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1.1. Introduccio

Definicio 1 Una equaci6 diferencial ordinaria és una relacio entre una funcio d’una
variable, y(t) (que anomenarem variable dependent), la variable independent t, i una
o varies derivades successives de la funcio,

F(t7 y? y/7 c 7y(n)) — O

Suposarem que totes les variables son reals.

Quan hi ha varies variables independents, ¢4, .. ., t,, les equacions s’anomenen equa-
cions en derivades parcials. Llavors, la funcié y(ty, ... ,t,) es pot derivar respecte de
. Oy %y
cada una de les variables. Per exemple , , etc.
ot,’ Ot.0t,

Exemple 1 Un cas el proporciona la segona llei de Newton pel moviment d’un cos de

massa m, sota l’accio d’una forga F'. Si aquesta forca depén de I’instant t considerat,

()

de la posicié y(t) i de la velocitat W) del cos en aquest instant, es compleix

d*y dy
m— = [(t,y, —
dtz f( Y y7 dt )
Exemple 2 L’estudi de circuits electrics és un altre exemple d’equacions diferencials.
Per exemple, el corrent 1(t) d’un circuit, pel que la tensié V' (t) aplicada en cada instant

tes reparteix entre la caiguda de tensié R I (t) d’una resisténcia i la caiguda de tensio
L=~ dI ) d’una autoinduccio, posades en serie, satisfa l’equacio diferencial
dl

LY Rr—v
g
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Exemple 3 Un altre cas son les equacions que caracteritzen a una familia de corbes del
pla. Aixi, si considerem la familia de paraboles y = C't?, derivant obtenim v’ = 2C'.
Eliminant el parametre C' amb les dues equacions, obtenim la equacio diferencial

/ Y
97

YT
que expressa una propietat comii a totes les corbes de la familia: el pendent de la
tangent en un punt qualsevol és el doble del pendent de la recta que uneix el punt amb

[’origen.

e En general, si g(¢,y,C) = 0 representa una familia de corbes, eliminant C' entre
les equacions g(t,y,C) = 0 i< g(t,y(t),C) = 0, obtindrem I’equacié diferen-
cial F'(t,y,y’) = 0 de la familia de corbes. Es a dir, canviariem la informacié que
proporciona C, per la que proporciona /.

Definicio 2 Anomenarem ordre d’una equacio diferencial al major ordre de la derivada
que intervé en [’equacio.

Per tant I’exemple 1 €s d’una equaci6 de segon ordre, mentre que els exemples 2 1 3 sOn
d’equacions de primer ordre.

De moment, considerarem tnicament equacions de primer ordre, que escriurem en la
forma estandard

y = [ty (1.1)

En un interval I, una solucié d’aquesta equaci6 és una funcié y = ¢(t) derivable que

satisfa
P'(t) = f(t,o(t), Vtel (1.2)


http://www-ma4.upc.edu/~rcubarsi/

Plana personal

Inici

1.1.1. Interpretacio geometrica

coninel e Podem interpretar una equacié diferencial ¥’ = f(x, ) com una equacié que a cada
punt (x,y) en el que f estd definida li associa una direcci6 de pendent f(x, y).

R e El grafic d’una solucié y = ¢(x) s’anomena corba integral, i €ls valors f(x, )
s’anomenen camp de velocitats o direccions.

e D’una equaci6 ¥’ = f(x,y) n’obtindrem una familia uniparamétrica de solucions,
Qy e > . 2z ’ s s,
y = ¢(x, C'), que rep el nom d’integral general o solucio general de 1’equaci.

e També podem estar interessats en determinar una solucio particular de 1’equaciod
_ Peana7oecs | diferencial que, per a * = x, pren un valor donat 1,. Geometricament, es diu que
es busca la solucié que passa pel punt (g, 4o).

Tornar Aquesta condici6 determina el valor de C' en la solucié general, de manera que si
Yo = P(xg, Cy), la solucié desitjada és y = ¢(x, Cp).

T

Ful Scroen Exemple 4 La solucid general de I’equacié y' = e* —y ve donada per y = %em_c e,
i la soluci6 particular que satisfa y(0) = 1s’obté quan 1 = 5+C, ésadirpera C = 3,

resultant 1y = %em + %e‘“ = cosh x.

