k, k ∈ Z}. The frequency classes are the elements of the quotient group
Ω0 = Ω/Ω2, also commutative for multiplication. For each equivalence class, we choose a
representative in [1, 2) (with identified extremes) as the reference octave, which we identify
with Ω0. A finite set of these representatives will be referred to as scale tones.

An n-tone cyclic scale Eh
n is a scale of one generator, a real positive value h. The

scale tones satisfy the symmetry condition, consisting of displaying several degrees of
rotational symmetry that are equivalent to the closure condition [18–20], although such an
equivalence does not hold for scales with more than two generators [21,22]. The partition of
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the octave induced by the scale notes has exactly two sizes of scale steps, and each number
of generic intervals occurs in two different sizes, which is known as Myhill’s property [1,2].
For h = 3, we get the particular case of the 12-tone Pythagorean scale, generated by fifths,
as well as those listed in Table 1. In general, for h other than a rational power of 2 (which
would lead to degenerate cases of equal temperament scales) we would obtain generalized
Pythagorean scales.

Table 1. Properties of cyclic scales: GRA = Good rational approximation (accurate scale); RID =
Regular interval distributed; BRA = Best rational approximation (optimal scale); MB = Minimal bias;
I|Xn = maximum distance 1/xn to a note of the n-TET scale.

n N m M δ

2 3 1 1 0
3 GRA RID I|2n 5 2 1 1
5 GRA RID BRA I|3n MB 8 2 3 1
7 GRA RID 11 2 5 0
12 GRA RID BRA I|4n MB 19 7 5 0
17 RID 27 12 5 1
29 GRA 46 12 17 1
41 GRA RID BRA 65 12 29 1
53 GRA RID BRA I|6n MB 84 12 41 0
94 149 53 41 1
147 233 53 94 1
200 GRA 317 53 147 1
253 GRA 401 53 200 1
306 GRA RID BRA I|2n 485 53 253 1
359 GRA RID 569 53 306 0
665 GRA RID BRA I|8n MB 1054 359 306 0
971 1539 665 306 1
1636 2593 665 971 1
2301 3647 665 1636 1
2966 4701 665 2301 1
3631 5755 665 2966 1
4296 6809 665 3631 1
4961 7863 665 4296 1
5626 8917 665 4961 1
6291 9971 665 5626 1
6956 11,025 665 6291 1
7621 12,079 665 6956 1
8286 GRA 13,133 665 7621 1
8951 GRA 14,187 665 8286 1
9616 GRA 15,241 665 8951 1
10,281 GRA 16,295 665 9616 1
10,946 GRA 17,349 665 10,281 1
11,611 GRA 18,403 665 10,946 1
12,276 GRA 19,457 665 11,611 1
12,941 GRA 20,511 665 12,276 1
13,606 GRA 21,565 665 12,941 1
14,271 GRA 22,619 665 13,606 1
14,936 GRA 23,673 665 14,271 1
15,601 GRA RID BRA I|2n 24,727 665 14,936 1
16,266 RID 25,781 665 15,601 0
31,867 GRA RID BRA I|2n 50,508 16,266 15,601 0
47,468 RID 75,235 31,867 15,601 1
79,335 GRA RID BRA I|2n 125,743 31,867 47,468 1
111,202 GRA RID BRA 176,251 31,867 79,335 0
190,537 GRA RID BRA I|8n MB 301,994 111,202 79,335 1
301,739 478,245 111,202 190,537 0
492,276 780,239 301,739 190,537 0
682,813 1,082,233 492,276 190,537 0
873,350 1,384,227 682,813 190,537 0
1,063,887 1,686,221 873,350 190,537 0
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The scale tones are νk = hk

2JkK ; k = 0, . . . , n − 1; with JkK = ⌊k log2 h⌋ (floor function).
When the scale tones are ordered from lowest to highest pitch in [1, 2) (say, in cyclic order
or by ordinal), we find two extreme tones—the minimum tone νm and the maximum tone
νM—which determine the two elementary factors U = νm = hm

2JmK (up the fundamental)

and D = 2
νM

= 2JMK+1

hM (down the fundamental) associated with the generic widths of the
step interval such that UMDm = 2. The indices satisfy n = m + M, which are all coprime.

The tone νn = hn

2JnK , which does not belong to the scale Eh
n, provides the closure

condition (either νn → 1+ or νn → 2−) determining the n-order comma κn = min(νn, 2
νn
)

(in the frequency space), i.e., the error in closing the scale near the fundamental with no
other scale tones between them. The comma itself does not provide information about whether
νn closes above or below the fundamental. In using the index N = JmK + JMK + 1 =
⌊n log2 h + 1

2⌋, two parameters provide this information: on the one hand, the scale closure,
γn = hn

2N , which is a value close to 1 satisfying U
D = γn; and on the other hand, the scale

digit δ = N − JnK, taking values 0 or 1. Then, δ = 0 ⇐⇒ γn > 1 (νn → 1+, γn = κn)
or δ = 1 ⇐⇒ γn < 1 (νn → 2−, γn = κ−1

n ). The value | log2 γn| = log2 κn measures
the distance from νn to 1. (The distance between two scale tones α, β is measured as
d(α, β) = min(| log2

α
β |, 1 − | log2

α
β |).)

Figure 1 (left and central panels) displays how the 12-tone cyclic scale for h = 3
(Pythagorean scale) is formed. The h iterates of indices m = 7 and M = 5 are the extreme
tones, while n = 12 provides the closure, since there is no other tone with a frequency that
is between ν12 and the fundamental. The ratio between consecutive iterates is either 3

2 or
3
4 , except for the last iterate (the wolf fifth), which compensates for the comma. When the
scale tones are arranged in pitch order, i.e., by ordinals, their ratios are either U = 37

211 or

D = 28

35 . Such a distinction is much clearer under the following alternative approach.

Figure 1. (Left) Tones (frequencies νk) of the cyclic scale for h = 3 and n = 12 in [1, 2) in order of iterates
(blue) and in pitch order (green). The red dot is assumed as closing the scale. (Center) Ratios between
iterates (blue) and consecutive scale tones (green). (Right) Scale intervals in cents (1200 log2 νk) along
the circle of the octave clockwise direction (number in white for the first one) with two interval sizes.

Each tone νk in the frequency space is associated with a note or pitch class log2 νk in the
octave S0 = R/Z, so that the above quantities have the corresponding ones in S0. Thus, the
elementary intervals u = log2 U and d = log2 D generate the partition of the octave in n
intervals, with Mu + md = 1, satisfying u − d = ϕn, with interval closure ϕn = log2 γn and
interval comma |ϕn| = log2 κn. Sometimes, it is more useful to work in the multiplicative
space of tones, and sometimes, in the additive space of notes. In the latter case, a frequency
x ∈ [1, 2) is usually expressed by musicians as 1200 log2 x ∈ [0, 1200) in cents (¢), so that
each semitone of the 12-TET scale is divided into 100 parts. Figure 1 (right panel) displays
how the intervals between the 12 notes of the Pythagorean scale are distributed along the
circle of the octave (clockwise direction). All of the intervals, even the last one, are either
u = 113.7¢ or d = 90.2¢.
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The fraction N
n is associated with the convergent and semi-convergent continued

fraction expansions of log2 h [23–25]. Among cyclic scales, two categories may be pointed
out. The first category is formed by optimal scales, associated with the best closure γn ≈ 1,
corresponding to the best rational approximations, i.e., the convergents of its canonical
continued fraction expansions from both sides. The second category, which we shall

name accurate scales, is associated with the best estimations of the generator tone 2
N
n
h ≈ 1,

corresponding to the good rational approximations N
n of log2 h. Apart from accurate scales,

which include optimal scales, there are cyclic scales not associated with good or best rational
approximations, still corresponding to semiconvergents.

