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For an n-TET tuning system we propose a formalism to study the transformations of k-chords over a generalized
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1. Introduction

Chords generated from symmetric circular interval series are of great music interest and have been
largely studied (e.g., Forte 1973; Chrisman 1977; Lewin 1987; Cohn 1996; Douthett and Steinbach 1998;
Tymoczko 2006; Nobile 2013). The basic harmonic structure of trichords' in Western tonal music is
the starting point of two ways of analyzing music, one, the Schenkerian theory for the deep structure of
tonal music, and the other, the Neo-Riemmanian theory for transformations and voice leading over the
Tonnetz, which can also be extended to non-tonal music. In the current work, we propose a new and simple
formalism to study the structure of chords in an n-TET tuning system and their transformations over
the generalized Tonnetz (Tymoczko 2012) and its dual diagram, the chord network, generated by a given
interval structure. In extended just intonation a mathematical model for navigation through a complex
space of harmonies was proposed by Zabka (2017). Ours is an alternative approach to the Pitch-Class (PC)
set theory for atonal music (Forte 1973), based on the notion of mode used by musicians such as Messiaen
(1944) and Vieru (1980): an ordered k-tuple of PCs from the n-TET scale defines a directed k-chord (a
rolled chord), which is composed of a root (the starting note) and a mode (a partition of the octave). The
rotations of a directed chord define an equivalence class, and the shifts? of a mode define a mode class. The
notes of a directed chord, as a set where order does not matter, form a chord.

Starting by the particular case of trichords, we describe the structure of the chord cell and the tonal cell,
which are mutual combinatorially dual polytopes. In the 12-TET system, the Tonnetz associated with
the mode [3,4,5] generating the major and minor triads is used as a case example. It is worth mentioning
theoretical works using alternative Tonnetze, such as Lewin (1998) with the mode [0,1,3] and Clough
(2002) with the modes [1,4,7] and [2,3,7]. For an n-TET system, we introduce and formalize an algebra of
chords for a non-degenerate Tonnetz, meaning that the generating mode has non-two equal mode intervals,
so that transformations can be done in higher dimensions regardless of geometrical representations.

Email: rafael.cubarsiQupc.edu
I'We use the term trichord as similar to triad, meaning a set of three notes, not necessarily in a particular segment of a scale. This
meaning is extended to tetrachords, hexachords, etc.
2Mode shifts mean rotations of the mode intervals. Shifts will refer to modes and rotations to directed chords.



Transformations distinguish between operations on the root, such as inversion and translation, and oper-
ationson themode, such asmodeinversion, retrogradation, and shifts. Some operations are well defined only
for directed chords and others for chords, which necessarily are composition of operations on root and mode.

Translations by mode intervals transform chords within the same mode class, either within the same
chord cell or towards another cell. They are equivalent to a combination of mode shifts and chord rotations.
However, changing the mode class, although for trichords an inversion suffices, for higher k-dimensional
chords must be done through the k—1 transpositions of the mode intervals. Among these, a number k—2
is associated with one-step drifts along the edges within one chord cell, while the remaining drift sends
the chord towards a non-congruent chord cell, which generalizes the leading tone exchange of the Neo-
Riemmanian triadic progressions (Lewin 1987; Cohn 1996, 1997; Douthett and Steinbach 1998). In this way
it is possible to identify in any dimension simple circuits (closed paths where no vertex isrepeated) over the
chord cell and over the chord network, such as those that generalize the maximal smooth cycles (Cohn 1996).

The paper is organized as follows. In Section 2, notation, definitions and basic concepts are introduced.
Section 3 deals with the geometric aspects of trichords and its generalization to higher dimensions. Section
4 formalizes the algebra of chords, namely, operations on the root, on the mode, and on the whole directed
chord, respectively. In Section 5 the algebra of chords is applied to the chord network, by analyzing specific
transformations and pointing out the main properties. The honeycomb of trichords is used to exemplify
how the algebra of chords operates. Finally, in the conclusions, we remark the main results and suggest
some points to extend and develop for future works.

2. Preliminaries and definitions
2.1 Mode

The octave O, containing the whole set of n notes of an equal temperament scale is represented as points
evenly distributed along a circle of n units length, oriented clockwise, and beginning with 0. Numerically,
anote of an n-TET system is a number in the set Z,, of integers modulo n.

A k-modeis defined by choosing a sequence of k positive integers, [Ao,...,Ax—1],s0 that Ag+--+ Ag_1=n.
Therefore, each positive interval has, at most, n—k-+1 units length and k& is not greater than n. In addition,
since an interval of n steps leaves invariant any note in the octave (it is equivalent to 0 steps), the whole
octave O,, will correspond to the full mode [0] =[], where the asterisk means the amount left to fill a full
octave. We shall assume that the indices of the mode intervals take values in Zj. The set of k-modes is
notated as M (n,k), where n is the rank and k the dimension.

We may need to work with modes of rank m, lower? than the rank n, i.e., with a part of a mode of rank
n. In order to make such a distinction, a mode* p = [Ay,...,Ar_1] € M (n,k) whose intervals sum 0 in Z,
will be called full mode. We can simplify the notation as p = [Ay,...,Ag—2,%| since in this case one of the
intervals is redundant. On the other hand, a mode A € M (m,k), with m < n, will be called partial mode.
We necessarily write the partial mode without asterisk, as A=[By,...,Bi_1] with By+-+-+ Bx_1 =m<n.

In addition, in an n-TET system, the notion of mode can also be generalized to a series of interval
values giving several turns to the circle of the octave, i.e., with total size larger than n, although, in order to
determine the notes of a chord, one must always consider mod n. Therefore, the dimension k of a generalized
modemay belarger, equal, or lesser than n. Thus, any sequence with components taking values in Z,, can be
interpreted as aset of intervals or asaset of PCs, that is, as a chord. This dual point of view was developed by
Vieru (1980) and its mathematical aspects have been further studied, e.g., by Andreatta, Vuza, and Agon
(2004). Our aim is not to use this duality but to focus in the interval structure of the chords. In such a case,
any mode interval equal to 0 will be suppressed, since it does not provide any information about the chord.

3Full rank modes are also called successive interval-arrays (Chrisman 1971) or circular interval series (Chrisman 1977), while partial
modes are called interval-arrays or interval series.
4Greek characters will be used to represent modes to easily distinguish them from chords and notes.



2.2 Dairected chord and chord

The result of applying a full mode u=[Ao,...,Ax—1] € M (n,k) to the root note ag €{0,...,n—1} is a directed
k-chord. A directed chord of rank n and dimension k is expressed as

a=(ag,...,ax—1)=ao|p (1)
with® a; = ag + Ag mod n, ..., a1 = ap_o + Ar_o mod n; satisfying, in addition, the cyclic property
ap=ag_1+ Ax_1 mod n. This construction grants the order clockwise direction along the circle O,, of the
directed chord elements. Root and mode are the two components of a directed chord®. Hence, given a root
ap and two full modes p,v € M (n,k), ag|p=ap|v if and only if p=v.

All the directed chords containing the same notes as the directed chord a, i.e., which are similar to a
except in the cyclic order of the notes, yield the same chord. Thus, a k-chord is defined as this equivalence
class of directed k-chords, namely

{a}={ao,...ar—1}={aolu} (2)

The set of directed chords belonging to the same chord class are the rotations (we also consider the identity
or zero rotation). There are k possible rotations’ of a directed k-chord a, that are written with a superindex
a',i=0,...,k—1. The directed k-chords of rank n are noted as K (n,k), and its classes, the k-chords, are
noted as IC(n,k), where we operate, as usual in set theory, by defining subsets, unions, and intersections.

Any generalized mode p € M(m,k), m # n, can be reduced to a full mode R(u) € M(n,k) so that
{0} ={0|R()}. Then, for any root ag, {ag|u} ={ao|R(x)} and, in addition,

LEMMA 2.1 If p,v are generalized modes such that {ao|p}={ao|v}, then R(u)=R(v).

2.3 Submodes and supermodes

Any full mode pu = [Ao, ..., Ax—1] € M(n,k) can be decomposed into partial modes of lower rank and
dimension by defining a concatenation or composition of modes, such as,

p=p1-p2;  pr=[Ao,,Aimal;  pe=[AiApa]; 1<i<k—1 (3)
so that rank(p;) + rank(us) = n, and dim(p;) + dim(pe) = k. Both partial modes p; and po are then
complementary in M (n,k).

Any full mode p can be totally decomposed into k—1 concatenations of single modes, u=[Ag]...[Ax_1],

whoseintervalsequal n (the dot for the composition will be usually omitted). In general, if 11 = [ By, ..., Bk, —1]
and po =[Cy,...,Ck,—1] are generalized modes, the composition

pa-p2 =[Bo,.... Bk, -1][Co,....,Cl, 1] (4)
is defined as the mode that produces the partition of the octave resulting from the successive application of
the intervals of 11 and ps. The composition of generalized modes has a monoid structure, i.e., is associative
and has an identity element, which is [0].

A non-commutative sum of generalized modes is defined as follows,
p1+p2=[Bo,.... B, ~1+Co,....Ck, 1] (5)

which has also a monoid structure® with identity element [0].

LEMMA 2.2 The submodes of a full mode p1=1[Ao)...[Ax—1] € M (n,k) are obtained as A=[Ap]o...0[Ak_1],
where each symbol o means either a composition or a sum.

In this way we will obtain a number of full modes of the same rank but of different dimension, which
may vary from 1 to k. When both modes p and A are applied to the same root ag, the chord {ag|\} gives

5The expression r = p+¢ mod n, although written without parentheses, will mean that r is the reminder in the Euclidean division
of p+q by n, otherwise we would write r =p+(g mod n).

61n general, directed chords will be notated with lowercase Latin letters, without subindices. Subindices will refer to their notes.

"While dealing with directed chords, chords, and modes of dimension k we assume that the indices for notes a;, interval modes A;,
and chord rotations a® are defined in the group (Zg,+).

8In general, if u; and w2 are generalized modes, p1-p2#R(u1) R(p2), R(p1-p2)ZR(R(u1)-R(p2)), pit+pe#R(u1)+R(us),
R(p1+p2)#AR(R(pu1)+R(u2)); but full modes with the operations p1 @ue=R(p1-p2), p1Bpe=R(u1+p2) are a commutative group.



a partition of the octave less fine than the chord {ag|p}. Then, we write A < p. Conversely, we say that u
is a supermode of \, and write p > A.

PROPOSITION 2.3 The composition and the sum of full modes satisfy R(p1-p2) = R(pu1+p2).

Proof. When applying the generalized modes (11 - p2 and 11+ p2 to the root 0, they describe the following
similar chords,
{0|p1-p2} ={0|[A0,A1,...,A;—2,A;_1]-[Bo,B1,....,Bj—2,B; 1]} ={0,A0,A0+ A1,...,Ao+--+A;_2,0,Bo,...,Bo+--+Bj 2,0}
{01 +p2} ={0[[A0,A1,...,A;—2,A;_1+Bo,B1,....,Bj_2,B; 1]} ={0,A0,A0+ A1,...,Ao+---+A;_2,Bo,...,Bo+--+ Bj_2,0}

Hence, according to Lemma 2.1, the respective modes have the same reduced form. [ ]

COROLLARY 2.4 If 1,2 are full modes, {ao|p1-pa}={aolp1+p2}t={aolpu }U{ao|p2}.

2.4 Complementary and completed modes

For any rank m <n, a partial mode p=[Ay,...,Ap—2] € M (m,p—1) can be completed on the right-hand side
up to a full mode in M (n,p) as [p,*] =[Ag,...,Ap—2,%] =[Ao,...,Ap_2,n—m]. We express this mode as above
or, alternatively, as a concatenation of partial modes, [p,*] = p-[n—m]. Similarly, the partial mode can be
completed on the left-hand side as [*,u] = [n—m]- .

Any directed chord a = ag|[Ao, ..., Ap—2] obtained from a partial mode can obviously be written as
a=ag|[Ao,...,Ap—2,%|, in terms of the completed mode to the right. Therefore, the directed chord a may
be written in either of the forms a=ag|u=ao|[1,*].

Any full mode can be written as the concatenation of two complementary partial modes, u-x € M (n,p),
with g€ M(m,q),n>mand p>gq, and kK € M (n—m,p—q). Hence, the composition of partial modes can
be expressed in terms of their completed modes as

/L"{:[M’*]'[*”{] (6)
According to Proposition 2.3, the sum of the completed modes satisfies

[Ha*]—{_[*v%]:[u’*]'[*”{] (7)
On the other hand, we may assume that a full mode A is equivalent to the completed modes [\, x| and
[*,A]. This allows to interpret Proposition 2.3 as a particular case of Eq. 7. In other words, Eq. 7 is valid for
complementary partial modes, as well as for full modes.

