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For an n-TET tuning systemwe propose a formalism to study the transformations of k-
hords over a generalized
non-degenerate Tonnetz generated by a given interval stru
ture. Root and mode are the two 
omponents of a

dire
ted 
hord on whi
h the algebra operates, so that 
hord transformations within one 
hord 
ell or towards

other 
ells, and paths or simple 
ir
uits over the 
hord network 
an be determinedwithout resorting to 
omputa-

tional algorithms or geometri
al representations. The one-step transformations over the edges of 
hord network

asso
iated with the k−1 drift operators generalize the basi
 operators P, R and L of the Neo-Riemmanian

triadi
 progressions and the maximally smooth 
y
les of the 12-TET system to any higher dimensional spa
e.
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1. Introdu
tion

Chords generated from symmetri
 
ir
ular interval series are of great musi
 interest and have been

largely studied (e.g., Forte 1973; Chrisman 1977; Lewin 1987; Cohn 1996; Douthett and Steinba
h 1998;

Tymo
zko 2006; Nobile 2013). The basi
 harmoni
 stru
ture of tri
hords

1

in Western tonal musi
 is

the starting point of two ways of analyzing musi
, one, the S
henkerian theory for the deep stru
ture of

tonal musi
, and the other, the Neo-Riemmanian theory for transformations and voi
e leading over the

Tonnetz, whi
h 
an also be extended to non-tonal musi
. In the 
urrent work, we propose a new and simple

formalism to study the stru
ture of 
hords in an n-TET tuning system and their transformations over

the generalized Tonnetz (Tymo
zko 2012) and its dual diagram, the 
hord network, generated by a given

interval stru
ture. In extended just intonation a mathemati
al model for navigation through a 
omplex

spa
e of harmonies was proposed by �abka (2017). Ours is an alternative approa
h to the Pit
h-Class (PC)

set theory for atonal musi
 (Forte 1973), based on the notion ofmode used by musi
ians su
h as Messiaen

(1944) and Vieru (1980): an ordered k-tuple of PCs from the n-TET s
ale de�nes a dire
ted k-
hord (a

rolled 
hord), whi
h is 
omposed of a root (the starting note) and amode (a partition of the o
tave). The

rotations of a dire
ted 
hord de�ne an equivalen
e 
lass, and the shifts

2

of amode de�ne a mode 
lass. The

notes of a dire
ted 
hord, as a set where order does not matter, form a 
hord.

Starting by the parti
ular 
ase of tri
hords, we des
ribe the stru
ture of the 
hord 
ell and the tonal 
ell,

whi
h are mutual 
ombinatorially dual polytopes. In the 12-TET system, the Tonnetz asso
iated with

the mode [3,4,5] generating the major and minor triads is used as a 
ase example. It is worth mentioning

theoreti
al works using alternative Tonnetze, su
h as Lewin (1998) with the mode [0,1,3] and Clough

(2002) with the modes [1,4,7] and [2,3,7]. For an n-TET system, we introdu
e and formalize an algebra of


hords for anon-degenerateTonnetz, meaning that the generatingmode hasnon-two equalmode intervals,

so that transformations 
an be done in higher dimensions regardless of geometri
al representations.

Email: rafael.
ubarsi�up
.edu

1

We use the term tri
hord as similar to triad, meaning a set of three notes, not ne
essarily in a parti
ular segment of a s
ale. This

meaning is extended to tetra
hords, hexa
hords, et
.

2

Mode shifts mean rotations of the mode intervals. Shifts will refer to modes and rotations to dire
ted 
hords.
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Transformations distinguish between operations on the root, su
h as inversion and translation, and oper-

ationsonthemode,su
hasmodeinversion, retrogradation,andshifts.Someoperationsarewellde�nedonly

fordire
ted
hordsandothers for 
hords,whi
hne
essarilyare 
ompositionofoperationsonrootandmode.

Translations by mode intervals transform 
hords within the same mode 
lass, either within the same


hord 
ell or towards another 
ell. They are equivalent to a 
ombination ofmode shifts and 
hord rotations.

However, 
hanging the mode 
lass, although for tri
hords an inversion su�
es, for higher k-dimensional


hords must be done through the k−1 transpositions of the mode intervals. Among these, a number k−2
is asso
iated with one-step drifts along the edges within one 
hord 
ell, while the remaining drift sends

the 
hord towards a non-
ongruent 
hord 
ell, whi
h generalizes the leading tone ex
hange of the Neo-

Riemmanian triadi
progressions (Lewin1987;Cohn1996, 1997;Douthett andSteinba
h1998). In thisway

it is possible to identify in any dimension simple 
ir
uits (
losed paths where no vertex is repeated) over the


hord
ell andover the
hordnetwork, su
has those thatgeneralize themaximal smooth
y
les (Cohn1996).

The paper is organized as follows. In Se
tion 2, notation, de�nitions and basi
 
on
epts are introdu
ed.

Se
tion 3 deals with the geometri
 aspe
ts of tri
hords and its generalization to higher dimensions. Se
tion

4 formalizes the algebra of 
hords, namely, operations on the root, on the mode, and on the whole dire
ted


hord, respe
tively. In Se
tion 5 the algebra of 
hords is applied to the 
hord network, by analyzing spe
i�


transformations and pointing out the main properties. The honey
omb of tri
hords is used to exemplify

how the algebra of 
hords operates. Finally, in the 
on
lusions, we remark the main results and suggest

some points to extend and develop for future works.

2. Preliminaries and de�nitions

2.1 Mode

The o
taveOn 
ontaining the whole set of n notes of an equal temperament s
ale is represented as points

evenly distributed along a 
ir
le of n units length, oriented 
lo
kwise, and beginning with 0. Numeri
ally,

a note of an n-TET system is a number in the set Zn of integers modulo n.

Ak-mode is de�nedby
hoosinga sequen
eofk positive integers, [A0,...,Ak−1], so thatA0+···+Ak−1=n.

Therefore, ea
h positive interval has, atmost, n−k+1 units length and k is not greater than n. In addition,
sin
e an interval of n steps leaves invariant any note in the o
tave (it is equivalent to 0 steps), the whole

o
tave On will 
orrespond to the full mode [0]= [∗], where the asterisk means the amount left to �ll a full

o
tave. We shall assume that the indi
es of the mode intervals take values in Zk. The set of k-modes is

notated asM(n,k), where n is the rank and k the dimension.

We may need to work with modes of rankm, lower

3

than the rank n, i.e., with a part of a mode of rank

n. In order to make su
h a distin
tion, a mode

4 µ= [A0,...,Ak−1] ∈M(n,k) whose intervals sum 0 in Zn

will be 
alled full mode. We 
an simplify the notation as µ= [A0,...,Ak−2,∗] sin
e in this 
ase one of the

intervals is redundant. On the other hand, a mode λ∈M(m,k), with m<n, will be 
alled partial mode.

We ne
essarily write the partial mode without asterisk, as λ=[B0,...,Bk−1]withB0+···+Bk−1=m<n.

In addition, in an n-TET system, the notion of mode 
an also be generalized to a series of interval

values giving several turns to the 
ir
le of the o
tave, i.e., with total size larger thann, although, in order to

determine thenotesof a 
hord, onemustalways
onsider mod n.Therefore, thedimensionk ofageneralized

modemaybe larger, equal, or lesser thann. Thus, any sequen
ewith 
omponents taking values inZn 
anbe

interpretedas a set of intervals or as a set ofPCs, that is, as a 
hord.Thisdual point of viewwasdevelopedby

Vieru (1980) and its mathemati
al aspe
ts have been further studied, e.g., by Andreatta, Vuza, and Agon

(2004). Our aim is not to use this duality but to fo
us in the interval stru
ture of the 
hords. In su
h a 
ase,

anymode interval equal to 0will be suppressed, sin
e it does not provide any information about the 
hord.

3

Full rank modes are also 
alled su

essive interval-arrays (Chrisman 1971) or 
ir
ular interval series (Chrisman 1977), while partial

modes are 
alled interval-arrays or interval series.

4

Greek 
hara
ters will be used to represent modes to easily distinguish them from 
hords and notes.

2
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2.2 Dire
ted 
hord and 
hord

The result of applying a full mode µ=[A0,...,Ak−1]∈M(n,k) to the root note a0∈{0,...,n−1} is a dire
ted
k-
hord. A dire
ted 
hord of rank n and dimension k is expressed as

a=(a0,...,ak−1)=a0|µ (1)

with

5 a1 = a0 + A0 mod n, ... , ak−1 = ak−2 + Ak−2 mod n; satisfying, in addition, the 
y
li
 property

a0=ak−1+Ak−1 mod n. This 
onstru
tion grants the order 
lo
kwise dire
tion along the 
ir
leOn of the

dire
ted 
hord elements. Root and mode are the two 
omponents of a dire
ted 
hord

6

. Hen
e, given a root

a0 and two full modes µ,ν∈M(n,k), a0|µ=a0|ν if and only if µ=ν.

All the dire
ted 
hords 
ontaining the same notes as the dire
ted 
hord a, i.e., whi
h are similar to a

ex
ept in the 
y
li
 order of the notes, yield the same 
hord. Thus, a k-
hord is de�ned as this equivalen
e


lass of dire
ted k-
hords, namely

{a}={a0,...,ak−1}={a0|µ} (2)

The set of dire
ted 
hords belonging to the same 
hord 
lass are the rotations (we also 
onsider the identity

or zero rotation). There are k possible rotations7 of a dire
ted k-
hord a, that arewritten with a superindex

ai, i= 0,...,k−1. The dire
ted k-
hords of rank n are noted as K(n,k), and its 
lasses, the k-
hords, are

noted asK(n,k), where we operate, as usual in set theory, by de�ning subsets, unions, and interse
tions.
Any generalized mode µ ∈ M(m,k), m 6= n, 
an be redu
ed to a full mode R(µ) ∈ M(n,k) so that

{0|µ}={0|R(µ)}. Then, for any root a0, {a0|µ}={a0|R(µ)} and, in addition,

Lemma 2.1 If µ,ν are generalized modes su
h that {a0|µ}={a0|ν}, then R(µ)=R(ν).

2.3 Submodes and supermodes

Any full mode µ = [A0, ... ,Ak−1] ∈ M(n,k) 
an be de
omposed into partial modes of lower rank and

dimension by de�ning a 
on
atenation or 
omposition of modes, su
h as,

µ=µ1 ·µ2; µ1=[A0,...,Ai−1]; µ2=[Ai,...,Ak−1]; 1≤ i≤k−1 (3)

so that rank(µ1) + rank(µ2) = n, and dim(µ1) + dim(µ2) = k. Both partial modes µ1 and µ2 are then


omplementary inM(n,k).
Any full mode µ 
an be totally de
omposed into k−1 
on
atenations of single modes, µ=[A0]...[Ak−1],

whose intervalsequaln(thedotforthe
ompositionwillbeusuallyomitted). Ingeneral, ifµ1 =[B0,...,Bk1−1]
and µ2=[C0,...,Ck2−1] are generalized modes, the 
omposition

µ1 ·µ2=[B0,...,Bk1−1][C0,...,Ck2−1] (4)

is de�ned as themode that produ
es the partition of the o
tave resulting from the su

essive appli
ation of

the intervals ofµ1 andµ2. The 
omposition of generalized modes has amonoid stru
ture, i.e., is asso
iative

and has an identity element, whi
h is [0].
A non-
ommutative sum of generalized modes is de�ned as follows,

µ1+µ2=[B0,...,Bk1−1+C0,...,Ck2−1] (5)

whi
h has also a monoid stru
ture

8

with identity element [0].

Lemma 2.2 The submodes of a full mode µ=[A0]...[Ak−1]∈M(n,k) are obtained as λ=[A0]◦...◦[Ak−1],
where ea
h symbol ◦ means either a 
omposition or a sum.

In this way we will obtain a number of full modes of the same rank but of di�erent dimension, whi
h

may vary from 1 to k. When both modes µ and λ are applied to the same root a0, the 
hord {a0 |λ} gives

5

The expression r= p+q mod n, although written without parentheses, will mean that r is the reminder in the Eu
lidean division

of p+q by n, otherwise we would write r=p+(q mod n).
6

In general, dire
ted 
hords will be notated with lower
ase Latin letters, without subindi
es. Subindi
es will refer to their notes.

7

While dealing with dire
ted 
hords, 
hords, and modes of dimension k we assume that the indi
es for notes ai, interval modes Ai,

and 
hord rotations ai are de�ned in the group (Zk,+).
8

In general, if µ1 and µ2 are generalized modes, µ1·µ2 6=R(µ1)·R(µ2), R(µ1·µ2)6=R(R(µ1)·R(µ2)), µ1+µ2 6=R(µ1)+R(µ2),
R(µ1+µ2)6=R(R(µ1)+R(µ2)); but full modes with the operations µ1⊙µ2≡R(µ1·µ2), µ1⊕µ2≡R(µ1+µ2) are a 
ommutative group.

3
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a partition of the o
tave less �ne than the 
hord {a0 |µ}. Then, we write λ≺µ. Conversely, we say that µ

is a supermode of λ, and write µ≻λ.

Proposition 2.3 The 
omposition and the sum of full modes satisfy R(µ1 ·µ2)=R(µ1+µ2).

Proof. When applying the generalized modes µ1 ·µ2 and µ1+µ2 to the root 0, they des
ribe the following
similar 
hords,

{0|µ1 ·µ2}={0|[A0,A1,...,Ai−2,Ai−1]·[B0,B1,...,Bj−2,Bj−1]}={0,A0,A0+A1,...,A0+···+Ai−2,0,B0,...,B0+···+Bj−2,0}

{0|µ1+µ2}={0|[A0,A1,...,Ai−2,Ai−1+B0,B1,...,Bj−2,Bj−1]}={0,A0,A0+A1,...,A0+···+Ai−2,B0,...,B0+···+Bj−2,0}

Hen
e, a

ording to Lemma 2.1, the respe
tive modes have the same redu
ed form. �

Corollary 2.4 If µ1,µ2 are full modes, {a0|µ1 ·µ2}={a0|µ1+µ2}={a0|µ1}∪{a0|µ2}.

2.4 Complementary and 
ompleted modes

For any rankm<n, a partial mode µ=[A0,...,Ap−2]∈M(m,p−1) 
an be 
ompleted on the right-hand side

up to a full mode inM(n,p) as [µ,∗]=[A0,...,Ap−2,∗]=[A0,...,Ap−2,n−m]. We express this mode as above

or, alternatively, as a 
on
atenation of partial modes, [µ,∗]=µ·[n−m]. Similarly, the partial mode 
an be


ompleted on the left-hand side as [∗,µ]=[n−m]·µ.
Any dire
ted 
hord a = a0 | [A0, ... ,Ap−2] obtained from a partial mode 
an obviously be written as

a= a0 |[A0,...,Ap−2,∗], in terms of the 
ompleted mode to the right. Therefore, the dire
ted 
hord a may

be written in either of the forms a=a0|µ=a0|[µ,∗].
Any full mode 
an be written as the 
on
atenation of two 
omplementary partial modes, µ·κ∈M(n,p),

with µ∈M(m,q), n>m and p>q, and κ∈M(n−m,p−q). Hen
e, the 
omposition of partial modes 
an

be expressed in terms of their 
ompleted modes as

µ·κ=[µ,∗]·[∗,κ] (6)

A

ording to Proposition 2.3, the sum of the 
ompleted modes satis�es

[µ,∗]+[∗,κ]=[µ,∗]·[∗,κ] (7)

On the other hand, we may assume that a full mode λ is equivalent to the 
ompleted modes [λ,∗] and
[∗,λ]. This allows to interpret Proposition 2.3 as a parti
ular 
ase of Eq. 7. In other words, Eq. 7 is valid for

omplementary partial modes, as well as for full modes.