Notice that the terms “good” and “best” rational approximations [26] are equivalent
to the best approximation “of the first kind” and “of the second kind”, respectively [27].
The conditions mean the following.

A one-sided best approximation of log2 h+ occurs when γn < 1 and (JkK + 1) −
k log2 h > N − n log2 h > 0, 0 < k ≤ n.

A one-sided best approximation of log2 h− occurs when γn > 1 and 0 < n log2 h− N <
k log2 h − JkK, 0 < k ≤ n.

A best rational approximation satisfies 0 < |n log2 h − N| < |k log2 h − (JkK+ 1)| and
0 < |n log2 h − N| < |k log2 h − JkK|, 0 < k ≤ n.

A one-sided good approximation of log2 h+ occurs when γn < 1 and JkK+1
k − log2 h >

N
n − log2 h > 0, 0 < k ≤ n.

A one-sided good approximation of log2 h− occurs when γn > 1 and 0 < log2 h− N
n <

log2 h − JkK
k , 0 < k ≤ n.

A good rational approximation satisfies 0 < | log2 h − N
n | < | log2 h − JkK+1

k | and

0 < | log2 h − N
n | < | log2 h − JkK

k |, 0 < k ≤ n.
For all these scales, the values U, D, and γn have bounds according to Appendix A.

In particular, | log2 γn| quantifies the error of the rational approximation of log2 h. These
bounds determine the interval between a note of the cyclic scale Eh

n and the one with the
same ordinal in the n-TET scale, which is analyzed in Appendix B.

Finally, the family of cyclic scales follow a chain, Eh
n ⊂ Eh

n+ , so that in starting
from the indices (m, M) of Eh

n, the same values for the next scale Eh
n+ are (i) m+=m +

M, M+=M ⇐⇒ δ=0 and (ii) m+=m, M+=m + M ⇐⇒ δ=1 (see Table 1).

4. Entropy of a Cyclic Scale

For a cyclic scale Eh
n, with the measure defined for tone intervals as µ([x0, x1]) = log2

x1
x0

for 0<x0≤x1, consider the partition of the octave α≡(uM, dm) composed of M intervals of
width u and m intervals of width d, regardless of the order in which the intervals follow
each other. The partition entropy is

H(uM, dm) = Mz(u) + mz(d) (4)

We will explicitly write it in terms of the indices of the minimum and maximum tones
m and M. In order to do so, we define the values

|x⟩ = {log2 hx}, ⟨x| = 1 − {log2 hx}; x ∈ R

where {log2 x} is the mantissa of log2 x, that is, log2 hx − ⌊log2 hx⌋, such that the elemental
intervals u and d can be expressed in terms of the indices of the minimum and maximum
tones as

u = |m⟩, d = ⟨M| (5)

In this way, Equation (4) becomes

H(|m⟩M, ⟨M|m) = Mz(|m⟩) + mz(⟨M|) (6)
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Let us see how to express the entropy of the cyclic scale Eh
n+ , the one following Eh

n in
the chain of cyclic scales. The scale refinement process is as follows. The partition (uM, dm)
breaks, so that the major interval splits into two, one of the same size as the minor one plus
a remainder. This residual is only smaller than the size of the smaller interval when the
scale is optimal. This process is iterated.

As explained in Section 3, we must distinguish two cases, depending on whether γn is
greater or less than 1, or equivalently, if δ equals 0 or 1:

(i) δ = 0, γn > 1, U > D, u > d. In this case, N = JnK, and m+ = n, M+ = M.

The refinement is performed in the M intervals of size u, and the m intervals of size d
are maintained:

u′ = u − d = ϕn ⇐⇒ u′ ≡ |m+⟩ = |m⟩ − ⟨M|
d ′ = d ⇐⇒ d ′ ≡ ⟨M+| = ⟨M|

Since b[z( a
b ) + z(1 − a

b )] = z(a) − z(b) + z(b − a) and u − d = κn, it holds that
u H( d

u , 1 − d
u ) = z(d)− z(u) + z(κn). Thus, we express the entropy according to Equation

(3), with the new partition α ∨ β = (u′M+

, d ′ m+

):

H(u′M+

, d ′ m+

) = H(uM, dm) + M u H( d
u , 1 − d

u ) =
= H(uM, dm) + M [z(d)− z(u) + z(κn)]

In terms of the indices of the extreme tones, in noting Hn = H(Eh
n), it can be written as

Hn+ = Hn + ∆M; ∆M = M [z(⟨M|)− z(|m⟩) + z(κn)] (7)

(ii) δ = 1, γn < 1, U < D, u < d. In this case, N = JnK+ 1, m+ = m, and M+ = n.

The refinement is performed in the m intervals of size d, and the M intervals of size u
are maintained:

d ′ = d − u = −ϕn ⇐⇒ d ′ ≡ ⟨M+| = ⟨M| − |m⟩
u′ = u ⇐⇒ u′ ≡ |m+⟩ = |m⟩

The entropy of the new partition α ∨ β = (u′M+

, d ′ m+

) is

H(u′M+

, d ′ m+

) = H(uM, dm) + m d H( u
d , 1 − u

d ) =
= H(uM, dm) + m [z(u)− z(d) + z(κn)])

In terms of the indices of the extreme tones, they are equivalent to

Hn+ = Hn + ∆m; ∆m = m [z(|m⟩)− z(⟨M|) + z(κn)] (8)

Figure 2 displays how entropy increases in terms of the number of tones of a Pythagorean
scale. The left panel refers to the scales with a lower number of tones, while the right panel
shows the larger trend (in logarithmic scale), by making explicit the values of δ.
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Figure 2. Small and large scale trends of the entropy for cyclic scales with h = 3.

5. Partition Modulation

According to Equation (A2), we write the elementary intervals of a cyclic scale as

u = 1+mϕn
n , d = 1−Mϕn

n (9)

We have referred to one degenerate case of a cyclic scale, the limiting case when the
two intervals are one, u → d. In this case, u = d = 1

n and Eh
n = E⊤

n , the n-TET scale. This is
equivalent to ϕn → 0 in the expressions of Equation (9). However, we should consider two
more degenerate cases. The larger is one interval, the smaller is the other, always filling
a full octave, Mu + md = 1. Therefore, if d → 0, then the cyclic scale becomes an equal
temperament scale of M tones, and if u → 0, the scale becomes an equal temperament scale
of m tones. In other words, one of the following cases applies:

(i) According to Appendix A, for ϕn > 0, by Equation (A5), ϕn < 1
M . If ϕn → 1

M , then
d → 0. In this case, the intervals of the cyclic scale satisfy 0 < d < ϕn < u. Since
u − d = ϕn, then when u → ϕn, the scale is not non-degenerate anymore and becomes
an M-TET scale, with entropy

Hn = H(uM, dm) −−→
d→0

H(uM) = HM = log2(M)

Obviously, an optimal cyclic scale is far from this situation, because it satisfies 0 <
ϕn < d < u.

(ii) Also, according to Appendix A, for ϕn < 0, owing to Equation (A8), ϕn > − 1
m . If

ϕn → − 1
m , then u → 0. In this case, the intervals of the cyclic scale satisfy 0 < u <

|ϕn| < d. Then, d → |ϕn|, so that the scale becomes a degenerate m-TET scale with
entropy

Hn = H(uM, dm) −−→
u→0

H(dm) = Hm = log2(m)

An optimal cyclic scale case is also far from this situation, since it satisfies 0 < |ϕn| <
u < d.