For a chord {ag|u-K} € K(n,p) generated by the composition of two complementary modes, by taking
into account Eq. 6, we obtain a particular case of Corollary 2.4, {ag|u -k} = {ao|[u, %]} U{ao|[*, K]}
Obviously, the modes [i,*] and [*,x] are submodes of -k, and the chords {ag|[x,*]} and {ag|[*,x]} are
subchords of {ag|p-x}.

2.5 Mode shifts and directed chord rotations

The equivalence relation given by the rotations of the directed chords is now transferred to the modes. Thus,
we define the mode class with regard to the shifts of amode. For afullmode u® = pu=[Ay,...,Ap_1] € M (n,k),
a single shift is a one-step cyclic permutation® of the mode intervals, such as u! = [A1,..., A1, 4¢]. An
m-shift (shift of m steps) of p, with m € Zy, is defined as

Mm:[Avam-i-lv"')Am—l] (8)

For m =k the mode becomes the original mode or the 0-shift of p. All the shifts of a mode form a mode

class. Then, we are able to write the k equivalent rotations of a directed chord a = (ay,...,ar—1) by applying
the elements of a mode class to a number of k different roots, as follows

am:am|um:(am7'")am—l) (9)

9 A single shift is obtained by the permutation o = (k,1,...,k—1) of the symmetric group Sy with k! elements. Since o* = 1, a shift
generates a cyclic subgroup (o) of Sk of order k, which provides a number (k—1)! of cosets in the quotient group Sy /(o). The group Sk
may be obtained from generators in several ways, e.g., from the product of transpositions in the form (1,7), 1 <4 <k, or from products
of o and the transposition (1,2).



with indices in Zj. For a directed chord a™ within the class of the chord {a}, we notate a™ ~ {a} or
{a} ~a" to mean that we take the specific directed chord as a representative of the class.

Depending on the interval values, it is possible to get less than k different shifted modes. For example,
if Ag=---=Ag_1, all the shifts produce the same mode, although there are still k£ rotations of any directed
chord. The number of rotations is associated with the k different roots where the shifted modes are applied,
and not with the number of elements of the mode class.

The set of mode classes of M (n,k) with regard to the shifts'’, for all the possible interval values satisfying
Ao+ Ay + -+ Ap_1 = n, is notated as M(n,k). The set of mode classes for the intervals of a particular
mode p € M(n,k) is notated as C(u). The mode class of j, is written as ¢ € C(u) and is composed of
the non-equal shifts p™ for m € {0,...,k—1}, i.e., is a fized necklace of length k. The number of elements
composing a mode class 1 is notated as s(u®), which is equivalent to the number of different shifts s(u)
of any mode of the class. If the mode intervals are non-two equal, the notes composing a directed chord
ao|[Ao,...,Ap_1] are univocally determined. In addition, the mode classes ;° do not match, i.e., s(u) =k,
and C(p) = (k—1)! . If the mode intervals are coprime, the number of different chords in the chord network
is n(k—1)! and contains all the notes of the n-TET scale.

2.6 Uniqueness of chords

A chord can be defined from several directed chords generated from any mode of one mode class applied
to a particular root. If the directed chords are written clockwise direction along the circle of the octave,
by starting at any note of the chord, the difference between two directed chords defining the same chord
is only a rigid rotation of notes. This is given through the following equivalent conditions.

LEMMA 2.5 Tuwo directed chords ag|p and by|v € K (n,k) produce the same chord {ag|pu} ={bo|v} if and
only if Im € Zyso thatb; = a4, Vi€ Zy,.

LEMMA 2.6 Two directed chords ag|p and by|v € K (n,k) produce the same chord {ag|pu} ={bo|v} if and
only if Im € Zyso thatby=a,, andv=p".

2.7 Inverted modes

While any full mode p = [Ag, A1, ..., Ap—1] € M(n,k), with positive intervals, is clockwise directed, a
negative mode —p = [—Ag,—A1,...,—Ag_1], also referred to as inverted mode of u, defines a symmetric
partition of the octave anticlockwise direction when it is applied to the same root.

The negative mode —[Ag,A1,...,Ax_1] defines the same partition of the octave that the composition of
positive modes [n — Ag|[n — A1] - [n — Ag—1]. But [n — Ag,n — Ay,...,n — Ax_1] is not a full mode, since
(n—Ap)+(n—A1)+...+(n—A_1) =(k—1)n, instead of equal n. It is a generalized mode. Anticlockwise
direction, however, theintervals of the negative mode —u do equal —n. Therefore, we may speak of a negative
full mode in the set M (—n,k) when it satisfies such a condition. In this case, when it is applied to aroot, a
negative mode determines an anticlockwise directed chord. The opposite k-chords have similar properties
than the directed chords with regard to the chords they generate. On the other hand, the full mode

ﬂ:[Ak—lv'")AlaAO)] (10)

describes a chord with similar intervals than —u when it is applied to the same root, although clockwise
direction. Hence,

PROPOSITION 2.7  The mode T is the reduced form of —u, i.e., i=R(—pu).

Proof. Todetermine the relative partition induced in the octave by the mode —p (except rigid rotations) we

10Tn a general, particular families of music objects can be defined according to their behavior with regard to some transformations. For
example, a k-chord is defined as a subset of k notes, regardless their order. Therefore, a k-chord is any family of k-tuples of notes which
is invariant or closed with regard to permutations. If a k-chord is defined from directed chords, i.e., a k-tuple of notes arranged clockwise
direction on the octave, then a chord is a family invariant under rotations, either direct or inverse. Similarly, a mode class is defined as
a family of modes which is invariant with regard to shifts. Then there is a group G that acts on a set C by transforming their elements,
such as symmetry transformations, and particular families of elements in C' are invariant with regard to specific transformations of G.
Redfield-Polya’s theorem allows to enumerate in a general way the classes resulting from the action of the group G on C'. In Fripertinger
and Lackner (2015) these techniques are thoroughly studied.



apply the generalized mode to the root 0. Bearing in mind that the addition of the positive mode intervals
equals n and that any integer number of full octaves can be ignored, we write the notes determining the
partition, which, in the end, define a directed chord with the notes arranged clockwise,

0|[n—Aog,n—A1,...n—Ak_1]=(0,n—Ag,2n—Ag— A1,....kn—Ag— A1 —— Ak _2)=
=(0,n—Ao,n—Ag—A1,...n—Ag—A1——Ag_2)=

=0 40+A1++Ap_1 A+ A+ Az, + A1, AC+ A+ + A5+ A1) =

=(0,Ap—1,Ap 1+ A2,y A1+ Ap 2+ +A0)=0|[A_1,...,A1,A0] [ ]

COROLLARY 2.8 p=R(—f) and {ao| -1} ={ao|pn}.

The mode class of an inverted mode is the one corresponding to its reduced form.
2.8 Relative inverted chords

As a consequence of the above result, the retrograde mode of 1z is —pu, so that the inverted mode of p has
two expressions: the positive mode 1z and the negative mode —pu. If they are applied to the root ag, we
get two directed chords: the relative inverted, ag|fi, read clockwise; and the relative mirror ag|—pu, read
anticlockwise. Therefore, the full modes & and —u applied to the root ag define the same chord,

{aolm} ={aol—p} (11)
Nevertheless, if we write the directed chord ag|p from another root to generate the same chord {ag|u},
such as the rotation a;|u?, its relative mirror chord {a;|—p'} is different from {ag|—p}. In other words, the
relative mirror and inverted chords depend on the directed chord we are using to express the chord; they
are only defined for directed chords.

2.9 Inverted chords

The negative inverted (or mirror) directed chord of ag | p is expressed from the negative mode as
—ag|—p = —(ap|p), whose notes are the complementary PCs of ag|u. On the other hand, the (positive)
inverted directed chordis written as —ag|fi, from the positive inversion of the mode.

PROPOSITION 2.9 The negative inversion of two directed chords, namely ag|p and by|v, which define
the same chord {ao|u} ={bo|v}, produce two similar chords {—ag|—pu}={—bo|—v}.

Proof. 1t can be easily deduced from the condition given in Lemma 2.5. We know that it exists a value
m € Zj such that (apm,...,am—-1) = (bo,...,bk—1), i.e., both directed chords match. Then, by taking
complementary mode classes in both sides and arranging them clockwise along the octave, we get
(—@m—1yy—m) = (=bg_1,...,—bg). Hence both mirror directed chords define the same chord. [ ]

Then, according to Eq. 11, we may speak of inversion of a chord as the result of applying the inversion
or mirroring to any directed chord defining the same chord, that is, —{ao|u}={—ag|—u}={—ao|m}.

2.10 Symmetric modes

By expressing a directed chord a = ag|p as a mode applied to a root we are able to describe easily several
well known families of chords. The simplest example is the family of chords obtained by maintaining
the mode p and by translating the root ag to any note of the scale. These directed chords have the
same interval structure, although they differ in PCs. Another example is the family of directed chords
obtained by maintaining the root ag and applying different shifts ;¢ of the mode. In general, for a mode
p=1[Ao,...,Ap_1] € M(n,p), we notate S(p) the family of its symmetric modes, that is, the set of modes
containing all the permutations of the intervals of 11, containing the classes with regard to shifts, C(u). The
cardinality of S(u) depends on the number of equal intervals in p. If they are all different, #S(u) =p! . If
1 has g <pintervals A;,0<i<q—1, each one repeated n; times, Zg:_&ni =p, then

#S ()= 5l (12)

On the other hand, it is possible to compute the cardinality of S() from the mode classes C () it contains.
Then, since S(a) = p U...U s, for i € C(p), by taking into account the number of shifts in each mode
class, we have #S (1) =>_1" | s(u?).



Figure 1. Chord extension [A,B,C] formed by the chords sharing two notes with the initial chord a|[A,B,C] (notes in gray).

3. Geometry of chords
3.1 Trichords

Tymoczko (2006, 2012) provide comprehensive studies on the chord geometry. Some of these geometrical
concepts appear in the current work to be be studied from an algebraic approach. Therefore, we briefly
review the simpler case of the trichords in an n-TET system.

The geometric relationship between one trichord and the three different chords sharing two notes with it
is displayed in the graph of Fig. 1. The central triangle of the extension contains the initial directed chord!*
(a,b,c) € K(n,3), generated by the full mode [A, B,C] € M(n,3), that we assume with non-two equal
intervals (particular cases such as [A,B,A] and [A,2 A4, A] are easily derived and lead to degenerate Tonnetze
to be studied separately). It is surrounded by three triangles sharing an edge with it, corresponding to the
chords generated by the shifts of the class [4,C,B].

One chord together with their adjacent chords will be referred to as chord extension. This structure
may be repeated around each new triangle to form a tonal network or Tonnetz originated in the chord
{a,b,c} ~ a|[A,B,C] with alternance of the two mode classes of the modes [A,B,C] and [A,C,B]. The
modes of the first class are clockwise directed in the triangles shaped as V, while the modes of the second
class are anticlockwise directed in the triangles shaped as A. For trimodes, we shall say that the former are
positive and the latter negative, although this cannot be generalized to higher-order modes. For instance,
the symmetric modes of a tetrachord have up to 6 mode classes.

Since A + B 4+ C' = n, there are actually two degrees of freedom in constructing such a network,
allowing us to draw those triangles on a surface. One simple representation consists of, starting with the
note a, to take increments by A mod n units along the horizontal direction rightward, and by B mod n
units vertically downward, obtaining thus an unbounded bidimensional array of nodes with coordinates
(¢A,jB) mod n;i,j € Z, with the center (0,0) in a, that are associated with the notes

mij=a+iA+jB modn; i,jeZ (13)
When closing one triangle by adding an interval of C' units, the octave becomes completed.

The tonal network is periodic in both main directions, and diagonally as well, although the full set of
notes of the n-TET system arise in any direction only when the corresponding interval is coprime with n.
This structure is equivalent to a Cartesian product of two circles, one for the notes i A mod n and the other
one for the notes 5B mod n, so that the tonal network can be drawn on a torus. More precisely, the whole
notes k=0,...,n— 1 of the tonal system are represented in the torus if, and only if, k =a+zA+yB+ zn;
for x,y,z € Z. We may clearly assume the origin at @ = 0. Since the three intervals equal n, the above
relationship can be written as

k=pA+qB+rC; pqreZ;k=0,..n—1 (14)
Therefore, according to Bézout’s identity for three integer, in order to express all the notes from any of
the intervals it is required that ged(A4,B,C) = 1. If ged(A,B,C) =d, then d is the smallest positive integer
that can be expressed in the combination of Eq. 14, which provides a number of v = 5 different notes

and vertices for the Tonnetz. Since each mode class generates a unique chord for every note of the n-TET
system, if the Tonnetz has v vertices, it is then composed of f = 2v different trichords, which are the

1 To simplify the notation, the chord and mode components of the cases shown in graphs and figures will be without subindices.
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Figure 2. Two ways to represent the hexagonal tonal cell of the trichords originated by the directed chord a|[A,B,C] (in boldface). On
the right, Cayley graph of S3. The triangular diagrams connect the modes of one mode class by a shift. In the vertices, the modes are
connected with the color of the shared first interval, with the other intervals are transposed.

faces of the regular tessellation of the torus with triangles. It is worth noticing that three vertices define
a face of the triangle only when they are connected by three edges corresponding to the three consecutive
mode intervals (ranging one octave), all of them with either positive orientation or negative orientation.
Positive and negative alternated intervals do not form a loop. The number of edges in the tessellation is
e= % f =3uv, since each triangle has three edges and each edge is shared by two triangles. Thus, we obtain
the Euler characteristic of a torus, y=v—e+ f=0.