Tancar

Sortir
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1.2. Condicions d’integrabilitat

Si coneixem el valor de la variable dependent y en t(, 1 admetem que aquesta variable
evoluciona de manera:

® determinista, és a dir, que hi ha un lligam entre els valors passats, present i futurs,
e finita, és a dir, que en tot moment €s quantificable,
e diferenciable, és a dir, que les seves variacions son prou suaus,

llavors, per a un valor de t proper a tj, podem fer una estimacié de y(t) a partir de
I’aproximacio lineal

y(t) — ylto) = y'(to)(t — to)
Una forma de poder seguir 1’evolucio de la variable y és disposar de la informacié que
proporciona 1’equacié

y = f(ty(t) (1.3)

Aixi, sabent el valor inicial iy = y(t,), obtindrem els valors de la funci6 y(t) en el seu
entorn,

y(t) =~ y(to) + f(to, yo)(t — to)

Quan fem aquest procés de manera elemental, estem precisament integrant I’equacio
diferencial Eq. 1.3,

olt) = ylt) = [ Fls,u(s))ds (1.4

tot calculant les constants d’integraci6 a partir de les condicions inicials.

Per a una equaci6 d’ordre n, les condicions inicials so6n de la forma ay = y(ty), a; =
Y (to), ..., an_1 =y V(t,), totes avaluades en el mateix valor de la variable indepen-
dent.
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L’ existencia 1 unicitat de 1a soluci6 del problema de valor inicial (PVI)

v =fty), ylt) =y (1.5)
necessita unes condicions minimes. La més freqiientment utilitzada és la segiient:
Teorema 1 (d’existéncia i unicitat) Si f i a_y son continues en un domini €, el pro-

L] blema de valor inicial y' = f(t,y), y(to) = yo, per a (to,yo) € €), admet una iinica
solucié y(t), que esta definida en un interval obert I C ).
Pagina 9 de 65

Un exemple on no es compleixen aquestes condicions suficients €s el segiient:

Tornar Exemple 5 El problema de valor inicial y' = y*/3, y(0) = 0, no té solucid iinica, doncs

al menys 1,(t) = (t/3)°, y,(t) = 0 sén solucions del problema.

e També cal notar que les solucions poden tenir un abast limitat:

Exemple 6 La solucié de y' = y* amb y(0) = 1ésy(t) = 1/(1 —t)en —00 < t < 1.
e Pero y(t) no pot ser solucié en un interval més gran ja que no esta definida perat = 1.

Sortir
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1.3. Equacions integrables elementalment

Exemple 7 Int y_t-1
xemplie ntegrar — —= .
p grar o = —

Solucid. Ho escrivim com
y dy = (7 —1)dt

Llavors,
3

=3 —t+C, y = (t* — 3t +3C)"*

w|<,

dy t
Exemple 8 Resoldre p = — +t

Y
dy 1
(=41t
dt <y2+)

Solucié. Ho escrivim com
2

Y
14 92

Separant variables obtenim

dy =tdt

2

1 com =1— , Integrant arribem a
1+ g2 Ty F

2
y—arctany:§—|-0

En aquest cas ja no és possible aillar y en funci6 de 7.
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1.4. Equacio lineal

Definicio 3 Una equacio lineal de primer ordre és la que es pot escriure com

y'(t) +at)y(t) = f(t) (1.6)
Suposarem que a(t) i f(t) s6n funcions continues en un cert interval I C R.
L operador L = pm + a(t), que associa a una funcié y la funcié
Lly)] = y'(t) + a(t) y(t) (1.7)

és una aplicaci lineal de I’espai vectorial C'(I) al C([).
e El conjunt de solucions de I’equacio completa

Lly] = f(t) (1.8)

ve donat per Y, + Yy, on Y, és una solucié particular de I'Eq. 1.8, i y;, € ker(L) és
del conjunt de solucions de I’equacio homogenia

Lyl =0 (1.9)

e [a diferencia de dues solucions particulars v, 1 Yy, de I’equaci6é completa, Eq. 1.8,
verifica L[y, — yy| = f — f = 0. Per tant y, — ¥, € ker(L).
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1.4.1. Equacié homogeénia

Resolem ara I’equacié homogenia
Y, +a(t)y, =0 (1.10)

Si y;, # 0 podem escriure ) /y;, = —a(t) i, integrant,

Inly,| = — /a(t) dt + K; |yn| = Ce—Jat)di

K &5 una constant positiva. Aquesta darrera equaci6 equival a

onC =e
Y = j:Ce—fa(t) dt
la qual podem resumir en

yy = Ce oW ¢ £

Pero, en dividir per ¥, hem perdut la solucié y;, = 0, que anomenarem frivial, que
sempre és solucio de [’homogenia. Per tant, la solucié general de I’Eq. (1.10) sera

yy = Cle™Jab)dt (1.11)

per a C' qualsevol.

