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Abstract

Cyclic scales are associated with convergents and semiconvergents of the continued fraction
expansions of the generator tone. After each convergent, a scale lineage ends and another
begins. Along a lineage, a constant number of generic accidentals are successively added
to its first scale, becoming regularly interspersed. In this way, it is easier to know where
each note is to go. This process, applied to the lineage of the 7-, 12-, and 17-tone scales, is
related to expressive intonation. Such a concept is extended to larger scales with added
microtones and it is described how they can be chosen in terms of the starting index of the
scale. An automorphism in terms of the step and co-step indices associated with the two
elementary intervals provides a two-dimensional representation that shares some common
features with the musical staff.

Keywords: continued fraction; convergents and semiconvergents; best rational approximation;
Pythagorean tuning; well-formed scales; microtonality
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1. Introduction
The cellist Pau Casals is often credited with the coining of the term expressive into-

nation. A former pupil of Casals [1] explains that “when asked what was the secret of his
playing, he would say: It is my intonation: I know where each note is to go”.

This paper extends [2] where a lineage of cyclic scales is defined by studying an
application of the convergents and semiconvergents of the continuous fraction expansions
generating a cyclic scale, i.e., a generalized non-degenerate Pythagorean scale. From a
mathematical viewpoint, it is explained how they can be used to obtain a scale with specific
regular microtonal subdivisions, i.e., of less than a semitone of the usual 12-tone scale.

After each convergent, a lineage ends and another begins, meaning that in each
successive scale of the chain of cyclic scales, the same number of new tones (generic
accidentals) are incorporated to the tones of the previous scale (generic diatones). Along a
lineage, the new tones become regularly interspersed between the tones of the first scale of
the lineage, making it easy for a music player (using a fretless instrument) to know where
each note is to go.

Based on the algebraic structure of cyclic scales, Hellegouarch [3] gave a mathematical
interpretation of expressive intonation. Here, an alternative interpretation based on the
elementary interval distribution is proposed. It has three novelties. First, it generalizes the
concept of expressive intonation to scales of n > 12 tones, which is referred to as extended
expressive intonation. Second, in the current approach, it is possible to choose where
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to place the enharmonics, that is, to choose which notes are we interested in allowing a
microtonal variation. Third, along a lineage, the step and co-step indices associated with
both elementary intervals become a coordinate system to refer the scale tones. The generic
diatones remain fixed to one coordinate; likewise, they have a fixed position on the staff,
and the generic accidentals share one coordinate with the diatones and differ in the other,
like the accidental symbols that modify the diatones in the staff.

Sections 2–4 are necessary to introduce and review some basic concepts. A new degree
of freedom, the starting index, has been introduced in the definition of a concrete scale. This
is a key concept that allows to select specific microtones. Section 5 explains how expressive
intonation is understood in music. Section 6 proposes several measures accounting for
the degree of expressivity and transportability of the scale. Sections 7 and 8 determine
how, along a lineage, the step and co-step indices (accounting for the cyclic order of the
scale tones) are related to the number of iterates of the generator, and vice versa. Such
relationships relay on the starting index of the concrete scale and are used to represent the
scale tones in a two-dimensional graph to describe their evolution along a lineage, as well as
the position of the new accidentals. Section 9 provides examples for lineages 7≺12≺17 and
17≺29≺41≺53, depending on the selection of the microtones. The last section summarizes
the main results.

2. Preliminaries
2.1. Frequency and Pitch

In music, two frequencies (or tones) ν ∈ Ω = (0, ∞) and 2ν are identified in one
category, although saying that the latter is one octave higher than the former. This implies
an equivalence relation between frequencies by considering all the frequencies 2kν, k ∈ Z as
one equivalence class. Since Ω with the product in R is a commutative group, by assuming
the fundamental frequency as ν0 = 1, the set of all its octaves, denoted as Ω2 = {2k, k ∈ Z},
is a cyclic subgroup of Ω of infinite cardinal. The frequency classes (FCs) are the elements
of the factor group Ω0 = Ω/Ω2, also commutative for multiplication. Thus, each frequency
ν has its FC ν in Ω0.

By taking the binary logarithm of ν, we obtain its pitch (or note) x = log2 ν ∈ R. This
is what the ear hears, since the sense of hearing detects relative variations of frequency.
The corresponding pitch class (PC) is noted as x ∈ R/Z ≡ S0. S0 is the octave, usually
represented as a circle of unit length. Distances between two FCs, ν1 < ν2, are measured
according to the metric given by the circle distance in terms of their PCs, d0(ν1, ν2) =

min
(

log2
ν2
ν1

, 1− log2
ν2
ν1

)
.

2.2. Abstract Scale

A cyclic scale (also known as a well-formed scale of one generator) is a scale generated
by a single tone g other than a power of 2. In Pythagorean tuning, the generator is the
third harmonic, g = 3 (or equivalently, its PC, the fifth g = 3

2 ). The infinitely many tones
generated by g can be described as follows.

Given g ∈ Ω, a g-projection function [4] is defined as

πg : Ω→ Ω0, πgν = gν ≡ πgν

This family of projection functions is an Abelian group for composition, which is
isomorphic to Ω0. We say that α and β belong to complementary FCs if they satisfy
παπβ = π1, i.e., πβ = π−1

α = πα−1 . For n ∈ Z, it holds that πn
α = παn .
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The family Ωg = {gk, k ∈ Z} is an infinite cyclic subgroup of Ω and its FCs are the
elements of the factor group Eg ≡ Ωg/Ω2, therefore isomorphic to the family of projection
functions generated by πg. Thus, we write Eg = {πk

g, k ∈ Z}.
In general, subfamilies of Eg, which are referred to a set of indices A, namely Eg

A =

{πk
g, k ∈ A}, are not a subgroup of Eg, unless A is a subgroup of Z, i.e., A = nZ with n ∈ N,

in which cases Eg
A is of infinite cardinal. The only case where Eg is a finite cyclic group

is for g = 2
1
n . This corresponds to an n-tone equal temperament (n-TET) scale, which is

considered as a degenerate cyclic scale.
In order to obtain a finite and closed set of FCs πk

g, we should consider that a particular
FC πn

g plays the same role as the fundamental (for instance, when hearing is not able to
differentiate both tones). This can be achieved if the iterates π0

g, . . . , πn
g are chosen so that

in S0 the interval between π0
g = 1 and the last iterate πn

g contains no previous iterates. This
is known as the closure condition [5–7]. Then, we may assume d0(π

n
g , 1)→ 0. Therefore, in

the family of projection functions Eg, an equivalence relation identifying two projection
functions π

p
g , π

q
g can be defined if there exists an integer r such that π

p
g = π

q
gπrn

g . Given the
subgroup Egn

= {πkn
g , k ∈ Z} ⊂ Eg, the factor group

Eg
n ≡ Eg/Egn

=
{

πk
g, k ∈ Zn

}
determines an n-tone abstract scale.

2.3. Concrete Scale

The abstract scale Eg
n is a finite cyclic group of classes of projection functions. For

each class πk
g, we choose a representative in Ω0. In order to include the fundamental

π0
g = 1, the representatives must satisfy the condition of being n consecutive iterates πk

g
with−(n−1) ≤ k < n. Any set of n consecutive tones within the above set is a concrete scale.

The obvious case is to choose the representatives from the fundamental onward,
k = 0, . . . , n − 1 (forward iterates). This forms a musical section [3]. Another musical
section is formed by the representatives k = −1, . . . ,−n (backward iterates). The equivalent
representatives of both sections differ in the factor system πn

g . Therefore, by choosing
the starting index −α, with 0 ≤ α < n, it is possible to select FCs of a unique section
(α = 0), or FCs belonging to both sections, allowing to choose tones differing in a small
quantity corresponding to the factor system, which in music is referred to as comma. Thus,
depending on the starting index, a concrete scale is formed by the FCs (referred to as
scale tones),

Eg
n(α) =

{
πk

g,−α ≤ k < n− α
}

For example, in the case of the 7-tone Pythagorean scale, by assuming the fundamental
as the note C, the iterates k = 0, . . . , 6 would generate the FCs of E3

7(0) =
{

1, 3
2 , . . . , 36

29

}
,

which correspond to the notes C-G-D-A-E-B-F4. Instead, the iterates k = −1, . . . , 5 would
generate the FCs of E3

7(−1) =
{

22

3 , 1, 3
2 , . . . , 35

27

}
, with notes F-C-G-D-A-E-B. The ratio be-

tween the two differing tones, 36

29 (F4) in the former case and 22

3 (F) in the latter, is π7
3 = 37

211 ,
which generates the factor group.