Lemma 1. The scales formed from the two elementary intervals u′ = 1+m ξ
n and d ′ = 1−Mξ

n
with values − 1

m < ξ < 1
M generate an infinite and continuous family of n-tone cyclic scales

Ch
n(ξ), which are neighbors of Eh

n, such that Ch
n(ϕn) = Eh

n and Ch
n(0) = E⊤

n . In addition, if
− 1

n+m < ξ < 1
n+M , the scales Ch

n(ξ) are optimal.

These results are immediate consequence of the bounds obtained in Appendix A.

5.1. Modulating Temperament Scales

The most usual case of cyclic scale Eh
n is the one associated with a generator corre-

sponding to a harmonic h ∈ Z+ of the fundamental tone. Then, the tonal class of the
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generator is g = h
⌊log2 h⌋ ∈ (1, 2), which can be written as g = 2

µ+ϕn
n , where µ = N − J1Kn is

the ordinal of the scale tone that better approximates g [17], known as the chromatic length
of the pitch class of the generator. The value µ = ⌊n log2 g + 1

2⌋ also determines the indices
m and M of the extreme tones, corresponding to the ordinals 1 and n−1 of the scale notes.
Since as µ m − n JmK = 1, m is the positive integer, 0 < m < n so that µ m = 1 mod n.

For fixed n (and also m and M), the family of cyclic scales Ch
n(ξ) has generators that, in

general, are not the tonal class of any harmonic; that is, they are real scales. In this case, we

write them as g′ = 2
µ+ξ

n so that, for ξ ∈ (− 1
m , 1

M ), we obtain a partition modulation, which
is a continuum of irregular temperaments [28,29] close to Eh

n and E⊤
n , also corresponding to

cyclic scales. Hence, the n-tone cyclic scales Ch
n(ξ) are a family of modulating temperament

scales around the generator 2
µ
n , namely, T µ

n = {Ch
n(ξ), ξ ∈ (− 1

m , 1
M )}.

For example, for n = 12 and g′ = 4
√

5, the value ξ = 12
4 log2 5 − ⌊ 12

4 log2 5 + 1
2⌋ =

−0.03422 gives rise to the quarter-comma meantone temperament, which fits the class of the
fifth harmonic well, in exchange for decreasing by 5¢ in the accuracy of the third one. Since
the value of |ξ| is lower than 1

n+m = 1
19 = 0.05263, it results in an optimal scale.

5.2. Entropy in Terms of the Closure

Let us consider an n-tone modulating the temperament scale Ch
n(ξ) ∈ T µ

n . According
to Equations (4) and (9), we write the entropy of Ch

n(ξ) as

Hn = H(m, M, ξ) = Mz( 1+mξ
n ) + mz( 1−Mξ

n )

In using the relationship z( a
b ) =

1
b z(a) + az( 1

b ), it is immediate to see that

H(m, M, ξ) = log2 n + M
n z(1 + mξ) + m

n z(1 − Mξ)

that is,

H(m, M, ξ) = log2 n − M
n (1 + mξ) log2(1 + mξ)− m

n (1 − Mξ) log2(1 − Mξ) (10)

By deriving Equation (10) with respect to ξ, we obtain

∂H
∂ξ = −Mm

n [log2(1 + mξ)− log2(1 − Mξ)] (11)

If 0 < ξ < 1
M , the two terms of the previous equation are positive and the derivative

is negative; therefore, in this interval, the entropy is a decreasing function. If − 1
m < ξ < 0,

both terms in the above equation are negative and the derivative is positive, so in this
interval, the entropy is an increasing function. At ξ = 0, there is a local maximum, since
log2(1 + mξ)− log2(1 − Mξ) = 0 if and only if ξ = 0. Thus, H in terms of ξ is a concave
function, since ∂2H

∂ξ2 = − Mm
n ln 2 (

m
1+mξ + M

1−Mξ ) < 0. Therefore, the following apply:

(a) If 0 < ξ < 1
M , then H(m, M, 0) = log2 n > H(m, M, ξ) > log2 M = H(m, M, 1

M ).
(b) If − 1

m < ξ < 0, then H(m, M,− 1
m ) = log2 m < H(m, M, ξ) < log2 n = H(m, M, 0).

In addition, it is straightforward to see the following properties:

(c) If m < M, H(m, M, ξ) < H(m, M,−ξ) for ξ > 0 and H(m, M, ξ) > H(m, M,−ξ) for
ξ < 0.

(d) If m > M, H(m, M, ξ) > H(m, M,−ξ) for ξ > 0 and H(m, M, ξ) < H(m, M,−ξ) for
ξ < 0.

(e) H(m, M, ξ) > H(M, m,−ξ) for − 1
m < ξ < 1

M .

Properties (c) and (d) refer to the slight asymmetry of the entropy far from ξ = 0,
which, as we shall see in the last section, is negligible around ξ = 0. Property (e) means
that a cyclic scale generated by h and its inverse scale, generated counter-clockwise with
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swapped indices of the extreme tones, although they have different notes that differ in one
comma, have the same entropy.

Therefore, the entropy of any n-tone modulating temperament scale in the family T µ
n

only depends on the closure.

6. Normalized Entropy

Since the entropy increases as the partition is refined, to be able to compare qualities
of different scales, whether they are cyclic or not, we will consider the normalized entropy,
i.e., relative to the maximum value that it can reach, as that of the equally tempered scale.
For an n-tone scale En, it is defined as

η(En) =
1

log2(n)
H(En); 0 ≤ η ≤ 1

such that η tends to 1 as En approaches an n-TET scale. This ratio has also been called
efficiency and relative entropy [30]. For a cyclic scale Eh

n, we will write ηn = η(Eh
n).

Let us see in which case the normalized entropy increases when a scale is being
refined. Let us assume two scales, not necessarily cyclic: En ⊂ En+ with n < n+ (i.e., En+ is
a refinement of En).

Lemma 2. The normalized entropy increases if and only if the relative increment of entropy in
refining the partition is greater than the relative increment of the entropy of the corresponding equal
temperament scales.

Proof. By the sub-additivity property, H(En+) = H(En) + ∆. It will be η(En) < η(En+) if

and only if H(En)
log2 n <

H(En+ )
log2 n+ , so H(En+ )

log2 n <
H(En+ )+∆

log2 n+ . Hence,

log2 n+ − log2 n
log2 n

<
∆

H(En)
(12)

The deviation of an n-tone scale En, not necessarily cyclic, relative to the regular n-TET
scale will be measured from the complementary of the normalized entropy, which we will
call bias:

θ(En) = 1 − η(En); 0 ≤ θ ≤ 1 (13)

7. Bias of a Cyclic Scale

For a non-degenerate n-tone cyclic scale Ch
n(ξ) ∈ T µ

n , the bias θ(Ch
n(ξ)) = θn(ξ)

depends on the divergence of its elementary intervals u and d with regard to the elementary
interval of the n-TET scale. Thus, in bearing in mind Equation (10),

θn(ξ) =
1

n ln n [M(1 + mξ) ln(1 + mξ) + m(1 − Mξ) ln(1 − Mξ)] (14)

The graph of the function θn is the mirror image up-to-down of Hn, scaled by the factor
1

log2 n ; hence, it is convex (Figure 3). The value θn(0) = 0 is its minimum in the interval

ξ ∈ (− 1
m , 1

M ), and at the extremes (corresponding to degenerate scales), it takes the values
θn(− 1

m ) = 1 − ln m
ln n and θn(

1
M ) = 1 − ln M

ln n . Therefore, in the interval (− 1
m , 0), θn(ξ) is a

decreasing function, and in (0, 1
M ), it is an increasing function of ξ.
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Figure 3. Graphs of normalized entropy and bias.