3.2 Tonal cell [A,B,C]

The Tonnetz builds up a mosaic of hexagonal cells composed of six chords in the shape of triangles with a
common vertex. These, chords are generated by the symmetric modes of the initial chord a|[A,B,C]. Each
node of the network is the center of a cell, which contains the root, which is common note of the six chords.
In a general case, given a note ag and a mode p € M (n,k), the notes of the Tonnetz that are vertices of the
chords {ap|v}, with v € S(p), will be referred to as the tonal cell around ag.

In addition, these chords share another note (and the corresponding interval) with their neighbors.
Therefore, the symmetric modes of the original mode [A,B,C] determine a family of neighbor chords that,
in musical terms, are harmonically related. For the chord a|[A,B,C], the hexagonal tonal cell shown on the
first diagram of Fig. 2 is composed of six different chords and symmetric modes. The symmetric modes are,
one class, = [A,B,C], u' = [B,C,A], u? = [C,A,B]; and, the other class, i=[C,B,A], u! = [A,C,B], u2 =
[B,A,C). Zero rotations may be notated as u° = p. With this notation we get the second diagram of Fig. 2.

Out of the tonal cell centered in a, the only chord sharing two notes with the initial chord (marked in
boldface) is {b,c,e}, which is placed in the lower-right vertex of the extension. Therefore, this is the closest
chord to the initial chord in the path towards another cell not containing the root a. From this viewpoint,
that direction indicates the smoothest voice leading path (Douthett and Steinbach 1998; Tymoczko 2006;
Callender, Quinn, and Tymoczko 2008) connecting chords of different tonalities. The note e, that does
not belong to the tonal cell of the root, corresponds to the leading tone of the major diatonic scales and to
the subtonic of the minor scales.

3.3 Chord cell

The dual network of Fig. 2 is Fig. 3, where connections between chords are shown instead of connections
between tones. More precisely, each triangle representing a chord in the former graph is now a vertex of
the latter, and the edges of the triangles in the first graph become vertices in the second one. On the other
hand, one note in Fig. 2 becomes the center of the six vertices of one hexagon in Fig. 3, which are the
chords sharing this note. In general, given a note ag and a mode € M (n,k), the set of chords {ag|v}, with
v €S (u) will be referred to as the chord cell (or cell of chords), by labeling it with the central note ag.

In Fig. 3 all the chords are expressed in terms of a shift or an inversion of the same mode p applied to the
same root. The whole chord cell with root a can be transported to the same or another cell by applying a
translation'? of the root by a single interval A, B, and C, or its opposite, according to the directions of the
arrows in the graph. Since each vertex belongs to three different chord cells, the translation of a chord may

12Musicians call transpositions to translations, however this may be confusing since in mathematics a transposition is a permutation
which exchanges two elements and keeps all others fixed.
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Figure 3. Chord cells composed of six chords, half obtained from directed chords with positive modes (black vertices), and half with
negative modes (white circles) in opposite vertices of the cell.

lead either to contiguous cells or to the same cell.

In general, the translations along chord cells of the chord {x|\} are defined by successive transformations
of the root, according to

Twr=z+umodn; u==+A+B,+C modn (15)

that preserves the mode. In addition, the new chord maintains the same relative position in the new cells.
These transformations acting on the root have the structure of an abelian group with 74, = 7,7, = 7,7y
and identity element € = 7y. Thus, for trichords, all the chords in the network originated by the directed
chord a|p can be expressed from two kinds of transformations over the chord elements: (1) translations
Ty, of the root in any of the two independent directions, by preserving the mode; and (2) inversion of the
mode, by preserving the root of the chord.

3.4 Major and minor chords in a 12-TET scale

Let us see a well known example of Tonnetz, the one associated with the chord {0,4,7} ~ 0|[4,3,5], the
major triad. This tonal network is composed of all the major chords of the 12-TET system generated by
the mode [4,3,5], as well as all the minor chords generated by the mode [3,4,5]. It is build by beginning
at the note 0 and, since ged(4,3,5) =1, all the notes of the scale appear in this Tonnetz, so that it could be
built by beginning at any note. The notes composing the 12-TET scale are obtained separated by intervals
of major and minor thirds of 4 and 3 units (semitones).

In Fig. 4 the Tonnetz containing all the major and minor chords of the 12-TET system is represented
by explicitly writing the name of the notes. This is a double diagram that displays both the tonal network,
with notes in gray, and the chord cells, with chords in black, uppercase letters for the major trichords and
lowercase for the minor ones. Blue, red, and green arrows indicate translations of 4 (a major third), 3 (a
minor third), and 5 (a fourth) units, respectively. The inverse green arrows correspond to a translation of
7 (a fifth) notes. Each chord is the center of the triangle formed by the notes it contains, and each note is
the center of the hexagonal cell of chords containing it.

The connected trichords share two notes. The non-shared notes of two connected trichords differ in 2
semitones for chords vertically connected and in 1 semitone for all the other chords. A closed path in the
Tonnetz along non vertically connected chords is known as a mazimally smooth cycle (Cohn 1996). It is
straightforward seeing from Fig. 4 which notes are involved in each maximally smooth cycles for major and
minor chords, and which are the common notes among these cycles. Other properties may be easily derived
from the graph. For instance, by starting a continuous path from any chord in the Tonnetz, we are able
to see which chords can be reached by changing only one note in each step. If the number of steps or edges
between two chords is taken as the length of a path over the Tonnetz, then the length of aloop, by beginning
and ending in the same chord without repeating any chord, is 6. There are four different maximally smooth
cycles of length 6, along the non-vertical polygonal lines. The minimum length between two chords defines
a distance on the Tonnetz. In this example, any two chords are connected by a path of at most of 5 steps.
For example, the chord more distant to the F major chord is the df minor chord, at 5 steps distance. For
higher-dimensional chords, these and other properties of the generalized Tonnetz, such as paths connecting
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Figure 4. Chord cells and Tonnetz from the chord {0|[4,3,5]} in a 12-TET system.

all the chords without repeating any one, can be further studied with the help of an algebra of chords.
3.5 Higher-dimensional tonal network

The Tonnetz associated with a mode p can be generalized to chords and modes of any dimension k € N.
The symmetric modes S () contain shifts of several mode classes obtained from transpositions of the mode
intervals. By generalizing Eq. 14, the tonal network associated with a k-mode p=[Ao,...,Ax_1] € M (n,k),
starting at the node ag, is composed of all the notes in the form 7., ag, according to the dot product
cpu= Zf:_(? c; A;modn; c¢=(cg,...,cp_2) € ZF, where the sum is extended to a subset of k—1 mode
intervals, since one of them is complementary to the othersin Z,, . At any node bg of the Tonnetz, all the chords
having the note by can be generated as adirected chord by |v, with v € S(u). Therefore, the tonal cellcentered
in by is composed of the notes forming the k! directed chords generated by the symmetric modes of p applied
to bg. The chords around by form chord cell associated with this root in the dual network of the Tonnetz.
As in the case described by Eq. 13, the Tonnetz associated with a mode with non-two equal intervals
can be formally interpreted as a set of points scattered on a k-dimensional torus. At first, the notes may be
represented as an unbounded (k—1)-dimensional array of points according to the coordinates given by the
intervals of thesubmode p/ =[Ay, ..., Ax_o] € M (n,k—1),since theinterval Ay _1 =—(Ag+...+ Ax_2) mod n
isuninformative. Theintervals are then associated with independent main directionsofthe array, sothat we
may speak of vector intervals. We shall call the direction associated with thelast mode interval of a directed
chord the returning direction. Notice that the returning direction Ay _; is linearly independent from any
single main direction A;, ¢ # k—1. Similarly, it is independent of any subset of different intervals A;, A;;
1,7 #k—1; up to a subset formed by k£ —2 non-equal intervals without including the returning direction.
By placing a note ap at the origin of the array, any point of the array with coordinates
(poAgs...,Pr—2Ak_2) mod n, with py,...,pi_2 € Zy,, represents a note of the n-TET system, of value

m=ap+poAo+-+pk—24r—2 mod n (16)

Since the structure is periodic in all directions, the array can be shaped as points over a k-dimensional
torus'?, which is as a (k—1)-dimensional hypersurface within R¥. In degenerate cases, where the generating

13 According to Tymoczko (2012) the Tonnetz may be organized in other ways other than a generalized torus, depending on the
properties to study.
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mode has similar intervals, by identifying the similar notes on the torus, the Tonnetz may be converted
into a band, a Mobius band, a circle, etc. Similarly as in §3.1, all the notes of the n-TET scale appear on
the Tonnetz when ged(Ag,...,Ax_1) =1. In general, if gcd(Ayp,...,Ax_1) =d, then d is the smallest positive
integer that can be expressed as the combination of Eq. 16, which provides a number of v = % different
notes and vertices of the Tonnetz.

A subset of vertices of the Tonnetz represents a directed k-chord only when they are connected according
to a permutation of the k—1 intervals of the submode p’. In addition, over the Tonnetz we may connect
the vertices by using all the mode intervals of u, either in the positive or the negative direction, which is
tantamount toreading themode clockwise or anticlockwise over the octave, although we cannot mix positive
and negative intervals. The last and first vertices of every directed chord must also be connected in order to
close the octave. This forms a simplex, which is the convex hull of its vertices. Similarly, its subchords are
obtained by connecting the vertices along the corresponding returning directions to form the faces. These
new edges are linear combination of the independent directions associated with the intervals of p’.

3.6 Generalized tonal cell

The notes of the Tonnetz that are vertices of the chords {ag|v}, with v € S(u) and = [Ao,...,Ax—1], were
referred in §3.2 as the tonal cell around ag. The number of vertices it contains may be computed as follows.
We shall use only positive mode intervals when forming all possible subchords of the network with root ag.

At onestepaway from theroot,i.e., at theend of one edge, we may reach any vertex expressed as the second
vertex of the directed 2-chords in the shape ag |[A;,%], 1.e., the vertices ag+ A;. It can be done along the main
directions, by choosing ¢ among the indices 0,...,k —2; and also in the returning direction, with ¢ = k—1.
Remember that the returning direction is independent from any single main direction, although is a linear
combination of all of them. This makes (]1“) new vertices, in addition to the one corresponding to the root.

At two steps away from ag we may reach some new vertices expressed as the third vertex of the directed
3-chords such as ag|[A;, Aj,*], with ¢ # j among the indices 0,...,k—1 that are associated with either
the main directions or the returning direction. Once again, the path along these intervals follows two
independent directions of the network. So, we reach (g) new vertices at two steps away from the root.

This procedure may continue up to the kth vertex ag+ A;, +...+ A of the directed k-chords, for a
number of k—1 different indices among the values 0,...,k—1 by providing (1:1) new notes. If one of the
intervals is Ax_1, we bear in mind that this returning direction is still independent of the other k£ —2 main
directions involved in the k-chord. This makes a tonal cell with a number Ny = Zf:_ol (l:) =2% —1 of notes,
including the root.

Th—1

3.7 Generalized Tonnetz

According to the preceding section, the geometric structure of a k-chord {a} in the Tonnetz is a (k—1)-
simplex, that is, any note of the chord can be connected with the others in the way described to form a
subchord, which is a simplex of lower dimension. The k vertices and notes of the k-chord are the O-faces of
the (k—1)-simplex, the (]2“) = @ edges are the 1-faces forming 2-chords, etc., and the (k—1)-face is the
whole chord. Hence, each m-face (m<k) is an m-simplex and is an (m+1)-chord, subchord of {a}.

By focusing on the vertices of the chord, the following aspects may be pointed out. The (k—2)-faces
or facets of the chord {a} are subchords containing k—1 notes. If one note not included in {a} is added
to one facet, we obtain a new k-chord, which is adjacent to {a}, i.e., shares the k—1 vertices of the facet.
Therefore, the number of adjacent chords to {a} is the same than the number of facets, that is (kfl) =k.
This set of chords was called the chord eztension in §3.1. In that case, the vertex to be added to the
(k—1)-subchord is not arbitrary, since these chords belong to the Tonnetz generated by the intervals of p.
As explained in §2.10, only two different chords may have a particular subset of k—1 vertices in common.
They are obtained by writing one chord as the directed chord a=ap|[Ao,...,Ak—3][Ar—2,Ak—1], so that the
directed chord a’ = ag|[Ao,..., Ak—3][Ak—1,Ak—2] is the only one that shares the k—1 first vertices of a. By
rotations on the original directed chord we find the k& chords sharing the other k—1 subsets of vertices.