Several criteria to select the starting index of a concrete scale are discussed in [3,8–11].

3. Properties of the Cyclic Scales
3.1. Parameters Determining the Scale

Among those studied in [2], to follow the current paper, some important properties
need to be pointed out. According to the notation in [4,12], the scale tones πk

g are written
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as νk =
gk

2JkK , with JkK ≡ [k log2 g] ([·] meaning the integer part, i.e., the floor function ⌊a⌋ if
a ≥ 0 and the ceiling function ⌈a⌉ if a < 0).

Forward iterations ordered from lowest to highest pitch (in cyclic order, or by ordinal)
have two extreme tones, the minimum tone νm and the maximum tone νM, which determine
the two elementary factors in the multiplicative space of frequencies, namely U ≡ νm = gm

2JmK

(up the fundamental) and D ≡ 2
νM

= 2JMK+1

gM (down the fundamental), so that UMDm = 2.
For n ≥ 2, the indices satisfy n = m + M, all of them coprime. These factors have the
corresponding elementary intervals in the additive logarithmic space of notes, u = log2 U
and d = log2 D, with Mu + md = 1. The value ϕn = u− d is the interval closure.

The tone νn = gn

2JnK , which does not belong to the scale Eg
n, provides the closure

condition, either νn → 1+, above the fundamental, or νn → 2−, below the fundamental.
Two parameters inform us whether νn closes above or below the fundamental. For

m, M ̸= 0, and by using the index N = JmK + JMK + 1 (also N = [n log2 g + 1
2 ]), one

parameter is the scale closure γn = gn

2N , which is a value close to 1 (γn = U
D ).

The distance from the fundamental to the frequency class of νn is known as the
(Pythagorean) comma κn. Then, either γn > 1 ⇐⇒ κn = νn = γn or γn < 1 ⇐⇒
κn = 2

νn
= γ−1

n . That is, log2 κn = | log2 γn|. Then, the perfect closure of the scale would
take place for γn = 1 or, by taking logarithms, for log2 γn = n log2 g− N = 0. Therefore,
as we explain in the following section, the best closures can be determined from the best
approximations |n log2 g− N| → 0, which connects the current geometrical approach with
the theory of continued fractions and best rational approximations of an irrational number.

The other parameter is the scale digit δ = N − JnK, which takes values 0 or 1. Thus,
δ = 0 ⇐⇒ γn > 1 (νn → 1+) and δ = 1 ⇐⇒ γn < 1 (νn → 2−). The index N is known
as chromatic length of the generator.

3.2. Pythagorean Tuning

In Pythagorean tuning, the PCs corresponding to the n scale tones can be written as
xk = k log2 3− [k log2 3] (the iterate minus its integer part), with −α ≤ k < n− α. In the
circle of the octave S0, they can be placed clockwise, with 0 representing the fundamental.
Multiplied by 1200, we obtain the value of the PC in cents (¢).

Figure 1 provides an example of how the 12-tone Pythagorean scale generated by the
fifth (the class of the third harmonic) is formed. The fifths iterates of indices m = 7 and
M = 5 are the extreme tones, while n = 12 provides the closure, since there is no other tone
with a frequency that is between ν12 and the fundamental. The ratio between consecutive
iterates is either 3

2 or 3
4 , except for the last iterate (the wolf fifth), which compensates for

the comma. When the scale tones are arranged in pitch order, i.e., by ordinals, their ratios
are either U = 37

211 (the corresponding interval is u = 113.7¢) or D = 28

35 (the corresponding
interval is d = 90.2¢).

In terms of the kth iteration (fifth), the notation generally used for these notes is as
follows (the diatones, i.e., the notes of the heptatonic Pythagorean scale, are in boldface):

· · · B222 F22 C22 · · · B22 F2 C2 · · · B2 F C G D A E B F4 C4 · · · B4 F5 C5 · · · B5 F54 C54 · · ·
· · · −16 −15 −14 · · · −9 −8 −7 · · · −2 −1 0 1 2 3 4 5 6 7 · · · 12 13 14 · · · 19 20 21 · · ·

The accidentals added to a note X mean the following: X4 is X plus 113.7¢, X2 is X plus
90.2¢, and X5 is equivalent to X44.
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Figure 1. (Left) Frequencies νk of the cyclic scale for g = 3 and n = 12 in [1, 2) in order of iterates (blue)
and in pitch order (green). The red dot is assumed to be close to the scale. (Right) Scale intervals in
cents (1200 log2 νk) along the circle of the octave clockwise direction (number in white for the first
one) with two interval sizes.

3.3. Convergents and Semiconvergents

Determining a cyclic scale from the closure condition is equivalent to N
n being a

convergent or semiconvergent of the canonic continued fraction expansions of log2 g.
The scales corresponding to the best rational approximations (best approximation of

the second kind [13,14]) N
n of log2 g are the convergents of its canonic continued fraction

expansions (Best Approximation Theorem, e.g, [15]). However, while the convergents
are the best double-sided approximations, the semiconvergents are only best one-sided
approximations.

Appendix A provides extensive information about the theory of continued fractions
and its relation with one-sided best approximations, as well as the main properties of
convergents and semiconvergents.

The convergents are associated with the best closure γn ≈ 1. They provide optimal
scales. Then, by considering the interval closure ϕn = log2 γn in S0, Eg

n is optimal ⇐⇒
|ϕn| < |ϕk| for 0 < k < n.

3.4. Chain of Cyclic Scales

Cyclic scales (whether optimal or not) form a chain, . . . ⊂ Eg
n ⊂ Eg

n+ ⊂ . . . We are
assuming the same starting index for all of them. In each link, the scale Eg

n+ is composed of
the tones of Eg

n, the generic diatones, in addition to the new non-adjacent tones, the generic
accidentals [12].

Cyclic scales can be obtained from the following iterative process. Starting from the
indices of the extreme tones m and M of Eg

n, with n = m + M (n ≥ 2), for the next cyclic
scale in the chain Eg

n+ , these values are obtained as

(i) m+ = m + M, M+ = M, n+ = n + M ⇐⇒ δ = 0
(ii) m+ = m, M+ = m + M, n+ = n + m ⇐⇒ δ = 1

(1)

which, in matrix form, can be written as(
m+ M+

Jm+K JM+K+ 1

)
=

(
m M

JmK JMK+ 1

)(
1 δ

1− δ 1

)
(2)

Therefore, according to (1), one of the indices of the extreme tones always repeats.
This happens while approximations are improving by one side until reaching an optimal
scale. Then, the approximations begin to improve by the other side.
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3.5. Similar Algorithms

In addition to the approaches described above to build cyclic scales, there are other
equivalent and related algorithms.

For the cyclic scale Eh
n, with extreme tones of indices m and M, the value n pro-

vides a convergent or semiconvergent N
n of log2 g according to one of these cases:

JmK
m < N

n < log2 h < JMK+1
M or JmK

m < log2 h < N
n < JMK+1

M , depending on whether
γn > 1 or γn < 1. Then, we meet a situation such as a′

a < log2 h < b′
b , together with the

Bézout’s identity corresponding to pairs of coprime numbers, ab′ − ba′ = 1, which leads to
a new improvement a′+b′

a+b of the approximation. This situation is common to the continued
fractions approach, the Farey sums, the structure of the Stern–Brocot tree, and its dual,
the Raney tree [16–18], also known as Calkin–Wilf tree [19,20], where for two consecutive
approximations, by using the extended Euclidean algorithm, it is possible from one to
determine the other.