e El conjunt de solucions de la part homogenia de 1’equacid lineal de primer ordre
formen un espai vectorial de dimensio 1.
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1.4.2. Equacié completa: metode de variacio de les constants

Per a integrar I’equacié completa n’hi ha prou amb determinar una solucié particular.
Per aix0 utilitzarem el metode anomenat de variacio de les constants, que permet inte-
grar ’equacio completa quan es coneix una solucio6 particular de 1’equacié homogenia,
per exemple,

d(t) = e Jod (1.12)
Aixi, proposem una solucio de la forma
yp = K(t)o(t) (1.13)

essent K (t) una funci6 a determinar.
Substituint ’'Eq. 1.13 a’Eq. 1.8, i recordant que ¢'(t) + a(t)¢(t) = 0, obtenim

K'(t)¢(t) = f(t)

Per tant, excepte una constant d’integracié que podem suposar nul-la,

_ [ [
K@%i/&gﬁ,
1 la soluci6 particular sera
%Zdﬂfggﬁ (1.14)

Finalment, tot sumant-li la soluci6 general de I’homogenia, la solucié general de 1’equa-
ci6 completa €s

y=dﬂ(/§%ﬁ+0> (1.15)

t
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Exemple 9 Integrar [’equacio

) , 7 7
y cost +ysint =1, 3 <t < 5

Solucid. L’escrivim com X
Y + (tant)y = -
Integrem primer I’equacié homogenia,
y, + (tant) y, =0
yp = Cle™ J1antd — O eogt

Ara busquem una soluci6 particular de 1’equacié completa a partir de ’Eq. 1.14, en la

forma y,(t) = K (t) cost,
) / dt -
= COS = sin
U cos?t

Aixi, la soluci6 general de 1’equaci6 €s

y =sint + C cost
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2.1. Equacions de segon ordre

Una equacio diferencial lineal de segon ordre es pot escriure en la forma

d*y dy B
i P(SL’)% +Q(z)y = R(x) (2.1)

on P(x),Q(x) i R(z) s6n funcions que només depenen de .

Fent servir la notaci6 de I’operador lineal, podem escriure

= L P Q) L) = R 22

Exemple 10 Les equacions ' +vy = 0, zy” — ¢y + 2y = x? sén lineals de segon
ordre. La primera té coeficients constants i la segona té coeficients que son funcio de la
variable independent.

En general, voldrem resoldre el PVI constituit per I’Eq. 2.1 amb unes condicions inicials

y(fCo) = Yo, y’(fﬁo) = U

En aquest cas, 1’existencia i unicitat de la soluci6 ve garantida pel segiient teorema.

Teorema 2 (d’existéncia i unicitat) Si P(z), Q(x) i R(x) son continues en un interval
I C R ixy € I, aleshores existeix una vinica solucio y(a:) del problema de valor inicial

y' + P(x)y + Q(z)y = R(z);  y(z0) = Y0, ¥ (20) = 11
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Distingirem entre:
e cquacio homogenia
y' 4+ P(z)y + Q(z)y =0 (2.3)
e equacio completa
'+ P(x)y' + Qx)y = R(x) (2.4)
amb R(x) no nul-la.

La linealitat de I’operador L garanteix que

e la diferencia de dues solucions de I’equacié completa és solucié de 1’equacid ho-
mogenia

e per a trobar la solucid general y de ’equacié completa només cal coneixer una
soluci6 particular y, de I’equacié completa i la solucié general y;, de 1’equacid
homogenia

Y="YpT+Yn
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2.1.1. Soluci6 de I’equacié homogenia

El calcul de la solucié general de I’equaci6 homogenia es redueix a trobar una base
del ker L. Vegem el segiient teorema, que també el farem servir en equacions d’ordre
superior.

Teorema 3 (Principi de superposicio) Si v, Yo, . . ., Y son solucions d’una equacio
lineal homogenia, llavors y = cy1 + CYs + ... + CLyp també n’és solucio,
Vei, co, ..., € R

En particular, la solucid trivial n’és una solucio.

Exemple 11 Anem a buscar solucions no trivials de I’equacié x*y" + 2xy — 2y = 0.