For a 
hord {a0 |µ ·κ} ∈K(n,p) generated by the 
omposition of two 
omplementary modes, by taking

into a

ount Eq. 6, we obtain a parti
ular 
ase of Corollary 2.4, {a0 |µ · κ} = {a0 | [µ,∗]} ∪ {a0 | [∗,κ]}.
Obviously, the modes [µ,∗] and [∗,κ] are submodes of µ ·κ, and the 
hords {a0 |[µ,∗]} and {a0 |[∗,κ]} are
sub
hords of {a0|µ·κ}.

2.5 Mode shifts and dire
ted 
hord rotations

Theequivalen
e relationgivenby the rotations of thedire
ted 
hords is nowtransferred to themodes.Thus,

wede�ne themode 
lasswith regard to the shifts of amode.For a fullmodeµ0 ≡µ=[A0,...,Ak−1]∈M(n,k),
a single shift is a one-step 
y
li
 permutation

9

of the mode intervals, su
h as µ1 = [A1,... ,Ak−1,A0]. An
m-shift (shift ofm steps) of µ, withm∈Zk, is de�ned as

µm=[Am,Am+1,...,Am−1] (8)

Form=k the mode be
omes the original mode or the 0-shift of µ. All the shifts of a mode form a mode


lass. Then, we are able to write the k equivalent rotations of a dire
ted 
hord a=(a0,...,ak−1) by applying
the elements of a mode 
lass to a number of k di�erent roots, as follows

am=am|µm=(am,...,am−1) (9)

9

A single shift is obtained by the permutation σ = (k,1,...,k−1) of the symmetri
 group Sk with k! elements. Sin
e σk = 1, a shift
generates a 
y
li
 subgroup 〈σ〉 of Sk of order k, whi
h provides a number (k−1)! of 
osets in the quotient group Sk/〈σ〉. The group Sk

may be obtained from generators in several ways, e.g., from the produ
t of transpositions in the form (1,i), 1< i≤ k, or from produ
ts

of σ and the transposition (1,2).

4
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with indi
es in Zk. For a dire
ted 
hord am within the 
lass of the 
hord {a}, we notate am ∼ {a} or

{a}∼am to mean that we take the spe
i�
 dire
ted 
hord as a representative of the 
lass.

Depending on the interval values, it is possible to get less than k di�erent shifted modes. For example,

ifA0= ···=Ak−1, all the shifts produ
e the same mode, although there are still k rotations of any dire
ted


hord. The number of rotations is asso
iatedwith the k di�erent rootswhere the shiftedmodes are applied,

and not with the number of elements of the mode 
lass.

The set ofmode 
lasses ofM(n,k)with regard to the shifts10, for all the possible interval values satisfying
A0+A1+ ···+Ak−1 = n, is notated as M(n,k). The set of mode 
lasses for the intervals of a parti
ular

mode µ ∈ M(n,k) is notated as C(µ). The mode 
lass of µ, is written as µS ∈ C(µ) and is 
omposed of

the non-equal shifts µm
for m ∈ {0,...,k−1}, i.e., is a �xed ne
kla
e of length k. The number of elements


omposing a mode 
lass µS
is notated as s(µS), whi
h is equivalent to the number of di�erent shifts s(µ)

of any mode of the 
lass. If the mode intervals are non-two equal, the notes 
omposing a dire
ted 
hord

a0 |[A0,...,Ak−1] are univo
ally determined. In addition, the mode 
lasses µS
do not mat
h, i.e., s(µ)= k,

and C(µ)=(k−1)! . If the mode intervals are 
oprime, the number of di�erent 
hords in the 
hord network

is n(k−1)! and 
ontains all the notes of the n-TET s
ale.

2.6 Uniqueness of 
hords

A 
hord 
an be de�ned from several dire
ted 
hords generated from any mode of one mode 
lass applied

to a parti
ular root. If the dire
ted 
hords are written 
lo
kwise dire
tion along the 
ir
le of the o
tave,

by starting at any note of the 
hord, the di�eren
e between two dire
ted 
hords de�ning the same 
hord

is only a rigid rotation of notes. This is given through the following equivalent 
onditions.

Lemma 2.5 Two dire
ted 
hords a0|µ and b0|ν∈K(n,k) produ
e the same 
hord {a0|µ}={b0|ν} if and

only if ∃m∈Zk so thatbi=am+i,∀i∈Zk.

Lemma 2.6 Two dire
ted 
hords a0|µ and b0|ν∈K(n,k) produ
e the same 
hord {a0|µ}={b0|ν} if and

only if ∃m∈Zk so thatb0=am andν=µm
.

2.7 Inverted modes

While any full mode µ = [A0,A1, ... ,Ak−1] ∈ M(n,k), with positive intervals, is 
lo
kwise dire
ted, a

negative mode −µ = [−A0,−A1, ... ,−Ak−1], also referred to as inverted mode of µ, de�nes a symmetri


partition of the o
tave anti
lo
kwise dire
tion when it is applied to the same root.

The negative mode −[A0,A1,...,Ak−1] de�nes the same partition of the o
tave that the 
omposition of

positive modes [n−A0][n−A1]··· [n−Ak−1]. But [n−A0,n−A1,... ,n−Ak−1] is not a full mode, sin
e

(n−A0)+(n−A1)+...+(n−Ak−1)=(k−1)n, instead of equal n. It is a generalized mode. Anti
lo
kwise

dire
tion,however, the intervalsof thenegativemode−µdoequal−n.Therefore,wemayspeakofanegative

full mode in the setM(−n,k) when it satis�es su
h a 
ondition. In this 
ase, when it is applied to a root, a
negative mode determines an anti
lo
kwise dire
ted 
hord. The opposite k-
hords have similar properties

than the dire
ted 
hords with regard to the 
hords they generate. On the other hand, the full mode

µ=[Ak−1,...,A1,A0,] (10)

des
ribes a 
hord with similar intervals than −µ when it is applied to the same root, although 
lo
kwise

dire
tion. Hen
e,

Proposition 2.7 The mode µ is the redu
ed form of −µ, i.e., µ=R(−µ).

Proof. Todetermine the relativepartition indu
ed in theo
taveby themode−µ (ex
ept rigid rotations)we

10

In a general, parti
ular families of musi
 obje
ts 
an be de�ned a

ording to their behavior with regard to some transformations. For

example, a k-
hord is de�ned as a subset of k notes, regardless their order. Therefore, a k-
hord is any family of k-tuples of notes whi
h
is invariant or 
losed with regard to permutations. If a k-
hord is de�ned from dire
ted 
hords, i.e., a k-tuple of notes arranged 
lo
kwise
dire
tion on the o
tave, then a 
hord is a family invariant under rotations, either dire
t or inverse. Similarly, a mode 
lass is de�ned as

a family of modes whi
h is invariant with regard to shifts. Then there is a group G that a
ts on a set C by transforming their elements,

su
h as symmetry transformations, and parti
ular families of elements in C are invariant with regard to spe
i�
 transformations of G.
Red�eld-Pólya's theorem allows to enumerate in a general way the 
lasses resulting from the a
tion of the groupG onC. In Fripertinger
and La
kner (2015) these te
hniques are thoroughly studied.

5
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apply the generalized mode to the root 0. Bearing in mind that the addition of the positive mode intervals

equals n and that any integer number of full o
taves 
an be ignored, we write the notes determining the

partition, whi
h, in the end, de�ne a dire
ted 
hord with the notes arranged 
lo
kwise,

0|[n−A0,n−A1,...,n−Ak−1]=(0,n−A0,2n−A0−A1,...,kn−A0−A1−···−Ak−2)=
=(0,n−A0,n−A0−A1,...,n−A0−A1−···−Ak−2)=
=(0,✚✚A0+A1+···+Ak−1,✚✚A0+✚✚A1+A2,···+Ak−1,...,✚✚A0+✚✚A1+···+✘✘✘Ak−2+Ak−1)=
=(0,Ak−1,Ak−1+Ak−2,...,Ak−1+Ak−2+···+A0)=0|[Ak−1,...,A1,A0] �

Corollary 2.8 µ=R(−µ) and {a0|−µ}={a0|µ}.

The mode 
lass of an inverted mode is the one 
orresponding to its redu
ed form.

2.8 Relative inverted 
hords

As a 
onsequen
e of the above result, the retrograde mode of µ is −µ, so that the inverted mode of µ has

two expressions: the positive mode µ and the negative mode −µ. If they are applied to the root a0, we

get two dire
ted 
hords: the relative inverted, a0 |µ, read 
lo
kwise; and the relative mirror a0 |−µ, read

anti
lo
kwise. Therefore, the full modes µ and−µ applied to the root a0 de�ne the same 
hord,

{a0|µ}={a0|−µ} (11)

Nevertheless, if we write the dire
ted 
hord a0 |µ from another root to generate the same 
hord {a0 |µ},
su
h as the rotation ai|µ

i
, its relative mirror 
hord {ai|−µi} is di�erent from {a0|−µ}. In other words, the

relative mirror and inverted 
hords depend on the dire
ted 
hord we are using to express the 
hord; they

are only de�ned for dire
ted 
hords.

2.9 Inverted 
hords

The negative inverted (or mirror) dire
ted 
hord of a0 | µ is expressed from the negative mode as

−a0 |−µ=−(a0 |µ), whose notes are the 
omplementary PCs of a0 |µ. On the other hand, the (positive)

inverted dire
ted 
hord is written as−a0|µ, from the positive inversion of the mode.

Proposition 2.9 The negative inversion of two dire
ted 
hords, namely a0 |µ and b0 |ν, whi
h de�ne

the same 
hord {a0|µ}={b0|ν}, produ
e two similar 
hords {−a0|−µ}={−b0|−ν}.

Proof. It 
an be easily dedu
ed from the 
ondition given in Lemma 2.5. We know that it exists a value

m ∈ Zk su
h that (am, ... , am−1) = (b0, ... , bk−1), i.e., both dire
ted 
hords mat
h. Then, by taking


omplementary mode 
lasses in both sides and arranging them 
lo
kwise along the o
tave, we get

(−am−1,...,−am)=(−bk−1,...,−b0). Hen
e both mirror dire
ted 
hords de�ne the same 
hord. �

Then, a

ording to Eq. 11, we may speak of inversion of a 
hord as the result of applying the inversion

or mirroring to any dire
ted 
hord de�ning the same 
hord, that is,−{a0|µ}={−a0|−µ}={−a0|µ}.

2.10 Symmetri
 modes

By expressing a dire
ted 
hord a= a0|µ as a mode applied to a root we are able to des
ribe easily several

well known families of 
hords. The simplest example is the family of 
hords obtained by maintaining

the mode µ and by translating the root a0 to any note of the s
ale. These dire
ted 
hords have the

same interval stru
ture, although they di�er in PCs. Another example is the family of dire
ted 
hords

obtained by maintaining the root a0 and applying di�erent shifts µi
of the mode. In general, for a mode

µ= [A0,...,Ap−1] ∈M(n,p), we notate S(µ) the family of its symmetri
 modes, that is, the set of modes


ontaining all the permutations of the intervals of µ, 
ontaining the 
lasses with regard to shifts, C(µ). The

ardinality of S(µ) depends on the number of equal intervals in µ. If they are all di�erent, #S(µ)= p! . If

µ has q≤p intervalsAi,0≤ i≤q−1, ea
h one repeated ni times,

∑q−1
i=0ni=p, then

#S(α)= p!
n0!···nq−1!

(12)

On the other hand, it is possible to 
ompute the 
ardinality of S(µ) from the mode 
lasses C(µ) it 
ontains.
Then, sin
e S(α) = µS

1 ∪ ...∪µS
m for µS

i ∈ C(µ), by taking into a

ount the number of shifts in ea
h mode


lass, we have#S(µ)=
∑m

i=1s(µ
S
i ).
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Figure 1. Chord extension [A,B,C] formed by the 
hords sharing two notes with the initial 
hord a|[A,B,C] (notes in gray).

3. Geometry of 
hords

3.1 Tri
hords

Tymo
zko (2006, 2012) provide 
omprehensive studies on the 
hord geometry. Some of these geometri
al


on
epts appear in the 
urrent work to be be studied from an algebrai
 approa
h. Therefore, we brie�y

review the simpler 
ase of the tri
hords in an n-TET system.

The geometri
 relationship between one tri
hord and the three di�erent 
hords sharing two notes with it

is displayed in the graph of Fig. 1. The 
entral triangle of the extension 
ontains the initial dire
ted 
hord

11

(a,b,c) ∈ K(n,3), generated by the full mode [A,B,C] ∈ M(n,3), that we assume with non-two equal

intervals (parti
ular 
ases su
h as [A,B,A] and [A,2A,A] are easily derived and lead to degenerateTonnetze
to be studied separately). It is surrounded by three triangles sharing an edge with it, 
orresponding to the


hords generated by the shifts of the 
lass [A,C,B].
One 
hord together with their adja
ent 
hords will be referred to as 
hord extension. This stru
ture

may be repeated around ea
h new triangle to form a tonal network or Tonnetz originated in the 
hord

{a,b,c} ∼ a | [A,B,C] with alternan
e of the two mode 
lasses of the modes [A,B,C] and [A,C,B]. The
modes of the �rst 
lass are 
lo
kwise dire
ted in the triangles shaped as∇, while the modes of the se
ond


lass are anti
lo
kwise dire
ted in the triangles shaped as∆. For trimodes, we shall say that the former are

positive and the latter negative, although this 
annot be generalized to higher-order modes. For instan
e,

the symmetri
 modes of a tetra
hord have up to 6 mode 
lasses.

Sin
e A + B + C = n, there are a
tually two degrees of freedom in 
onstru
ting su
h a network,

allowing us to draw those triangles on a surfa
e. One simple representation 
onsists of, starting with the

note a, to take in
rements by A mod n units along the horizontal dire
tion rightward, and by B mod n

units verti
ally downward, obtaining thus an unbounded bidimensional array of nodes with 
oordinates

(iA,jB) mod n; i,j∈Z, with the 
enter (0,0) in a, that are asso
iated with the notes

mij=a+iA+jB mod n; i,j∈Z (13)

When 
losing one triangle by adding an interval ofC units, the o
tave be
omes 
ompleted.

The tonal network is periodi
 in both main dire
tions, and diagonally as well, although the full set of

notes of the n-TET system arise in any dire
tion only when the 
orresponding interval is 
oprime with n.

This stru
ture is equivalent to a Cartesian produ
t of two 
ir
les, one for the notes iA mod n and the other

one for the notes jB mod n, so that the tonal network 
an be drawn on a torus. More pre
isely, the whole

notes k=0,...,n−1 of the tonal system are represented in the torus if, and only if, k= a+xA+yB+zn;

for x,y,z ∈ Z. We may 
learly assume the origin at a = 0. Sin
e the three intervals equal n, the above
relationship 
an be written as

k=pA+qB+rC; p,q,r∈Z ;k=0,...,n−1 (14)

Therefore, a

ording to Bézout's identity for three integer, in order to express all the notes from any of

the intervals it is required that gcd(A,B,C)=1. If gcd(A,B,C)=d, then d is the smallest positive integer

that 
an be expressed in the 
ombination of Eq. 14, whi
h provides a number of v = n
d di�erent notes

and verti
es for the Tonnetz. Sin
e ea
h mode 
lass generates a unique 
hord for every note of the n-TET

system, if the Tonnetz has v verti
es, it is then 
omposed of f = 2v di�erent tri
hords, whi
h are the

11

To simplify the notation, the 
hord and mode 
omponents of the 
ases shown in graphs and �gures will be without subindi
es.
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Figure 2. Two ways to represent the hexagonal tonal 
ell of the tri
hords originated by the dire
ted 
hord a|[A,B,C] (in boldfa
e). On
the right, Cayley graph of S3. The triangular diagrams 
onne
t the modes of one mode 
lass by a shift. In the verti
es, the modes are


onne
ted with the 
olor of the shared �rst interval, with the other intervals are transposed.

fa
es of the regular tessellation of the torus with triangles. It is worth noti
ing that three verti
es de�ne

a fa
e of the triangle only when they are 
onne
ted by three edges 
orresponding to the three 
onse
utive

mode intervals (ranging one o
tave), all of them with either positive orientation or negative orientation.