Note that this behavior of θn in terms of ξ holds when n is fixed. In other words, θn =
θ(ξ; m, M). Then, although for another n′-tone cyclic scale, n′ ̸= n, the bias θn′ has a similar
behavior with respect to ξ ′, we cannot assure that if ξ < ξ ′, then θ(ξ; m, M) < θ(ξ ′; m′, M′),
since this also depends on the values of m′ and M′, such that m′ + M′ = n′.

Figure 4 shows the trends of the bias θn and the interval comma |ϕn| for Pythagorean
scales (generated by h = 3) in terms of n. In general, optimal scales have low bias, but the
bias not always decreases as a scale is refined. For example, the first optimal scales are
those of n = 5; 12; 41; 53; 306; 665 . . ., and the bias decreases for n = 5; 12; 53; 665, but the
scale of n = 41 has greater bias than that of n = 5; 12, and the one of n = 306 has greater
bias than those of n = 12; 53. Also notice that there are intervals where |ϕn| decreases but
θn increases.
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Figure 4. Behavior of |ϕn|= log2 κn (red) and θn=1−ηn (blue) in terms of the number of tones n
(bilogarithmic scales). In gray is maximum bias for several similarity levels to n-TET scales.

We will say that a cyclic scale Eh
n is of minimal bias (MB) if for any cyclic scale Eh

n′ with
n′ < n, θn < θn′ . Obviously, it is tantamount to say that ηn > ηn′ ; hence, the scale has
greater normalized entropy than the previous ones. Not all optimal cyclic scales are MB.

Before a deeper analysis, in an approximate way, we may estimate how close an MB
scale and an equal temperament scale of the same number of tones are. We may use the
criterion for which a cyclic scale (not necessarily optimal) unambiguously approximates an
n-TET scale if every note of the former is at a distance equal or less than half an elementary
interval from the latter. According to Equation (A12) with λ = 2, this leads to the condition
¢(κn) ≤ 600

n−1 (condition I|2n).
This condition can be satisfied by optimal and non-optimal cyclic scales. For example,

for n = 3, condition I|2n is holds although the scale is not optimal. On the contrary,
n = 41; 306; 111 202 are optimal scales but the condition I|2n is not met.

Let us see what happens with the MB condition. In this case, for up to n = 2 · 105, all
scales that satisfy MB also satisfy I|2n, but there are scales that are I|2n and not MB scales,
for example, for n = 3; 306; 15 601; 31 867; 79 335. Hence, the condition that a note of the
cyclic scale is closer than half an interval of a note of a tempered scale is weaker than the
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MB condition. On the contrary, if we further restrict the above condition, for example, the
respective notes are at most at a third interval, i.e., ¢(κn) ≤ 400

n−1 (condition I|3n), then for
up to n = 2 · 105, all I|3n scales are MB scales. In Table 1, these and other properties are
displayed.

8. Scales with Limited Bias
8.1. Scale Distributed within Regular Intervals

We study several families of scales for which it is possible to estimate a priori the
lower limit of the entropy.

We say that two n-tone scales En and E′
n sharing the fundamental tone alternate if their

notes in cyclic order—sj = log2 σj ∈ En and s′j = log2 σ′
j ∈ E′

n, where 0 < j < n—fulfill one
of the following conditions:

(a) sj−1 < s′j ≤ sj; 0 < j < n (En alternates by the right of E′
n )

(b) s′j−1 < sj ≤ s′j; 0 < j < n (En alternates by the left of E′
n )

(15)

If E′
n is the equal temperament scale E⊤

n , then we write σ′
j = ϑ′

j and say that En is
regular interval distributed (RID). In this case, the alternation can also be defined from the
following relations involving intervals between tones,

(a) 0 ≤ I(σj, ϑ′
j) <

1
n

(b) 0 ≤ I(ϑ′
j, σj) <

1
n

; 0 < j < n (16)

(The interval between two tones ν1 < ν2 in (0, ∞) is I(ν2, ν1) = log2 ν2 − log2 ν1.)
Note that these conditions are generally more restrictive than the condition

d(σj, ϑ′
j) <

1
n

⇐⇒ − 1
n
< I(σj, ϑ′

j) <
1
n

(17)

Obviously, Equation (16) implies the condition of Equation (17), although, as seen in
Appendix B, for cyclic scales, they are equivalent.

For example, suppose case (a). If 0 ≤ I(σj, ϑ′
j) < 1

n , then the interval between two

consecutive notes of En satisfies I(σj, σj+1) = I(σj, ϑ′
j+1) + I(ϑ′

j+1, σj+1) =
1
n − I(σj, ϑ′

j) +

I(ϑ′
j+1, σj+1) < 2

n , so that d(σj, σj+1) < 2
n . Instead, if d(σj, ϑ′

j) < 1
n , then d(σj, σj+1) ≤

d(σj, ϑ′
j) + d(ϑ′

j, ϑ′
j+1) + d(σj+1, ϑ′

j+1) <
3
n . In a similar way, we would reason case (b).

Lemma 3. The interval between two consecutive notes of an n-tone RID scale is lower than 2
n .

8.2. Scale r-Similar to n-TET

A criterion for measuring the proximity between scales is similarity [31]. Two n-tone
scales T and T′ are similar at level r > 0 (r-similar) if for each tone τi ∈ T, ∃τ′

j ∈ S such that
d(τi, τ′

j ) ≤ r and d(τi, τ′
k) > r, ∀k ̸= j.

For example, a cyclic scale Eh
n and the n-TET scale have a level of similarity 1

2n if and
only if any pair of notes with ordinal j, i.e., ϑj ∈ Eh

n and ϑ′
j ∈ E⊤

n , satisfy d(ϑj, ϑ′
j) ≤

1
2n . This

condition is equivalent to the condition of Equation (A12) with λ = 2, ¢(κn) ≤ 600
n−1 .

However, for the current purpose of evaluating and comparing entropy partitions, we
will slightly modify such a concept by assuming that the fundamental is shared by both
scales. Then, we say a scale En is similar to the n-TET scale at level r, with 0 < r ≤ 1

2n , if
their tones satisfy

d(σj, ϑ′
j) ≤ r ; 0 < j < n (18)
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8.3. Scale One-Side r-Similar to n-TET

We introduce a concept that will mix the one of similarity with the one of distribution
within regular intervals, which will be appropriate for studying the bounds of the entropy
for cyclic scales.

Let ϑ′
j be the tones of the n-TET scale. We say that a scale En is one-side r-similar at level

r (r-OSS) to the n-TET scale, with 0 < r ≤ 1
n , if

(a) 0 ≤ I(σj, ϑ′
j) < r (b) 0 ≤ I(ϑ′

j, σj) < r; 0 < j < n (19)

It is OSS by the right (a) or by the left (b), respectively. Therefore, when r = 1
n it

matches the definition of an RID scale.

9. Entropy of a Scale 1
λn -OSS to n-TET

Consider an n-tone scale En, not necessarily cyclic, which is 1
λn -OSS to n-TET for λ ≥ 1.