Solucid. Podem resoldre aquesta equacio assajant solucions de la forma y = z". Aixi,
y' = nz" ' y" =n(n — 1)2" 2 Siho introduim a I’equaci6, queda

n(n —1)a" 4+ 2nz" — 22" = n(n — 1) +2n — 22" =0

Llavors, per a ser valida la igualtat per a valors z = 0, només cal que n> +n — 2 = 0.
Per tant, les solucions s’obtenende n = 1, —2, i s6n x, 7.

En general, iy = ¢, + ¢yx~? s6n soluci6 de 1’equacid. v

e Quan estudiem sistemes d’equacions veurem que, per a un operador diferencial
lineal L d’ordre n, es compleix dim ker . = n. Per tant, en I’exemple anterior ja
hauriem obtingut la soluci6 general de 1’equacio.
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2.2. Wronskia

Si I’operador diferencial L és d’ordre n, considerarem que €s una aplicacié lineal de
I’espai vectorial C"(I) a C(I), per a un cert interval I C R.

Naturalment, els conceptes de dependencia i independencia lineal de vectors també
s’aplicaran a les funcions pertanyents a aquests espais vectorials.

No obstant, veurem un metode especific per a estudiar la dependencia o independencia
lineal de funcions.

Definici6 4 Siguin fi(x), fo(z), ..., fu(x), n funcions que suposarem derivables al-
menys fins a ordre n — 1 en un cert interval 1. El seu wronskia es defineix com el
determinant

i o o

oL L
W(flafZa"'vfn>: -1 .2 fn (25)

FrD e L gl

En darrer terme, el wronskida W (fi, fo,..., f,) és una funcié de la variable x en
I’interval I, per aix0, de vegades també escriurem W (x).

En algebra haviem vist que si W (fy, fo, ..., fu) # 0, per a algun x € I, llavors les
funcions sén linealment independents. El reciproc no €s sempre cert, com ho veurem en
el darrer dels segiients exemples.
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Exemple 12 Calcularem el wronskia d’algunes families de funcions:

SIn & CoS X

o W(sinz,cosx) = cosa —sing | T sinx — cos?x = —1
(A
o W(z? 23, 2%) =| 22 32* 42 | = 22°
2 6x 122°
9
sin” x 1 — cos2z

o W(sin®z,1 — cos2z) =

2silnxrcosx 2sin2x

= 2sin® xsin 2o — 2sinw cos (1 — cos2x) =

= sin 2z(2sin’x — 1 + cos’x — sin®z) = 0
e Les funcions fi(x) = x° i fo(x) = |x|® son linealment independents en tot R.
Es facil veure que, per ax < 0, W(f1, f2) = W(z?, —2?) = 0, ja que les seves
columnes son proporcionals.
Igualment, pera x > 0, W(fy, fo) = W(x?, 2*) = 0.

Per tant, que el wronskia sigui nul no és sempre equivalent a que les funcions siguin
linealment dependents.
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2.3. Equacions homogenies

El nostre objectiu €s ara obtenir la solucié general de 1’equaci6 lineal homogenia. Ho
farem a partir de combinacions lineals de solucions linealment independents.

Lema 1 Siguin y,(x), y2(x) dues solucions de I’equacié homogénia, Eq. 2.3. Llavors,
el seu wronskia, o bé no s’anul-la mai, o bé és identicament nul.

Demostracié (Lema 1). El wronskia de y; i 4o és W(x) = y1yy — vy Derivant,
obtenim

W'(x) = y1ys + Y195 — Yot — YY1 = Y19 — Yoy
Tenint en compte que

y) + P(x)y) + Q(x)ys = 0, yy + P(x)yy + Q(x)y, = 0

multipliquem la primera equacio per ¥», la segona per ¥, 1 restem,

(1ys — Yauy) + P(@) (1195 — yay)) = 0

Esadir, W
—+ Px)W =0
ot P2)

Per tant, el wronskia és de la forma
W(z) = Ce IP@E ¢ ecr

El resultat desitjat s’obté perque 1I’exponencial és sempre positiva.

Lema 2 Dues solucions y,(x), y2(x) son linealment dependents si i només si el seu
wronskia és identicament nul.
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Teorema 4 Si (), yo(x), ..., y,(x) sén n solucions linealment independents en un
interval I de I’equacio lineal homogénia d’ordre n,

an(2)Y™ + Qo1 ()Y + - ay(2)y +ag(z)y =0, z €l

llavors
Yy = Cly1<x) + 0292(55) T+t cnyn(x)

n’és la solucio general en 1.