Positive and negative alternated intervals do not form a loop. The number of edges in the tessellation is

e= 3
2f =3v, sin
e ea
h triangle has three edges and ea
h edge is shared by two triangles. Thus, we obtain

the Euler 
hara
teristi
 of a torus, χ=v−e+f=0.

3.2 Tonal 
ell [A,B,C℄

The Tonnetz builds up a mosai
 of hexagonal 
ells 
omposed of six 
hords in the shape of triangles with a


ommon vertex. These, 
hords are generated by the symmetri
 modes of the initial 
hord a|[A,B,C]. Ea
h
node of the network is the 
enter of a 
ell, whi
h 
ontains the root, whi
h is 
ommon note of the six 
hords.

In a general 
ase, given a note a0 and a mode µ∈M(n,k), the notes of the Tonnetz that are verti
es of the

hords {a0|ν}, with ν∈S(µ), will be referred to as the tonal 
ell around a0.

In addition, these 
hords share another note (and the 
orresponding interval) with their neighbors.

Therefore, the symmetri
 modes of the original mode [A,B,C] determine a family of neighbor 
hords that,

in musi
al terms, are harmoni
ally related. For the 
hord a|[A,B,C], the hexagonal tonal 
ell shown on the
�rst diagram of Fig. 2 is 
omposed of six di�erent 
hords and symmetri
 modes. The symmetri
 modes are,

one 
lass, µ=[A,B,C], µ1=[B,C,A], µ2=[C,A,B]; and, the other 
lass, µ=[C,B,A], µ1=[A,C,B], µ2=
[B,A,C]. Zero rotations may be notated as µ0≡µ. With this notation we get the se
ond diagram of Fig. 2.

Out of the tonal 
ell 
entered in a, the only 
hord sharing two notes with the initial 
hord (marked in

boldfa
e) is {b,c,e}, whi
h is pla
ed in the lower-right vertex of the extension. Therefore, this is the 
losest

hord to the initial 
hord in the path towards another 
ell not 
ontaining the root a. From this viewpoint,

that dire
tion indi
ates the smoothest voi
e leading path (Douthett and Steinba
h 1998; Tymo
zko 2006;

Callender, Quinn, and Tymo
zko 2008) 
onne
ting 
hords of di�erent tonalities. The note e, that does

not belong to the tonal 
ell of the root, 
orresponds to the leading tone of the major diatoni
 s
ales and to

the subtoni
 of the minor s
ales.

3.3 Chord 
ell

The dual network of Fig. 2 is Fig. 3, where 
onne
tions between 
hords are shown instead of 
onne
tions

between tones. More pre
isely, ea
h triangle representing a 
hord in the former graph is now a vertex of

the latter, and the edges of the triangles in the �rst graph be
ome verti
es in the se
ond one. On the other

hand, one note in Fig. 2 be
omes the 
enter of the six verti
es of one hexagon in Fig. 3, whi
h are the


hords sharing this note. In general, given a note a0 and a mode µ∈M(n,k), the set of 
hords {a0|ν}, with
ν∈S(µ) will be referred to as the 
hord 
ell (or 
ell of 
hords), by labeling it with the 
entral note a0.

In Fig. 3 all the 
hords are expressed in terms of a shift or an inversion of the same mode µ applied to the

same root. The whole 
hord 
ell with root a 
an be transported to the same or another 
ell by applying a

translation

12

of the root by a single intervalA,B, andC, or its opposite, a

ording to the dire
tions of the

arrows in the graph. Sin
e ea
h vertex belongs to three di�erent 
hord 
ells, the translation of a 
hord may

12

Musi
ians 
all transpositions to translations, however this may be 
onfusing sin
e in mathemati
s a transposition is a permutation

whi
h ex
hanges two elements and keeps all others �xed.
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{a|µ2}

{a|µ1} {a|µ0}

• •
a+A

a−C

{a|−µ2}

•
a+B

•

a

Figure 3. Chord 
ells 
omposed of six 
hords, half obtained from dire
ted 
hords with positive modes (bla
k verti
es), and half with

negative modes (white 
ir
les) in opposite verti
es of the 
ell.

lead either to 
ontiguous 
ells or to the same 
ell.

In general, the translations along 
hord 
ells of the 
hord {x|λ} are de�ned by su

essive transformations

of the root, a

ording to

τux=x+u mod n; u=±A,±B,±C mod n (15)

that preserves the mode. In addition, the new 
hord maintains the same relative position in the new 
ells.

These transformations a
ting on the root have the stru
ture of an abelian group with τu+v = τuτv = τvτu
and identity element ǫ= τ0. Thus, for tri
hords, all the 
hords in the network originated by the dire
ted


hord a|µ 
an be expressed from two kinds of transformations over the 
hord elements: (1) translations

τu of the root in any of the two independent dire
tions, by preserving the mode; and (2) inversion of the

mode, by preserving the root of the 
hord.

3.4 Major and minor 
hords in a 12-TET s
ale

Let us see a well known example of Tonnetz, the one asso
iated with the 
hord {0,4,7} ∼ 0|[4,3,5], the
major triad. This tonal network is 
omposed of all the major 
hords of the 12-TET system generated by

the mode [4,3,5], as well as all the minor 
hords generated by the mode [3,4,5]. It is build by beginning

at the note 0 and, sin
e gcd(4,3,5)=1, all the notes of the s
ale appear in this Tonnetz, so that it 
ould be
built by beginning at any note. The notes 
omposing the 12-TET s
ale are obtained separated by intervals

of major and minor thirds of 4 and 3 units (semitones).

In Fig. 4 the Tonnetz 
ontaining all the major and minor 
hords of the 12-TET system is represented

by expli
itly writing the name of the notes. This is a double diagram that displays both the tonal network,

with notes in gray, and the 
hord 
ells, with 
hords in bla
k, upper
ase letters for the major tri
hords and

lower
ase for the minor ones. Blue, red, and green arrows indi
ate translations of 4 (a major third), 3 (a

minor third), and 5 (a fourth) units, respe
tively. The inverse green arrows 
orrespond to a translation of

7 (a �fth) notes. Ea
h 
hord is the 
enter of the triangle formed by the notes it 
ontains, and ea
h note is

the 
enter of the hexagonal 
ell of 
hords 
ontaining it.

The 
onne
ted tri
hords share two notes. The non-shared notes of two 
onne
ted tri
hords di�er in 2

semitones for 
hords verti
ally 
onne
ted and in 1 semitone for all the other 
hords. A 
losed path in the

Tonnetz along non verti
ally 
onne
ted 
hords is known as a maximally smooth 
y
le (Cohn 1996). It is

straightforward seeing fromFig. 4 whi
h notes are involved in ea
hmaximally smooth 
y
les formajor and

minor 
hords, and whi
h are the 
ommon notes among these 
y
les. Other propertiesmay be easily derived

from the graph. For instan
e, by starting a 
ontinuous path from any 
hord in the Tonnetz, we are able

to see whi
h 
hords 
an be rea
hed by 
hanging only one note in ea
h step. If the number of steps or edges

between two 
hords is taken as the length of a path over theTonnetz, then the length of a loop, by beginning

and ending in the same 
hord without repeating any 
hord, is 6. There are four di�erent maximally smooth


y
les of length 6, along the non-verti
al polygonal lines. The minimum length between two 
hords de�nes

a distan
e on the Tonnetz. In this example, any two 
hords are 
onne
ted by a path of at most of 5 steps.

For example, the 
hord more distant to the F major 
hord is the d

♯
minor 
hord, at 5 steps distan
e. For

higher-dimensional 
hords, these and other properties of the generalizedTonnetz, su
h as paths 
onne
ting

9



February 2, 2024 Journal of Mathemati
s and Musi
 algebra_of_
hords

F A C♯ F

F A C♯ F

f a c♯ f

C E G♯ C

G♯ C E G♯

c e g♯ c

D♯ G B D♯

D♯ G B D♯

d♯ g b d♯

A♯ D F♯ A♯

F♯ A♯ D F♯

a♯ d f♯ a♯

C♯ F A C♯

C♯ F A C♯

Figure 4. Chord 
ells and Tonnetz from the 
hord {0|[4,3,5]} in a 12-TET system.

all the 
hords without repeating any one, 
an be further studied with the help of an algebra of 
hords.

3.5 Higher-dimensional tonal network

The Tonnetz asso
iated with a mode µ 
an be generalized to 
hords and modes of any dimension k ∈N.

The symmetri
modesS(µ) 
ontain shifts of severalmode 
lasses obtained from transpositions of themode

intervals. By generalizing Eq. 14, the tonal network asso
iated with a k-mode µ=[A0,...,Ak−1]∈M(n,k),
starting at the node a0, is 
omposed of all the notes in the form τc·µ a0, a

ording to the dot produ
t

c ·µ =
∑k−2

i=0 ci Ai mod n; c = (c0, ... ,ck−2) ∈ Z
k
, where the sum is extended to a subset of k−1 mode

intervals, sin
eoneofthemis
omplementarytotheothers inZn .Atanynodeb0 oftheTonnetz,all the
hords

having thenote b0 
anbegeneratedasadire
ted
hord b0 |ν,withν∈S(µ).Therefore, the tonal 
ell
entered
in b0 is 
omposed of the notes forming thek!dire
ted 
hords generated by the symmetri
modes ofµ applied

to b0. The 
hords around b0 form 
hord 
ell asso
iated with this root in the dual network of the Tonnetz.

As in the 
ase des
ribed by Eq. 13, the Tonnetz asso
iated with a mode with non-two equal intervals


an be formally interpreted as a set of points s
attered on a k-dimensional torus. At �rst, the notes may be

represented as an unbounded (k−1)-dimensional array of points a

ording to the 
oordinates given by the

intervalsof the submodeµ′=[A0,...,Ak−2]∈M(n,k−1), sin
e the intervalAk−1=−(A0+...+Ak−2) mod n

isuninformative.The intervalsare thenasso
iatedwith independentmain dire
tionsof thearray, so thatwe

may speak of ve
tor intervals.We shall 
all the dire
tion asso
iatedwith the lastmode interval of a dire
ted


hord the returning dire
tion. Noti
e that the returning dire
tion Ak−1 is linearly independent from any

single main dire
tion Ai, i 6= k−1. Similarly, it is independent of any subset of di�erent intervals Ai,Aj ;

i,j 6=k−1; up to a subset formed by k−2 non-equal intervals without in
luding the returning dire
tion.
By pla
ing a note a0 at the origin of the array, any point of the array with 
oordinates

(p0A0,...,pk−2Ak−2) mod n, with p0,...,pk−2∈Zn, represents a note of the n-TET system, of value

m=a0+p0A0+···+pk−2Ak−2 mod n (16)

Sin
e the stru
ture is periodi
 in all dire
tions, the array 
an be shaped as points over a k-dimensional

torus

13

, whi
h is as a (k−1)-dimensional hypersurfa
ewithinR
k
. In degenerate 
ases,where the generating

13

A

ording to Tymo
zko (2012) the Tonnetz may be organized in other ways other than a generalized torus, depending on the

properties to study.
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mode has similar intervals, by identifying the similar notes on the torus, the Tonnetz may be 
onverted

into a band, a Möbius band, a 
ir
le, et
. Similarly as in �3.1, all the notes of the n-TET s
ale appear on

the Tonnetz when gcd(A0,...,Ak−1)=1. In general, if gcd(A0,...,Ak−1)=d, then d is the smallest positive

integer that 
an be expressed as the 
ombination of Eq. 16, whi
h provides a number of v = n
d di�erent

notes and verti
es of the Tonnetz.

A subset of verti
es of the Tonnetz represents a dire
ted k-
hord onlywhen they are 
onne
ted a

ording

to a permutation of the k−1 intervals of the submode µ′
. In addition, over the Tonnetz we may 
onne
t

the verti
es by using all the mode intervals of µ, either in the positive or the negative dire
tion, whi
h is

tantamounttoreadingthemode
lo
kwiseoranti
lo
kwiseovertheo
tave,althoughwe
annotmixpositive

and negative intervals. The last and �rst verti
es of every dire
ted 
hordmust also be 
onne
ted in order to


lose the o
tave. This forms a simplex, whi
h is the 
onvex hull of its verti
es. Similarly, its sub
hords are

obtained by 
onne
ting the verti
es along the 
orresponding returning dire
tions to form the fa
es. These

new edges are linear 
ombination of the independent dire
tions asso
iated with the intervals of µ′
.

3.6 Generalized tonal 
ell

The notes of the Tonnetz that are verti
es of the 
hords {a0|ν}, with ν ∈S(µ) and µ=[A0,...,Ak−1], were
referred in �3.2 as the tonal 
ell around a0. The number of verti
es it 
ontains may be 
omputed as follows.

We shall use only positive mode intervals when forming all possible sub
hords of the network with root a0.

Atonestepawayfromtheroot, i.e., at theendofoneedge,wemayrea
hanyvertexexpressedasthe se
ond

vertex of the dire
ted 2-
hords in the shape a0 |[Ai,∗], i.e., the verti
es a0+Ai. It 
an be done along themain

dire
tions, by 
hoosing i among the indi
es 0,...,k−2; and also in the returning dire
tion, with i= k−1.
Remember that the returning dire
tion is independent from any single main dire
tion, although is a linear


ombination of all of them. This makes

(
k
1

)
new verti
es, in addition to the one 
orresponding to the root.

At two steps away from a0 we may rea
h some new verti
es expressed as the third vertex of the dire
ted

3-
hords su
h as a0 | [Ai,Aj,∗], with i 6= j among the indi
es 0, ... ,k−1 that are asso
iated with either

the main dire
tions or the returning dire
tion. On
e again, the path along these intervals follows two

independent dire
tions of the network. So, we rea
h

(k
2

)
new verti
es at two steps away from the root.

This pro
edure may 
ontinue up to the kth vertex a0+Ai1 + ...+Aik−1
of the dire
ted k-
hords, for a

number of k−1 di�erent indi
es among the values 0,... ,k−1 by providing

(
k

k−1

)
new notes. If one of the

intervals isAk−1, we bear in mind that this returning dire
tion is still independent of the other k−2main

dire
tions involved in the k-
hord. This makes a tonal 
ell with a number Nk=
∑k−1

i=0

(k
i

)
=2k−1 of notes,

in
luding the root.

3.7 Generalized Tonnetz

A

ording to the pre
eding se
tion, the geometri
 stru
ture of a k-
hord {a} in the Tonnetz is a (k−1)-
simplex, that is, any note of the 
hord 
an be 
onne
ted with the others in the way des
ribed to form a

sub
hord, whi
h is a simplex of lower dimension. The k verti
es and notes of the k-
hord are the 0-fa
es of

the (k−1)-simplex, the

(
k
2

)
= k(k−1)

2 edges are the 1-fa
es forming 2-
hords, et
., and the (k−1)-fa
e is the
whole 
hord. Hen
e, ea
hm-fa
e (m<k) is anm-simplex and is an (m+1)-
hord, sub
hord of {a}.
By fo
using on the verti
es of the 
hord, the following aspe
ts may be pointed out. The (k−2)-fa
es

or fa
ets of the 
hord {a} are sub
hords 
ontaining k−1 notes. If one note not in
luded in {a} is added
to one fa
et, we obtain a new k-
hord, whi
h is adja
ent to {a}, i.e., shares the k−1 verti
es of the fa
et.

Therefore, the number of adja
ent 
hords to {a} is the same than the number of fa
ets, that is

(
k

k−1

)
= k.

This set of 
hords was 
alled the 
hord extension in �3.1. In that 
ase, the vertex to be added to the

(k−1)-sub
hord is not arbitrary, sin
e these 
hords belong to the Tonnetz generated by the intervals of µ.
As explained in �2.10, only two di�erent 
hords may have a parti
ular subset of k−1 verti
es in 
ommon.