The chord extension, i.e., the chord {a} and its k adjacent chords, may be extended to all the chords
over the Tonnetz. The (k—1)-simplices associated with the chords form a (k—1)-dimensional tessellation
of the Tonnetz. The conglomerate of k! simplices, which are the chords sharing one root, is the tonal cell.

11



If the Tonnetz is non-degenerate, these vertices are associated with different notes.
3.8 Generalized chord network

The topography of the chords in the Tonnetz can also be represented with the dual network diagram, the
chord network, where the chords are associated with vertices instead of the notes. Under this viewpoint,
the chords are vertices grouped according to the notes they share, that is, each note is in the center of a
chord cell formed by the chords containing it. Each k-chord can then be rooted in anyone of its notes, so
that it belongs to k chord cells. In other words, we may think of the k£ notes composing a k-chord as the
center of k adjacent chord cells.

We now focus in chords containing the note ag, i.e., the cell of chords labeled with the root ag in its center,
so that it is possible to write all these chords from directed chords that have ag as root. Since the directed
chords having the same root can be expressed from the symmetric modes S(u) as ao|[Ay(0),-+> Ao(e—1)],
with o € S, there is a number of k! chords in this cell. Among them, the number of different chords is given
by Eq. 12. In general, the chord cell is a permutahedron of order k (e.g., De Loera, Rambau, and Santos
2010), i.e., a (k—1)-dimensional polytope embedded in a k-dimensional space, whose vertices and edges
are isomorphic to the Cayley graph of the symmetric group S.

Each couple of chords {z} and {2’} that have k—1 notes'* in common and differ in one note (they share
a facet in the tonal network) are adjacent chords. These chords are shared by k—1 congruent chord cells.
A new chord {z"}, different from {x} and {z'}, that shares a facet with {«’} in the tonal network (hence
differs in one note which does not belong to {2}, otherwise it would be {z”} = {x}) shares, at least, k —2
notes with {z} in the chord network. Then, we can connect two chords that have a common facet in the
tonal network with an edge in the chord network. Each edge is shared by k—1 chord cells and the cells on
the opposite sides are labeled according to the note they differ.

Thus, from the tessellation of the tonal network with vertices as notes and (k—1)-simplices as k-chords, we
obtain adual tessellation, the chord network, with chords as vertices and notes as polytopes associated with
the chord cells. In the former, the (k—1)-faces are k-chords, the (k—2)-faces are (k—1)-subchords, etc., and
the O-faces are notes. In the latter, the 0-faces are k-chords, the 1-faces are (k—1)-subchords, etc., and the
(k—1)-faces are the notes labeling the chord cells. These structures are respectively co-dimensional to k— 1.

Since the tonal cell around one root in the tonal network becomes the chord cell labeled as the root in
the chord network, then the number f; = 2¥ —2 of vertices around (excluding) the root of the tonal cell
becomes the number of facets of the chord cell centered in the root.

3.9 Chord cell facets

In the chord cell ag containing the directed chord ag|[Ao,...,Ax_1], k>1, we pay attention to the chords
that share the notes ag and ag + Agp. These chords are generated from directed chords in the form
ao|[Ao][Ag(1ys-+sAg(k—1)] With o € Sg_1. There are (k—1)! of them along different directions of the chord
network. They share afacet of the chord cell ag, which is also afacet of the cell ag+ Ag-. Since these notes differ
in the interval Ag, we shall say that the facet is orthogonal to this main direction. Similarly, the chords that
share the notes ag and ag + A; are generated according to amode composition ag |[A1][A(o) ,&,...,Aa(k_l)]
with o € Si_1, where the component that is left out in the second partial mode is marked. There are (k—1)!
chords that belong to the facet shared by the cells ag and ag+ A1, orthogonal to the main direction A;. This
may be done for each mode component A;, until reaching the last facet, which is orthogonal to the returning
direction Aj_1, shared by the cells ag and ag+ Ax_1. We call these k disjoint facets front facets of the chord
cell ag. By collecting the chords of the k front facets we get the full chord cell with k!=k(k—1)! chords.
For k>2, we also look for the facets containing the chords that share the two notes ag and ag+ A, with
A = Ap+ A;. In that case, these chords are generated as either ag|[Ao, A1][Hq, A4, Ag(2)ss Ag(i—1)] OT
ao|[A1,Ao][Ae, A, As(2), s Ag(i—1)] With o0 € Sg_2, so that there are 2!(k —2)! of them. This can be done

by selectin *) different couples of intervals for A, by determining a similar number of disjoint facets, so
g {2 g

that collecting them we get the full set of chords in the cell k! = (g)Z!(k‘—2)! .
Similarly, for k>m, the facet containing the chords that share the notes ag and a9 + A, with

14\We use the term note for a vertex of the tonal network, while the term vertex alone refers to the chord network.
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A=Ag+...+ Ay 1 is composed of the chords ao|[A (), Apn—1)] B8, A1 Ao (m) 5-» Ao (k—1)] With
pESy, and 0 €Sk, , so that there are m!(k—m)! of them in each facet.

In general, we may select (T]fl) subsets of m mode intervals for A, which will produce a similar number
of disjoint facets. By collecting them, we always get the full set of k! = (i)m!(k—m)! chords in the cell. In
particular, the case m = k—1 leads to facets with a similar number of (k—1)! chords as the front facets. Their
last mode interval is a main direction or the returning direction. That is, the notes ag and ag+ A differ in an
interval —A;. Hence these facets are also orthogonal to these directions, although they are in the negative
part of the axes, by assuming the center of the cell ag in the origin. We call them back facets. Front and back
facets are principal facets of the cell of chords. The other facets are the mid facets, existing only for k> 4.
The way of moving along the chord network between two chords by maintaining the maximum number of
common notes regardless tonality criteria is perpendicular to one facet. Such a movement implies changes
between mode classes. Therefore, once again we obtain the cell of chords as composed of a number of facets

=t () = )+ G) -+ (L) + (L) =20 -2
T

where the facets corresponding to m = i and m = k — ¢ (indicated with arrows in the above equation)
have the same number (k —1)!i! of vertices. In particular, the number of principal facets in the chord cell
is 2k, corresponding to the first and last terms of the series. Then, if k is odd, there is a number % of
different chord configurations in the facets, i.e., the amount of different facets with regard to their number
of vertices. If £ is even, there are % different types facets, with a different number of chords. Each chord of

the cell is contained in each type of facet.

4. Algebra of chords

4.1 Operations on the root

4.1.1 Translations and inversions on directed chords. It is possible to transform chords
over a two- or three-dimensional Tonnetz by using geometrical or graphical means (e.g., Gollin 1998;
Jedrzejewski 2006; McCartin 2015, 2016), however, for higher dimensional networks it is necessary to
define algebraically such a transformations. It is a mandatory reference to the work by Lewin (1987), one of
the pioneers in applying group theory to chord transformations. Necessarily with some common notation,
the chord operations of the current paper will use a simpler approach, by taking the advantage that we are
always moving on the chord network generated by a fixed k-mode.

First, we center our attention in two operations on the root of a directed chord of an n-TET system.
They will be noted by Greek letters. The first operation is the inversion of the root of a directed chord
a = ag |, defined in operator form as ¢(ag|p) = —ag|p. Let us recall the equivalence —ag = n — ag, since
ao € Zy,. If the identity operation on the root is expressed as ¢, then ¢? = €. Hence, the group generated by ¢
is isomorphic to Zy. This operation is not defined for chords, since it results in different chords depending
on the directed chord we apply it.

The other operation is the translation of the root of a directed chord, which induces translations of
chords along the tonal network. For u,v € Z,,, according to the notation 7,v =v+wu mod n, a translation
by an interval u € Z,, is the transformation 7, (ag|u) = 7ya0|p- In particular, when v matches an interval
of the mode p, we are able to represent geometrically the translation of the directed chord on the Tonnetz.

The following equivalences hold, 7,4+, = TuTy, Tuw = 7,/ = 7, so that we may write 7, = 7{*. The
composition of translations has the structure of a cyclic group inherited from the sum in Z,, generated
by the element 7. The identity element is € = 79 = 7{*, and the composition satisfies the properties,
TuTo = ToTu, Tu(ToTw) = (TuTv) Tw, TuT—u = €. Hence, the inverse translation of 7, may be written in several
ways, e.g., T_y =T, | = 71 . It is straightforward to see that translations and inversions on the root of a
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directed chord are non-commutative'® instead, they satisfy
UTy =T—_pl (17)

4.1.2 Translations on chords. For a non-null value u € Z,, a translation 7, on a directed chord ag|u
generates, in general, a different chord, {7,ag|p} # {ao|pn}. When a translation is applied to two directed
chords producing the same chord, namely {ag|u} ={bo|v}, it is straightforward to see that the translated
chordsare thesame,i.e., {1, ao|p} ={7ubo|v}. Therefore, we may speak of translation of a chordas theresult
of applying the translation on any rotation of the chord. Hence, we shall consider 7,{ag|pu} = {Tyao|u}-

4.1.3 Dependent translations. Translations may be expressed without subindices by using the no-
tation 7[z](ao| ) =Tpao|u, or, in general, for m >0, 7™ [x](ap|p) = T ap|pand 7 [~z (ag|p) =7 [x]ao|p-
However, sometimes the translation is carried out by one or several mode intervals'. For example, if the
ith interval of the full mode u = [Ag,A1,...,Ax_1] € M (n,k) is notated as [u]; = A;, i € Zg, then we will
express a translation of the directed chord ag|u by this quantity simply as 7[u]; (ao|p) =7[A;i]ao |-

Since the full modes have a cyclic structure, it is possible to refer to an interval anticlockwise direction,
with a negative index, by defining [u1] ;= [u]x—i = Ak—s, 1 € L.

A retrogradetranslation by amodeintervalisalsopossible, 7[—pul; (ag| ) = 7[— A;]ao| . Weassume thenull
translation as 7[u]o =70 and we use the equivalence 7[—p]; = 7~ [u]; to refer to the translation to an interval
of themode pinstead of usingitsinverted mode. In addition, we can write the intervals of the positive inver-
sion & by using the intervals of the mode p, as [fi); =[] —i—1, so that we get the equivalence 7[i]; = 7[p] —i—1.

4.1.4 Prograde translations by mode intervals. Composition of translations according to
successive mode intervals are denoted as

TlWli,..ivg =Tlpli Tlplirs =T[Ai] - T[Ai ] = T[Ai4 4 Aiy ] (18)
We pay attention to the root of chord rotations as defined in Eq. 9. The root of the ith rotation of a
directed chord, namely a' = a;|;i*, satisfies a; 41 = 7[A;]a; = 7[1];a;. Then, according to Eq. 18, the root of
successive rotations is
Qjtj :T[Ai+...+Ai+j_1]ai :T[,Uz]i,...,i—i-j—lai (19)
bearing in mind that the whole set of intervals of the full mode satisfy 7[Ag+ ...+ Ax_1] = 7o. In a similar
way, translations on the root by a negative interval of the mode satisfy

a; =T[—Ajlait1 =T[—pliait1 (20)
a;=7[—(Ai+...F A1) aiv; =T[— i, itj—10is;
by providing the roots of retrograde rotations of the directed chord. A particular case of Eq. 19 is
a;=7[Ao+...+A;i1]ao =71, i-100 (21)

where the successive translations begin in the first interval of the mode.
Nevertheless, a more compact notation can be used by writing

T[M]ZET[M]p,...,p—I—q—l:T[Ap“‘-'-‘{‘Ap—kq—l] (22)
where ¢ denotes the number of mode intervals involved in the translation. The foregoing expression is
valid for positive and negative interval indices p. In general, since 7" [x] = 7[mz]| for any m € Z, it is hold
T g =7"[1lp. . p+q—1. Then, by notating 7[u]% =10, it is satisfied,

b=
Tl Tl=nlg =10 (23)

By writing in a shorter form equations 19, 20, and 21, the successive notes of a directed chord are
ai=Tlulyao, ampj=7lpljai, ai=T[-pllai; (24)

15In an n-TET system the translations form a group isomorphic to Z, and the inversions are a group isomorphic to Zs.
Then, the operations on the root generated by 71 and ¢ have the structure of a semidirect product Z, x Zg with 2n elements
{70,711 ,7'12,...,7'1"71 Sy T1 L,7'12L,...,7’1TL71L}, where Zs acts on Z,, by inversion, since the generators of the factor groups satisfy t710=71"1.
Therefore, the operations on the root of directed chords are isomorphic to the dihedral group Dy, (e.g., Dummit and Foote 2004), so
called because it is the group of symmetries of a regular polygon.