In the case of the Farey sums [21], if two rational approximations satisfy log2 g ∈
( a′

a , b′
b ) then we can lessen the size of the interval from a new approximation a′+b′

a+b that sub-
stitutes the appropriate extreme. This algorithm basically reproduces the Stern–Brocot tree.

The Stern–Brocot tree is a full binary tree where the nodes are labeled in such a
way that each positive rational number occurs exactly once. Vertically, it provides the
usual ordering of the rationals. For p1

q1
and p2

q2
, the median is the fraction p1+p2

q1+q2
of which

they are the parents. Every row consists of the fractions that are medians of elements
of previous rows. Positive irrational numbers can be associated with a unique infinite
pathway down the tree and the nodes which are passed by on such a finite or infinite path
are the semiconvergents of the corresponding rational or irrational number.

Depending on the value of δ in (2), the matrix
(

1 δ

1− δ 1

)
is equivalent to the 2× 2 matrix

representing one branche of the Stern–Brocot tree [22–25] that encode the subsequent nodes
of the fractions N

n . If δ = 0, the subsequent indices in the tree are obtained by multiplying

by L =
(

1 0
1 1

)
. If δ = 1, the subsequent indices are obtained by multiplying by R =

(
1 1
0 1

)
.

4. Regular Subdivisions
4.1. Lineages

If R is the index of one of the extreme tones, all the scales where this index is repeated
form the R-lineage (or simply lineage). Each scale represents an stage of the lineage. From
the first repetition of R (second stage of a lineage) until the end of the lineage, R is the
ruling index.

Table 1 of [2] is reproduced here to facilitate understanding the process. It displays the
lineages for Pythagorean scales (n ≥ 2) in terms of their ith ordinal in the chain (indicated
by the subindex of ni). The beginning (and end) of a lineage is marked with a bold symbol.
The symbol ↷ indicates an optimal scale, i.e., when the number of tones is the denominator
of a continued fraction convergent, while the others are semiconvergents. The first lineages
are 3≺5≺7, 7≺12≺17, 17≺29≺41≺53, etc. Some facts to remark:

• In Eg
nk ends and starts, a lineage ⇐⇒ Eg

nk−1 is optimal.
• The ruling index of a lineage is the number of tones of the optimal scale just before the

first scale of the lineage.
• The scale digit δ is the same along a lineage, except in the last stage, where a new

lineage begins.
• If the first scale of the lineage is optimal, it is also its penultimate. Then, the lineage

is short.

Extended expressive intonation refers to the regular subdivision of the scales within
a lineage. A lineage includes a series of consecutive semiconvergents and ends after the
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next convergent. During a lineage, the generator log2 g is approximated by one side by a

convergent, say Ni
ni

, and by the other side by a series of semiconvergents
Nj
nj

, j > i, which do
not improve the approximation of the convergent. Just after reaching a new convergent (on
the opposite side of Ni

ni
), the lineage ends and a new one begins. In the next sections, we

see that what happens during this process is that one of the elementary intervals remains
constant, the one corresponding to the ruling index, and the other becomes successively
subdivided in a regular manner. This facilitates a precise tuning while using scales with
extended tones.

Table 1. Values are referred to the ith Pythagorean scale (g = 3): ni (number of tones); mi, Mi (indices
of the minimum and maximum tones); δi (0 or 1, depending on whether the closure is just below or
above the fundamental). Ri indicates the ruling index (marked with gray/white bands). The symbols
♀ and ♂ denote lineages of minimum or maximum tone, respectively. The beginning of a lineage is in
bold. The symbol ↷ indicates an optimal scale (the digit δi changes).

i ni mi ⋚⋚⋚ Mi δi Ri
2 2 1 = 1 ♀ 0 ↷ 1
3 3 ♂♂ 2 > 1 ♀ 1 1
4 5 ♂ 2 < 3 1 ↷ 2
5 7 ♂ 2 < 5 ♀♀ 0 2
6 12 7 > 5 ♀ 0 ↷ 5
7 17 ♂♂ 12 > 5 ♀ 1 5
8 29 ♂ 12 < 17 1 12
9 41 ♂ 12 < 29 1 ↷ 12

10 53 ♂ 12 < 41 ♀♀ 0 ↷ 12
11 94 ♂♂ 53 > 41 ♀ 1 41
12 147 ♂ 53 < 94 1 53
13 200 ♂ 53 < 147 1 53
14 253 ♂ 53 < 200 1 53
15 306 ♂ 53 < 253 1 ↷ 53
16 359 ♂ 53 < 306 ♀♀ 0 53
17 665 359 > 306 ♀ 0 ↷ 306
18 971 ♂♂ 665 > 306 ♀ 1 306
19 1636 ♂ 665 < 971 1 665
20 2301 ♂ 665 < 1636 1 665
21 2966 ♂ 665 < 2301 1 665
22 3631 ♂ 665 < 2966 1 665
23 4296 ♂ 665 < 3631 1 665
24 4961 ♂ 665 < 4296 1 665
25 5626 ♂ 665 < 4961 1 665
26 6291 ♂ 665 < 5626 1 665
27 6956 ♂ 665 < 6291 1 665
28 7621 ♂ 665 < 6956 1 665
29 8286 ♂ 665 < 7621 1 665
30 8951 ♂ 665 < 8286 1 665
31 9616 ♂ 665 < 8951 1 665
32 10,281 ♂ 665 < 9616 1 665
33 10,946 ♂ 665 < 10,281 1 665
34 11,611 ♂ 665 < 10,946 1 665
35 12,276 ♂ 665 < 11,611 1 665
36 12,941 ♂ 665 < 12,276 1 665
37 13,606 ♂ 665 < 12,941 1 665
38 14,271 ♂ 665 < 13,606 1 665
39 14,936 ♂ 665 < 14,271 1 665
40 15,601 ♂ 665 < 14,936 1 ↷ 665
41 16,266 ♂ 665 < 15,601 ♀♀ 0 665
42 31,867 16,266 > 15,601 ♀ 0 ↷ 15,601
43 47,468 ♂♂ 31,867 > 15,601 ♀ 1 15,601
44 79,335 ♂ 31,867 < 47,468 1 ↷ 31,867
45 111,202 ♂ 31,867 < 79,335 ♀♀ 0 ↷ 31,867
46 190,537 ♂♂ 111,202 > 79,335 ♀ 1 ↷ 79,335
47 301,739 ♂ 111,202 < 190,537 ♀♀ 0 111,202
48 492,276 301,739 > 190,537 ♀ 0 190,537
49 682,813 492,276 > 190,537 ♀ 0 190,537
50 873,350 682,813 > 190,537 ♀ 0 190,537
51 1,063,887 873,350 > 190,537 ♀ 0 190,537
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4.2. Mechanical Words

Cyclic scales can also be built from mechanical words [12,26–28]. It can be defined as a
Christoffel word of the alphabet {U, D}, associated with both elementary factors, with slope
m
M and length n. The full octave is then represented by a word with M letters U and m letters
D, since UMDm = 2. For forward iterates starting at the fundamental, from left to right,
the first step must be U and the last step of the octave must be D. For backward iterates
starting at the fundamental, the sequence is symmetric. Each value n is associated with one
word wn, for instance, w2 = UD, w7 = UUUDUUD, w12 = UDUDUDDUDUDD.

Depending on the relative size of the elementary factors, the scale Eg
n can be refined to

form the next cyclic scale Eg
n+ in the following way. Using forward iterates, if U < D, by

factorizing D = UD+, otherwise by factorizing U = U+D, and so on.
For instance, for the successive cyclic scales E3

7 ⊂ E3
12 (with starting index 0), the word

associated with E3
7 is w7 = UUUDUUD, where U

D > 1. In the next cyclic scale, n+ = 12,
the smallest factor D is maintained (and so is the index M of the maximum tone). Therefore,
in the 7-tone scale, the interval factorized is the one associated with the minimum tone,
U = U+D. Then, the generic accidentals of the 12-tone scale come just at the end of a factor
U+ (which come alone), and the generic diatones (the tones belonging to E3

7) come at the
end of a factor D. Thus, w12 = (U+D)(U+D)(U+D)D(U+D)(U+D)D. Since the 7-tone
scale is not optimal, in the next 12-tone scale, the relationship U

D+ > 1 is still maintained.
Hence, the next letter to be split is also U.