We already know that the maximum entropy is log2 n. Let us see the minimum entropy it
can reach. We assume case (a) of Equation (19) and consider the n notes (n ≥ 2) of En in
cyclic order in [0, 1) ∪ {1}, since the entropy does not change if we add a null set. We also
extend the range of the possible variation in the intervals between notes at the extremes to
include the limiting degenerate cases. The points determining the division of the octave are

s0 = 0; si =
i
n
+ ti, 0 ≤ ti ≤

1
λn

, 1 ≤ i ≤ n − 1; sn = 1

By writing T = 1
n and assuming t0 = tn = 0, the respective intervals are

Ti = si − si−1 = T + ti − ti−1, 1 ≤ i ≤ n

Then, the scale En generates the partition α = {Ti}, i ∈ {1, . . . , n}, with entropy

H(α) =
n

∑
i=1

z(Ti) = −
n

∑
i=1

(T + ti − ti−1) log2(T + ti − ti−1)

The entropy H(α) is a concave and differentiable function f (t1, . . . , tn−1), f :V → R,
with V = [0, 1

λn ]
n−1, a hypercube, which is a convex and compact space. Then, f has a local

and global maximum at (t1, . . . , tn−1) = (0, . . . , 0), corresponding to an n-TET scale with
Ti = T and H = log2 n, and the global minimum is reached at one or some of the vertices
of V. These vertices are determined using the possible values tj ∈ {0, 1

λn}, 1 ≤ j ≤ n − 1,
and the resulting intervals Ti can only take the following values: interval T1, values 1

n and
λ+1
λn ; interval Tn, values 1

n and λ−1
λn ; and the intermediate intervals, values λ−1

λn , 1
n and λ+1

λn .
The octave is covered by a number of different intervals satisfying

A + B + C = n (20)

of which A in number have width λ−1
λn , B width 1

n , and C width λ+1
λn , so that A λ−1

λn + B λ
λn +

C λ+1
λn = 1. Therefore,

A (λ − 1) + B λ + C (λ + 1) = λn (21)

(Some of these intervals may have width zero, giving rise to a degenerate scale with less
than n non-null intervals.)

The entropy at one of these vertices can be written in terms of the respective number
of intervals as

f = A z( λ−1
λn ) + B z( λ

λn ) + C z( λ+1
λn ) =

= log2 n + 1
n g(A, C); g(A, C) = A z( λ−1

λ ) + C z( λ+1
λ )

(22)
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where z is the concave function defined in Equation (1), also extended for values t > 1,
where z(t) < 0. Among possible configurations, we look for the minimum value that f can
take, which will correspond to the minimum value of g. Notice that this quantity is added
to the entropy of an n-TET scale, as it is consistent with the fact that the B intervals of width
1
n are not involved in the expression. However, the intervals in number C, of greater width
than 1

n , contribute to decreasing the entropy, while those in number A, of width lower than
1
n , contribute to increasing it, since the corresponding function z evaluated in values less
than 1 is positive.

In the current case, by combining Equations (20) and (21), we obtain A = C and
B + 2C = n. Therefore,

g(C) = C Z(λ, 1); Z(λ, a) = z( λ−a
λ ) + z( λ+a

λ ), λ ≥ a (23)

If n is even, the maximum value for C, by assuming B = 0, is C = n
2 . Hence, the

number of intervals of null-size is also A = n
2 .

The function Z(λ, a) = z( λ−a
λ ) + z( λ+a

λ ) with a > 0 is defined for λ ≥ a, where it
satisfies Z(λ, a) < 0, always increasing from Z(a, a) = −2 until Z(λ, a) → 0 when λ → ∞.
Then, g( n

2 ) = n
2 Z(λ, 1), which correspond to a degenerate scale of n

2 non-null intervals.
Therefore, if n = 2̇, the entropy satisfies log2 n + 1

2 Z(λ, 1) ≤ H(α).
If n is odd, the maximum value for C and A is n−1

2 , with B = 1. Then, g = n−1
2 Z(λ, 1),

which correspond to a degenerate scale of n+1
2 non-null intervals. Therefore, if n ̸= 2̇, the

entropy satisfies log2 n + 1
2 Z(λ, 1)(1 − 1

n ) ≤ H(α).
Case (b) is similar. It would be reasoned by considering that

f (t1, . . . , tn−1)= f (−tn−1, . . . ,−t1), i.e., it is equivalent to case (a), but following the in-
tervals from right to left starting at 1.

Theorem 1. The entropy and bias of a scale 1
λn -OSS to n-TET satisfy

n = 2̇, log2 n + 1
2 Z(λ, 1) ≤ H(α) ≤ log2 n; 0 ≤ θ(α) ≤ − 1

2 log2 n Z(λ, 1)

n ̸= 2̇, log2 n + 1
2 Z(λ, 1)(1 − 1

n ) ≤ H(α) ≤ log2 n; 0 ≤ θ(α) ≤ − 1
2 log2 n Z(λ, 1)(1 − 1

n )
(24)

We explicitly write two cases. For λ = 1, since Z(1, 1) = −2, the entropy of an RID
scale satisfies, if n = 2̇, log2

n
2 ≤ H(α) ≤ log2 n, and if n ̸= 2̇, it satisfies log2

n
2 + 1

n ≤
H(α) ≤ log2 n.

For λ = 2, since Z(2, 1) = −0.189, the entropy of a scale 1
2n -OSS to n-TET satisfies, if

n = 2̇, log2 n− 0.189 ≤ H(α) ≤ log2 n and, if n ̸= 2̇, log2 n− 0.189(1− 1
n ) ≤ H(α) ≤ log2 n.

Levels for λ = 1, 2, 4, 8, 16 are displayed in Figure 4.

10. Entropy of a Scale 1
λn -Similar to n-TET

Let us calculate the minimum entropy that can reach an n-tone scale En, not necessarily
cyclic, with a similarity level 1

λn with the n-TET scale for λ ≥ 2. According to the previous
notation and considerations, the points that determine the division of the octave are

s0 = 0; si =
i
n
+ ti, − 1

λn
≤ ti ≤

1
λn

, 1 ≤ i ≤ n − 1; sn = 1

The respective intervals are Ti = si − si−1 = 1
n + ti − ti−1, 1 ≤ i ≤ n, by assuming

t0 = tn = 0. As before, we write the entropy of the partition α = {Ti}, i ∈ {1, . . . , n}, as
H(α) = ∑n

i=1 z(Ti) = f (t1, . . . , tn−1), where f :V → R, with V = [− 1
λn , 1

λn ]
n−1, a convex

and compact space. The local and global maximum of f takes place at (t1, . . . , tn−1) =
(0, . . . , 0), corresponding to the scale of n-TET, with Ti = T and H = log2 n. The global
minimum is reached at one or some of the vertices of V. These vertices are determined
using the possible values tj ∈ {− 1

λn , 1
λn}, 1 ≤ j ≤ n − 1, and the resulting intervals Ti can
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only take the following values: the values λ−1
λn and λ+1

λn of the extreme intervals T1 and Tn,
while the intermediate intervals can have values λ−2

λn , 1
n , and λ+2

λn . The octave is covered by
a number of different intervals satisfying

A + B + C + D + E = n (25)

of which A in number have width λ−2
λn , B width λ−1

λn , C width 1
n , D width λ+1

λn , and E width
λ+2
λn , so that A λ−2

λn + B λ−1
λn + C λ

λn + D λ+1
λn + E λ+2

λn = 1. Therefore,

A (λ − 2) + B (λ − 1) + C λ + D (λ + 1) + E (λ + 2) = λn (26)

The entropy at one of these vertices can be written in terms of the respective number
of intervals:

f = A z( λ−2
λn ) + B z( λ−1

λn ) + C z( λ
λn ) + D z( λ+1

λn ) + E z( λ+2
λn ) =

= log2 n + 1
n g(A, B, D, E), g(A, B, D, E) = A z( λ−2

λ ) + B z( λ−1
λ ) + D z( λ+1

λ ) + E z( λ+2
λ )

(27)

Once again, the intervals of width 1
n are not involved in this expression. The intervals

in numbers D and E, of greater width than 1
n , contribute to decreasing the entropy, while

those who are there in numbers A and B, of width lower than 1
n , contribute to increasing it.

The minimum value of g is obtained using the highest possible values of E and D (in
that order) and minimum of A and B.