16nstead of referring to the components of a full mode p € M (n,k) from 1 to k, we refer to the mode intervals from 0 to k—1 in order

to use their indices according to the cyclic structure of Zy,.
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4.1.5 Retrograde translations by mode intervals. We also define successive translations by the
mode intervals, read anticlockwise direction,

T[M];q = T[N]pﬁp—l,...,p-‘]—i—l = T[Ap+ +Ap—q+1] i q<p (25)
The subindex p indicates the highest mode interval in the composition and the superindex ¢ is the number
of retrograde compositions. Hence, Eq. 23 is also true for negative powers of the translations,

Tlp)y  Tl=p], T =10 (26)
For example, for p = —1 in Eq. 25, we may apply translations by the mode intervals starting from the
last one, anticlockwise direction, such as
Tl T =7l = T A e Ad] (27)
which, by using the positive inversion of the mode, i=[Ak_1,...,Ap], may be computed as
Tl =[al (28)

In this way it is possible to express retrograde translations by intervals of a mode as prograde translations
by intervals of the positive inversion of the mode.

4.2 Operations on the mode

4.2.1 Positive and negative inversions. In §2.8 we introduced the positive and negative in-
verted modes. We reformulate these transformations to express them as operators acting on directed
chords, notating them with lowercase Gothic letters. The negative and positive forms of a full mode
uw=[Ap,A1,...,Ak_1] € M (n,k),i.e., —p and T, will be respectively written as

nM:[_A(]v_Al)"'a_Ak—l]; plu:[Ak—la'")AlaAO] (29)

Both forms were used to determine the relative inverted chord of {ag|u} about ag, so that the directed
chords n(ag|p) = ap|nu, read anticlockwise direction, and p(ag|un) =ao|pu, read in the positive orientation,
according to Eq. 11 produce the same chord, {ag|nu} ={ag|pu}.

By expressing the identity transformation on modes as e, it is obviously satisfied n? =p? =e.

4.2.2 Retrogradation and shifts. In §2.7 we referred to the retrograde mode as —pu =
—[Ak—1,...,A41,A0]. Applied anticlockwise direction to ap, it generates the same chord {ag|u} ={ao|—7}.
We shall write

tuEnpu:—[Ak_l,...,Al,Ao] (30)
so that t(ag|p) = ag|tp. Hence, {ag|tu} = {ag|p}. The retrogradation ¢ of a directed chord actually does
not modify the mode, but chooses the direction the directed chord is read, without changing the root.
Thus, retrogradation can be applied to a chord, although it leaves the chord invariant. Therefore, it is an
operation well defined for chords. It is straightforward to see that!”

t’=¢, t=np=pn, n=tp=pr, p=tn=nr (31)

On the other hand, the shifts on modes defined in Eq. 8 can be extended to directed chords as operations
that leave the root unaltered. For a positive mode u® = pu, a prograde single shift can be written as
pl=su®=[A1,...,Ax_1,Ao], while, in general, the jth shift is obtained as

W=splt=¢1% je (32)
with s = ¢. Notice that, for full modes of dimension k, this transformation is k-periodic, so that s* =e.
Therefore, (s) is a cyclic group of order k, although the shift does not commute with the previous
operations. Hence, the exponent indicating the shift number can be assumed as a number in Z. Then,
a retrograde or anticlockwise shift may also be applied to y, i.e., u=' =5 1u" = [A4_1,Ao,...,Ap_2]. In
general, we have p =/ =g 17+ =577,0.

Unlike translations, the operations n,p, and s on the modes cannot be extended to chords, since the
same operation may result in different chords depending on the directed chord rotation it is applied.

It is straightforward to prove the following properties of the mode operations involving shifts, being the

17The set of mode operations {e,n,p,t} is an abelian Klein four-group, which is the direct product (n) x (p) of cyclic groups of order 2.
However, if the modes are used strictly clockwise definite, we only have to deal with (p).
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first one commutative and the other two anticommutative:

sn=ns, sp=ps !, sr=t5! (33)

Therefore, for any j € Zy, it is fulfilled
sin=ns/, slp=ps 7, slr=ts/ (34)
Let us recall that the shifts 57y, j € Zy, of the full mode p € M (n,k) determine one mode class p°. The
inverted mode, e.g., written as a positive mode py, and their shifts belong also to one mode class (p,u)s,‘not
necessarily thesame as ;. For the sake of the second relationship in Eq. 33, these shifts satisfy ps/ p=s7ppu,
so that all the inversions of the modes in 1 belong to the mode class (pp)®. Therefore, we may speak of

mutually inverted mode classes, which have the same cardinality. In particular, if 4 and pp belong to the
sameclass, i.e., forsomem € Zy, ppu=5"p, then (pp)® = u*, since, for any j € Zy, it is fulfilled ps? =57 pu.

4.2.83 Neighbor chords. The way of moving between chords along the chord network by maintaining
the maximum number of common notes is along the edges of congruent cells, where, between adjacent ver-
ticesonly onenoteischanged. Thisisageneral case that includes the parsimonious voiceleading (Cohn 1997)
along the Tonnetz generated by amajor triad and its dual network!® . In such a path, the chords at the ends of
the edge belong to each one of the cells that share this edge, but depending on the rotation we use to describe
them we canmake explicit that they alsobelong totheoppositenon-congruent cellsthat areseparated by this
edge. In anon-degenerate Tonnetz, this efficient path combines chords generated by different mode classes.

Before describing how to move in the chord network from one chord to its neighbor, we must remark
that some of the mode transformations can also be applied to partial modes. In particular, the operators
p and s may act on partial modes by maintaining the total mode as a full mode. For instance, given a full
mode written as a composition of partial modes, i.e., y=v-x, with v € M (n,p),x € M(n,q) and p+q ==k,
we can generate new full modes such as pr- sk, psv -k, etc. The only condition is not to mix positive and
negative partial modes.

For amode p=[Ag,A1][Asg,...,Ax_1], k> 2, we notate a single transposition operator as

t,u:p[Ao,Al][Ag,...,Ak_l] (35)

It is the transposition of the first two mode intervals. Obviously, t* =e.
The ith transposition of two consecutive intervals A;, A;11 is obtained by combining the foregoing
operator with the mode shifts as o
ti=s "ts', 1€y (36)
In this way it is possible to reach all the transpositions of the symmetric group Sg. The k—1 generators
{to,-..,tx_2} provide a presentation of Sy (k>2) with the following constraints®”

HE=e, (i) (Gt)?=ee|i—jl#L, (i) (i)’ =e (37)
These constraints are also valid for all the indices in Zj, by assuming that the second condition |i—j| # 1
takes place in Zy, i.e., it that does not apply to the pair ty and t;_1.

ProproOSITION 4.1  For j=2,....k, given a subset of j—1 consecutive numbers {i,i+1,....i+75—2} in Zy
and a permutation o €S;_1, it is satisfied (ty(ij—2)to(it1) o))’ =¢-

Proof. Any composition of j — 1 different transpositions involving a subset of consecutive indices in Zj,
(regardless of the order of composition) is a cycle of length j and is a permutation of order j. [ ]

In particular, by assuming the indices in Zjg, this applies to a full mode shift expressed from any
composition in the form?’ s= Gok—otip1t.

When the single transposition operator t =1y is applied to the directed chord ag|u, the resulting directed
chord t(ag|u) = ag|tu = (ag,a0+ A1,a0+ Ao+ A1,a0 + Ao+ A1 + As,...,ap+ Ag+ ..., Ax_1) has exchanged

180riginally, the concept of parsimonious voice leading was applied when two notes of a trichord were maintained during a
transformation and the third note moved by a minor second or a major second. Douthett and Steinbach (1998) gave a more flexible
definition by requiring that just one note were maintained, with the other two moving by minor or major second.

9Equivalently, ti_l =t;, tjt; =tit; & i—j| #1,and tiy1titi 1 =titir1t;. The second condition only applies for k> 3.

20The transposition t;_1, since s =t;_o---tp, can be expressed as t;,_1 =t _o--t1tots - ty_o.

16



the note a1 = ag+ Ay of the original chord for ag+ A;. Both directed chords are still referred to the same
cell, although after one rotation, both chords can be written as

{a0|u} = {a0+A0|5u} = {CLO +A0,a0+A0+A1,...,a0+Ao+...,Ak_1,a0}
{t(a0|u)} = {ao—i-Al\st,u} = {a0+A1,ao+A0+A1,...,a0+Ao+...,Ak_l,ao}
now explicitly referred to the different cells centered in the notes they differ. Therefore, the operator t has
displaced the original chord along the edge connecting the cells a1 =ag+ Ag and ag+ A;.
In general, if the transposition operator is applied to the ith rotation of the directed chord, a* = a;|u?,
it is immediately to prove that

(38)

THEOREM 4.2 The chords {a;|u'} and {t(a;|pu)} only differ in the notes a; 1 = a; +A; and a; + Ay 1,
respectively.

Proof. The reasoning is similar to that of Eq. 38. The chord {ag | u} is equivalent to its rotations
{a;|p'} ={a;+ Ai|sp'}, while {t(a;|p")} ={a; + A;r1|stu’ }. These roots correspond to opposite cells in the
ends of the edge that connects these chords. [ |

To recover the original position of the common notes, it suffices to do the ith inverse rota-
tion. For ¢ = 0, ...,k — 2, the root ag appears in the inversions of the directed chords t(a; | u'),
ie., {t(ap | u2} = {ao | [A1, Ao, ... , Ap_1]} and {t(a; | )} = {ao | [Ao, - , Aiy1, As, ]}
i = 1,..,k — 2. For i = k—1, the root ag is exchanged by the note a9 + A9 — Ar_1, ie.,
{t(ak_l |/Lk_1)} = {ao—i-Ao—Ak_l‘ [Ak_l,A]_7...,Ak_2,AO]}. Therefore,

COROLLARY 4.3 For i =0,...,k — 2, the chords {t(a; | ')} remain in the chord cell ag. The chord
{t(ap_1 | pF=1)} does mnot belong to the chord cell ag. The edge connecting the chord cells ag and
ag+Ag— Ag_1 is the one to follow in order to move to a non-congruent cell with ag.

In the end of §4.3.5 we come back to these transformations in more detail.

4.2.4 Translations by mode intervals.

PROPOSITION 4.4  Prograde translations of a mode pe€ M (n,k) satisfy T[/Li_j]é :T[p,ui]g).

Proof. According to Eq. 8, since the subindices of the mode intervals belong to Zj, we have

J J
——

4 L ——
= [Aia-'-,Ai—ja---,Ai—l] and pu' = [Ai—l,--'aAi—j,---aAi]- Similarly,
J

W = (A Aty Ai 1, ,Ai_jir—1]. Hence, the sums of the j first terms of both foregoing

equations match, 7 [pui]é = T[,u,i_j]% =7[Ai—j+-+A;_1], leading to the desired result. [ ]

In particular, for i =0 we get T[/L_j]g :T[p,u]é and, for i =7, we get T[/L]g =T [p,uj]f).

4.2.5 Relationships involving shifts and translations. We give several properties combining
translations by intervals of a shifted mode, which will be used in the following sections. Equations involving
translations by mode intervals are also valid for inverse translations.

An interval A;;; of the mode = [Ag,A1,...,Ax_1] can be denoted in different ways, depending on the
mode shift and the chosen interval, as follows, [/ = [u']; = [1];;1,j € Zy.. Also, according to Eq. 28,

) Zi=7pn]y  (=T[Ajpr—1 o+ Ajni]) (39)
By taking into account Eq. 22, for 1 <i <k and any integer [, we have
Tlo=7l i (=TIA A Ajrica]) (40)

Since the first ¢ intervals of 1/ are the last 4 intervals of puj‘ in reverse order, their sum match. Thus,
7w = Tlpu’]i_,. Hence, by equations 34 and 40, we get 7[u/]§ = 7[pu/TH!]i. On the other hand, since
T[]k =10, then [/ |57 [/ ]¥ " = 79. Therefore, in Z,, T[]} =7 [npd ¥
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Owing to equations 34 and 40, going backwards ¢ — [ intervals and compensating with a prograde shift
of i —1 steps, we get the more general relationship for Eq. 40, 7]} = 7[ngdT~1F~". Finally, we also give
an alternative version of Eq. 24 for the notes of a directed chord ag|u,

aij=7[u'a; (41)
4.3 Chord transformations

4.3.1 Operations on root and mode. As mentioned above, the operations on the mode n,p, s and
t are defined only for directed chords. According to the condition given by Lemma 2.6, the operations on
two directed chords generating the same chord will produce the same chord only if the operations that
modify their modes are balanced with operations on their roots. Operations on directed chords involving
root and mode will be noted with uppercase Gothic letters.