4.3. Scale Partition

The partition of the octave induced by the generator iterates has exactly two sizes of
scale steps, and each number of generic intervals occurs in two different sizes (Myhill’s
property) [29–31]. Both elementary intervals are associated with the two families of tones,
the generic diatones and accidentals [12].

The semiconvergents of the canonic continued fraction expansions of the generator,
although they do not provide optimal scales, induce a regular subdivision of one of the
elementary intervals until reaching a convergent, which marks the scale lineages along the
chain of cyclic scales.

The general properties of the scale lineages were studied in [2] and are not reproduced
here. Instead, we focus on the subdivisions within a lineage, which follow the same
procedure as mechanical words. It is illustrated in the scheme of Figure 2, corresponding to
the lineage 3≺5≺7.

n2 = 2 u2 d2 d2 < u2

n3 = 3 u3 d3 d3 d3 = d2, u3 < d3

n4 = 5 (= 3 + 2) u4 u4 d4 u4 d4 u4 = u3, u4 < d4

n5 = 7 (= 3 + 2 + 2) u5 u5 u5 d5 u5 u5 d5 u5 = u4, u5 > d5

Figure 2. After the optimal (boldface) scale of n2 = 2 tones (gray), the partitions of the lineage 3≺5≺7
are detailed.

The scale n2 = 2 is optimal (in boldface). Subindex 2 indicates that this is the second
scale in the chain (the first only contains the fundamental, and the second contains the
fundamental and the class of the generator). The next scale, n3 = 3, is the beginning of the
lineage (and the end of the previous lineage). The scale n4 = 5 is optimal. Therefore, the
next scale, n5 = 7, is the end of the lineage (and the beginning of the next lineage). In each
stage of the lineage 3≺5≺7, the greatest interval of the scale n2 = 2 (u2) is subdivided into
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two intervals, one with the same size as the smaller interval (d2) and the other with the
remaining size (ui on the left and di on the right) until the size of the remaining interval
becomes the smallest one.

In each stage, 2 tones (the ruling index), as many as the tones of the previous optimal
scale, are added. The old notes are the generic diatones, and the new ones are the generic
accidentals. Along the lineage, one interval is maintained (which becomes the diatonic
interval in the next scale) by producing a regular subdivision of the intervals of the previous
optimal scale n2 = 2.

The generic diatones of the first scale of the lineage are the subdiatones of the lineage,
i.e., the tones of the previous optimal scale. The generic diatones of the last scale of the
lineage are the superdiatones of the lineage. The sum of the number of subdiatones and
superdiatones matches the number of tones of the last scale of the lineage.

5. Extended Expressive Intonation
We pay attention to the lineage 7≺12≺17, with ruling index R = 5. In each stage,

5 new tones are regularly added. In the last 17-tone scale, the elementary interval u5 of the
7-tone scale is split twice into 2 intervals, one of them with the same size as d5.

In music, this lineage has the following interpretation. First, we may have the freedom
of choosing a set of notes to which refer the added ones (it is not necessary to choose the
first scale of the lineage). Traditionally, it has been the heptatonic scale C, D, E, F, G, A,
B, corresponding to the iterates k = −1, . . . , 6. We call them structural diatones of the
lineage. Choosing the starting index −α = −6, for k = −6 . . . ,−2 we obtain five new tones,
namely D2, E2, G2, A2, and B2, which are added to the left of some structural diatones. For
k = 7, . . . , 11, we obtain another set of five accidentals, namely C4, D4, F4, G4, and A4,
which are added to the other side.

Usually, expressive intonation is understood [32] as that sharps are played slightly
higher and flats slightly flatter than they are on a keyboard tuned in equal temperament, that
is, played as in Pythagorean tuning [3]. Such pairs of notes that in the Pythagorean tuning
do not produce an identical pitch, but are still called enharmonic, providing a (fretless)
string player with more degrees of freedom in order to tune specific frequency ratios, such
as closer to just intonation, to meantone temperament or to equal temperament [11].

For example, in the 12-tone cyclic scale, seven fifth iterations forward starting at the
note X lead to the note X4 = X + u (modulo one octave), where u = 113.69¢ is the chromatic
semitone. Seven fifth iterations backward yield X2 = X − u. The chromatic semitone is
the interval between a diatone X and its homonymous accidentals X2 and X4. Instead,
the semitone between a diatone and its enharmonic equivalent accidentals is the diatonic
semitone d = 90.22¢, e.g., D and E2 (instead of D4), and D and C4 (instead of D2).

Notice that d is the smallest semitone of the heptatonic scale, e.g., the interval B-
C. Their difference, ϕn = u−d=23.46¢, is the interval closure (the interval closure is
related to the Pythagorean comma κn as log2 κn = |ϕn|), resulting from 12 consecutive fifth
iterations. Similarly, the interval between 7 iterations forward and 5 iterations backward
(e.g., D2←C→C4) is 23.46¢. Therefore, in expressive intonation, it is possible to apply
microtonal corrections of ±23.46¢.

Between the tones of the 7-tone cyclic scale one tone apart (the intervals E-F and B-C
are distant one diatonic semitone d) we can have the following accidentals: on the one
hand, C4 = C + u = D− d, D4 = D + u = E− d, F4 = F + u = G− d, G4 = G + u = A− d, and
A4 = A + u = B − d, which form the typical 12-tone Pythagorean scale, and on the other
hand, D2 = C + d = D − u, E2 = D + d = E − u, G2 = F + d = G − u, A2 = G + d = A − u,
and B2 = A + d = B − u, which complete a 17-tone cyclic scale. That is, each accidental is a
structural diatone ±d.
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Figure 3 shows how the elementary intervals can be subdivided, including forward
and backward iterates. Notice that the notation generally used in Pythagorean tuning is
X4

= X + u and Y2 = Y− u, which are two different tones. But X + (u− d) = Y− 2d and
X + 2d = Y− (u− d) have no specific symbol referred either to X or Y. They are usually
referred to the tone before X or to the tone after Y, respectively. For instance, if X = C,
then X + (u− d) = Y − 2d = B4; if Y = D, then X + 2d = Y − (u− d) = E22. Instead,
the Turkish notation (p. 46 in [33]) has specific symbols for all of them, although it is not
consistent with the Pythagorean convention, since it actually assumes equal temperament
and considers that the flat and sharp match.

X+u+d

Y-u-d

X X+uX+d X+2dX+(u-d)

Y-(u-d)Y-dY-uY-2d Y

Figure 3. Subdivision of one tone (from X to X + u + d, referred to X, and from Y − (u− d) to Y,
referred to Y), by assuming u > d.

Such a relationship between the 7-, 12-, and 17-tone consecutive cyclic scales in which
expressive intonation is based (the lineage 7≺12≺17) can be reproduced for other lineages.
The tones of the first scale of the lineage are the tones to which the successively added
accidentals can be referred with precision. In this way, in non-fretted instruments, such
as stringed instruments and some brass instruments (natural horn, trombone, etc.), it is
possible to know with precision “where each note is to go”.

For families beyond the lineage 17≺29≺41≺53, extended expressive intonation may
seem of difficult application. Nevertheless, the current work is also useful to highlight
some important properties of cyclic scales and may help to understand their structure.

Some Middle-East music systems, such as the Ottoman, use a similar approach [34],
where a selected row of tones out of 53 are allowed to vary one Pythagorean comma up or
down to producing melodies with emotional intent or to tuning to precise frequency ratios.
As mentioned in [2], according to [34] (and references therein), Al-Kindi (ca. 800–873) was
the first to make use of the Abjad (Arabic shorthand for “ABCD”) pitch notation to denote
finger positions on the ud for his 12-note approach, which was purely Pythagorean. It
was the precursor to Urmavi’s 17-tone scale (1216–1294), which added five additional fifth
iterations. The resulting scale was formed according to a starting index −12. This is an
example of the lineage 7≺12≺17.