In the current case, by combining Equations (25) and (26), we obtain A = E+ 1
2 D − 1

2 B
and

B + 2C + 3D + 4E = 2n (28)

If n is even, at most there can be E = n
2 intermediate intervals of width λ+2

λn . Through
the substitution of this value into Equation (28), we obtain B + 2C + 3D = 0, so that
B=C=D=0 and A = n

2 . Hence, the minimum g is g( n
2 , 0, 0, n

2 ) =
n
2 Z(λ, 2), corresponding

to a degenerate scale of n
2 non-null intervals. Therefore, if n = 2̇, the entropy satisfies

log2 n + 1
2 Z(λ, 2) ≤ H(α).

If n is odd, we should examine two alternatives. Firstly, if we assume that there are
E = n−1

2 intermediate intervals of width λ+2
λn , through substitution into Equation (28),

we obtain B + 2C + 3D − 2 = 0. Possible interval values are (B, C, D) = (0, 1, 0); (2, 0, 0).
In this case, the minimum value of g is provided by the first triad, i.e., B=D=0, C = 1,
A = n−1

2 , which yields g( n−1
2 , 0, 0, n−1

2 ) = n−1
2 Z(λ, 2), corresponding to a degenerate scale

of n+1
2 non-null intervals. In this case,

log2 n + 1
2 Z(λ, 2)(1 − 1

n ) ≤ H(α) (29)

As the second alternative, if there are E = n−3
2 intermediate intervals of width λ+2

λn , B+
2C + 3D − 6 = 0 holds. Possible interval values are (B, C, D) = (0, 0, 2); (1, 1, 1); (3, 0, 1);
(0, 3, 0); (4, 1, 0). The minimum of g is provided by the first triad, so that B=C=0, D = 2,
A = n−1

2 , and g( n−1
2 , 0, 2, n−3

2 ) = n−1
2 z( λ−2

λ ) + 2z( λ+1
λ ) + n−3

2 z( λ+2
λ ), corresponding to a

degenerate scale of n+1
2 non-null intervals. Hence,

log2 n + 1
2 Z(λ, 2)

[
1 − 1

n
z( λ−2

λ )−4z( λ+1
λ )+3z( λ+2

λ )

Z(λ,2)

]
≤ H(α) (30)

For λ ≥ 2, the factor multiplying 1
n is a positive value between 3(2 − log2 3) = 1.245

and 3
2 . Since the value Z(λ, 2) is negative, the above factor increases it. Hence, the entropy

of Equation (29) is lower than the entropy of Equation (30).

Theorem 2. The entropy and bias of a scale 1
λn -similar to n-TET satisfy
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n = 2̇, log2 n + 1
2 Z(λ, 2) ≤ H(α) ≤ log2 n; 0 ≤ θ(α) ≤ − 1

2 log2 n Z(λ, 2)

n ̸= 2̇, log2 n + 1
2 Z(λ, 2)(1 − 1

n ) ≤ H(α) ≤ log2 n; 0 ≤ θ(α) ≤ − 1
2 log2 n Z(λ, 2)(1 − 1

n )
(31)

We explicitly evaluate the case for λ = 2. Since Z(2, 2) = −2, if n = 2̇, then log2
n
2 ≤

H(α) ≤ log2 n, and if n ̸= 2̇, then log2
n
2 + 1

n ≤ H(α) ≤ log2 n, which are the same bounds
as for an RID scale.

11. Cyclic RID Scales

We may reformulate Theorem A1 according to the above definitions.

Theorem 3. Optimal cyclic scales are RID scales.

Nevertheless, there are many non-optimal cyclic scales that are also RID scales. Cyclic
RID scales correspond to partial convergents of continued fractions where the comma is
not as low as for optimal scales, i.e., their closure is not a best approximation, although
they belong to a family of relatively good partial convergents. However, although in most
cases, a convergent that gives a good approximation (i.e., an accurate scale) generates a
RID scale, there are exceptions, such as for n = 200. Between the notes j = 83 of the
respective scales E3

200 and E⊤
200, there is a distance of nearly 1.5 elementary intervals of the

equal temperament scale, and between two consecutive notes of the cyclic scale, there may
be a distance equivalent to 2.1 regular intervals, which means that within some regular
intervals, there are two notes of the cyclic scale.

Therefore, there exist accurate scales that are not RID, and RID scales that are not
accurate.

11.1. Comma and Elementary Intervals of an RID Scale

It is immediate to identify an RID scale from its interval comma |ϕn| = | log2 γn| =
|n log2 h − N|. As seen in Appendix B, the distance between the tones ϑ′

j ∈ E⊤
n and

ϑj = νk ∈ Eh
n for 0 ≤ j < n is k

n |ϕn|. So, k
n |ϕn| < 1

n for all 0 ≤ k < n if and only if
n−1

n |ϕn| < 1
n , that is, the interval comma is limited as |ϕn| < 1

n−1 .

Lemma 4. A cyclic scale is RID if and only if |ϕn| < 1
n−1 .

This condition, which is satisfied by all optimal scales, assures us that the value of |ϕn|
is small enough to be far from the previously seen degenerate cases of less than n notes,
since for every RID scale, |ϕn| < 1

n−1 ≤ min( 1
m , 1

M ) is fulfilled.
From another point of view, while considering RID scales, we are excluding “bad

approximations” of log2 h that satisfy any of the following: if ϕn > 0, then 1
n−1 ≤ n log2 h −

N < 1
M , or, if ϕn < 0, then − 1

m < N − n log2 h ≤ − 1
n−1 . This fact also has implications

on the bounds of the two elementary intervals of cyclic RID scales, We distinguish the
following cases:

(i) If 0 < ϕn < 1
n−1 , according to Equation (9), u < 1

n (1 + m
n−1 ) < 1

n (1 + n−1
n−1 ) = 2

n .
Hence,

1
n < u < min( 1

M , 2
n ) (32)

(We should distinguish two cases: (a) M > m: 1
n < 1

M < 2
n and 2

n < 1
m ; since

Mu + md = 1, we have 1
n < u < 1

M and 0 < d < 1
n , which does not add any new

limitation. (b) M < m: 1
n < u < 2

n and 1
n (1 − M

m ) < d < 1
n . Therefore, the extremes

still correspond to n-tone scales, by avoiding degenerate cases.)
(ii) If − 1

n−1 < ϕn < 0, according to Equation (9), d < 1
n (1 + M

n−1 ) < 1
n (1 + n−1

n−1 ) = 2
n .

Hence,
1
n < d < min( 1

m , 2
n ) (33)



Mathematics 2024, 12, 1658 17 of 23

(We should distinguish two cases: (a) M > m: 1
n < 1

M < 2
n and 2

n < 1
m ; hence,

1
n < d < 2

n and 1
n (1 − m

M ) < u < 1
n . Once again, the extremes correspond to n-

tone scales not degenerating toward scales of fewer tones. (b) M < m: 2
n < 1

M and
1
n < 1

m < 2
n ; hence, 1

n < d < 1
m and 0 < u < 1

n , which does not add any new
limitation.)

In both cases, the size of the greatest elementary interval of a cyclic RID scale is lower
than 2

n , as stated in Lemma 3.

11.2. Bias of RID Scales

For large values of |ϕn|, that is, |ϕn| > 1
m or |ϕn| > 1

M , Equation (14) can have a quite
arbitrary and non-symmetrical behavior, but for values |ϕn| < 1

n−1 , and in particular, for
optimal scales with |ϕn| < 1

n+M or |ϕn| < 1
n+m , depending on the value δ, the bias θn

behaves as proportional to ϕ2
n.