As we have already seen, inversion of directed chords, using either the positive or negative mode
inversions, combine operations on root and mode. Both forms of inversion applied to a directed chord
generate the same chord, although read in opposite orientations. Under operational form, the inverted
and mirror directed chords are expressed as

I(aolpu)=rp(aolp) =—aolpp, M(ao|p)=n(ao|p)=—ao|np (42)
We notate the identity transformation of a directed chord as & = ee, which is the commutative composition
of both identities acting on the root and the mode, respectively. Then, 3% = 9? = &. Let us remember
that, as directed chords, J(ag|u) #M(ag|p), although, as studied in §2.9, they are well defined operations
on chords and generate the same chord.
According to Eq. 42, and bearing in mind Eq. 17, it is straightforward to derive the following
anticommutative properties that combine inversions and translations of directed chords,
31, (aolw) =2 3(aoln), M7 (aoln) = Mlaolu) (43)
4.3.2  Inversion of chords. Thus, theinversion of a chord is well defined regardless the directed chord
we use. That is, {ag|u} ={bo|v} if, and only if, {T(ag|p)} = {T(bo|v)}. In addition, the anticommutative
properties of Eq. 43 are also valid for chords, regardless the rotation of the directed chord that is being
transformed,
I {aolu} =7-oIaolu}, M7, {aolu} =7 Mao|u} (44)
We still give a more precise result.

PROPOSITION 4.5 If the directed k-chord ag|p is a rotation of m steps of the directed chord by|v, then
the inversion J(ag|p) is a rotation of k—m steps of J(bo|v)

Proof. According to Lemma 2.6, there is one value m € Zj, such that a,, =by and u™ =v. Hence,
am|5m:u: b0|1/ (45)

Then, for the respective inverted directed chords, J(ag|u) = —ao|pp and J(b|v) = —bo|pr, we look for the
index ¢ that satisfies ,

—am|8"pp=—bo|pv (46)
By inverting the directed chords of Eq. 45, according to Eq. 42 we get —a,,|ps"™ u = —bo|pv, which can be
expressed, by applying the second relationship of Eq. 33, as

— s~ " pu=—bolpv (47)
By comparing Eq. 46 and Eq. 47, we obtain the shift i=k—m, which makes the inverted directed chords
fit them together. The result is identical for modes oriented anticlockwise with the operator 1. |

4.3.83 Inversion and mirror by x. Other operations on the root and mode of a directed chord are
defined, such as the inversion by an interval z, in one of the following forms,

Ja(aolp) =723(aolp) =Tatp(ao|p) = (x—ao)|pp (48)
My (aolp) =7 M(ao| ) =7rin(aolp) = (2 —ao)[np
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depending on the orientation the mode is read. Thus, the inversion by x combines, first, an inversion of
the directed chord and, afterwards, a translation by an interval x, leading to a new root x —ag.

By Eq. 17, these operations are not commutative. We write Jp=J and 2My=91. Since inversions by an
interval are composition of translations and inversions, they are also well defined operations on chords.

Operations on the root and operations on the mode are mutually independent and commutative. On
the other hand, as seen in Eq. 17, translations and inversions on the root do not commute. In addition
to the property 7,7y = 7,1y, it is easy to borne out the following properties involving translations 7, and
inversions J, (or alternatively 9t,):

J2Ty=To—y MMy =Tp—y (49)
ToJdy=Tgry=TyJa oMy =My =7, M, (50)
JoTy=To—y=7T_y Tz My =My =7_y M, (51)

From Eq. 49 we see that 3525 =€, i.e., the identity element?!.

4.3.4 Rotations. Like inversions, a directed chord rotation, as defined in Eq. 9, is a combination of
a translation on the root and a shift on the mode. A one-step prograde rotation of the directed chord
a=ap|p € K (n,k), depending on the first mode interval, can be expressed in either of the following forms,

Ra=a' =T4,a0|s1="T[u]oao|su (52)

Similarly, an i-step prograde rotation applied to the same directed chord, according to Eq. 32 and by
taking into account Eq. 40, can be written as

Ra=a'=7a,4 +4, ,a0|s'u="ulhaols'n (53)
Successive rotations can be notated as follows,
Ra'=a" M =14,a;|sp" =T[p'oa;|sp’ (54)
and, in general, the consecutive i- and j-step rotations are expressed as
Wa'=a™ =7a 4 s, aile 1 =7l ljails i (55)
Rotations on directed k-chords clearly satisfy R'a’ = Ria’ = R0, RF = MO, and they have the

structure of a cyclic group of order k. Hence, for the rotation index we also assume 0R¢ =R med &
Rotations can be defined backwards, as retrograde rotations,

Rla'=a" =14, ails i =T[npt] qals (56)

Then, an arbitrary anticlockwise rotation is evaluated, by taking into account Eq. 41, as
Na'=a'7 =a;_j|s ' =7np’] agls ! (57)
If we take into account equations 28 (remember that pp =) and 30, we may write T[n,ui]zj = T[pn,ui]{) =

T[tui]{), allowing us to write the translation in Eq. 57 in terms of the prograde intervals of the retrograde
mode as S iy -

R7a' =a" 7 =7[ep'Thails ' (58)
which is a formula similar to Eq. 55, with the only difference that retrograde rotations take translations
in the root by the retrograde mode.

By definition, the chords are invariant under rotations, i.e.,

{a}={Ra"},Viez, (59)
Therefore, rotations induce a constraint between translations and shifts. Furthermore, according to Eq.

11, which expresses an inverted chord in two equivalent ways, the relationship {R?(a|nu)} = {9’ (a|pu)}
is satisfied for any couple of indices i,j € Zy, .

21Tn an n-TET system, the translations and inversions are made by intervals « € Zy,, being 7, = 71 . Since translations are generated
by 71, they satisfy 7{* =70 and are isomorphic to Z,. On the other hand, an inversion by x is obtained as J, = 7:J¢. Since 3(2) =€, then
Jo generates a group isomorphic to Zz. Therefore, such a group of operations on a chord is generated by 71 and Jg. It is is a semidirect
product Zy % Zso with 2n elements {7o,71 ,7'12,...,7'1"71 ,J0,71 30,71230,...,71"7130} satisfying Jo71J0 =71 ~!. Similarly to the operations on
the root of a directed chord, the operations on a chord are isomorphic to the dihedral group D, .
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4.3.5 Drifts along edges. Theorem4.2and Corollary 4.3 can be expressed by using amore appropriate
notation by defining the driftoperator, transforming directed chordsalongsingle edges of the chord network,

D, =R"TURY, i€Zy,k>2 (60)

When acting on the directed chord ag|p=ap|[Ao,...,Ar—1], bearing in mind Eq. 36, we get
Di(aolp) =R (a;|ts' u) = ag|tip; i=0,....k—2 (61)
D1 (aolp) =R~ F D (a1 [ts" " ) = ap+Ag— A1 [ts_1 (62)

THEOREM 4.6 Fori=0,...,k—2 the operator ©; transforms a directed chord ag|u sideways along one
edge in the same cell ag, while for i =k—1 the directed chord is sent forward along one edge towards the
non-congruent cell ag+Ag— Ag_1.

It is a direct consequence of Theorem 4.2 and of the fact that the transpositions {tg,...,tx_2} generate
the symmetric group S.

THEOREM 4.7 For j=2,...k, giwen a subset of j—1 consecutive numbers {iyi+1,....i+j—2} in Zi and
a permutation 0 €Sj_1, then (Dg(ij—2) Do(i41)Do(i))) = €.

Proof. Let 6 =9 (4 j_2)Do(i4+1)Do()- When &7 is applied to a directed chord ag|[Ao, ..., Ag_1], with
regard to the mode part ¢ = t,(;4j_2) " ts(i+1) to(), Proposition 4.1 guarantees the identity result. With
regard to the root, if & does not contain ®j_1, the root is also maintained. Otherwise, if & contains Dj_1,
since ¢ is a cycle of length j involving the mode intervals A;,4;11,...,A;+j—1, the first and the last mode
intervals are involved in each iteration and, in particular, from the first application of the operator ®j_4
onward, the root is modified according to Eq. 62. Each time ®j_4 is applied, the first mode interval runs
acycle A 0),Ap1)s--Ap(j—1) of length j, with p € S;. Similarly, the last mode interval runs a shifted cycle

p(m)sAp(m+1)s-sAp(mj—1) for certain m # 0 in Zy. Therefore, after j applications of Dy _1, the root ag
is transformed according to a series of translations 7[A ) — Apm)] - T[Api—1) = Ap(m+j—1)] = 0, since all
the mode intervals involved in one cycle appear once as positive and once as negative. [ ]

COROLLARY 4.8 For alli€Zy, the drift operators satisfy
)Df=€, (i) (D;9,)* =€ |i—j|#1, (i) (Dip1D;)* =€

Condition (i) is obvious; (ii) is a consequence of (i), since the transpositions of the mode intervals are
disjoint; and (iii) is a consequence of the above theorem.

Therefore, the elemental polygons composing one cell of k-chords are squares (only if £ > 3) and hexagons,
associated with the simple circuits (closed paths where no vertex is repeated) of the constraints (ii) and
(iii) of Corollary 4.8, for indices in {0,...,k—2}. Then, one node of a chord cell is connected to the neighbor
k—1 nodes shared with the neighbor cells with the above drifts and the drift ®;_1 connects the node with
a non-congruent cell. In the chord cell there are other simple circuits, such as allowed concatenations of
the above ones or paths corresponding to k consecutive shifts of the mode (Dj,_o---®0)* involving k(k—1)
edges. In general, throughout the chord network, we will find the simple circuits described in Theorem 4.7.

Since the Cayley graph is Hamiltonian, in the permutahedron we will always find Hamiltonian circuits,
i.e., closed paths that go through each vertex of the chord cell exactly once.

In addition, it is desirable to find the shortest circuits that run along several chord cells allowing changes
of tonality, likewise the maximally smooth cycles alternating major and minor triads of the 12-TET scale.
Each simple circuit begins and ends in the same chord, so that the total length of the path is equivalent to
a number of translations along the chord network satisfying Zici A; =0 mod n for certain values ¢; € N,
although the path runs step-by-step along several directed chords of different modes and mode classes (i.e.,
by directed chords that cannot be achieved only by translations and mode shifts) until becomes closed. It
is relevant the case where translations are done always along the same vector interval direction, i.e., when
there is a minimum positive integer j, 2 < j <n, satisfying j A; =0 mod n. Since, for j =n there is always
a simple circuit, we may speak of a shortcut circuit. We study the case jAg=0 mod n.
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PROPOSITION 4.9  The drifts operators satisfy D;+1 =R1D;R, hence D;+; =R ID; R fori,j € Ly.

Proof. Fori=0,...,k—3it is an immediate consequence of Eq. 36, since these drifts do not change the root.
Fori=k—2and k— 1, the relationship is also satisfied, since
R1Dp_2R(a0[Ao, - Ap—1]) =R Dy _2(a0+Ao|[A1,...,A0]) =R (a+ Ao |[A1,..., A0, Ak —1])
=(a+Ao—Ap_1l[Ak—1,A1,...,A0]) =Dy 1 (ao|[Ao,..., A _1])
R1D 1R (aol[Ao,., Ap—1]) =R Dp_1 (a0 +Ao|[A1,A2,...,Ap_1,A0]) =R~ (a+ Ao+ A1 — Ag|[Ag,Az,..., Ax_1,A1])
=(a+Ao+A1—Ag—A1[[A1,40,A2,...,Ax_1]) =Do(aol[Ao,.., Ak _1]) m

The graph in Eq. 63 describes the first translation 7[A](a|x) depending on whether we refer this path
to the edges of the adjacent chord cell ag+ Ay (upper row) or whether it starts running along the edge
connecting the cells ag and ag+ Ag (lower row). The translation from the first chord (left column) to the
last chord (right column) involves k—1 steps.

©k72 ©k 3
a+Aplspy — a+ Agltp_osu /,,AWI—AOIM
mT //,,T[Ao 9{ (63)

alp 5 atdo— Ap1lte—1p P S a+Ag—Ap_1ls tp
In the first case, since Dg - Dp_o = 51, Do - Dy_2MR(ao | 1) = s 7[Ao](ao | sp) = 7[Ao](ao | 1),
so that (Dg - Dp_oR) (ag | p) = 7[jAo)(ao | ) = ap | p- In the second case, by Proposition 4.9,
RD; -+ D1 (ap | 1) = [ Ao (ap| ), hence (RDyDy_1)! (ao| 1) = 7(j Ao)(ao| ) = ao| . Since chords are
invariant under rotations, the path generates a simple circuit along j(k—1) chords.

The generalization of the above result to any interval satisfying jA; =0 mod n is straightforward, since
it suffices to apply the ith rotation to the directed chord (a|p) at the beginning of the path, and the ith
inverse rotation at the end, in order to recover the original mode. Therefore,

THEOREM 4.10 If jA; =0 mod n, 2 <j <n, there exist shortcut circuits in the chord network running
j(k=1) chords and edges, so that (RD1--Dy_1)7 (a;|p®) =7[ Ai](a;| ) = a;|u’.