On the other hand, several extensions of the 17-tone scale, by adding fifths backward
and forward, generate the 24-tone Arel–Ezgi–Uzdilek and Yekta variants, with starting
index −12 for the former and −14 for the latter.

By completing the above scales, the 53-tone Pythagorean scale is reached. This is
an example of the lineage 17≺29≺41≺53. It embodies Urmavi, Arel–Ezgi–Uzdilek, and
Yekta-24 systems.

The 53-tone Pythagorean is very close to the 53-TET scale. We see in Section 9.2 that
the difference between the two elementary intervals is only 3.62¢. For this reason, in
practice, the 53-TET scale has replaced the Pythagorean (similarly to what happened with
the usual 12-tone scale), although the procedure of adding generic accidentals to a set of
generic diatones is governed by the Pythagorean approach. In the end, the 53-TET scale
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has 9 commas per whole tone and 53 commas per octave. This comma is Holdrian, i.e.,
22.64¢ wide, which is less than one cent error to the Pythagorean comma.

6. Expressivity and Transportability
In addition to the greater flexibility gained with expressive intonation to approximate

simple frequency ratios, it also increases the possibilities of interval translations to match
an existing scale note. We give an estimation of how transportable the intervals ranging
from the fundamental to each note of an n-tone cyclic scale are.

Once the iterates of the scale are ordered by pitch along the octave, from C onward
and according to the cardinal index j = 0, . . . , n − 1, their elementary factors U and D
form a word with two letters, such as w12 = UDUDDUDUDUDD (for the starting index
−1). In addition, this word can be broken into syllables, so that each syllable is the
interval between two consecutive generic diatones, such as UD·UD·D·UD·UD·UD·D, or,
in general, between two structural diatones. The syllabicated word of the scale intervals is
noted as Wn.

Given Wn, we select an interval I(Wn) composed of the first I elementary intervals.
Then, we check whether this interval translated to the jth tone (1 ≤ j ≤ n − 1) ends
matching any note of the scale. If yes, it is transportable or transferable. The number of
transportable intervals (labeled according to the starting note) is noted as NT (the first
interval, starting at the fundamental j = 0, is not included). This is performed for all
possible intervals from I = 1 to n− 1 (the full octave P8 is not included). For an equal
temperament scale, all the intervals are transferable, so that the number of matches is
(n− 1)2. Hence, the ratio

t(Wn) =
1

(n− 1)2 ∑
I

NT(I(Wn))

estimates the transportability of the intervals relative to an equal temperament scale.
Nevertheless, from a tonal perspective, what is more important is whether the intervals

can be translated matching any diatone of the scale, since this can be used as a measure of
how expressive the intonation is. In such a case, we let n′ be the number of diatones and
ND be the number of transferable intervals to the diatones. Since for an equal temperament
scale the number of matches is (n− 1)(n′− 1), the transportability over the diatones relative
to an equal temperament scale is given through

e(Wn) =
1

(n− 1)(n′ − 1) ∑
I

ND(I(Wn))

which we call expressivity. Hence, the following ratio expresses the contribution of the
diatones to the overall transportability:

r(Wn) =

∑
I

ND(I(Wn))

∑
I

NT(I(Wn))
=

n′ − 1
n− 1

e(Wn)

t(Wn)

Table 2 illustrates these qualities for the 12-tone scale, referred to the structural diatones
of the 7-tone scale with starting index −1, notes C, D, E, F, G, A, B. For the 12-tone scale,
we obtain the following values: t(W12) = 0.54, e(W12) = 0.76, r(W12) = 0.77. It is worth
remarking that the transportability of the diatonic intervals (i.e., M2, M3, P4, P5, M6, and
M7) over the diatones is nearly full, with the exception of P4 that is not transferable to F.
Thus, a high value of r indicates that most transportability is due to the diatones; in other
words, there is low transportability to non-diatones.
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Table 2. For 12-tone scale, the tables display: Interval name (P = perfect, M = major, m = minor,
d = diminished, a = augmented, number indicates the generic interval or diatonic number); (I) num-
ber of elementary intervals referred to the syllabicated word Wn, notes where these intervals are
transferable, (NT) number of translations, and (ND) number of translations to a diatone. The full
octave P8 (gray) is listed only to show the whole set of notes.

Interval I (W12 = UD·UD·D·UD·UD·UD·D) NT ND

a1 1 C D F G A 4 4
M2 2 C C4 D E F F4 G G4 A B 9 6
a2 3 C F G 2 2
M3 4 C D E F F4 G A B 7 6
P4 5 C C4 D D4 E F4 G G4 A A4 B 10 5
a4 6 C D E F G A 5 5
P5 7 C C4 D D4 E F F4 G G4 A B 10 6
a5 8 C D F G 3 3
M6 9 C C4 D E F F4 G A B 8 6
a6 10 C F 1 1
M7 11 C D E F G A B 6 6
P8 12 C C4 D D4 E F F4 G G4 A A4 B 11 6

Table 3 displays the same values for the 17-tone scale, with starting index −6 and the
same structural diatones as before. We obtain t(W17) = 0.70, e(W17) = 0.83, r(W12) = 0.44.
Therefore, the scale has gained transportability and expressivity relatively to the 12-tone
scale, mostly for non-diatonic intervals.

Table 3. For 17-tone scale, the tables display: Interval name (P = perfect, M = major, m = minor,
d = diminished, a = augmented, number indicates the generic interval or diatonic number); (I) num-
ber of elementary intervals referred to the syllabicated word Wn, notes where these intervals are
transferable, (NT) number of translations, and (ND) number of translations to a diatone. The full
octave P8 (gray) is listed only to show the whole set of notes.

Interval I (W17 = UDD·UDD·D·UDD·UDD·UDD·D) Nt ND

m2 1 C C4 D D4 E F F4 G G4 A A4 B 11 6
a1 2 C D2 D E2 F G2 G A2 A B2 9 4
M2 3 C D2 C4 D E2 E F G2 F4 G A2 G4 A B2 B 14 6
m3 4 C C4 D E2 D4 E F F4 G G4 A B2 A4 B 13 6
a2 5 C D2 E2 F G2 G A2 B2 7 2
M3 6 C D2 D E2 E F G2 F4 G A2 A B2 B 12 6
P4 7 C D2 C4 D E2 D4 E F F4 G A2 G4 A B2 A4 B 15 6
d5 8 C C4 D D4 E F4 G G4 A A4 B 10 5
a4 9 C D2 D E2 E F G2 G A2 A B2 10 5
P5 10 C D2 C4 D E2 D4 E F G2 F4 G A2 G4 A B2 B 15 6
m6 11 C C4 D D4 E F F4 G G4 A B2 A4 B 12 6
a5 12 C D2 D E2 F G2 G A2 B2 8 3
M6 13 C D2 C4 D E2 E F G2 F4 G A2 A B2 B 13 6
d7 14 C C4 D E2 D4 E F F4 G A2 G4 A B2 A4 B 14 6
a6 15 C D2 E2 F G2 A2 B2 6 1
M7 16 C D2 D E2 E F G2 G A2 A B2 B 11 6
P8 17 C D2 C4 D E2 D4 E F G2 F4 G A2 G4 A B2 A4 B 16 6
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7. Step and Co-Step Indices
The ratios corresponding to the tones of the scale Eg

n in Ω0 can be expressed in
terms of the elementary factors U = νm = gm

2JmK and D = 2
νM

= 2JMK+1

gM from the
following relationship:

νk ≡ Φ(p, q) ≡ ν
p
m

(
2

νM

)q

for 0 ≤ k ≤ n, 0 ≤ p ≤ M, 0 ≤ q ≤ m. Then, it is straightforward to obtain(
k

JkK

)
=

(
m −M

JmK −(JMK+ 1)

)(
p
q

)
(3)

Since νM
m

(
2

νM

)m
= 2 [4], then (JMK + 1) m − JmK M = 1, so that the determinant

of the foregoing matrix is −1. Hence, there is an isomorphism between the two pairs of
indices describing the scale. Therefore, the two elementary factors generate the scale tones
and introduce the non-equal temperament.