They are obtained by writing one 
hord as the dire
ted 
hord a=a0|[A0,...,Ak−3][Ak−2,Ak−1], so that the
dire
ted 
hord a′=a0|[A0,...,Ak−3][Ak−1,Ak−2] is the only one that shares the k−1 �rst verti
es of a. By
rotations on the original dire
ted 
hord we �nd the k 
hords sharing the other k−1 subsets of verti
es.
The 
hord extension, i.e., the 
hord {a} and its k adja
ent 
hords, may be extended to all the 
hords

over the Tonnetz. The (k−1)-simpli
es asso
iated with the 
hords form a (k−1)-dimensional tessellation

of the Tonnetz. The 
onglomerate of k! simpli
es, whi
h are the 
hords sharing one root, is the tonal 
ell.

11
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If the Tonnetz is non-degenerate, these verti
es are asso
iated with di�erent notes.

3.8 Generalized 
hord network

The topography of the 
hords in the Tonnetz 
an also be represented with the dual network diagram, the


hord network, where the 
hords are asso
iated with verti
es instead of the notes. Under this viewpoint,

the 
hords are verti
es grouped a

ording to the notes they share, that is, ea
h note is in the 
enter of a


hord 
ell formed by the 
hords 
ontaining it. Ea
h k-
hord 
an then be rooted in anyone of its notes, so

that it belongs to k 
hord 
ells. In other words, we may think of the k notes 
omposing a k-
hord as the


enter of k adja
ent 
hord 
ells.

Wenow fo
us in 
hords 
ontaining the note a0 , i.e., the 
ell of 
hords labeledwith the root a0 in its 
enter,

so that it is possible to write all these 
hords from dire
ted 
hords that have a0 as root. Sin
e the dire
ted


hords having the same root 
an be expressed from the symmetri
 modes S(µ) as a0 |[Aσ(0),...,Aσ(k−1)],
with σ∈Sk, there is a number of k! 
hords in this 
ell. Among them, the number of di�erent 
hords is given

by Eq. 12. In general, the 
hord 
ell is a permutahedron of order k (e.g., De Loera, Rambau, and Santos

2010), i.e., a (k−1)-dimensional polytope embedded in a k-dimensional spa
e, whose verti
es and edges

are isomorphi
 to the Cayley graph of the symmetri
 group Sk.

Ea
h 
ouple of 
hords {x} and {x′} that have k−1 notes14 in 
ommon and di�er in one note (they share

a fa
et in the tonal network) are adja
ent 
hords. These 
hords are shared by k−1 
ongruent 
hord 
ells.
A new 
hord {x′′}, di�erent from {x} and {x′}, that shares a fa
et with {x′} in the tonal network (hen
e
di�ers in one note whi
h does not belong to {x}, otherwise it would be {x′′}= {x}) shares, at least, k−2
notes with {x} in the 
hord network. Then, we 
an 
onne
t two 
hords that have a 
ommon fa
et in the

tonal network with an edge in the 
hord network. Ea
h edge is shared by k−1 
hord 
ells and the 
ells on
the opposite sides are labeled a

ording to the note they di�er.

Thus, fromthe tessellationof the tonalnetworkwithverti
esasnotesand (k−1)-simpli
esask-
hords,we

obtainadual tessellation, the 
hordnetwork,with 
hords asverti
es andnotes aspolytopes asso
iatedwith

the 
hord 
ells. In the former, the (k−1)-fa
es are k-
hords, the (k−2)-fa
es are (k−1)-sub
hords, et
., and
the 0-fa
es are notes. In the latter, the 0-fa
es are k-
hords, the 1-fa
es are (k−1)-sub
hords, et
., and the
(k−1)-fa
es are the notes labeling the 
hord 
ells. These stru
tures are respe
tively 
o-dimensional to k−1.
Sin
e the tonal 
ell around one root in the tonal network be
omes the 
hord 
ell labeled as the root in

the 
hord network, then the number fk = 2k−2 of verti
es around (ex
luding) the root of the tonal 
ell

be
omes the number of fa
ets of the 
hord 
ell 
entered in the root.

3.9 Chord 
ell fa
ets

In the 
hord 
ell a0 
ontaining the dire
ted 
hord a0 |[A0,...,Ak−1], k>1, we pay attention to the 
hords

that share the notes a0 and a0 + A0. These 
hords are generated from dire
ted 
hords in the form

a0 |[A0][Aσ(1),...,Aσ(k−1)] with σ ∈Sk−1. There are (k−1)! of them along di�erent dire
tions of the 
hord

network.Theysharea fa
etof the
hord
ella0 ,whi
h isalsoa fa
etof the
ella0+A0. Sin
e thesenotesdi�er

in the intervalA0, we shall say that the fa
et is orthogonal to this main dire
tion. Similarly, the 
hords that

share the notes a0 and a0+A1 are generated a

ording to amode 
omposition a0 |[A1][Aσ(0),❩❩A1,...,Aσ(k−1)]
with σ∈Sk−1, where the 
omponent that is left out in the se
ond partial mode ismarked. There are (k−1)!

hords that belong to the fa
et shared by the 
ells a0 and a0+A1, orthogonal to themain dire
tionA1. This

maybedone for ea
hmode 
omponentAi , until rea
hing the last fa
et,whi
h is orthogonal to the returning

dire
tionAk−1, shared by the 
ells a0 and a0+Ak−1.We 
all these k disjoint fa
ets front fa
ets of the 
hord


ell a0. By 
olle
ting the 
hords of the k front fa
ets we get the full 
hord 
ell with k!=k(k−1)! 
hords.
For k>2, we also look for the fa
ets 
ontaining the 
hords that share the two notes a0 and a0+∆, with

∆ = A0 +A1. In that 
ase, these 
hords are generated as either a0 | [A0,A1][❩❩A0,❩❩A1,Aσ(2), ... ,Aσ(k−1)] or
a0 |[A1,A0][❩❩A0,❩❩A1,Aσ(2),...,Aσ(k−1)] with σ ∈Sk−2, so that there are 2!(k−2)! of them. This 
an be done

by sele
ting

(k
2

)
di�erent 
ouples of intervals for∆, by determining a similar number of disjoint fa
ets, so

that 
olle
ting them we get the full set of 
hords in the 
ell k!=
(
k
2

)
2!(k−2)! .

Similarly, for k>m, the fa
et 
ontaining the 
hords that share the notes a0 and a0 + ∆, with

14

We use the term note for a vertex of the tonal network, while the term vertex alone refers to the 
hord network.
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∆=A0+ ...+Am−1 is 
omposed of the 
hords a0|[Aρ(0),...,Aρ(m−1)][❩❩A0,...,
❳❳❳Am−1,Aσ(m),...,Aσ(k−1)] with

ρ∈Sm and σ∈Sk−m , so that there arem!(k−m)! of them in ea
h fa
et.

In general, we may sele
t

( k
m

)
subsets of m mode intervals for ∆, whi
h will produ
e a similar number

of disjoint fa
ets. By 
olle
ting them, we always get the full set of k!=
( k
m

)
m!(k−m)! 
hords in the 
ell. In

parti
ular, the 
asem=k−1 leads to fa
etswith a similar number of (k−1)! 
hords as the front fa
ets.Their
lastmode interval is amain dire
tion or the returning dire
tion. That is, the notes a0 and a0+∆ di�er in an

interval −Ai. Hen
e these fa
ets are also orthogonal to these dire
tions, although they are in the negative

part of the axes, by assuming the 
enter of the 
ell a0 in the origin.We 
all them ba
k fa
ets. Front and ba
k

fa
ets are prin
ipal fa
ets of the 
ell of 
hords. The other fa
ets are themid fa
ets, existing only for k≥4.
The way of moving along the 
hord network between two 
hords by maintaining the maximum number of


ommon notes regardless tonality 
riteria is perpendi
ular to one fa
et. Su
h a movement implies 
hanges

between mode 
lasses. Therefore, on
e again we obtain the 
ell of 
hords as 
omposed of a number of fa
ets

fk=
∑k−1

m=1

(
k
m

)
=
(
k
1

)
+
(
k
2

)
+...+

(
k

k−2

)
+
(

k
k−1

)
=2k−2

where the fa
ets 
orresponding to m = i and m = k− i (indi
ated with arrows in the above equation)

have the same number (k− i)!i! of verti
es. In parti
ular, the number of prin
ipal fa
ets in the 
hord 
ell
is 2k, 
orresponding to the �rst and last terms of the series. Then, if k is odd, there is a number

k−1
2 of

di�erent 
hord 
on�gurations in the fa
ets, i.e., the amount of di�erent fa
ets with regard to their number

of verti
es. If k is even, there are k
2 di�erent types fa
ets, with a di�erent number of 
hords. Ea
h 
hord of

the 
ell is 
ontained in ea
h type of fa
et.

4. Algebra of 
hords

4.1 Operations on the root

4.1.1 Translations and inversions on dire
ted 
hords. It is possible to transform 
hords

over a two- or three-dimensional Tonnetz by using geometri
al or graphi
al means (e.g., Gollin 1998;

Jedrzejewski 2006; M
Cartin 2015, 2016), however, for higher dimensional networks it is ne
essary to

de�ne algebrai
ally su
h a transformations. It is amandatory referen
e to thework by Lewin (1987), one of

the pioneers in applying group theory to 
hord transformations. Ne
essarily with some 
ommon notation,

the 
hord operations of the 
urrent paper will use a simpler approa
h, by taking the advantage that we are

always moving on the 
hord network generated by a �xed k-mode.

First, we 
enter our attention in two operations on the root of a dire
ted 
hord of an n-TET system.

They will be noted by Greek letters. The �rst operation is the inversion of the root of a dire
ted 
hord

a= a0 |µ, de�ned in operator form as ι(a0 |µ) =−a0 |µ. Let us re
all the equivalen
e −a0 ≡ n−a0, sin
e

a0∈Zn. If the identity operation on the root is expressed as ǫ, then ι2=ǫ. Hen
e, the group generated by ι

is isomorphi
 to Z2. This operation is not de�ned for 
hords, sin
e it results in di�erent 
hords depending

on the dire
ted 
hord we apply it.

The other operation is the translation of the root of a dire
ted 
hord, whi
h indu
es translations of


hords along the tonal network. For u,v ∈Zn, a

ording to the notation τuv= v+u mod n, a translation

by an interval u∈Zn is the transformation τu(a0 |µ) = τua0 |µ. In parti
ular, when u mat
hes an interval

of the mode µ, we are able to represent geometri
ally the translation of the dire
ted 
hord on the Tonnetz.

The following equivalen
es hold, τu+v = τuτv, τuv = τuv = τuv , so that we may write τu = τu1 . The


omposition of translations has the stru
ture of a 
y
li
 group inherited from the sum in Zn, generated

by the element τ1. The identity element is ǫ = τ0 = τn1 , and the 
omposition satis�es the properties,

τuτv= τvτu, τu(τvτw)= (τuτv)τw, τuτ−u= ǫ. Hen
e, the inverse translation of τu may be written in several

ways, e.g., τ−u = τ−1
u = τ−u

1 . It is straightforward to see that translations and inversions on the root of a
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dire
ted 
hord are non-
ommutative

15

, instead, they satisfy

ιτx=τ−xι (17)

4.1.2 Translations on 
hords. For a non-null value u∈Zn, a translation τu on a dire
ted 
hord a0|µ
generates, in general, a di�erent 
hord, {τua0|µ} 6= {a0|µ}. When a translation is applied to two dire
ted


hords produ
ing the same 
hord, namely {a0|µ}={b0|ν}, it is straightforward to see that the translated

hordsare the same, i.e.,{τua0|µ}={τub0|ν}.Therefore,wemayspeakof translation of a 
hordas the result

of applying the translation on any rotation of the 
hord. Hen
e, we shall 
onsider τu{a0|µ}≡{τua0|µ}.

4.1.3 Dependent translations. Translations may be expressed without subindi
es by using the no-

tation τ [x](a0|µ)≡τxa0|µ, or, in general, form>0, τm [x](a0|µ)≡τmx a0|µ and τ
m[−x](a0|µ)=τ−m[x]a0|µ.

However, sometimes the translation is 
arried out by one or several mode intervals

16

. For example, if the

ith interval of the full mode µ = [A0,A1,... ,Ak−1] ∈M(n,k) is notated as [µ]i =Ai, i ∈ Zk, then we will

express a translation of the dire
ted 
hord a0|µ by this quantity simply as τ [µ]i(a0|µ)≡τ [Ai]a0|µ.
Sin
e the full modes have a 
y
li
 stru
ture, it is possible to refer to an interval anti
lo
kwise dire
tion,

with a negative index, by de�ning [µ]−i≡ [µ]k−i=Ak−i, i∈Zk.

Aretrogradetranslationbyamodeinterval isalsopossible,τ [−µ]i(a0|µ)=τ [−Ai]a0|µ.Weassumethenull

translationas τ [µ]0=τ0 andweuse the equivalen
e τ [−µ]i=τ−1[µ]i to refer to the translation toan interval
of themodeµ instead of using its invertedmode. In addition,we 
anwrite the intervals of the positive inver-

sionµ by using the intervals of themodeµ, as [µ]i=[µ]−i−1, so that we get the equivalen
e τ [µ]i=τ [µ]−i−1.

4.1.4 Prograde translations by mode intervals. Composition of translations a

ording to

su

essive mode intervals are denoted as

τ [µ]i,...,i+j≡τ [µ]i···τ [µ]i+j=τ [Ai]···τ [Ai+j ]=τ [Ai+...+Ai+j ] (18)

We pay attention to the root of 
hord rotations as de�ned in Eq. 9. The root of the ith rotation of a

dire
ted 
hord, namely ai=ai|µ
i
, satis�es ai+1= τ [Ai]ai= τ [µ]iai. Then, a

ording to Eq. 18, the root of

su

essive rotations is

ai+j=τ [Ai+...+Ai+j−1]ai=τ [µ]i,...,i+j−1ai (19)

bearing in mind that the whole set of intervals of the full mode satisfy τ [A0+ ...+Ak−1]= τ0. In a similar

way, translations on the root by a negative interval of the mode satisfy

ai=τ [−Ai]ai+1=τ [−µ]iai+1

ai=τ [−(Ai+...+Ai+j−1)]ai+j=τ [−µ]i,...,i+j−1ai+j
(20)

by providing the roots of retrograde rotations of the dire
ted 
hord. A parti
ular 
ase of Eq. 19 is

ai=τ [A0+...+Ai−1]a0=τ [µ]1,...,i−1a0 (21)

where the su

essive translations begin in the �rst interval of the mode.

Nevertheless, a more 
ompa
t notation 
an be used by writing

τ [µ]qp≡τ [µ]p,...,p+q−1=τ [Ap+...+Ap+q−1] (22)

where q denotes the number of mode intervals involved in the translation. The foregoing expression is

valid for positive and negative interval indi
es p. In general, sin
e τm[x] = τ [mx] for anym∈Z, it is hold

τm[µ]qp=τm[µ]p,...,p+q−1. Then, by notating τ [µ]
0
p=τ0, it is satis�ed,

τ [µ]qp τ [−µ]qp=τ0 (23)

By writing in a shorter form equations 19, 20, and 21, the su

essive notes of a dire
ted 
hord are

ai=τ [µ]i0 a0 , ai+j=τ [µ]jiai , ai=τ [−µ]jiai+j (24)

15

In an n-TET system the translations form a group isomorphi
 to Zn and the inversions are a group isomorphi
 to Z2.

Then, the operations on the root generated by τ1 and ι have the stru
ture of a semidire
t produ
t Zn ⋊ Z2 with 2n elements

{τ0,τ1,τ21 ,...,τ
n−1

1
,ι,τ1ι,τ21 ι,...,τ

n−1

1
ι}, where Z2 a
ts on Zn by inversion, sin
e the generators of the fa
tor groups satisfy ιτ1ι= τ1−1

.

Therefore, the operations on the root of dire
ted 
hords are isomorphi
 to the dihedral group Dn (e.g., Dummit and Foote 2004), so


alled be
ause it is the group of symmetries of a regular polygon.