Furthermore, by taking into account Proposition 4.9, we may write
(RO D 1) (RD 1D 1) (RD - Dpq) =
ARRZRTZDIRZRZ-RZR 2D, ) (RRRTIDIRR L RR 1D, ) (RD- D) =
(939091)(92914—1@0)(@1Qk—l) Therefore,

COROLLARY 4.11 The shortcut circuit of the above theorem can be run without rotations, by consecutive
application of drifts with decreasing indices in Zy, (this is also valid for any simple circuit),

(D300 1) (DD 1D0) (D1 Dp1) (ai| ') = as | 1"

j(k—1) steps

5. Chord network

5.1 Referring a chord to different cells

For a directed chord x|y, the condition of invariance of the chord, {zq|u} = {R(zo|p)}, according to Eq.
54 implies {wo|u} = {7[u]o 70|51 }. By applying the opposite translation 7~ *[u]o = 7[—p]o in both sides of

the foregoing equation, we get .
{77 [ploxolp} ={wolsp} (64)

Thus, starting from the chord {z¢|pu} we may reach the chord {zo|sp} either from a shift or from a
translation. In a similar way as in the geometric representation of Fig. 3, the translated chord in the new
cell is placed at the same relative position than the chord {z¢|u}, although the shifted chord remains in
the original chord cell x¢ in a different relative position. Then, the same chord can be expressed from two
roots, which are the center of two contiguous cells sharing the chord of Eq. 64.
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According to equations 53 and 59, a chord {z¢|v} is invariant by rotations, hence

{wolv} = {9 (zo|v)} = {r[v]g wols’v},j € L, (65)
For each chord, the value 7 = 0 provides the chord written as a directed chord with root zg, while values
j =1,...,k—1 provide the same chord from the other roots. Then, each chord {xo|v} can be expressed
according to a directed chord referred to one of the k—1 surrounding cells of xg centered in T[V]é X0,
although from a different shift of the mode. Thus, by generalizing Eq. 64, we get the following result,

THEOREM 5.1 The chords {xo|s/v}, j € Zy, are equivalent to the following translations,
{wols? vy = {77 V] ol v} (66)

The translated chords become referred to directed chords in neighbor chord cells according to the
successive notes of the relative mirror chord {zg|nv}, read anticlockwise.
Similarly, by taking into account Eq. 58, the retrograde rotations of a chord satisfy

{wolv}={R (wolv)} = {7~ [pr]§aols v} (67)

By applying T[py]é in both sides, we get an equivalent result to the previous one,

THEOREM 5.2 The chord {xo|s v}, j € Zy, is equivalent to the following translation®?,
{wols™v} = {rlpvfh wolv} = {r[] " olv} (68)

Now, the translated chords are referred to directed chords in neighbor chord cells according the successive
notes of the relative inverted chord {xg|pu}.
For the chords generated by an inverted mode, we get some similar results,

COROLLARY 5.3 The chords {xo|s'pv}, j € Zy, satisfy
{wols’pv} ={r " [pr]fxolpr} (69)

The translated chords are referred to directed chords in neighbor chord cells according the successive
notes, anticlockwise direction, of the chord {zo|—pr}={xg|tv}, obtained from the retrograde mode.

COROLLARY 5.4 The chords {xq|s /pv}, j € Zy, satisfy®>
{wols I pr} = {7 [V} zolpr} = {7[pr] =] zolpr} (70)

The translated chords become referred to directed chords in neighbor chord cells according the successive
notes of the chord {zg|v}.

5.2 Co-cycles, co-cells, and congruent cells

For y1 € M (k,n), we write Eq. 66 as {771 [u]} zo|p} = {z0|p’},j € Zg. In the chord cell ¢ the family of
chords described by the right-hand side member of this equation is composed of k different chords, which
form a co-cycle (Cohn 1996). The co-cycles of the cell z( are then generated by the modes of the mode class
1° applied to the same root.

Alternatively, on the left-hand side of this equation, each chord of the co-cycle in the cell xg is referred
to one of the k—1 surrounding cell of ¢ with centers in 7! (1]} o, respectively, in addition to the chord
{zo|p}. We call them co-cells of the chord {xo|u}, where the chords of the co-cycle are placed in the same
relative position as {xo|pn} with regard to the cell xg.

Two chords {a} and {b} in the cell zg are in the same co-cycle if, and only if, for any interval u the
translated chords {7,a} and {7,b} are in the same co-cycle in the cell g+ u. On the other hand, in the
cell zg a directed chord zg|u is placed in a vertex shared by k co-cells. In each one of these cells this chord
is generated by other shifts ™ of the mode®*. Since the cells sharing the chord are those corresponding to

22The translation may be rewritten according to Eq. 39, so that it is carried out by the same mode v.
23Here, the translation may be also rewritten according to Eq. 39, so that it is carried out by the same mode pv.
24In a non-degenerate Tonnetz, these shifts are always different, otherwise, for p# g, the shifts u? and 9 may coincide.
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the k rotations of the directed chord, according to Eq. 53, the chord {zo|p} in the cell z; =7[u]) 2 (which
is the root of the jth prograde rotation of the directed chord) is generated by the shift 7, for j=1,...,k—1.
Then, the shift of the mode is m = j for the cell x;.

For any mode class v¥ € C(p), the co-cycles {zg|v'}, i=0,...,k—1, belong to the cell 2. By collecting all
the modes of the mode classes in C(u) we get the symmetric modes S(u). Then, the congruent cells of the
cell zg are those of the notes composing the chords {zg|v} with v € S(u). According to §3.8, this makes a
number of 2F —2 cells, that are adjacent to the facets of the cell x(.

5.3 Dependent operations on chords

Equations 66 and 68 show that amodeshift can be computed from adependent translation by modeintervals
of a directed chord, which is an operation that, in this form, is well defined for chords, on condition of refer-
ring the directed chord to another cell. For example, in the following case, the mode may be shifted according
to Eq. 66 as follows, {ag|u®} = {a1|p'} = {77110 (ao|u®)} = {71 [u]o (a1|p!)}. In the second member
we get the shift of {ag|u®} in the cell ag, {771 [u]o (a1|p')} = {a1 — Ao|u'} = {ao|p'}, while, in the first
member, the shift is expressed as a translation to the cell ag— Ag, such as {77 [°]o (ao|p°) } = {ao — Ao|u°}.
It corresponds to a chord placed in the same relative cell position than {ag|u’}.

Therefore, we may use the alternative operations described in equations 66 and 68 to compute the
chords obtained as shifts of a directed chord rotation.

THEOREM 5.5 For any rotation of the directed chord a;|p’, i € Zy, the chords corresponding to the
shifted directed chords are obtained from the following translations on the chord {a},

{/ (@l )y =r" Wl lay, {57 (@il =7lu']"1 {a} (71)

We have a similar situation for inversions on the root of a directed chord. The inversion of the root can
be obtained as a translation also depending on the root, that can be expressed as {vx|u} =7, 2{x|u}.

THEOREM 5.6  The chord obtained as a root inversion of the ith rotation a; | i is the result of the
following translation on the chord {a}, {t(a;|p")}=7"2[a;] {a}.

Similarly, by taking into account Eq. 43 and the above equation, we have,

THEOREM 5.7 The chord obtained as the relative mirror chord of a;|pt is computed from the following
composition on the chord {a}, {n(a;| ')} = M 772[a;] {a}, which is equivalent to the relative inverted

chord {p(a;|u®)} =37 2[a;] {a}.

5.4 Translations by mode intervals

5.4.1 Single translations. We study in detail the transformations on the Tonnetz between chords
of the same mode class. As we have seen, these transformations can be interpreted as consecutive single
translations of chords. Let us remember that the Tonnetz is non-degenerate, i.e., the interval vectors have
different length. According to the preceding section, the chord {zo|u°} in the cell 29 belongs to the co-cycle
formed by k chords (k > 3) in the form {z¢|u'}, i € Zy.. In the cell xg, these chords can be expressed from
directed chords with root zo and shifts of the mode class 1° and they may also be expressed as translations
to the co-cells by consecutive intervals of amode of the class. Among these translations, there are only two
translations depending on a single mode interval, the first and the last, yielding a chord of the co-cycle in
the same cell. According to Eq. 71, these translations are

7l=pJo {wolp'} = {wolu™™},  7lu']-1 {olp'} = {wolu"™"} (72)

Other translations by a single interval lead to a chord in another cell.
For the first relationship of Eq. 72, if the translation is carried out by an arbitrary mode interval
[—p]j = [—pit]o=—Aj;,for 0< j <k—1, by expressing the chord from the jth prograde rotation of z¢|u’,
i.e., {R7 (wo|p?)} = {z;|u*7}, the first expression of Eq. 71 allows us to use a translation as a shift, so that

Tl=p o {wolu'y = 7[=p" o {R (wolu')} = 7= Jo{as |} = {7 (73)
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Therefore, the chord {z; |71} in the cell x; is not a rotation of any chord in the cell zg. Hence, the
following k—1 translations lead to a chord which is not in the co-cycle of {xo|u'} and is placed in the
neighbor cell Ofﬂj‘o, Zj :aj‘o—l-Ao—l-...—{—Aj_l,
Tl=n" o {zol '} = {a; W™}, 0<j<k-1 (74)
Similarly, for the second relationship of Eq. 72, if the translation is carried out by the mode interval
[1']—; = [ty = A;_j, for 1 <j <k, by expressing the chord from the (j—1)th retrograde rotation of
zolp?, e, (R0 (zo|p?) } = {wk_js1 |71}, and taking into account Eq. 71, we get

Tl TR (o )y =7l I [T Y = ) (75)
Therefore, the chord {zg_;+1|p ™7} in the cell z;_ ;11 cannot be expressed as a rotation of a directed chord
in the cell xy. Then, the following k—1 translations lead to a chord that is not in the co-cycle of {zg|u'}
and is placed in the neighbor cell of g, T j 1 =20 —Ap—1—... — Ap—j+1,
Tl {wol'y = {an—jaa ™}, 1<<k (76)
Equations 72, 74 and 76 can be summarized as follows,

THEOREM 5.8 If u=[Ao,...,Ax—_1], the chords resulting from applying a single translation by a mode
interval to the chord {xo|u} are,

7[—Ag] {zolp} ={molu'}; T[A—1]{zo|u} ={zolp'} (77)
= A {wolp} ={m |}, 1<i<k—-1; 7[A]{zolpn}={zi1lp'}, 0<I<k—2 (78)

The translations of Eq. 78 cannot be rooted in the cell 2y and describe the chords from congruent cells.
On the left-hand side, the chords are rooted in a note not belonging to the original chord, while on the
right-hand side they are rooted in a note of the original chord.

COROLLARY 5.9 Single translations by a mode interval of the chord {zo|u} are composed of the chords
{z| ! 1} with 0<1<k—1, and the chords {11 |p'} with 0<I<k—1.

To complete the study of single translations of a chord {xg|u}, we will investigate when two single
translations lead to chords sharing a common chord cell, either the same cell zg or a different one, and
when they drive to different cells, that is, that they cannot share a common root. This will be done by
comparing the pairs of possible positive and negative translations, i.e., by 7[—A,] and 7[A,], by 7[A4,] and
T[Aq], and by 7[—Ap] and T[—A].

5.4.2 Translations towards one cell. According to Eq. 78, a translation by a single mode interval
of a chord {zg|u} in the cell zg leads to a cell different from ¢ in 2k — 2 out of 2k cases. Nevertheless,
different single translations by a mode interval may lead to a common neighbor cell. Let us see in what
cases the families of translated chords

Tl= A {zolpy = {zp P}, peZi;  T[Ad{wolu} ={wgr1 |}, q€Zy (79)
produce two chords that can be referred to the same root.

PRrOPOSITION 5.10 The following chord translations lead to a common neighbor cell,
l=Ap{wolu} = {apl '}, T[Ap_1{wolu} ={zp|? ™"}, pEZy (80)

Proof. We already know that for p=0and ¢g=k—1 the translations leave the chords in the cell zg according
to Eq. 77. It is also obvious that for g=p—1 mod k the translations by 7[—A,] and 7[A4,_1] lead to the cell
xp. This includes the case p=0. |

In addition to the particular cases of Eq. 80, we study the other possible cases.

THEOREM 5.11  The following chord translations lead to the same co-cycle into a non-congruent cell,
T[=Ap|{zo|pu}= {$p+Ap+1|Hp+2}, T[Apri{zolu} ={zp+Apr1|"}, pEZy (81)
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Proof. In the general case general, we ask for values p,q so that both chords of Eq. 79 will have rotations
{Rr[—Ap)oln}, {RT77[Agao|p} (82)

with a common root for some values ¢, j, such that 0 <7 <k and 0 < j <k. Then, by equations 55 and

57, {0 T[= Ay mol i} = {rlplh = A, Tols ), 1R 7[A,) wo|u} = {7l—n)=4 7[Ag) wols~ p}. Thus, by

relating the part corresponding to the root of both equations, after reordering terms?>,

Apj+ A jp+F+ A1 +Ao++ A2+ A _1=A4,+A; mod n (83)

The intervals on both sides are positive and on the left there are at most 2k — 2 terms?®. Then, the values
1,7 allowing the above relationship are as follows.