Now, we translate this relationship to the logarithmic space of notes in terms of the
elementary intervals and refer to the ith cyclic scale of the chain.

In a cyclic scale of ni tones, after ni − 1 iterations of the generator, the octave remains
composed of ni intervals, which are a combination of the two elementary intervals of
different sizes, ui and di, so that Miui + midi = 1. The scale tones can be expressed in terms
of the step and co-step indices as νk = Φ(pi, qi), so that the note with cardinal ji = pi + qi

is given by log2 Φ(pi, qi) = piui + qidi.
As mentioned before, the next cyclic scale to ni, with ni+1 tones, is obtained by dividing

the greatest of both intervals ui, di into two intervals, one with the same size as the smaller
interval and the other with the remaining size.

The scale tone corresponding to the kth iterate (fifth, in Pythagorean scales) and
jith cardinal have a unique interval decomposition [12] (for 0 ≤ k < ni, it holds that
0 < pi ≤ Mi, 0 ≤ qi < mi, for other values of k these values can also be negative) in terms
of ui and di, so that, by inverting (3), we obtain(

pi(k)
qi(k)

)
= Λi

(
k

JkK

)
, 0 ≤ k < ni; Λi =

(
JMiK+ 1 −Mi

JmiK −mi

)
, det Λi = −1 (4)

ji(k) = pi(k) + qi(k) = Nik− niJkK; 0 ≤ ji < ni (5)

where Ni = JMiK + JmiK + 1 and 0 < pi ≤ Mi, 0 ≤ qi < mi. Equation (5) describes an
automorphism of Zni .

Depending on the scale digit δi = Ni − JniK, we distinguish two cases. To a lineage,
one of them applies.

(i) If δi = 0 (ui > di), then mi+1 = ni, Mi+1 = Mi, Ni = JniK.
Since mi+1 > Mi+1, di+1 (with the same size as di) is the diatonic elementary factor.
According to (4), since Mi is maintained,

pi+1(k) = pi(k); 0 ≤ k < ni+1

qi+1(k) = Nik− niJkK = ji(k) = pi(k) + qi(k)
ji+1(k) = 2pi(k) + qi(k) (0 ≤ ji+1 < ni+1)

Then, qi+1(k) = ji(k) for 0 ≤ ji(k) < ni+1. Therefore, the isomorphism(
pi+1(k)
qi+1(k)

)
=

(
1 0
1 1

)(
pi(k)
qi(k)

)
(6)
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redistributes the ni+1 tones along the octave, so that pi is maintained (while ui > di,
the size of the ui-intervals becomes smaller as i increases) and the number qi of
di-intervals increases progressively (their size is maintained). In each step, the new
accidentals associated with the di-interval generate a family of microtones with a
regular intervalic space between them.
For all indices such that Ri+l = Mi, with l ≥ 0, since qi+l(k) = lpi(k) + qi(k), the
ni+l-tone scales in the lineage of ni can be represented as a lattice in the coordinate
system with axes accounting for the u- and d-intervals, according to(

pi+l(k), qi+l(k)
)
=
(

pi(k), lpi(k) + qi(k)
)
; 0 ≤ k < ni+l (7)

The number of steps, either horizontally or vertically, between notes is the note cardinal.
The generic diatones are determined by the index qi+l associated with the inter-
val di. In the last scale of the lineage, say of nω tones, the elementary intervals
satisfy uω < di. The last added accidentals share their coordinate qω with a dia-
tone and are at this smaller distance uω from it. Therefore, they play the role of
the enharmonics.

(ii) If δi = 1 (di > ui), then Mi+1 = ni, mi+1 = mi, Ni = JniK+ 1.
Since Mi+1 > mi+1, ui+1 (with the same size as ui) is the diatonic elementary factor.
According to (4), as mi is maintained,

pi+1(k) = Nik− niJkK = ji(k) = pi(k) + qi(k); 0 ≤ k < ni+1

qi+1(k) = qi(k)
ji+1(k) = pi(k) + 2qi(k) (0 ≤ ji+1 < ni+1)

Then, pi+1(k) = ji(k) for 0 ≤ ji(k) < ni+1. Hence,(
pi+1(k)
qi+1(k)

)
=

(
1 1
0 1

)(
pi(k)
qi(k)

)
(8)

In this case, qi is maintained while the size of the di-intervals becomes smaller as
i increases (on condition that di > ui), and the number pi of ui-intervals progres-
sively increases while their size is maintained. The new accidentals associated
with the ui-interval generate a family of regular microtones.
For all the indices such that Ri+l = Mi for l ≥ 0, since pi+1(k) = pi(k) + lqi(k), the
ni+l-tone scales in the lineage of ni have coordinates

(
pi+l(k), qi+l(k)

)
=
(

pi(k) + lqi(k), qi(k)
)
; 0 ≤ k < ni+l (9)

The generic diatones are determined by the index pi+l associated with the interval
ui. In the last scale of the lineage, say of nω tones, the last added accidentals share
the coordinate pω with a diatone and are separated by the elementary interval
dω < ui.

The matrices in (6) and (8) are equivalent to the matrix
(

1 δ

1− δ 1

)
of (2), representing

the branches of the Stern–Brocot tree. Therefore, from this viewpoint, a lineage is composed
of consecutive cyclic scales in the same branche, which are connected by the same matrix.

8. Step Intervals
Let us modify (Equation (38) in [12]) in order to work explicitly in terms of the starting

index, i.e., with tone iterates satisfying −α ≤ k < ni − α, for α such that 0 ≤ α < ni. The kth
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fifth iterate, with cardinal ji, is the tone notated as νk = Φ(pi, qi). The tone with cardinal
cardinal ji + 1 is given by

Φ+(pi, qi) =

Φ(pi, qi + 1) = νk−Mi
, if k−Mi ≥ −α

Φ(pi + 1, qi) = νk+mi
, if k−Mi < −α

(10)

In other words, we may think of backward and forward iterates from k = 0 to gain
such a degree of freedom.

The inversion of (5) yields

k = pimi − qi Mi ; 0 < pi ≤ Mi, 0 ≤ qi < mi (11)

or, alternatively,
k = jimi − qini = jimi mod ni , 0 ≤ ji < ni

In the former equality, each iterate of the ni-tone scale is described from a direct product
ZMi ×Zmi and, in the latter equality, as an automorphism of Zni .

In this way, from the values pi, qi, Equation (11) determines k. According to (10),
depending on the value k − Mi, we know which interval, either u or d, leads to the
following tone.

Figure 4 shows two examples, corresponding to the case (i) of the previous section, for
the scales E3

12 and E3
17 in relation to the structural diatones of E3

7 , with iterates k = −1, . . . , 6
(F, C, G, D, A, E, B, blue dots).

Tonal Western music has a diatonic structure, which is reflected on the musical staff
and key signature. Its historical evolution until serial dodecaphonism could be viewed as a
process of gaining resources and flexibility about this diatonic skeleton.

On the top of Figure 4, such a diatonic structure for the 12-tone scale becomes clear.
The diatones, which in the pentagram occupy a precise position, either in a ledger line
or in a space, in the above graph are assigned to a unique q value (since d is the interval
associated with the diatones). The accidentals, which in the staff need to be notated with an
accidental symbol since they occupy the position of a diatone, in the graph have the same
coordinate q as a diatone but a different coordinate p.