16

Instead of referring to the 
omponents of a full mode µ∈M(n,k) from 1 to k, we refer to the mode intervals from 0 to k−1 in order
to use their indi
es a

ording to the 
y
li
 stru
ture of Zk.

14
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4.1.5 Retrograde translations by mode intervals. We also de�ne su

essive translations by the

mode intervals, read anti
lo
kwise dire
tion,

τ [µ]−q
p =τ [µ]p,p−1,...,p−q+1=τ [Ap+...+Ap−q+1] ; q≤p (25)

The subindex p indi
ates the highest mode interval in the 
omposition and the superindex q is the number

of retrograde 
ompositions. Hen
e, Eq. 23 is also true for negative powers of the translations,

τ [µ]−q
p τ [−µ]−q

p =τ0 (26)

For example, for p=−1 in Eq. 25, we may apply translations by the mode intervals starting from the

last one, anti
lo
kwise dire
tion, su
h as

τ [µ]−i
−1=τ [µ]−1,...,−i=τ [Ak−1+...+Ak−i] (27)

whi
h, by using the positive inversion of the mode, µ=[Ak−1,...,A0], may be 
omputed as

τ [µ]−i
−1=τ [µ]i0 (28)

In this way it is possible to express retrograde translations by intervals of a mode as prograde translations

by intervals of the positive inversion of the mode.

4.2 Operations on the mode

4.2.1 Positive and negative inversions. In �2.8 we introdu
ed the positive and negative in-

verted modes. We reformulate these transformations to express them as operators a
ting on dire
ted


hords, notating them with lower
ase Gothi
 letters. The negative and positive forms of a full mode

µ=[A0,A1,...,Ak−1]∈M(n,k), i.e.,−µ and µ, will be respe
tively written as

nµ=[−A0,−A1,...,−Ak−1]; pµ=[Ak−1,...,A1,A0] (29)

Both forms were used to determine the relative inverted 
hord of {a0 |µ} about a0, so that the dire
ted

hords n(a0|µ)=a0|nµ, read anti
lo
kwise dire
tion, and p(a0|µ)=a0|pµ, read in the positive orientation,
a

ording to Eq. 11 produ
e the same 
hord, {a0|nµ}={a0|pµ}.
By expressing the identity transformation on modes as e, it is obviously satis�ed n2=p2=e.

4.2.2 Retrogradation and shifts. In �2.7 we referred to the retrograde mode as −µ =
−[Ak−1,...,A1,A0]. Applied anti
lo
kwise dire
tion to a0, it generates the same 
hord {a0 |µ}= {a0 |−µ}.
We shall write

rµ≡npµ=−[Ak−1,...,A1,A0] (30)

so that r(a0 |µ)= a0 |rµ. Hen
e, {a0 |rµ}= {a0 |µ}. The retrogradation r of a dire
ted 
hord a
tually does

not modify the mode, but 
hooses the dire
tion the dire
ted 
hord is read, without 
hanging the root.

Thus, retrogradation 
an be applied to a 
hord, although it leaves the 
hord invariant. Therefore, it is an

operation well de�ned for 
hords. It is straightforward to see that

17

r2=e , r=np=pn , n=rp=pr , p=rn=nr
(31)

On the other hand, the shifts on modes de�ned in Eq. 8 
an be extended to dire
ted 
hords as operations

that leave the root unaltered. For a positive mode µ0 ≡ µ, a prograde single shift 
an be written as

µ1≡sµ0=[A1,...,Ak−1,A0], while, in general, the jth shift is obtained as

µj=sµj−1=sjµ0; j∈Zk (32)

with s0 = e. Noti
e that, for full modes of dimension k, this transformation is k-periodi
, so that sk = e.

Therefore, 〈s〉 is a 
y
li
 group of order k, although the shift does not 
ommute with the previous

operations. Hen
e, the exponent indi
ating the shift number 
an be assumed as a number in Zk. Then,

a retrograde or anti
lo
kwise shift may also be applied to µ, i.e., µ−1 = s−1µ0 = [Ak−1,A0,... ,Ak−2]. In
general, we have µ−j=s−1µ−j+1=s−jµ0

.

Unlike translations, the operations n,p, and s on the modes 
annot be extended to 
hords, sin
e the

same operation may result in di�erent 
hords depending on the dire
ted 
hord rotation it is applied.

It is straightforward to prove the following properties of the mode operations involving shifts, being the

17

The set of mode operations {e,n,p,r} is an abelian Klein four-group, whi
h is the dire
t produ
t 〈n〉×〈p〉 of 
y
li
 groups of order 2.
However, if the modes are used stri
tly 
lo
kwise de�nite, we only have to deal with 〈p〉.
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�rst one 
ommutative and the other two anti
ommutative:

sn=ns , sp=ps−1 , sr=rs−1
(33)

Therefore, for any j∈Zk, it is ful�lled

sjn=nsj , sjp=ps−j , sjr=rs−j
(34)

Let us re
all that the shifts sjµ, j ∈Zk, of the full mode µ∈M(n,k) determine one mode 
lass µS
. The

inverted mode, e.g., written as a positivemode pµ, and their shifts belong also to onemode 
lass (pµ)S , not
ne
essarily the sameasµS

.For the sakeof the se
ondrelationship inEq.33, these shifts satisfypsjµ=s−jpµ,

so that all the inversions of the modes in µS
belong to the mode 
lass (pµ)S . Therefore, we may speak of

mutually inverted mode 
lasses, whi
h have the same 
ardinality. In parti
ular, if µ and pµ belong to the

same
lass, i.e., for somem∈Zk ,pµ=smµ, then (pµ)S=µS
, sin
e, for any j∈Zk, it is ful�lledps

jµ=sm−jµ.

4.2.3 Neighbor 
hords. The way of moving between 
hords along the 
hord network by maintaining

the maximum number of 
ommon notes is along the edges of 
ongruent 
ells, where, between adja
ent ver-

ti
esonlyonenote is
hanged.This isageneral
asethat in
ludestheparsimoniousvoi
e leading(Cohn1997)

along theTonnetzgeneratedbyamajor triadand itsdualnetwork

18

. In su
hapath, the
hordsat theendsof

the edgebelong to ea
honeof the 
ells that share this edge, but depending on the rotationweuse to des
ribe

themwe
anmakeexpli
itthattheyalsobelongtotheoppositenon-
ongruent
ellsthatareseparatedbythis

edge. In a non-degenerateTonnetz, this e�
ient path 
ombines 
hords generated by di�erent mode 
lasses.

Before des
ribing how to move in the 
hord network from one 
hord to its neighbor, we must remark

that some of the mode transformations 
an also be applied to partial modes. In parti
ular, the operators

p and smay a
t on partial modes by maintaining the total mode as a full mode. For instan
e, given a full

mode written as a 
omposition of partial modes, i.e., µ= ν ·κ, with ν ∈M(n,p),κ∈M(n,q) and p+q= k,

we 
an generate new full modes su
h as pν ·sκ, psν ·κ, et
. The only 
ondition is not to mix positive and

negative partial modes.

For a mode µ=[A0,A1][A2,...,Ak−1], k>2, we notate a single transposition operator as

tµ=p[A0,A1][A2,...,Ak−1] (35)

It is the transposition of the �rst two mode intervals. Obviously, t2=e.

The ith transposition of two 
onse
utive intervals Ai, Ai+1 is obtained by 
ombining the foregoing

operator with the mode shifts as

ti=s−itsi, i∈Zk (36)

In this way it is possible to rea
h all the transpositions of the symmetri
 group Sk. The k−1 generators
{t0,...,tk−2} provide a presentation of Sk (k>2) with the following 
onstraints19

(i) t2i =e , (ii)(tj ti)
2=e⇔|i−j| 6=1 , (iii) (ti+1ti)

3=e (37)

These 
onstraints are also valid for all the indi
es in Zk, by assuming that the se
ond 
ondition |i−j| 6=1
takes pla
e in Zk, i.e., it that does not apply to the pair t0 and tk−1.

Proposition 4.1 For j=2,...,k, given a subset of j−1 
onse
utive numbers {i,i+1,...,i+j−2} in Zk

and a permutation σ∈Sj−1, it is satis�ed (tσ(i+j−2)···tσ(i+1)tσ(i))
j=e.

Proof. Any 
omposition of j− 1 di�erent transpositions involving a subset of 
onse
utive indi
es in Zk

(regardless of the order of 
omposition) is a 
y
le of length j and is a permutation of order j. �

In parti
ular, by assuming the indi
es in Zk, this applies to a full mode shift expressed from any


omposition in the form

20 s= ti+k−2···ti+1ti.

When the single transposition operator t= t0 is applied to the dire
ted 
hord a0|µ, the resulting dire
ted

hord t(a0 |µ) = a0 |tµ=(a0,a0+A1,a0+A0+A1,a0+A0+A1+A2,...,a0+A0+ ...,Ak−1) has ex
hanged

18

Originally, the 
on
ept of parsimonious voi
e leading was applied when two notes of a tri
hord were maintained during a

transformation and the third note moved by a minor se
ond or a major se
ond. Douthett and Steinba
h (1998) gave a more �exible

de�nition by requiring that just one note were maintained, with the other two moving by minor or major se
ond.

19

Equivalently, t−1

i
= ti, tjti= titj ⇔|i−j| 6=1, and ti+1titi+1= titi+1ti. The se
ond 
ondition only applies for k>3.

20

The transposition tk−1, sin
e s= tk−2···t0, 
an be expressed as tk−1= tk−2···t1t0t1···tk−2.
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the note a1 = a0+A0 of the original 
hord for a0+A1. Both dire
ted 
hords are still referred to the same


ell, although after one rotation, both 
hords 
an be written as

{a0|µ}={a0+A0|sµ}={a0+A0,a0+A0+A1,...,a0+A0+...,Ak−1,a0}
{t(a0|µ)}={a0+A1|stµ}={a0+A1,a0+A0+A1,...,a0+A0+...,Ak−1,a0}

(38)

now expli
itly referred to the di�erent 
ells 
entered in the notes they di�er. Therefore, the operator t has

displa
ed the original 
hord along the edge 
onne
ting the 
ells a1=a0+A0 and a0+A1.

In general, if the transposition operator is applied to the ith rotation of the dire
ted 
hord, ai = ai |µ
i
,

it is immediately to prove that

Theorem 4.2 The 
hords {ai |µ
i} and {t(ai |µ

i)} only di�er in the notes ai+1 = ai+Ai and ai+Ai+1,

respe
tively.

Proof. The reasoning is similar to that of Eq. 38. The 
hord {a0 | µ} is equivalent to its rotations

{ai|µ
i}={ai+Ai|sµ

i}, while {t(ai|µ
i)}={ai+Ai+1|stµ

i}. These roots 
orrespond to opposite 
ells in the
ends of the edge that 
onne
ts these 
hords. �

To re
over the original position of the 
ommon notes, it su�
es to do the ith inverse rota-

tion. For i = 0, ... , k − 2, the root a0 appears in the inversions of the dire
ted 
hords t(ai | µ
i),

i.e., {t(a0 | µ0)} = {a0 | [A1, A0, ... , Ak−1]} and {t(ai | µi)} = {a0 | [A0, ... , Ai+1, Ai, ...]};
i = 1, ... , k − 2. For i = k−1, the root a0 is ex
hanged by the note a0 + A0 − Ak−1, i.e.,

{t(ak−1|µ
k−1)}={a0+A0−Ak−1|[Ak−1,A1,...,Ak−2,A0]}. Therefore,

Corollary 4.3 For i = 0, ... , k − 2, the 
hords {t(ai |µ
i)} remain in the 
hord 
ell a0. The 
hord

{t(ak−1 | µ
k−1)} does not belong to the 
hord 
ell a0. The edge 
onne
ting the 
hord 
ells a0 and

a0+A0−Ak−1 is the one to follow in order to move to a non-
ongruent 
ell with a0.

In the end of �4.3.5 we 
ome ba
k to these transformations in more detail.

4.2.4 Translations by mode intervals.

Proposition 4.4 Prograde translations of a mode µ∈M(n,k) satisfy τ [µi−j ]j0=τ
[
pµi

]j

0
.

Proof. A

ording to Eq. 8, sin
e the subindi
es of the mode intervals belong to Zk, we have

µi=[Ai,...,

j
︷ ︸︸ ︷

Ai−j ,...,Ai−1] and pµi=[

j
︷ ︸︸ ︷

Ai−1,...,Ai−j ,...,Ai]. Similarly,

µi−j = [

j
︷ ︸︸ ︷

Ai−j ,Ai−j+1,...,Ai−j+j−1, ... ,Ai−j+k−1]. Hen
e, the sums of the j �rst terms of both foregoing

equations mat
h, τ
[
pµi

]j

0
=τ [µi−j]j0=τ [Ai−j+···+Ai−1], leading to the desired result. �

In parti
ular, for i=0 we get τ [µ−j ]j0=τ [pµ]j0 and, for i=j, we get τ [µ]j0=τ
[
pµj

]j

0
.

4.2.5 Relationships involving shifts and translations. We give several properties 
ombining

translations by intervals of a shiftedmode,whi
hwill be used in the following se
tions. Equations involving

translations by mode intervals are also valid for inverse translations.

An interval Ai+j of the mode µ= [A0,A1,...,Ak−1] 
an be denoted in di�erent ways, depending on the

mode shift and the 
hosen interval, as follows, [µi+j ]0=[µi]j=[µj]i; i,j∈Zk. Also, a

ording to Eq. 28,

τ [µj]−i
−1=τ

[
pµj

]i

0
(=τ [Aj+k−1+...+Aj+k−i]) (39)

By taking into a

ount Eq. 22, for 1≤ i≤k and any integer l, we have

τ [µj ]i0=τ [µj−l]il (=τ [Aj+...+Aj+i−1]) (40)

Sin
e the �rst i intervals of µj
are the last i intervals of pµj

in reverse order, their sum mat
h. Thus,

τ [µj ]i0 = τ [pµj ]ik−i. Hen
e, by equations 34 and 40, we get τ [µj]i0 = τ [pµj+i+l]il . On the other hand, sin
e

τ [µj ]k0=τ0, then τ [µj ]i0τ [µ
j]k−i
i =τ0. Therefore, in Zn, τ [µ

j ]i0=τ [nµj]k−i
i .
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Owing to equations 34 and 40, going ba
kwards i− l intervals and 
ompensating with a prograde shift

of i− l steps, we get the more general relationship for Eq. 40, τ [µj]i0 = τ [nµj+i−l]k−i
l . Finally, we also give

an alternative version of Eq. 24 for the notes of a dire
ted 
hord a0|µ,

ai+j=τ [µi]j0ai (41)

4.3 Chord transformations

4.3.1 Operations on root and mode. As mentioned above, the operations on the mode n,p, s and

t are de�ned only for dire
ted 
hords. A

ording to the 
ondition given by Lemma 2.6, the operations on

two dire
ted 
hords generating the same 
hord will produ
e the same 
hord only if the operations that

modify their modes are balan
ed with operations on their roots. Operations on dire
ted 
hords involving

root and mode will be noted with upper
ase Gothi
 letters.

As we have already seen, inversion of dire
ted 
hords, using either the positive or negative mode

inversions, 
ombine operations on root and mode. Both forms of inversion applied to a dire
ted 
hord

generate the same 
hord, although read in opposite orientations. Under operational form, the inverted

and mirror dire
ted 
hords are expressed as

I(a0|µ)= ιp(a0|µ)=−a0|pµ, M(a0|µ)= ιn(a0|µ)=−a0|nµ (42)

We notate the identity transformation of a dire
ted 
hord asE=ǫe, whi
h is the 
ommutative 
omposition

of both identities a
ting on the root and the mode, respe
tively. Then, I2 =M2 = E. Let us remember

that, as dire
ted 
hords, I(a0|µ) 6=M(a0|µ), although, as studied in �2.9, they are well de�ned operations
on 
hords and generate the same 
hord.