With |mϕn| < 1 and |Mϕn| < 1, we can approximate the logarithms in the following
expressions as

(1 + mϕn) ln(1 + mϕn) = mϕn +
1
2 m2ϕ2

n − 1
6 m3ϕ3

n + O4(mϕn)

(1 − Mϕn) ln(1 − Mϕn) = −Mϕn +
1
2 M2ϕ2

n +
1
6 M3ϕ3

n + O4(Mϕn)

and through substitution into Equation (14), we obtain

θn = 1
ln n

[
Mm2+mM2

2n ϕ2
n − Mm3−mM3

6n ϕ3
n +

Mm4+mM4

12n O4(ϕn)
]
=

= mM
2 ln n

[
ϕ2

n − m−M
3 ϕ3

n +
m2−mM+M2

6 O4(ϕn)
]

Notice that m|ϕn|3 = 1
m2 |mϕn|3 = O3(|ϕn|) < O3(|mϕn|) with |mϕn| < 1 and

M|ϕn|3 = 1
M2 |Mϕn|3 = O3(|ϕn|) < O3(|Mϕn|) with |Mϕn| < 1. The same happens with

the higher-order terms. Therefore, for enough small |ϕn|, we can use the approximation
derived from the following result.

Lemma 5. The bias of a cyclic RID scale satisfies

θn = mM
2 ln(m+M)

ϕ2
n + O3(|ϕn|) (34)

11.3. Cyclic Scales of Minimal Bias

As explained in Section 4, while refining a cyclic scale, in each iteration, one of the
indices of the extreme tones remains fixed, while the other increases by a value equal to the
one that remains fixed. Let us see that in each refinement, the following function appearing
in Equation (34) always increases:

ψ(m, M) =
mM

ln(m + M)
(35)

Lemma 6. For n = m + M ≥ 2, ψ(m+, M) > ψ(m, M) with m+ = m + M, and ψ(m, M+) >
ψ(m, M) with M+ = m + M.

Proof. Indeed, it suffices to check that the function ψ(m, M) = mM
ln(m+M)

satisfies ∂ψ
∂m > 0

and ∂ψ
∂M > 0.

∂
∂m

mM
ln(m+M)

=
M ln(m+M)− mM

m+M
ln2(m+M)

= M2 ln(m+M)+mM(ln(m+M)−1)
ln2(m+M)

> 0 ⇐⇒ m + M ≥ 2
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∂
∂M

mM
ln(m+M)

=
m ln(m+M)− mM

m+M
ln2(m+M)

= m2 ln(m+M)+mM(ln(m+M)−1)
ln2(m+M)

> 0 ⇐⇒ m + M ≥ 2

Notice that for m + M > 2, the above inequalities hold, and if m + M = 2, then
M = m = 1, so that the above results are also valid.

Corollary 1. Let us write ψn = ψ(m, M). If n > n′, then ψn > ψn′ .

With this notation, the bias of a cyclic RID scale can be estimated from

θn =
1
2

ψnϕ2
n (36)

Theorem 4. Every cyclic RID scale of minimal bias is optimal.

Proof. We prove this by denying the consequent. Assume two cyclic RID scales Eh
n and Eh

n′

such that n > n′ with interval commas satisfying |ϕn| > |ϕn′ |, i.e., Eh
n is not optimal. Then,

applying the previous corollary to Equation (36), we have

ψnϕ2
n > ψn′ϕ2

n′ ⇒ θn > θn′

Therefore, if a cyclic RID scale is not optimal, it cannot be MB.

The first cyclic MB scales for h = 3, i.e., Pythagorean scales, are for n = 5; 12; 53; 665 . . .,
as shown in Figure 4, as well as in Table 1.

12. Conclusions

In the current paper, it was proposed to measure the regularity of the intervals of
a music scale from their partition entropy. Among other properties, the fact of being a
continuous increasing function of n for an n-TET scale, which is always the maximum value
that the entropy of any n-tone scale can reach, together with the sub-additivity property,
which guarantees that while refining the partition, the entropy always increases, make
this parameter very suitable for our purpose. In order to compare scales with different
numbers of tones, the entropy relative to the corresponding regular scale is used, which is
the normalized entropy, so that their complementary to 1 quantifies the bias relative to the
n-TET scale.

The main application of these concepts has been to cyclic scales, and their properties
were reviewed and further investigated in the Appendices. Since non-degenerate cyclic
scales are maximal even sets [3,4] and their intervals come in two possible sizes [1,2], the
remaining properties allowing us to distinguish between scale distributions are the number
of intervals of each size and the ratio between them.

Two situations have been analyzed. First, cyclic scales with a fixed number of tones,
which is a family of modulating temperament scales around one generator. In this case,
the bias only depends on the closure, i.e., the relative size of both elementary intervals.
Second, as cyclic scales are refined, the bias also depends on how many intervals of each
size there are.

In order to study such a dependency, it was necessary to restrict the scales in two ways.
We centered our attention to scales with a lower limit of the entropy, determined using the
condition that their notes are distributed along each of the intervals of a regular scale (RID
scales). Such a study was conducted in a general way, by calculating the maximum bias
of several scales, not necessarily cyclic, with different levels of similarity with an n-TET
scale, either from one side or from both sides. Figure 4 displays the similarity levels for
cyclic scales. In addition, we considered scales with the comma not exceeding that of an
RID scale, since in this case, the dependency between bias and closure is well defined.

We proved that any cyclic scale of minimal bias (MB scale), i.e., with a bias that is
lower than that of the cyclic scales of fewer tones, is necessarily optimal, i.e., corresponds
to a best rational approximation of log2 h.
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Notice that the bias, θn, according to Equations (35) and (36), is proportional to the
product of ψ(m, M), depending on each number of elementary intervals, and ϕ2

n, depending
on their relative size, so that θn accounts for the degrees of freedom allowed for cyclic scales.

Among the optimal scales, it was possible to select the ones for which intervals are
distributed along the octave as regularly as possible relative to an equal temperament scale
of the same number of tones. Therefore, in relation to the closure, scales can be ordered
in nested families, from worst to best, as cyclic, accurate, and optimal scales, whilst in
relation to their regularity, they can be ordered in nested families as cyclic, RID, optimal,
and MB scales.

Although the current entropy-based measure has been particularly used to deepen
the study of cyclic scales, the present work clearly suggests future applications to more
general cases, also through using alternative metrics, either based on the distribution of the
scale notes or the intervals, such as the recent Boltzmann–Shannon Interaction Entropy [32],
allowing us to estimate a normalized entropy from a finite sample of points on a bounded
interval.
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Abbreviations
The following abbreviations are used in this manuscript:

BRA Best rational approximation (optimal scale);
GRA Good rational approximation (accurate scale);
I|Xn Maximum distance 1/xn to n-TET;
MB Minimal bias;
n-TET n-tones of equal temperament;
OSS One-side similar;
RID Regular interval distributed.