Demostracié. Vegem la demostraci6 en el cas de segon ordre. En efecte, sigui () una
solucié qualsevol de 1’equacié lineal homogenia Eq. 2.3. Volem veure que existeixen
c1,Co € Rtals que

y(x) = ayi(z) + cys()
Sabem que una solucié queda univocament determinada pel coneixement del valor de

la solucid i la seva derivada en un mateix punt. Per tant, només caldra trobar els valors
c1 1 ¢y tals que en algun punt x5 € [ verifiquin

ey (o) + caya(0) = y(w0)
191 (o) + (o) = y'(2o)

Per a que aquest sistema tingui soluci6 caldra que el determinant

_ 91(350) y2(350)
W) = i) wi(mo)

sigui diferent de zero. El teorema quedara doncs demostrat si veiem que, per a dues
solucions independents, aquest determinant és no nul. Pero, aixo és cert pels lemes
anteriors i, a més, €s valid per a qualsevol punt x, € 1.
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Exemple 13 Veure que les funcions de la forma y = ¢ sSInx + ¢y cos x son la solucio
general de I’equacio iy +vy = 0. Calcular la solucié que compleix y(0) = 2,vy'(0) = 3.

Solucid. Vegem primer que y = sinx i y = cos x satisfan I’equacio.

En efecte, si y = sinx, llavors ¢y = cosx, ¢y = —sinx iy”" +y = 0.
Aixi mateix, si y = cosx, llavors ¥/ = —sinx, Yy’ = —cosz i també verifica
I’equacio.

En general, les combinacions de la forma () = ¢; sinx + ¢ cos  s6n també solucid
de I’equacio.

Ara, per a comprovar que totes les solucions son d’aquesta forma, només caldra veure
que W (sinx, cosz) # 0.

En efecte, W (sinz, cosz) = —1.

Si volem que la solucié compleixi les condicions inicials, imposem

¢y 0+ cycos =2
c1cos0— cysinl =3

Llavors ¢; = 3, ¢y = 2, 11a solucié que busquem és y = 3sinx + 2 cos . v
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Una altra aplicacio interessant del wronskia €s la de trobar I’equaci6 diferencial lineal 1
homogenia de grau minim satisfeta per una familia determinada de funcions linealment
independents. Ho veiem tot continuant I’exemple anterior.

Exemple 14 Calcular I’equacio lineal i homogeénia que té per solucions sin x, cos .

Solucié. Ja hem vist que W (sinz, cosx) # 0. Per tant, aquestes s6n dues solucions
linealment independents, en tot R, d’una equaci6 de segon ordre. Qualsevol altra soluci6
y(x) que sigui solucié de I’equacié buscada haura de ser linealment dependent de les
solucions anteriors. Per tant, hauran de verificar

sinx  cosz  y(x)
W(sinz,cosx,y(z)) =| cosx —sinx y'(z) =0
—sinz —cosz Y (x)

Ara només hem de calcular el determinant, per exemple, per adjunts de la tercera co-
lumna,

SIn & COS T

o . —
CoST —Ssinx y=—y+y-y=0

" Sin T COS T
—SInxr —COoSXx

, cosxr —sinx
— SN —COSXT

[’equacié d’ordre minim és, doncs, " + y = 0. v
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2.4. Equacions homogenies a coeficients constants

En general, no és facil trobar solucions particulars d’una equacié diferencial, encara
que sigui lineal 1 homogenia, perd quan I’equacio té coeficients constants, veurem que
€s molt senzill. Primer ho resoldrem per a segon ordre. Suposem 1’equacio

y'(x) + py'(z) + qy(x) = 0

amb p,q € R.
Podem escriure 1’equaci6 en la forma de 1’operador diferencial
r=L 0l L) =0 (2.6)
= ; x)| = :

Provem ara solucions de la forma y = €%, on m és una incognita a determinar. Com
Yy = me™ y" = m?e™, tindrem

Lle™] = (m*+pm+q)e™ =0

Per tant, les funcions de la forma e€"* son solucions de I’Eq. 2.6 sempre que m sigui
arrel del polinomi caracteristic

P(m) =m*+pm +q (2.7)

L’equacié P(m) = 0 s’anomena equacio caracteristica associada a I’equaci6 diferen-
cial.
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En la resolucid d’aquesta equacio convé distingir diversos casos.