In the next cyclic scale, on the bottom of Figure 4, the 17-tone scale, the previous
accidentals now occupy an exclusive coordinate q, i.e., all the tones of the 12-tone scale
are now the generic diatones of the 17-tone scale, each one in a different q position. The
new generic accidentals share their q coordinate with a generic diatone, although with a
different coordinate p.
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Figure 4. Tone iterates for successive scales of (top) n = 7 (blue) + 5 (red) tones and (bottom)
n = 7 (blue) + 5 (red) + 5 (green). Accidentals are added as d intervals to the left of a diatone (blue).
The octave starts at the origin, in the bottom left, and ends at the top right of the axes. Interval sizes
are unconstrained. The tone cardinal is the number of steps.

9. Choosing the Microtones
9.1. Lineage 7 ≺ 12 ≺ 17

First, we discuss the lineage 7≺12≺17 that begins with n5 = 7 and δ5 = 0 (Table 1).
In the last stage, for the 17-tone Pythagorean scale (n7 = 17), the actual interval sizes
are u7 = 23.46¢ and d7 = 90.22¢. Since d7 is nearly four times greater than u7, it may
be useful to choose where we want to intersperse the microtonal intervals. Depending
on the starting index, either k = −1 (F) or k = −6 (G2), the scale tones are those on the
top or bottom of Table 4. The first row contains the five generic diatones of E3

7 and the
two generic accidentals. The former, the subdiatones of the lineage, is refined to produce
the new accidentals of the rows below.
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Table 4. (Top) Iterates starting with F (k = −1, . . . , 15) that successively generate Pythagorean scales
of 7, 12, and 17 tones. (Bottom) Iterates starting with G2 (k = −6, . . . , 10). Second and third rows
contain the generic accidentals added to the previous row.

F C G D A E B

F4 C4 G4 D4 A4
E4 B4 F5 C5 G5

G2 D2 A2 E2 B2 F C

G D A E B
F4 C4 G4 D4 A4

Graphically, Figure 5 displays the intervals by keeping the actual proportions, where
we are able to see that such a difference matters.

Figure 5. Tone iterates for successive scales of n = 7 (blue) + 5 (red) + 5 (green), starting the diatones
(blue) in the iterate (top) k = −1 and (bottom) k = −6. Interval sizes are constrained.

On the top panel, a row contains the accidentals added to the first scale of the lineage
until reaching the next diatone. However, the enharmonic intervals become alternative
tones to the diatones of the 7-tone scale, which is not useful, since these diatones are used
as structural notes.

On the bottom panel, beginning the iterates with k = −6, the 17-tone scale corresponds
to the expressive tuning of the 12-tone scale, where the notes G, D, A, E, B are equidistant to
their respective flats and sharps. That is, the enharmonic intervals correspond to the same
coordinate q, not matching that of the structural diatone of the 7-tone scale, so that it is
possible to have two alternative accidentals to these diatones.

Therefore, a scale lineage describes an orderly refinement process that, depending on
the starting index −α, is able to introduce a desirable set of microtones.

9.2. Lineage 17 ≺ 29 ≺ 41 ≺ 53

We now discuss the lineage 17≺29≺41≺53. In the link involving the scales of n7 = 17
and n8 = 29 tones, the digit of scale changes its value to δ7 = 1. Hence, a new lineage
starts. Since u7 < d7, from this point onward the interval d7 is the one to be subdivided
in terms of the interval u7 by adding 12 tones and intervals in each stage, ending in the
53-tone scale, where the intervals u10 = u7 = 23.46¢ and d10 = 19.84¢ are of a similar size
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(u10 − d10 = 3.62¢). Therefore, in this case, the added accidentals remain well distributed,
regardless of the starting iteration.

By starting the iterates with k = −6 (as in the previous 17-tone scale), this lineage
is represented in Figure 6, where only the tones of the 17-tone scale are labeled. In this
way, the successive accidentals remain regularly distributed, since the difference of 3.62¢
between intervals is, in practice, inaudible. The color lines between consecutive tones of
the respective scales allow us to visualize how each interval step of a scale is formed in
terms of the elementary intervals of the 53-tone scale.

Figure 7 displays the process of subdivision along this lineage. Notice that this
scale would become of equal temperament if both intervals were approximated by
1200 log2 2

1
53 = 22.64¢ (the Holdrian or Arabian comma). Such an approximation would

modify d7 in 2.8¢ and u7 in 0.8¢, quantities almost imperceptible. Therefore, the 53-TET
scale is like a wild card, with many good properties [35] that can be used either as a gener-
alized Pythagorean scale (containing those of less tones) or for approximating scales based
on just intonation.

Figure 6. Tone iterates for successive scales of n = 17 (purple) + 12 (green) + 12 (red) + 12 (blue),
starting the diatones (blue) in the iterate k = −6 (G2). Interval sizes are constrained.

Figure 7. Scale subdivisions along the lineage 17≺29≺41≺53. The interval of the 17-tone scale
successively split is marked in blue.
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10. Conclusions
A non-degenerate cyclic scale is a well-formed scale of one generator, other than a

rational power of two. It excludes equal temperament scales and is formed by a set of notes
that fulfills the closure condition. The notes divide the octave into the same number of
intervals of exactly two different sizes.

Its algebraic structure is given by the abstract scale, which is a quotient group of
classes of projection functions. However, such an approach does not account for the size of
the intervals between notes. For this purpose, it is necessary to choose a representative of
each class in order to define a concrete scale. The n tones {α1, . . . , αn} of a concrete scale
must meet two basic conditions. First, the set must include the fundamental. Second, the
scale tones in the octave S0 must fulfill αi = πi

gα1, for i = 2, . . . , n. Therefore, there are n
different ways to choose the scale.

From a mathematical viewpoint, this means either to fix a tone as the origin of the
iterations or to choose which tone takes the role of fundamental. From a musical viewpoint,
this is important for two reasons. One is that depending on the chosen origin, the tones are
more or less close to specific frequency ratios, such as 5

4 , 6
5 , 5

3 , etc., which is of interest in
order to approximate just intonation scales [11]. The other reason, which is a main point in
the present article, is that depending on where the series of iterates starts, it is possible to
select the microtones generated along a lineage.

Scale lineages are associated with the convergents and semiconvergents of the con-
tinued fraction expansions of the generator. According to [2], after a scale corresponding
to a convergent, a lineage of scales begins and the previous one ends. A lineage includes
a series of consecutive semiconvergents and ends after the next convergent. During a
lineage, one of the elementary intervals remains constant, and the other is successively
subdivided in a regular manner. At each stage, the intervals that are subdivided are those
of generalized diatones. In addition, it is possible to select a set of structural diatones to
which the accidentals are referred.

Western musical notation follows such a similar process, and it is this process that
the current work has tried to reproduce. The seven notes of the diatonic scale occupy a
precise position in the pentagram, either in a ledger line or in a space. Over the centuries,
the set of scale notes has become larger, by gaining in harmonic and melodic resources. For
instance, old pentatonic and heptatonic scales have been extended with scales such as the
usual 12-tone chromatic scale, scales based on quarter-tone temperament such as Arabic
24-tone, Vicentino’s 31-tone system, Arabic 17- and 53-tone systems, or a manifold of just
intonation microtonal scales [36].

New tones have been added to the heptatonic scale, which constitute the basic structure
of the staff, although they need to be notated with an accidental symbol, since they occupy
the same position of a diatone.

When the seven notes of the diatonic scale are notated with sharps and flats to modify
their pitch, we speak of expressive intonation. This corresponds to the lineage 7 ≺ 12 ≺ 17.
If the same is performed in one of the following lineages, we are speaking of extended
expressive intonation.

This way of considering the scale notes, as a set of structural diatones in addition to
forward and backward accidentals, has a two-dimensional representation to which we also
pay attention.

The way of describing the scale notes in cyclic order from the fundamental is by
giving two coordinates indicating how many generic diatonic and accidental intervals
there are between each note and the fundamental. This is the representation of the scale in
terms of the step and co-step indices, which is given by an automorphism, either (7) or (9),
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depending on the lineage, i.e., depending on the side where the semiconvergents are
improving the approximations of the generator tone.