Appendix A. Bounds for the Elementary Intervals and Closure of Cyclic Scales

The notes of a cyclic scale Eh
n divide the circle of the octave into n intervals of width

log2 U or log2 D, beginning and ending in the pitch class of the fundamental so that

M log2 U + m log2 D = 1 (A1)

According to the definitions of U, D, and γn, these intervals can be referred to the
elementary interval of the equal temperament scale as follows:

log2 U = 1
n + m

n log2 γn; log2 D = 1
n − M

n log2 γn (A2)

We may determine their bounds by distinguishing between the cases of γn being
greater or less than 1:

(i) If γn > 1, then U > D. Depending on the scale, we have the following:

(a) The closure of an optimal cyclic scale satisfies 1 < γn < 2
νM

< νm; hence,
1 < γn < D < U. By taking logarithms and taking into account Equation (A2),
we obtain

0 < log2 γn < log2 D = 1
n − M

n log2 γn =⇒ 0 < log2 γn < 1
n+M (A3)

The elementary intervals satisfy

1
n+M < log2 D < 1

n ; 1
n < log2 U < 2

n+M
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(b) The closure of a non-optimal cyclic scale satisfies 1 < 2
νM

< γn < νm; hence,
1 < D < γn < U. Then, in taking logarithms,

log2 D = 1
n − M

n log2 γn < log2 γn =⇒ 1
n+M < log2 γn

log2 γn < log2 U = 1
n + m

n log2 γn =⇒ log2 γn < 1
M

(A4)

Therefore,
0 < log2 D < 1

n+M ; 2
n+M < log2 U < 1

M

(c) For an accurate cyclic scale for the above condition, 0 < log2 D < log2 γn <
log2 U, we must add that of a good rational approximation, which can be writ-
ten as

0 < 1
n log2 γn < 1

M log2 D < 1
m log2 U

Then, 1
n log2 γn <

1−M log2 γn
Mn ; hence, log2 γn < 1

2M , and, since Equation (A4)
is still valid, we obtain the following bounds:

1
n+M < log2 γn < 1

2M ; 1
2n < log2 D < 1

n+M ; 2
n+M < log2 U < 1

2n + 1
2M

Thus, in case (i), either for optimal or non-optimal scales, the following is satisfied:

γn > 1 =⇒ 0 < log2 γn < 1
M ; 0 < log2 D < 1

n ; 1
n < log2 U < 1

M (A5)

(ii) If γn < 1, then D > U. Depending on the scale, we have the following:

(a) The closure of an optimal cyclic scale satisfies νM
2 < 1

νm
< γn < 1; hence,

1
D < 1

U < γn < 1. Then, in taking logarithms,

− log2 U = − 1
n − m

n log2 γn < log2 γn < 0 =⇒ − 1
n+m < log2 γn < 0 (A6)

The elementary intervals satisfy

1
n+m < log2 U < 1

n ; 1
n < log2 D < 2

n+m

(b) The closure of a non-optimal cyclic scale satisfies νM
2 < γn < 1

νm
< 1; hence,

1
D < γn < 1

U < 1. Then, in taking logarithms,

− log2 D = − 1
n + M

n log2 γn < log2 γn =⇒ − 1
m < log2 γn < 0

log2 γn < − log2 U = − 1
n − m

n log2 γn =⇒ log2 γn < − 1
n+m

(A7)

Then, the elementary intervals satisfy

0 < log2 U < 1
n+m ; 2

n+m < log2 D < 1
m

(c) For an accurate cyclic scale for the above condition, − log2 D < log2 γn <
− log2 U < 0, we must add that of a good rational approximation, which can be
written as

− 1
M log2 D < − 1

m log2 U < 1
n log2 γn < 0

Then, 1
n log2 γn > − 1+m log2 γn

mn ; hence, − 1
2m < log2 γn, and, since Equation

(A7) is still valid, we obtain the following bounds:

− 1
2m < log2 γn < − 1

n+m ; 2
n+m < log2 D < 1

2n + 1
2m ; 1

2n < log2 U < 1
n+m

Thus, in case (ii), either for optimal or non-optimal scales, the following is satisfied:

γn < 1 =⇒ − 1
m < log2 γn < 0; 0 < log2 U < 1

n ; 1
n < log2 D < 1

m (A8)
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Table A1 summarizes the above results over the octave S0. Notice that, for optimal
scales, Equations (A3) and (A6) give the following bounds, similarly to the theory of
continued fractions:

(i)
∣∣∣∣log2 h − N

n

∣∣∣∣ < 1
n(n + M)

; (ii)
∣∣∣∣log2 h − N

n

∣∣∣∣ < 1
n(n + m)

Table A1. Bounds for ϕn = log2 γn, u = log2 U, and d = log2 D, depending on the type of cyclic
scale.

Cyclic Scale ϕn > 0 ϕn < 0

optimal

0 < ϕn < 1
n+M − 1

n+m < ϕn < 0
1
n < u < 2

n+M
1

n+m < u < 1
n

1
n+M < d < 1

n
1
n < d < 2

n+m

non-optimal

1
n+M < ϕn < 1

M − 1
m < ϕn < − 1

n+m
2

n+M < u < 1
M 0 < u < 1

n+m

0 < d < 1
n+M

2
n+m < d < 1

m

accurate

1
n+M < ϕn < 1

2M − 1
2m < ϕn < − 1

n+m
2

n+M < u < 1
2n + 1

2M
1

2n < u < 1
n+m

1
2n < d < 1

n+M
2

n+m < d < 1
2n + 1

2m

in general
0 < ϕn < 1

M − 1
m < ϕn < 0

1
n < u < 1

M 1 < u < 1
n

0 < d < 1
n

1
n < d < 1

m

Appendix B. Deviation of a Cyclic Scale from n-TET

We calculate the interval between the notes with ordinal j of the respective scales Eh
n

and E⊤
n , corresponding to the tones ϑj ∈ Eh

n and ϑ′
j = 2

j
n ∈ E⊤

n . According to Equations

(A2) and (A1), the deviations of each note of Eh
n with regard to E⊤

n compensate each other,
and in the end, they close the octave exactly. If the tone ϑj corresponds to the iteration νk,

then j = Nk − nJkK (Equation (28) [17]). Therefore, JkK = Nk−j
n . In bearing in mind that

log2 γn=n log2 h − N, the scale note log2 ϑj= log2 νk is

log2 ϑj = k log2 h − JkK =
k
n

log2 γn +
j
n

(A9)

Lemma A1. The interval that separates the two notes is

I(ϑj, ϑ′
j) = log2 ϑj − log2 ϑ′

j =
k
n

log2 γn; j = 0, . . . , n − 1 (A10)

Therefore, all of these intervals have the same sign, which is positive if γn > 1 and
negative if γn < 1. In taking absolute value, the interval between these close notes becomes
a distance:

d(ϑj, ϑ′
j) =

k
n
| log2 γn| =

k
n

κn; j = 0, . . . , n − 1 (A11)

As expected, this distances increases with the iterations, so that the maximum is
reached by the last iterate, k = n − 1, i.e., dmax = maxj d(ϑj, ϑ′

j) = n−1
n κn. Then, a

condition such as dmax ≤ 1
λn , for λ > 0, becomes κn ≤ 1

λ (n−1) , which in cents is

¢(κn) ≤ 1200
λ (n−1) (A12)
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For an optimal cyclic scale, according to Equations (A3) and (A6), − 1
n+m < log2 γn <

1
n+M , so that | log2 γn| < 1

n and k| log2 γn| < 1 in Equation (A11). Therefore, we conclude
that d(ϑj, ϑ′

j) <
1
n .

Theorem A1. The notes ϑi, i ̸= 0, of an optimal cyclic scale Eh
n and the ones of the corresponding

n-TET scale E⊤
n alternate, i.e., for 0 < i < n, either for (i) ϑ′

i < ϑi < ϑ′
i+1 or (ii) ϑ′

i−1 < ϑi < ϑ′
i .

Such a situation is also possible for non-optimal scales, although there are exceptions
where the tones do not alternate. For instance, in a non-optimal scale with γn < 1,
Equation (A7) implies that m| log2 γn| < 1. But in a cyclic scale where M>m, the condition
k| log2 γn| < 1, ∀k, stated in case (ii), is not fulfilled. An example of such a situation is the
29-tone scale, with m = 12 and M = 17, where | log2 γn|−1 = 27.7. The 28-th tone ν28 = ϑ12

(454.74 cents) is below ϑ′
12 (496.55 cents) more than a factor of 2

1
29 (41.38 cents), and between

ϑ12 and ϑ13 = ν11, there are two consecutive tones, ϑ′
11 and ϑ′

12, of the 29-TET scale.
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