Thesimplest case correspondstoi=1and j =1, sothateither p=0,g=k—1orp=k—1,¢=0. Other cases
are those involving all the intervals of one full k-mode, i.e., any shift of u, since Ag+-+-+ Ax_1 =0 mod n.
Then, Eq. 83 is satisfied if, and only if,

A o+ A; 1+ F+ A 1+Ag++A;_o+A; 1 :Ap+Aq mod n (84)

0 mod n
so that the underbraced terms do not contribute to the total sum. Hence, comparing to Eq. 83, we get
k —j =1—2 mod k. Therefore, since the indices of the mode intervals are different, one of the following
cases is hold (the equalities are mod k):
(a) p=i—1,q=k—j, thatis,qg=p—1,i=p+1,—j=p—1;
(b) p=k—j,q=1i—1, that is, g=p+1,i=p+2,—j=p.
Case (a) is similar to Eq. 80. Case (b) provides the family of couples of chords

{r[=Aplzolp} ={zplu? ™}, {r[Apri]wolu} ={zpral? ™}, pEZ (85)
According to Eq. 82 and to the corresponding values ¢, j, they can be written respectively from
a common root as {T[—A,] zo | u} = {RPT2 7[-A4,] zo | u} = {7’[,u]gJr2 zo — Ap | WP} =
{@o+ Ao+ + Ap-1 +Ag+ A1 [P T2} = {2+ Apia |72}, and {7[Ap 1) wolp} = {RP 7[Ap 1) ol ) =
{r {0+ Apia |17y = {mo+- Ao -+ Ayt H 4y + Ap |07} = {p+ Apin 7). "

5.4.83 Translations towards different cells. Chords belong to different cells if they cannot be
referred by rotations to the same cell. We study the other two possibilities of single translations. First, let
us see whether the families of translated chords,

T[Ap{zolpu} ={zps1l’}, peZi;  T[AJ{wolp} ={2q11ln}, q€Zi (86)
assuming p # ¢, provide two chords that can be referred to the same root. By follow-
ing the same procedure as the previous section, after rotating, the roots must match. Then,
Apj+Ap_jp++ A+ Ao+ +A o+ A1+ A,=A, mod n.

Like in the previous case, this relationship has a geometric meaning. On the right-hand side there
is one single positive interval. On the left-hand side, in addition to A, there are i 4+ j consecutive
intervals, with ¢+ j <2k —2. Hence, to fulfill that relationship there must be one cycle plus one interval.
If there is no cycle, then p = ¢, which is not the case. Thus, the above relationship should be either
Apt+Ap 1+ Ag++A, 1 +A,=A;modn, or A+ App++Ap1+Ag++A, =A;, mod n, by

0 mod n 0 mod n
yielding, in both cases, to p=gq, against the prior assumption. Therefore, we conclude:

THEOREM 5.12  Translations of one chord by different single positive intervals lead to different cells.

25This is a way to test whether two chords {z|u} and {z’|u'} belong to the same co-cycle. Since it is not sure that both chords may
be expressed as directed chords with the same root (in which case we should only to compare whether both modes belong to the same
class), we write both chords as generated by the same mode p=[Ay,...,Ax_1], e.g., {z’|'} ={y|p}. Then, both chords are in the same
co-cycle if, and only if, there exist two indices 4,7 so that the interval difference among the roots x and y can be expressed as a series
Ap—j+Ap—jr1++Ap_1+Ao++A;_2+A;_1,i.e., as afraction of any shift of the mode p.

26Let us remember that this equality has a geometric meaning. According to Eq. 16, the series of intervals Ao,...,A;_1 (i < k) are
associated with independent directions. Similarly, the series Aj_;,...,Ap_1 (j <k) are independent intervals. A number of k consecutive
terms are dependent and form a cycle, hence they can be suppressed. In that case, the remaining terms on the left-hand side are at most
k—2in number and are independent. In addition, the intervals A, and A4 must be included among those terms.
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Second, let us see whether the families of translated chords

Tl=Apl{wolu} ={zp |t} pelps  r[-Ag{zolp}={zglu?}, q€Zy (87)
provide two chords that can bereferred tothe sameroot, also by assuming p # ¢. By following a similar proce-
dure, after rotating, the roots must match. Then, Ay, +Ap_j 1+ + A1+ Ao+ + A2+ A1+ A=

Ap mod n. Thus, wereach asimilar result as the first case,leading to p = ¢, against the former assumption?’ .

THEOREM 5.13  Translations of one chord by different single negative intervals lead to different cells.

5.5 Honeycomb of trichords

The relationships obtained in the above sections are used to interpret the honeycomb of trichords depicted
in Fig. 3 for the general case associated with amode u=[A,B,C], as well as those of Fig. 4 for the particular
case u=[4,3,5]. This is an example of how to proceed in a more general case.

Each chord is shared by three cells, and can be rooted in three different notes labeling the center of the
congruent cells, i.e., the roots of the three rotations of the directed chord. Each cell has 6 principal facets: 3
front facets that are orthogonal to the vector intervals +A,+ B,+C', and 3 back facets that are orthogonal
to the vector intervals —A,—B,—C. Each cell is surrounded by 23 — 2 = 6 cells, as many as facets, all of
them, principal facets.

As explained in §3.9, voice leading along facets in the tonal network is associated with paths that
maintain the notes on either side of the interval to which the facet is orthogonal. This corresponds to
paths along edges of the chord network. According to §4.2.3, in such a path it is possible to remain in
the same cell or to divert to another cell through the edge connecting to a non-congruent cell. If we apply
the transformations of Theorems 4.2 and 4.7 to the actual chord network, between the cells a + A and
a + B, the connected directed chords are a|u® and?® Dg(a|u®) = a| — 2, which share the root a and
the third note a + A+ B = a — C (the fifth in the case of u = [4,3,5]). Between the cells a + A+ B and
a+ A+ C, the connected directed chords are a|u® and D1 (a|u®) = a| — p', sharing the root a and the
second note a + A (the major third). Between the cell a = a + A+ B + C and the non-congruent cell
a+A+B+A=a+A—C, the connected chords are a|u® and Dz (a|u’) =a+ A—C|—pu°. They share the
second note a+ A and the third note a+ A+ B (the major third and the fifth). Therefore, the movements
along the edges of the chord network can be interpreted as being: ®g a displacement towards the neighbor
chord on the edge in the direction orthogonal to the interval C' (which preserves the fifth interval), ®; a
displacement in the direction orthogonal to the interval A (which preserves the major third interval), and
D adisplacement in the direction orthogonal to the interval B (which preserves the minor third interval)
towards a non-congruent cell. These operators match and generalize for an arbitrary mode Lewin’s (1987)
basic operators P, R, and the leading tone exchange L of the Neo-Riemmanian triadic progressions.

The chords in one cell may be translated by mode intervals to neighbor cells and to the same cell. In
the latter case, a translation is equivalent to a shift of the mode by maintaining the root. There are two
mode classes, i.e., major and minor chords, and, therefore, two co-cycles that translations cannot mix,
except in the case of a degenerate Tonnetz with a single mode class. Thus, for the single translations of the
chord {a|u’} towards the same co-cycle in the same or another cell, from Eq. 80 we get? the following six
chords, which are referred to the same cell a and to the neighbor cells a+ A and a—C (the symbol f indicates
translations that donot change the shift of the mode, therefore they are chords referred to co-cells of {a|u°}),

p=0; 7afalp’}={alp'}; rc{alu’} ={alp?}
p=1; 7 p{alp®}={a+Alp*}; 7Ta{aln’}={a+Alu'} (88)
p=2; 7-c{alp’}={a=Clp°}'; 7p{alp’}={a—C|u'}

and from Eq. 81 we get the following translations, which are the same chords as in Eq. 88, but now referred

2"However, if the Tonnetz is degenerate and the interval vectors A, and A, have the same length, the cells zo + A, and zo + Aq, and
the cells xg — Ap and 29 — A4 have respective roots with a similar value.

281n this case we obtain the mode —u2, which belongs to the co cycle of the mode —p, but in a general case with k > 3, we may reach
other co-cycles which are not in such a relation with the mode p, since there will be more than two mode classes.

291n this case, Ag=A4, A1 =B, Ao =C,z0=a,z1=a+A,and xo =a+A+B=a—C.
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to non-neighbor cells of {a|u’}, i.e., a+B, a—B and a—C+A,

p=0; 7afau®y={at+Blu?};  7o{alu’}={a+Blu}
p=1; mplap®y={a=Bl"};  7c{alu’}={a—Blu'} (89)
p=2; Tc{aln’t={a—C+Al'}; ta{aln’}={a—C+Alp?}
The relationships in equations 88 and 89 may be summarized and completed with the remaining rotations
of each directed chord according to the following scheme,

{alp”y = AfatAl'} = {a—Clp?}
T4 | {a+Ap}y = {a+2Au }T' = {a—C+Ap?}
8 | {a+Bp’} = {a—C|u'} = {(17(7+B\/1,2}T'
o [{arC®Y =  {a-Bl'Y = {au?} (90)
T_a | {a—A /1,0}i = {a|u'} = {a+ B|p?}
r_p | {a=Bl"y = {a+A-BY = {a+A|u?}
7 c| {a—Clp} = {a+A-Clp'y = {a—20 /1,2}:L

The chords in black are referred to the cell @ and its neighbor cells, where they form the three respective
co-cycles. The initial chord and both translations share one note. These cells are 0 steps away from the
initial chord. The chords in gray are referred to the cells in the second ring of cells from a, containing only
two chords of a co-cycle. The two translations share one note that does not belong to the initial chord,
although each translation has a common note with the initial chord. These cells are 1 step away from the
initial chord. The chords marked with the symbol i, are the only single translations of the initial chord in
their respective cells. However, these cells, also in the second ring, are 2 steps away from the initial chord.
Similar relationships can be obtained with the inverse mode.

6. Conclusions

We provide a new formalism to study chord transformations over a non-degenerate Tonnetz, i.e., with a
generating mode that has non-two equal intervals. The first part of the paper reviews the main concepts
and definitions. Basic transformations and their geometric aspects are revisited, so that they can later
be related to our algebra of k-chords. Geometry properties are described for trichords, which are easy to
visualize, and afterwards they are extended to higher dimensions. In a second part, chord transformations
are studied in operator form, either acting on the root, the mode, simultaneously on root and mode, or
on the chord. The operators allow us to understand the structure of the chord cell, which, in general,
is a permutahedron of order k, i.e., a (k—1)-dimensional polytope embedded in a k-dimensional space,
whose vertices and edges are isomorphic to the Cayley graph of the symmetric group Si. Among the
transformations along the chord network some of them are relevant, since they are frequently used in
music, such as those between chords of the same co-cycle in one cell, or of a similar co-cycle in a co-cell,
that can always be reduced to dependent translations by mode intervals.

For trichords, to change between co-cycles an inversion suffices, but for higher dimensional chords a
novel operator is introduced, which, from a geometric point of view, is the only operator that can logically
be defined: a step-by-step displacement along the chord network. Thus, a drift along one of the concurrent
edges of the chord changes the co-cycle by combining mode transpositions and directed chord rotations.
The drift operators ®;, for ¢ =0,...,k — 2 transform a directed chord sideways along the k—1 edges in the
same cell, while for i =k—1 the directed chord is sent forward along the edge connecting to a non-congruent
cell. These operators generalize the basic operators P, R and L. of the Neo-Riemmanian triadic progressions.
The elemental polygons composing the chord cell and the chord network are squares (for k£ > 3) and
hexagons, which are associated with the simple circuits described in Theorem 4.7. Other simple circuits
exist if, for a certain mode interval A;, it is satisfied j A; =0 mod n with j < n. Then, there are shortcut
circuits of j(k—1) steps (for j = n there is always a simple circuit) that can be expressed by consecutive
application of drifts with decreasing indices in Zy, . They generalize the maximally smooth cycles composing
the four hexatonic systems for the trichords of the 12-TET scale. In the chord cell, as well as in the chord
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network, there are always Hamiltonian circuits, i.e., closed paths that go through each vertex exactly once.

As an example, the model is explicitly applied to describe the chord network associated with the
trichords of a non-degenerate Tonnetz and, in particular, with the mode that generates the major and
minor triads. For k-chords in the 12-TET system, if k = 3 there are 14 non-degenerate Tonnetze, but for
k > 3 there are only two, generated by the modes [1,2,3,6] and [1,2,4,5]. Nevertheless, the current model
can easily be extended to degenerate Tonnetze. In higher dimensions, degenerate Tonnetze of particular
interest are those generated by a mode such as [4,A,B,B,C,C], in order to study the hexachords in the
12-tone scale with the mode [3,3,2,2,1,1], whose submodes, according to Lemma 2.2, generate, in addition
to the major and minor triads, the major and minor seventh chords [4,3,4,1],[3,4,3,2], the augmented and
diminished chords [4,4,4],[3,3,6], their seventh chords [4,4,3,1],[4,4,2,2],[3,3,3,3], the dominant seventh
chord [4,3,3,2], etc. Therefore, a natural extension of the present work would be to study how the algebra of
chords becomes restricted to less fine partitions of the octave, i.e., how it behaves with regard to submodes.
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