A

ording to Eq. 42, and bearing in mind Eq. 17, it is straightforward to derive the following

anti
ommutative properties that 
ombine inversions and translations of dire
ted 
hords,

Iτx(a0|µ)=τ−xI(a0|µ) , Mτx(a0|µ)=τ−xM(a0|µ) (43)

4.3.2 Inversion of 
hords. Thus, the inversion of a 
hord iswell de�ned regardless the dire
ted 
hord

we use. That is, {a0 |µ}= {b0 |ν} if, and only if, {I(a0 |µ)}= {I(b0 |ν)}. In addition, the anti
ommutative

properties of Eq. 43 are also valid for 
hords, regardless the rotation of the dire
ted 
hord that is being

transformed,

Iτx{a0|µ}=τ−xI{a0|µ} , Mτx{a0|µ}=τ−xM{a0|µ} (44)

We still give a more pre
ise result.

Proposition 4.5 If the dire
ted k-
hord a0 |µ is a rotation of m steps of the dire
ted 
hord b0 |ν, then
the inversion I(a0|µ) is a rotation of k−m steps of I(b0|ν)

Proof. A

ording to Lemma 2.6, there is one valuem∈Zk su
h that am=b0 and µm=ν. Hen
e,

am|smµ=b0|ν (45)

Then, for the respe
tive inverted dire
ted 
hords, I(a0|µ)=−a0|pµ and I(b0|ν)=−b0|pν, we look for the
index i that satis�es

−am|sipµ=−b0|pν (46)

By inverting the dire
ted 
hords of Eq. 45, a

ording to Eq. 42 we get −am|psmµ=−b0|pν, whi
h 
an be
expressed, by applying the se
ond relationship of Eq. 33, as

−am|s−mpµ=−b0|pν (47)

By 
omparing Eq. 46 and Eq. 47, we obtain the shift i=k−m, whi
h makes the inverted dire
ted 
hords

�t them together. The result is identi
al for modes oriented anti
lo
kwise with the operatorM. �

4.3.3 Inversion and mirror by x. Other operations on the root and mode of a dire
ted 
hord are

de�ned, su
h as the inversion by an interval x, in one of the following forms,

Ix(a0|µ)≡τxI(a0|µ)=τxιp(a0|µ)=(x−a0)|pµ
Mx(a0|µ)≡τxM(a0|µ)=τxιn(a0|µ)=(x−a0)|nµ

(48)
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depending on the orientation the mode is read. Thus, the inversion by x 
ombines, �rst, an inversion of

the dire
ted 
hord and, afterwards, a translation by an interval x, leading to a new root x−a0.

By Eq. 17, these operations are not 
ommutative. We write I0≡I and M0≡M. Sin
e inversions by an

interval are 
omposition of translations and inversions, they are also well de�ned operations on 
hords.

Operations on the root and operations on the mode are mutually independent and 
ommutative. On

the other hand, as seen in Eq. 17, translations and inversions on the root do not 
ommute. In addition

to the property τxτy = τx+y, it is easy to borne out the following properties involving translations τx and

inversions Iy (or alternativelyMy):

IxIy=τx−y MxMy=τx−y (49)

τxIy=Ix+y=τyIx τxMy=Mx+y=τyMx (50)

Ixτy=Ix−y=τ−yIx Mxτy=My−x=τ−yMx (51)

From Eq. 49 we see that I2x=E, i.e., the identity element

21

.

4.3.4 Rotations. Like inversions, a dire
ted 
hord rotation, as de�ned in Eq. 9, is a 
ombination of

a translation on the root and a shift on the mode. A one-step prograde rotation of the dire
ted 
hord

a=a0|µ∈K(n,k), depending on the �rst mode interval, 
an be expressed in either of the following forms,

Ra=a1=τA0
a0|sµ=τ [µ]0a0|sµ (52)

Similarly, an i-step prograde rotation applied to the same dire
ted 
hord, a

ording to Eq. 32 and by

taking into a

ount Eq. 40, 
an be written as

Ria=ai=τA0+...+Ai−1
a0|s

iµ=τ [µ]i0a0|s
iµ (53)

Su

essive rotations 
an be notated as follows,

Rai=ai+1=τAi
ai|sµ

i=τ [µi]0ai|sµ
i

(54)

and, in general, the 
onse
utive i- and j-step rotations are expressed as

Rjai=ai+j=τAi+...+Ai+j−1
ai|s

jµi=τ [µi]j0ai|s
jµi

(55)

Rotations on dire
ted k-
hords 
learly satisfy Riaj = Rjai = Ri+ja0, Rk = R0
, and they have the

stru
ture of a 
y
li
 group of order k. Hen
e, for the rotation index we also assumeRi≡Ri mod k
.

Rotations 
an be de�ned ba
kwards, as retrograde rotations,

R−1ai=ai−1=τ−Ai−1
ai|s

−1µi=τ [nµi]−1ai|s
−1µi

(56)

Then, an arbitrary anti
lo
kwise rotation is evaluated, by taking into a

ount Eq. 41, as

R−jai=ai−j=ai−j|s
−jµi=τ [nµi]−j

−1ai|s
−jµi

(57)

If we take into a

ount equations 28 (remember that pµ=µ) and 30, we may write τ [nµi]−j
−1= τ [pnµi]j0=

τ [rµi]j0, allowing us to write the translation in Eq. 57 in terms of the prograde intervals of the retrograde

mode as

R−jai=ai−j=τ [rµi]j0ai|s
−jµi

(58)

whi
h is a formula similar to Eq. 55, with the only di�eren
e that retrograde rotations take translations

in the root by the retrograde mode.

By de�nition, the 
hords are invariant under rotations, i.e.,

{a}={Ria0},∀i∈Zk (59)

Therefore, rotations indu
e a 
onstraint between translations and shifts. Furthermore, a

ording to Eq.

11, whi
h expresses an inverted 
hord in two equivalent ways, the relationship {Ri(a|nµ)}= {Rj(a|pµ)}
is satis�ed for any 
ouple of indi
es i,j∈Zk .

21

In an n-TET system, the translations and inversions are made by intervals x∈Zn, being τx = τx
1
. Sin
e translations are generated

by τ1, they satisfy τn
1
= τ0 and are isomorphi
 to Zn. On the other hand, an inversion by x is obtained as Ix = τxI0. Sin
e I20 = ǫ, then

I0 generates a group isomorphi
 to Z2. Therefore, su
h a group of operations on a 
hord is generated by τ1 and I0. It is is a semidire
t

produ
t Zn⋊Z2 with 2n elements {τ0,τ1,τ21 ,...,τ
n−1

1
,I0,τ1I0,τ21 I0,...,τ

n−1

1
I0} satisfying I0τ1I0=τ1−1

. Similarly to the operations on

the root of a dire
ted 
hord, the operations on a 
hord are isomorphi
 to the dihedral groupDn.
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4.3.5 Drifts along edges. Theorem4.2andCorollary4.3
anbeexpressedbyusingamoreappropriate

notationbyde�ningthedriftoperator,transformingdire
ted
hordsalongsingleedgesofthe
hordnetwork,

Di≡R−itRi; i∈Zk,k>2 (60)

When a
ting on the dire
ted 
hord a0|µ=a0|[A0,...,Ak−1], bearing in mind Eq. 36, we get

Di(a0|µ)=R−i(ai|ts
iµ)=a0|tiµ; i=0,...,k−2 (61)

Dk−1(a0|µ)=R−(k−1)(ak−1|ts
k−1µ)=a0+A0−Ak−1|tk−1µ (62)

Theorem 4.6 For i=0,...,k−2 the operator Di transforms a dire
ted 
hord a0 |µ sideways along one

edge in the same 
ell a0, while for i= k−1 the dire
ted 
hord is sent forward along one edge towards the

non-
ongruent 
ell a0+A0−Ak−1.

It is a dire
t 
onsequen
e of Theorem 4.2 and of the fa
t that the transpositions {t0,...,tk−2} generate
the symmetri
 group Sk.

Theorem 4.7 For j=2,...,k, given a subset of j−1 
onse
utive numbers {i,i+1,...,i+j−2} in Zk and

a permutation σ∈Sj−1, then (Dσ(i+j−2)···Dσ(i+1)Dσ(i))
j=E.

Proof. Let S=Dσ(i+j−2) ···Dσ(i+1)Dσ(i). When Sj
is applied to a dire
ted 
hord a0 |[A0,...,Ak−1], with

regard to the mode part c = tσ(i+j−2) ···tσ(i+1) tσ(i), Proposition 4.1 guarantees the identity result. With

regard to the root, ifS does not 
ontainDk−1, the root is also maintained. Otherwise, ifS 
ontainsDk−1,

sin
e c is a 
y
le of length j involving the mode intervals Ai,Ai+1,...,Ai+j−1, the �rst and the last mode

intervals are involved in ea
h iteration and, in parti
ular, from the �rst appli
ation of the operator Dk−1

onward, the root is modi�ed a

ording to Eq. 62. Ea
h time Dk−1 is applied, the �rst mode interval runs

a 
y
leAρ(0),Aρ(1),...,Aρ(j−1) of length j, with ρ∈Sj . Similarly, the last mode interval runs a shifted 
y
le

Aρ(m),Aρ(m+1),...,Aρ(m+j−1) for 
ertain m 6=0 in Zk. Therefore, after j appli
ations of Dk−1, the root a0
is transformed a

ording to a series of translations τ [Aρ(0)−Aρ(m)]···τ [Aρ(j−1)−Aρ(m+j−1)]=0, sin
e all
the mode intervals involved in one 
y
le appear on
e as positive and on
e as negative. �

Corollary 4.8 For all i∈Zk, the drift operators satisfy

(i)D2
i =E , (ii) (DjDi)

2=E⇔|i−j| 6=1 , (iii)(Di+1Di)
3=E

Condition (i) is obvious; (ii) is a 
onsequen
e of (i), sin
e the transpositions of the mode intervals are

disjoint; and (iii) is a 
onsequen
e of the above theorem.

Therefore, theelementalpolygons
omposingone
ell ofk-
hordsare squares (only ifk>3)andhexagons,
asso
iated with the simple 
ir
uits (
losed paths where no vertex is repeated) of the 
onstraints (ii) and

(iii) of Corollary 4.8, for indi
es in {0,...,k−2}. Then, one node of a 
hord 
ell is 
onne
ted to the neighbor
k−1 nodes shared with the neighbor 
ells with the above drifts and the driftDk−1 
onne
ts the node with

a non-
ongruent 
ell. In the 
hord 
ell there are other simple 
ir
uits, su
h as allowed 
on
atenations of

the above ones or paths 
orresponding to k 
onse
utive shifts of the mode (Dk−2···D0)
k
involving k(k−1)

edges. In general, throughout the 
hord network, we will �nd the simple 
ir
uits des
ribed in Theorem 4.7.

Sin
e the Cayley graph is Hamiltonian, in the permutahedron we will always �nd Hamiltonian 
ir
uits,

i.e., 
losed paths that go through ea
h vertex of the 
hord 
ell exa
tly on
e.

In addition, it is desirable to �nd the shortest 
ir
uits that run along several 
hord 
ells allowing 
hanges

of tonality, likewise the maximally smooth 
y
les alternating major and minor triads of the 12-TET s
ale.

Ea
h simple 
ir
uit begins and ends in the same 
hord, so that the total length of the path is equivalent to

a number of translations along the 
hord network satisfying

∑

iciAi =0 mod n for 
ertain values ci ∈N,

although the path runs step-by-step along several dire
ted 
hords of di�erentmodes andmode 
lasses (i.e.,

by dire
ted 
hords that 
annot be a
hieved only by translations and mode shifts) until be
omes 
losed. It

is relevant the 
ase where translations are done always along the same ve
tor interval dire
tion, i.e., when

there is a minimum positive integer j, 2≤ j <n, satisfying jAi=0 mod n. Sin
e, for j=n there is always

a simple 
ir
uit, we may speak of a short
ut 
ir
uit. We study the 
ase jA0=0 mod n.
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Proposition 4.9 The drifts operators satisfy Di+1=R−1DiR, hen
e Di+j=R−jDiR
j
for i,j∈Zk.

Proof. For i=0,...,k−3 it is an immediate 
onsequen
e of Eq. 36, sin
e these drifts do not 
hange the root.

For i=k−2 and k−1, the relationship is also satis�ed, sin
e

R−1Dk−2R(a0|[A0,...,Ak−1])=R−1Dk−2(a0+A0|[A1,...,A0])=R−1(a+A0|[A1,...,A0,Ak−1])

=(a+A0−Ak−1|[Ak−1,A1,...,A0])=Dk−1(a0|[A0,...,Ak−1])

R−1Dk−1R(a0|[A0,...,Ak−1])=R−1Dk−1(a0+A0|[A1,A2,...,Ak−1,A0])=R−1(a+A0+A1−A0|[A0,A2,...,Ak−1,A1])

=(a+A0+A1−A0−A1|[A1,A0,A2,...,Ak−1])=D0(a0|[A0,...,Ak−1])
�

The graph in Eq. 63 des
ribes the �rst translation τ [A0](a|µ) depending on whether we refer this path
to the edges of the adja
ent 
hord 
ell a0 +A0 (upper row) or whether it starts running along the edge


onne
ting the 
ells a0 and a0+A0 (lower row). The translation from the �rst 
hord (left 
olumn) to the

last 
hord (right 
olumn) involves k−1 steps.

a+A0|sµ
Dk−2

a+A0|tk−2sµ
Dk−3

···
D0

a+A0|µ

a|µ

R τ [A0]

Dk−1

a+A0−Ak−1|tk−1µ
Dk−2

···
D1

a+A0−Ak−1|s
−1µ

R (63)

In the �rst 
ase, sin
e D0 ···Dk−2 = s−1
, D0 ···Dk−2R(a0 | µ) = s−1τ [A0](a0 | sµ) = τ [A0](a0 | µ),

so that (D0 ··· Dk−2R)j(a0 | µ) = τ [jA0](a0 | µ) = a0 | µ. In the se
ond 
ase, by Proposition 4.9,

RD1 ···Dk−1(a0 |µ) = τ [A0](a0 |µ), hen
e (RD1 ···Dk−1)
j(a0 |µ) = τ [jA0](a0 |µ) = a0 |µ. Sin
e 
hords are

invariant under rotations, the path generates a simple 
ir
uit along j(k−1) 
hords.
The generalization of the above result to any interval satisfying jAi=0 mod n is straightforward, sin
e

it su�
es to apply the ith rotation to the dire
ted 
hord (a|µ) at the beginning of the path, and the ith

inverse rotation at the end, in order to re
over the original mode. Therefore,

Theorem 4.10 If jAi =0 mod n, 2≤ j <n, there exist short
ut 
ir
uits in the 
hord network running

j(k−1) 
hords and edges, so that (RD1···Dk−1)
j(ai|µ

i)=τ [jAi](ai|µ
i)=ai|µ

i
.