When the notes are represented in a two-dimensional graph, the generic diatones are
anchored to fixed values on one of the coordinate axes. In this axis, the generic diatones
take consecutive values (just like in the position of a staff). The generic accidentals added
to a diatone maintain the coordinate linked to the diatone, but vary in the other coordinate
(also similar to the accidentals symbols added to the notes on the staff). By changing the
starting index of the scale, the microtones that are generated vary and their distribution
changes, so it is possible to choose the distribution that is most interesting from a musical
point of view.
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Appendix A. Continued Fractions and Best Rational Approximations
The Euclidean algorithm, which allows to calculate the greatest common divisor of

two integers, can also be used to decompose a rational number as a finite continued fraction.
For example, if a > b > 0, the Euclidean division provides

a
b
= c0 +

a0

b
= c0 +

1
b
a0

; 0 ≤ a0 < b

We may repeat the process with the divisor b and the remainder a, and so on, until reaching
a zero reminder an = 0. The last but one remainder is an−1 = gcd(a, b) and the quotient
can be written as

a
b
= c0 +

1

c1 +
1

c2 +
1

. . . +
1
cn

≡ c0 +
1
c1 +

1
c2 + · · · +

1
cn

(A1)

In general, an expression written as

r = a0 +
b1

a1 +

b2

a2 + · · ·

is called a continued fraction (a very comprehensive text on continued fractions is [15]). If
the values b1, b2, . . . , bn equal 1, as in (A1), it is called continued fraction simple or canonic,
and it is represented as

r = a0 +
1
a1 +

1
a2 + · · ·

≡ [a0; a1, a2, . . .] (A2)

If a0 = 0, this term does not need to be written.
The rational numbers can be expressed as simple continued fractions with a finite

number of terms. When an infinite continued fraction of an irrational number r > 0 is
stopped at an, we say that

rn =
αn

βn
= a0 +

b1

a1 +

b2

a2 + · · · +
bn

an
(A3)
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is the nth convergent.
The values of αn and βn are given by the recurrent formulas

αn = anαn−1 + αn−2, βn = anβn−1 + βn−2

with α−1 = 1, α0 = a0, β−1 = 0, β0 = 1. Then, we obtain rational approximations of r
that satisfy

|r− rn−1| <
b1 b2 · · · bn

βn−1 βn
= |rn − rn−1| −−−→n→∞

0

In particular, if the continued fraction is simple, the numerator of the above fitting is one.
A semiconvergent (or intermediate fraction) of r is a fraction obtained from a positive

integer c, with 0 < c < an+1, satisfying

αnc + αn−1

βnc + βn−1

For c = 0 (except for n = 0) or c = an+1, we obtain the convergents αn−1
βn−1

and αn+1
βn+1 ,

respectively.

Appendix A.1. Best and Good Rational Approximations

To distinguish between convergents and semiconvergents, the following definitions

and properties can be used. A fraction
α

β
with α, β > 0 is a good rational approximation of a

real number r > 0 if any rational
a
b

with a, b > 0 such that
a
b
̸= α

β
and 1 ≤ b ≤ β satisfies

∣∣∣r− α

β

∣∣∣ < ∣∣∣r− a
b

∣∣∣
This inequality is equivalent to the following one:

|βr− α| < β

b
|br− a|

Since β
b ≥ 1, it is possible to ask for a stronger condition. A fraction

α

β
satisfying

∣∣∣βr− α
∣∣∣ < ∣∣∣br− a

∣∣∣ (A4)

is called a best rational approximation of r.
The terms “good” and “best” rational approximations are equivalent to best approx-

imation of the first kind and of the second kind, respectively [13]. In general, a best

approximation of the ℓ-the kind satisfies βℓ−1
∣∣∣r− α

β

∣∣ < bℓ−1
∣∣r− a

b

∣∣∣.
This allows us to understand the following result. Any two successive convergents rn

and rn+1 of a simple continued fraction of a real number r > 0 satisfy

|r− rn+1| < |r− rn|

|βn+1r− αn+1| < |βnr− αn|

whose consequence is the Best Approximation Theorem: Every best approximation of a real
number is a convergent of its canonic continued fraction expansion and conversely, each of the
convergents is a best approximation.

Thus, (A4) yields the continued fraction convergents without having to calculate
them explicitly.
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While the convergents are the best double-sided approximations (in absolute value),
the semiconvergents are the best one-sided approximations. We point out two facts [14].
Every one-sided good approximation α

β , i.e., satisfying

0 < r− α

β
< r− a

b
or r− a

b
< r− α

β
< 0

provides a convergent or a semiconvergent of r. Therefore, good rational approx-
imations are the convergents and some semiconvergents of the canonic continued
fraction expansions.

On the other hand, every convergent and semiconvergent of r is a one-sided best
approximation, i.e., satisfies

0 < βr− α < br− a or br− a < βr− α < 0

Therefore, the set of best one-sided approximations is equal to the set of good one-sided
approximations (Theorem 4.5 in [14]).

Appendix A.2. Approximation of log2
3

The most accurate Pythagorean scales are obtained for values p, q ∈ N that provide
the better approximations of the equation 3p

2q = 1. By taking logarithms to Base 2, we obtain
log2 3 = q

p . Therefore, the situation is equivalent to find the rational approximations of the
irrational number log2 3.

The best approximations are provided by continued fractions. However, the calcu-
lation of this continued fraction is not simple. The problem is detailed in book (p. 204
in [37]). The continued fraction of log2 3 is (On-Line Encyclopedia of Integer Sequences,
https://oeis.org/A028507, accessed on 1 October 2017)

log2 3 = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, . . . ]

providing the values for p = βn and q = αn, listed in Table A1, in terms of nth convergent
of the continued fraction according to the expressions (A2) and (A3).

Table A1. First terms of the continued fraction log2 3 = αn
βn

. The cardinal of an optimal scale is βn.

n an αn βn

0 0 1 1
1 1 2 1
2 1 3 2
3 1 8 5
4 2 19 12
5 2 65 41
6 3 84 53
7 1 485 306
8 5 1054 665
9 2 24,727 15,601

10 23 50,508 31,867
11 2 125,743 79,335
12 2 176,251 111,202
13 1 301,994 190,537
14 1 16,785,921 10,590,737

https://oeis.org/A028507
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Appendix A.3. Properties of One-Sided Best Approximations

In general, for rational approximations of log2 g, where g is the generator tone,
the convergents are obtained as the best approximations giving the minimal values of
| log2

gn

2N | = |n log2 g− N|.
The relationship between convergents/semiconvergents, best/one-sided approxima-

tions, and lineages can be summarized as follows.
A convergent N

n of log2 g satisfies 0 < |n log2 h − N| < |k log2 h − (JkK + 1)| and
0 < |n log2 h− N| < |k log2 h− JkK|; 0 < k ≤ n. It is a double-sided best approximation
and the value n is the number of tones of an optimal cyclic scale. In addition, n is the sum
of the indices of the minimum and maximum tones m + M, which also correspond to the
number of tones of previous cyclic scales, i.e., of previous rational approximations of log2 g.

After a convergent, a new lineage of cyclic scales begins and the previous lineage
ends. For non-short lineages, i.e., lineages composed of more than two scales, in addition
to the optimal cyclic scale associated with a convergent, the lineage contains the cyclic
scales associated with the semiconvergents comprised between the convergents. These
semiconvergents provide one-sided best approximations.

A one-sided best approximation of log2 h+ satisfies (JkK + 1) − k log2 h > N −
n log2 h > 0; 0 < k ≤ n. According to Appendix A in [35], for semiconvergents satisfying
N
n > log2 g, then ϕn = n log2 g− N < 0 and |ϕn| < 1

m . However, if N
n is a convergent,

|ϕn| < 1
n+m .

A one-sided best approximation of log2 h− satisfies 0 < n log2 h − N < k log2 h −
JkK; 0 < k ≤ n. For semiconvergents satisfying N

n < log2 g, then ϕn < 0 and |ϕn| < 1
M .

However, if N
n is a convergent, |ϕn| < 1

n+M .
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