Furthermore, by taking into a

ount Proposition 4.9, we may write

...(RD1···Dk−1)(RD1···Dk−1)(RD1···Dk−1)=

...(RR2R−2D1R
2R−2···R2R−2Dk−1)(RRR−1D1RR−1···RR−1Dk−1)(RD1···Dk−1)=

...(D3···D0D1)(D2···Dk−1D0)(D1···Dk−1). Therefore,

Corollary 4.11 The short
ut 
ir
uit of the above theorem 
an be run without rotations, by 
onse
utive

appli
ation of drifts with de
reasing indi
es in Zk (this is also valid for any simple 
ir
uit),

...(D3···D0D1)(D2···Dk−1D0)(D1···Dk−1)
︸ ︷︷ ︸

j(k−1) steps

(ai|µ
i)=ai|µ

i

5. Chord network

5.1 Referring a 
hord to di�erent 
ells

For a dire
ted 
hord x0|µ, the 
ondition of invarian
e of the 
hord, {x0|µ}={R(x0|µ)}, a

ording to Eq.
54 implies {x0|µ}={τ [µ]0 x0|sµ}. By applying the opposite translation τ−1[µ]0= τ [−µ]0 in both sides of
the foregoing equation, we get

{τ−1[µ]0x0|µ}={x0|sµ} (64)

Thus, starting from the 
hord {x0 |µ} we may rea
h the 
hord {x0 | sµ} either from a shift or from a

translation. In a similar way as in the geometri
 representation of Fig. 3, the translated 
hord in the new


ell is pla
ed at the same relative position than the 
hord {x0 |µ}, although the shifted 
hord remains in

the original 
hord 
ell x0 in a di�erent relative position. Then, the same 
hord 
an be expressed from two

roots, whi
h are the 
enter of two 
ontiguous 
ells sharing the 
hord of Eq. 64.
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A

ording to equations 53 and 59, a 
hord {x0|ν} is invariant by rotations, hen
e

{x0|ν}={Rj(x0|ν)}={τ [ν]j0 x0|s
jν}, j∈Zk (65)

For ea
h 
hord, the value j = 0 provides the 
hord written as a dire
ted 
hord with root x0, while values

j = 1, ... ,k−1 provide the same 
hord from the other roots. Then, ea
h 
hord {x0 |ν} 
an be expressed

a

ording to a dire
ted 
hord referred to one of the k−1 surrounding 
ells of x0 
entered in τ [ν]j0 x0,
although from a di�erent shift of the mode. Thus, by generalizing Eq. 64, we get the following result,

Theorem 5.1 The 
hords {x0|s
jν}, j∈Zk, are equivalent to the following translations,

{x0|s
jν}={τ−1[ν]j0x0|ν} (66)

The translated 
hords be
ome referred to dire
ted 
hords in neighbor 
hord 
ells a

ording to the

su

essive notes of the relative mirror 
hord {x0|nν}, read anti
lo
kwise.
Similarly, by taking into a

ount Eq. 58, the retrograde rotations of a 
hord satisfy

{x0|ν}={R−j(x0|ν)}={τ−1[pν]j0x0|s
−jν} (67)

By applying τ [pν]j0 in both sides, we get an equivalent result to the previous one,

Theorem 5.2 The 
hord {x0|s
−jν}, j∈Zk, is equivalent to the following translation

22

,

{x0|s
−jν}={τ [pν]j0x0|ν}={τ [ν]−j

−1x0|ν} (68)

Now, the translated 
hords are referred todire
ted 
hords inneighbor 
hord 
ells a

ording the su

essive

notes of the relative inverted 
hord {x0|pµ}.
For the 
hords generated by an inverted mode, we get some similar results,

Corollary 5.3 The 
hords {x0|s
jpν}, j∈Zk, satisfy

{x0|s
jpν}={τ−1[pν]j0x0|pν} (69)

The translated 
hords are referred to dire
ted 
hords in neighbor 
hord 
ells a

ording the su

essive

notes, anti
lo
kwise dire
tion, of the 
hord {x0|−pν}={x0|rν}, obtained from the retrograde mode.

Corollary 5.4 The 
hords {x0|s
−jpν}, j∈Zk, satisfy

23

{x0|s
−jpν}={τ [ν]j0x0|pν}={τ [pν]−j

−1x0|pν} (70)

The translated 
hords be
ome referred to dire
ted 
hords in neighbor 
hord 
ells a

ording the su

essive

notes of the 
hord {x0|ν}.

5.2 Co-
y
les, 
o-
ells, and 
ongruent 
ells

For µ ∈M(k,n), we write Eq. 66 as {τ−1[µ]j0 x0 |µ}= {x0 |µ
j},j ∈ Zk. In the 
hord 
ell x0 the family of


hords des
ribed by the right-hand side member of this equation is 
omposed of k di�erent 
hords, whi
h

form a 
o-
y
le (Cohn 1996). The 
o-
y
les of the 
ell x0 are then generated by themodes of themode 
lass

µS
applied to the same root.

Alternatively, on the left-hand side of this equation, ea
h 
hord of the 
o-
y
le in the 
ell x0 is referred

to one of the k−1 surrounding 
ell of x0 with 
enters in τ−1[µ]j0 x0, respe
tively, in addition to the 
hord

{x0|µ}. We 
all them 
o-
ells of the 
hord {x0|µ}, where the 
hords of the 
o-
y
le are pla
ed in the same

relative position as {x0|µ} with regard to the 
ell x0.
Two 
hords {a} and {b} in the 
ell x0 are in the same 
o-
y
le if, and only if, for any interval u the

translated 
hords {τua} and {τub} are in the same 
o-
y
le in the 
ell x0+u. On the other hand, in the


ell x0 a dire
ted 
hord x0|µ is pla
ed in a vertex shared by k 
o-
ells. In ea
h one of these 
ells this 
hord

is generated by other shifts µm
of the mode

24

. Sin
e the 
ells sharing the 
hord are those 
orresponding to

22

The translation may be rewritten a

ording to Eq. 39, so that it is 
arried out by the same mode ν.
23

Here, the translation may be also rewritten a

ording to Eq. 39, so that it is 
arried out by the samemode pν.
24

In a non-degenerate Tonnetz, these shifts are always di�erent, otherwise, for p 6=q, the shifts µp
and µq

may 
oin
ide.

22
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the k rotations of the dire
ted 
hord, a

ording to Eq. 53, the 
hord {x0|µ} in the 
ell xj=τ [µ]j0x0 (whi
h
is the root of the jth prograde rotation of the dire
ted 
hord) is generated by the shift µj

, for j=1,...,k−1.
Then, the shift of the mode ism=j for the 
ell xj .

For any mode 
lass νS ∈C(µ), the 
o-
y
les {x0|ν
i}, i=0,...,k−1, belong to the 
ell x0. By 
olle
ting all

the modes of the mode 
lasses in C(µ) we get the symmetri
 modes S(µ). Then, the 
ongruent 
ells of the

ell x0 are those of the notes 
omposing the 
hords {x0|ν} with ν ∈S(µ). A

ording to �3.8, this makes a

number of 2k−2 
ells, that are adja
ent to the fa
ets of the 
ell x0.

5.3 Dependent operations on 
hords

Equations66and68showthatamodeshift
anbe
omputedfromadependenttranslationbymode intervals

of a dire
ted 
hord, whi
h is an operation that, in this form, is well de�ned for 
hords, on 
ondition of refer-

ring thedire
ted
hordtoanother 
ell.For example, in the following
ase, themodemaybeshifteda

ording

to Eq. 66 as follows, {a0|µ
0}={a1|µ

1}⇒{τ−1[µ0]0 (a0|µ
0)}={τ−1[µ0]0 (a1|µ

1)}. In the se
ond member

we get the shift of {a0 |µ
0} in the 
ell a0, {τ

−1[µ0]0 (a1 |µ
1)}= {a1−A0 |µ

1}= {a0 |µ
1}, while, in the �rst

member, the shift is expressed as a translation to the 
ella0−A0, su
h as {τ
−1[µ0]0 (a0|µ

0)}={a0−A0|µ
0}.

It 
orresponds to a 
hord pla
ed in the same relative 
ell position than {a0|µ
0}.

Therefore, we may use the alternative operations des
ribed in equations 66 and 68 to 
ompute the


hords obtained as shifts of a dire
ted 
hord rotation.

Theorem 5.5 For any rotation of the dire
ted 
hord ai |µ
i
, i ∈ Zk, the 
hords 
orresponding to the

shifted dire
ted 
hords are obtained from the following translations on the 
hord {a},

{sj(ai|µ
i)}=τ−1[µi]j0 {a}, {s−j(ai|µ

i)}=τ [µi]−j
−1 {a} (71)

We have a similar situation for inversions on the root of a dire
ted 
hord. The inversion of the root 
an

be obtained as a translation also depending on the root, that 
an be expressed as {ιx|µ}=τ−2
x {x|µ}.

Theorem 5.6 The 
hord obtained as a root inversion of the ith rotation ai |µ
i
is the result of the

following translation on the 
hord {a}, {ι(ai|µ
i)}=τ−2[ai]{a}.

Similarly, by taking into a

ount Eq. 43 and the above equation, we have,

Theorem 5.7 The 
hord obtained as the relative mirror 
hord of ai|µ
i
is 
omputed from the following


omposition on the 
hord {a}, {n(ai |µ
i)} =M τ−2[ai] {a}, whi
h is equivalent to the relative inverted


hord {p(ai|µ
i)}=Iτ−2[ai]{a}.

.

5.4 Translations by mode intervals

5.4.1 Single translations. We study in detail the transformations on the Tonnetz between 
hords

of the same mode 
lass. As we have seen, these transformations 
an be interpreted as 
onse
utive single

translations of 
hords. Let us remember that the Tonnetz is non-degenerate, i.e., the interval ve
tors have

di�erent length. A

ording to the pre
eding se
tion, the 
hord {x0|µ
0} in the 
ell x0 belongs to the 
o-
y
le

formed by k 
hords (k≥ 3) in the form {x0 |µ
i}, i∈Zk. In the 
ell x0, these 
hords 
an be expressed from

dire
ted 
hords with root x0 and shifts of the mode 
lassµS
and theymay also be expressed as translations

to the 
o-
ells by 
onse
utive intervals of amode of the 
lass. Among these translations, there are only two

translations depending on a singlemode interval, the �rst and the last, yielding a 
hord of the 
o-
y
le in

the same 
ell. A

ording to Eq. 71, these translations are

τ [−µi]0 {x0|µ
i}={x0|µ

i+1}, τ [µi]−1 {x0|µ
i}={x0|µ

i−1} (72)

Other translations by a single interval lead to a 
hord in another 
ell.

For the �rst relationship of Eq. 72, if the translation is 
arried out by an arbitrary mode interval

[−µi]j=[−µi+j]0=−Ai+j , for 0<j≤k−1, by expressing the 
hord from the jth prograde rotation ofx0 |µ
i
,

i.e., {Rj(x0|µ
i)}={xj |µ

i+j}, the �rst expression of Eq. 71 allows us to use a translation as a shift, so that

τ [−µi+j ]0{x0|µ
i}=τ [−µi+j ]0{R

j(x0|µ
i)}=τ [−µi+j ]0{xj |µ

i+j}={xj |µ
i+j+1} (73)
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Therefore, the 
hord {xj |µ
i+j+1} in the 
ell xj is not a rotation of any 
hord in the 
ell x0. Hen
e, the

following k−1 translations lead to a 
hord whi
h is not in the 
o-
y
le of {x0 |µ
i} and is pla
ed in the

neighbor 
ell of x0, xj=x0+A0+...+Aj−1,

τ [−µi+j ]0 {x0|µ
i}={xj |µ

i+j+1}, 0<j≤k−1 (74)

Similarly, for the se
ond relationship of Eq. 72, if the translation is 
arried out by the mode interval

[µi]−j =[µi−j+1]−1=Ai−j , for 1<j≤k, by expressing the 
hord from the (j−1)th retrograde rotation of

x0|µ
i
, i.e., {R−(j−1)(x0|µ

i)}={xk−j+1|µ
i−j+1}, and taking into a

ount Eq. 71, we get

τ [µi−j+1]−1{R
−(j−1)(x0|µ

i)}=τ [µi−j+1]−1{xk−j+1|µ
i−j+1}={xk−j+1|µ

i−j} (75)

Therefore, the 
hord {xk−j+1|µ
i−j} in the 
ell xk−j+1 
annot be expressed as a rotation of a dire
ted 
hord

in the 
ell x0. Then, the following k−1 translations lead to a 
hord that is not in the 
o-
y
le of {x0 |µ
i}

and is pla
ed in the neighbor 
ell of x0, xk−j+1=x0−Ak−1−...−Ak−j+1,

τ [µi−j+1]−1 {x0|µ
i}={xk−j+1|µ

i−j}, 1<j≤k (76)

Equations 72, 74 and 76 
an be summarized as follows,

Theorem 5.8 If µ = [A0,... ,Ak−1], the 
hords resulting from applying a single translation by a mode

interval to the 
hord {x0|µ} are,

τ [−A0]{x0|µ}={x0|µ
1}; τ [Ak−1]{x0|µ}={x0|µ

−1} (77)

τ [−Al]{x0|µ}={xl|µ
l+1}, 1≤ l≤k−1; τ [Al]{x0|µ}={xl+1|µ

l}, 0≤ l≤k−2 (78)

The translations of Eq. 78 
annot be rooted in the 
ell x0 and des
ribe the 
hords from 
ongruent 
ells.

On the left-hand side, the 
hords are rooted in a note not belonging to the original 
hord, while on the

right-hand side they are rooted in a note of the original 
hord.

Corollary 5.9 Single translations by a mode interval of the 
hord {x0|µ} are 
omposed of the 
hords

{xl|µ
l+1} with 0≤ l≤k−1, and the 
hords {xl+1|µ

l} with 0≤ l≤k−1.

To 
omplete the study of single translations of a 
hord {x0 |µ}, we will investigate when two single

translations lead to 
hords sharing a 
ommon 
hord 
ell, either the same 
ell x0 or a di�erent one, and

when they drive to di�erent 
ells, that is, that they 
annot share a 
ommon root. This will be done by


omparing the pairs of possible positive and negative translations, i.e., by τ [−Ap] and τ [Aq], by τ [Ap] and
τ [Aq], and by τ [−Ap] and τ [−Aq].

5.4.2 Translations towards one 
ell. A

ording to Eq. 78, a translation by a single mode interval

of a 
hord {x0 |µ} in the 
ell x0 leads to a 
ell di�erent from x0 in 2k− 2 out of 2k 
ases. Nevertheless,

di�erent single translations by a mode interval may lead to a 
ommon neighbor 
ell. Let us see in what


ases the families of translated 
hords

τ [−Ap]{x0|µ}={xp|µ
p+1}, p∈Zk; τ [Aq]{x0|µ}={xq+1|µ

q}, q∈Zk (79)

produ
e two 
hords that 
an be referred to the same root.

Proposition 5.10 The following 
hord translations lead to a 
ommon neighbor 
ell,

τ [−Ap]{x0|µ}={xp|µ
p+1}, τ [Ap−1]{x0|µ}={xp|µ

p−1}, p∈Zk (80)

Proof. Wealready know that for p=0 and q=k−1 the translations leave the 
hords in the 
ell x0 a

ording
to Eq. 77. It is also obvious that for q=p−1 mod k the translations by τ [−Ap] and τ [Ap−1] lead to the 
ell
xp. This in
ludes the 
ase p=0. �

In addition to the parti
ular 
ases of Eq. 80, we study the other possible 
ases.

Theorem 5.11 The following 
hord translations lead to the same 
o-
y
le into a non-
ongruent 
ell,

τ [−Ap]{x0|µ}={xp+Ap+1|µ
p+2}, τ [Ap+1]{x0|µ}={xp+Ap+1|µ

p}, p∈Zk (81)
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Proof. In the general 
ase general, we ask for values p,q so that both 
hords of Eq. 79 will have rotations

{Ri τ [−Ap]x0|µ}, {R−j τ [Aq]x0|µ} (82)

with a 
ommon root for some values i,j, su
h that 0 ≤ i < k and 0 ≤ j < k. Then, by equations 55 and

57, {Ri τ [−Ap] x0 |µ}= {τ [µ]i0 τ [−Ap] x0 |s
i µ}, {R−j τ [Aq] x0 |µ}= {τ [−µ]−j

−1 τ [Aq] x0 |s
−j µ}. Thus, by

relating the part 
orresponding to the root of both equations, after reordering terms

25

,

Ak−j+Ak−j+1+···+Ak−1+A0+···+Ai−2+Ai−1=Ap+Aq mod n (83)

The intervals on both sides are positive and on the left there are at most 2k−2 terms

26

. Then, the values

i,j allowing the above relationship are as follows.

The simplest 
ase 
orresponds to i=1and j=1, so that eitherp=0, q=k−1orp=k−1, q=0.Other 
ases
are those involving all the intervals of one full k-mode, i.e., any shift of µ, sin
e A0+···+Ak−1=0 mod n.

Then, Eq. 83 is satis�ed if, and only if,

Ai−2+Ai−1+···+Ak−1+A0+···+Ai−2
︸ ︷︷ ︸

0 mod n

+Ai−1=Ap+Aq mod n (84)

so that the underbra
ed terms do not 
ontribute to the total sum. Hen
e, 
omparing to Eq. 83, we get

k− j = i−2 mod k. Therefore, sin
e the indi
es of the mode intervals are di�erent, one of the following


ases is hold (the equalities are mod k):

(a) p= i−1, q=k−j, that is, q=p−1,i=p+1,−j=p−1;
(b) p=k−j, q= i−1, that is, q=p+1,i=p+2,−j=p.

Case (a) is similar to Eq. 80. Case (b) provides the family of 
ouples of 
hords

{τ [−Ap]x0|µ}={xp|µ
p+1}, {τ [Ap+1]x0|µ}={xp+2|µ

p+1}, p∈Zk (85)

A

ording to Eq. 82 and to the 
orresponding values i, j, they 
an be written respe
tively from

a 
ommon root as {τ [−Ap] x0 | µ} = {Rp+2 τ [−Ap] x0 | µ} = {τ [µ]p+2
0 x0 − Ap | µp+2} =

{x0+A0+ ···+Ap−1+❅❅
Ap+Ap+1|µ

p+2}= {xp+Ap+1|µ
p+2}, and {τ [Ap+1] x0|µ}= {Rp τ [Ap+1] x0 |µ}=

{τ [µ]p0 x0+Ap+1|µ
p}={x0+A0+···+Ap−1+❅❅

Ap+Ap+1|µ
p}={xp+Ap+1|µ

p}. �

5.4.3 Translations towards di�erent 
ells. Chords belong to di�erent 
ells if they 
annot be

referred by rotations to the same 
ell. We study the other two possibilities of single translations. First, let

us see whether the families of translated 
hords,

τ [Ap]{x0|µ}={xp+1|µ
p}, p∈Zk; τ [Aq]{x0|µ}={xq+1|µ

q}, q∈Zk (86)

assuming p 6= q, provide two 
hords that 
an be referred to the same root. By follow-

ing the same pro
edure as the previous se
tion, after rotating, the roots must mat
h. Then,

Ak−j+Ak−j+1+···+Ak−1+A0+···+Ai−2+Ai−1+Ap=Aq mod n.

Like in the previous 
ase, this relationship has a geometri
 meaning. On the right-hand side there

is one single positive interval. On the left-hand side, in addition to Ap, there are i + j 
onse
utive

intervals, with i+j ≤ 2k−2. Hen
e, to ful�ll that relationship there must be one 
y
le plus one interval.
If there is no 
y
le, then p = q, whi
h is not the 
ase. Thus, the above relationship should be either

Ap+···+Ak−1+A0+···+Ap−1
︸ ︷︷ ︸

0 mod n

+Ap=Aq mod n, or Ap+ Ap+1+···+Ak−1+A0+···+Ap
︸ ︷︷ ︸

0 mod n

=Aq mod n, by

yielding, in both 
ases, to p=q, against the prior assumption. Therefore, we 
on
lude:

Theorem 5.12 Translations of one 
hord by di�erent single positive intervals lead to di�erent 
ells.

25

This is a way to test whether two 
hords {x|µ} and {x′ |µ′} belong to the same 
o-
y
le. Sin
e it is not sure that both 
hords may

be expressed as dire
ted 
hords with the same root (in whi
h 
ase we should only to 
ompare whether both modes belong to the same


lass), we write both 
hords as generated by the same mode µ=[A0,...,Ak−1], e.g., {x
′|µ′}={y|µ}. Then, both 
hords are in the same


o-
y
le if, and only if, there exist two indi
es i,j so that the interval di�eren
e among the roots x and y 
an be expressed as a series

Ak−j+Ak−j+1+···+Ak−1+A0+···+Ai−2+Ai−1, i.e., as a fra
tion of any shift of the mode µ.
26

Let us remember that this equality has a geometri
 meaning. A

ording to Eq. 16, the series of intervals A0,...,Ai−1 (i < k) are
asso
iated with independent dire
tions. Similarly, the seriesAk−j ,...,Ak−1 (j <k) are independent intervals. A number of k 
onse
utive
terms are dependent and form a 
y
le, hen
e they 
an be suppressed. In that 
ase, the remaining terms on the left-hand side are at most

k−2 in number and are independent. In addition, the intervals Ap and Aq must be in
luded among those terms.

25
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Se
ond, let us see whether the families of translated 
hords

τ [−Ap]{x0|µ}={xp|µ
p+1}, p∈Zk; τ [−Aq]{x0|µ}={xq|µ

q+1}, q∈Zk (87)

providetwo
hordsthat
anbereferredtothesameroot,alsobyassumingp 6=q.Byfollowingasimilarpro
e-

dure, after rotating, the rootsmustmat
h. Then,Ak−j+Ak−j+1+···+Ak−1+A0+···+Ai−2+Ai−1+Aq=
Ap mod n.Thus,we rea
hasimilar result as the�rst 
ase, leading top=q, against the former assumption

27

.

Theorem 5.13 Translations of one 
hord by di�erent single negative intervals lead to di�erent 
ells.

5.5 Honey
omb of tri
hords

The relationships obtained in the above se
tions are used to interpret the honey
omb of tri
hords depi
ted

in Fig. 3 for the general 
ase asso
iatedwith amodeµ=[A,B,C], as well as those of Fig. 4 for the parti
ular

ase µ=[4,3,5]. This is an example of how to pro
eed in a more general 
ase.

Ea
h 
hord is shared by three 
ells, and 
an be rooted in three di�erent notes labeling the 
enter of the


ongruent 
ells, i.e., the roots of the three rotations of the dire
ted 
hord. Ea
h 
ell has 6 prin
ipal fa
ets: 3

front fa
ets that are orthogonal to the ve
tor intervals+A,+B,+C, and 3 ba
k fa
ets that are orthogonal

to the ve
tor intervals −A,−B,−C. Ea
h 
ell is surrounded by 23−2 = 6 
ells, as many as fa
ets, all of

them, prin
ipal fa
ets.

As explained in �3.9, voi
e leading along fa
ets in the tonal network is asso
iated with paths that

maintain the notes on either side of the interval to whi
h the fa
et is orthogonal. This 
orresponds to

paths along edges of the 
hord network. A

ording to �4.2.3, in su
h a path it is possible to remain in

the same 
ell or to divert to another 
ell through the edge 
onne
ting to a non-
ongruent 
ell. If we apply

the transformations of Theorems 4.2 and 4.7 to the a
tual 
hord network, between the 
ells a+A and

a+B, the 
onne
ted dire
ted 
hords are a |µ0
and

28 D0(a |µ
0) = a | − µ2

, whi
h share the root a and

the third note a+A+B = a−C (the �fth in the 
ase of µ = [4,3,5]). Between the 
ells a+A+B and

a+A+C, the 
onne
ted dire
ted 
hords are a |µ0
and D1(a |µ

0) = a | −µ1
, sharing the root a and the

se
ond note a+A (the major third). Between the 
ell a = a+A+B + C and the non-
ongruent 
ell

a+A+B+A=a+A−C, the 
onne
ted 
hords are a|µ0
andD2(a|µ

0)=a+A−C |−µ0
. They share the

se
ond note a+A and the third note a+A+B (the major third and the �fth). Therefore, the movements

along the edges of the 
hord network 
an be interpreted as being:D0 a displa
ement towards the neighbor


hord on the edge in the dire
tion orthogonal to the interval C (whi
h preserves the �fth interval), D1 a

displa
ement in the dire
tion orthogonal to the interval A (whi
h preserves the major third interval), and

D2 a displa
ement in the dire
tion orthogonal to the intervalB (whi
h preserves the minor third interval)

towards a non-
ongruent 
ell. These operators mat
h and generalize for an arbitrary mode Lewin's (1987)

basi
 operators P, R, and the leading tone ex
hange L of the Neo-Riemmanian triadi
 progressions.

The 
hords in one 
ell may be translated by mode intervals to neighbor 
ells and to the same 
ell. In

the latter 
ase, a translation is equivalent to a shift of the mode by maintaining the root. There are two

mode 
lasses, i.e., major and minor 
hords, and, therefore, two 
o-
y
les that translations 
annot mix,

ex
ept in the 
ase of a degenerate Tonnetz with a single mode 
lass. Thus, for the single translations of the


hord {a|µ0} towards the same 
o-
y
le in the same or another 
ell, from Eq. 80 we get

29

the following six


hords, whi
h are referred to the same 
ell a and to the neighbor 
ells a+A and a−C (the symbol † indi
ates
translationsthatdonot
hangetheshift of themode, therefore theyare
hordsreferredto
o-
ellsof{a|µ0}),

p=0; τ−A{a|µ0}={a|µ1} ; τC {a|µ0}={a|µ2}
p=1; τ−B {a|µ0}={a+A|µ2} ; τA{a|µ0}={a+A|µ0}†

p=2; τ−C {a|µ0}={a−C|µ0}† ; τB {a|µ0}={a−C|µ1}
(88)

and fromEq. 81 we get the following translations, whi
h are the same 
hords as in Eq. 88, but now referred

27

However, if the Tonnetz is degenerate and the interval ve
tors Ap and Aq have the same length, the 
ells x0+Ap and x0+Aq, and

the 
ells x0−Ap and x0−Aq have respe
tive roots with a similar value.

28

In this 
ase we obtain the mode−µ2
, whi
h belongs to the 
o 
y
le of the mode−µ, but in a general 
ase with k>3, we may rea
h

other 
o-
y
les whi
h are not in su
h a relation with the mode µ, sin
e there will be more than two mode 
lasses.

29

In this 
ase, A0=A,A1=B,A2=C, x0=a, x1=a+A, and x2=a+A+B=a−C.
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to non-neighbor 
ells of {a|µ0}, i.e., a+B, a−B and a−C+A,

p=0; τ−A{a|µ0}={a+B|µ2} ; τB {a|µ0}={a+B|µ0†}
p=1; τ−B {a|µ0}={a−B|µ0}† ; τC {a|µ0}={a−B|µ1}
p=2; τ−C {a|µ0}={a−C+A|µ1} ; τA {a|µ0}={a−C+A|µ2}

(89)

The relationships in equations 88 and 89may be summarized and 
ompleted with the remaining rotations

of ea
h dire
ted 
hord a

ording to the following s
heme,

{a|µ0} = {a+A|µ1} = {a−C|µ2}

τA {a+A|µ0} = {a+2A|µ1}
‡

= {a−C+A|µ2}

τB {a+B|µ0} = {a−C|µ1} = {a−C+B|µ2}
‡

τC {a+C|µ0}
‡

= {a−B|µ1} = {a|µ2}

τ−A {a−A|µ0}
‡

= {a|µ1} = {a+B|µ2}

τ−B {a−B|µ0} = {a+A−B|µ1}
‡

= {a+A|µ2}

τ−C {a−C|µ0} = {a+A−C|µ1} = {a−2C|µ2}
‡

(90)

The 
hords in bla
k are referred to the 
ell a and its neighbor 
ells, where they form the three respe
tive


o-
y
les. The initial 
hord and both translations share one note. These 
ells are 0 steps away from the

initial 
hord. The 
hords in gray are referred to the 
ells in the se
ond ring of 
ells from a, 
ontaining only

two 
hords of a 
o-
y
le. The two translations share one note that does not belong to the initial 
hord,

although ea
h translation has a 
ommon note with the initial 
hord. These 
ells are 1 step away from the

initial 
hord. The 
hords marked with the symbol ‡, are the only single translations of the initial 
hord in
their respe
tive 
ells. However, these 
ells, also in the se
ond ring, are 2 steps away from the initial 
hord.

Similar relationships 
an be obtained with the inverse mode.

6. Con
lusions

We provide a new formalism to study 
hord transformations over a non-degenerate Tonnetz, i.e., with a

generating mode that has non-two equal intervals. The �rst part of the paper reviews the main 
on
epts

and de�nitions. Basi
 transformations and their geometri
 aspe
ts are revisited, so that they 
an later

be related to our algebra of k-
hords. Geometry properties are des
ribed for tri
hords, whi
h are easy to

visualize, and afterwards they are extended to higher dimensions. In a se
ond part, 
hord transformations

are studied in operator form, either a
ting on the root, the mode, simultaneously on root and mode, or

on the 
hord. The operators allow us to understand the stru
ture of the 
hord 
ell, whi
h, in general,

is a permutahedron of order k, i.e., a (k−1)-dimensional polytope embedded in a k-dimensional spa
e,

whose verti
es and edges are isomorphi
 to the Cayley graph of the symmetri
 group Sk. Among the

transformations along the 
hord network some of them are relevant, sin
e they are frequently used in

musi
, su
h as those between 
hords of the same 
o-
y
le in one 
ell, or of a similar 
o-
y
le in a 
o-
ell,

that 
an always be redu
ed to dependent translations by mode intervals.

For tri
hords, to 
hange between 
o-
y
les an inversion su�
es, but for higher dimensional 
hords a

novel operator is introdu
ed, whi
h, from a geometri
 point of view, is the only operator that 
an logi
ally

be de�ned: a step-by-step displa
ement along the 
hord network. Thus, a drift along one of the 
on
urrent

edges of the 
hord 
hanges the 
o-
y
le by 
ombining mode transpositions and dire
ted 
hord rotations.

The drift operators Di, for i=0,...,k−2 transform a dire
ted 
hord sideways along the k−1 edges in the
same 
ell, while for i=k−1 the dire
ted 
hord is sent forward along the edge 
onne
ting to a non-
ongruent

ell.These operators generalize thebasi
 operatorsP,RandLof theNeo-Riemmanian triadi
 progressions.

The elemental polygons 
omposing the 
hord 
ell and the 
hord network are squares (for k > 3) and
hexagons, whi
h are asso
iated with the simple 
ir
uits des
ribed in Theorem 4.7. Other simple 
ir
uits

exist if, for a 
ertain mode interval Ai, it is satis�ed jAi =0 mod n with j < n. Then, there are short
ut


ir
uits of j(k−1) steps (for j = n there is always a simple 
ir
uit) that 
an be expressed by 
onse
utive

appli
ationof driftswithde
reasing indi
es inZk .Theygeneralize themaximally smooth 
y
les 
omposing

the four hexatoni
 systems for the tri
hords of the 12-TET s
ale. In the 
hord 
ell, as well as in the 
hord
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network, there are always Hamiltonian 
ir
uits, i.e., 
losed paths that go through ea
h vertex exa
tly on
e.

As an example, the model is expli
itly applied to des
ribe the 
hord network asso
iated with the

tri
hords of a non-degenerate Tonnetz and, in parti
ular, with the mode that generates the major and

minor triads. For k-
hords in the 12-TET system, if k=3 there are 14 non-degenerate Tonnetze, but for
k > 3 there are only two, generated by the modes [1,2,3,6] and [1,2,4,5]. Nevertheless, the 
urrent model


an easily be extended to degenerate Tonnetze. In higher dimensions, degenerate Tonnetze of parti
ular

interest are those generated by a mode su
h as [A,A,B,B,C,C], in order to study the hexa
hords in the

12-tone s
ale with the mode [3,3,2,2,1,1], whose submodes, a

ording to Lemma 2.2, generate, in addition

to the major and minor triads, the major and minor seventh 
hords [4,3,4,1],[3,4,3,2], the augmented and

diminished 
hords [4,4,4],[3,3,6], their seventh 
hords [4,4,3,1],[4,4,2,2],[3,3,3,3], the dominant seventh


hord [4,3,3,2], et
. Therefore, a natural extension of the present work would be to study how the algebra of


hords be
omes restri
ted to less �ne partitions of the o
tave, i.e., how it behaves with regard to submodes.
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