(i) Cas p* — 4q > 0. L’equaci6 caracteristica admet dues solucions reals diferents
my # mo. A més, es compleix W (e™* e™*) # (. Per tant, y; = €™ i
Yo = €""** s6n dues solucions independents de I’equacio diferencial. Aixi doncs, la
soluci6 general sera

y(x) = 1™ + ce™; 00 €ER

(ii) Cas p*> = 4¢. Només hi ha una arrel real doble, m, de ’equacié caracteristica.
Una soluci6 és y; = €%, pero per a trobar la solucié general necessitem una altra
solucio linealment independent. Tot 1 que es pot trobar pel metode de variacio de
les constants a partir de I’anterior, ho farem amb el segiient raonament:

Com L[e™"] = P(m) e™”, derivant respecte de m obtenim

O o O
am e = My

Com m és arrel doble de P(m), també és arrel de P’(m). Per tant, tindrem

"] = [P'(m) + mP(m)]e™

L{ze™] =0
Llavors, la soluci6 general sera de la forma

y=(c+c)e™: ¢, €R
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(iii) Cas p* < 4q. L’equacié6 caracteristica no té solucions reals. Per tant, tindrem arrels

complexes conjugades o £ i3, i e®*"¥)* seran solucions de ’Eq. 2.6, perd en

el camp complex. Ara bé, per a obtenir dues solucions reals independents només

caldra treballar amb una de les solucions complexes. Tenint en compte la férmula
d’Euler,

e = cosf + isind
podem escriure .
y = el — 0% (cos B + i sin Bx) (2.8)
Com L[e(o‘”mx] = (0, s’hauran d’anul-lar per separat les parts real i imaginaria.
Aixi,
Lle* cos fz] =0; Ll[e* sin fzx] =0 (2.9)

Clarament aquestes solucions son linealment independents, doncs el seu wronskia
val

W (e cos Bx, e sin Bx) = Be***

que és diferent de zero perqueé 5 # (. Llavors, la solucié general sera

y(x) = e cos B + e sin fx; ¢, 00 €ER
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Exemple 15 Trobar la solucié general de I’equacié y" + vy — 6y = 0.
Solucid. L’equaci6 caracteristica és m? +m — 6 = 0, amb arrels

11424
— 5 :

La soluci6 general de I’equaci6 diferencial és doncs

m my =2, my=—3

y(x) =ci e 4+ cpe ™

v
Exemple 16 Trobar la solucié general de I’equacié vy’ + 2y' +y = 0.
Solucié. L’equaci6 caracteristica m? + 2m + 1 = 0 té arrel m = —1 doble. Llavors,
la soluci6 general sera
y(x)=(c1+cox)e™™
v

Exemple 17 Resoldre I'equacié iy’ + vy’ + vy = 0.

Solucié. L’equaci6 caracteristica és m? + m + 1 = 0, amb arrels complexes m =
—% + ?z Per tant, la soluci6 general €s

V3 V3

-z _z .
Yy=oce 26087x—|—c26 2Sln7x
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2.5. Equacions d’ordre superior
Considerem I’equaci6 ordre n, lineal, homogenia 1 a coeficients constants
Yyt ay" T e ay +agy =0 (2.10)
amb constants ag, aq, ..., a,_1 € R. Lequacid caracteristica és
m" + a,_ym" 4+ Fam+a;=0
que pot tenir arrels reals 1 complexes amb diferents multiplicitats.
e Per a cada arrel real m amb multiplicitat £ hi ha k£ solucions linealment indepen-

dents de la forma

m mx k—1 mx

e, xe, ..., e
Aleshores la soluci6 general sera

(1 + x4+ -+ ™ ) e™

e Per a cada parella d’arrels complexes conjugades, o + 73, amb multiplicitat &
tindrem 2k solucions linealment independents de la forma

e cos B, €™ sin Bz, x e cos B, x e sin B, . .., " e cos B, ¥ e sin Br
Aleshores, cada parella d’arrels complexes contribuira a la solucié general amb

(e + com 4 -+ ™ 1) € cos Bx 4 (Cppr + Chaa® + -+ - + o™ ) € sin Ba
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Exemple 18 Resoldre y® + 3y® + 3y + 1y = 0.

Solucid. I’equacio caracteristica €s
m’ +3m*+3m+1=(m+1)°>=0

L’arrel real m = —1 és triple. Aleshores la solucié general és

—T

y = (c1 + cow + c327) €

Exemple 19 Resoldre y™ + 4y® + 8y 4 8y’ + 4y = 0.
Soluci6. I equaci6 caracteristica és m*+4m?*+8m?*+8m-+4 = (m*+2m+2)* = 0.

Les arrels complexes m = —1 & ¢ sén dobles. Per tant, la solucié general és

Yy = (61 + sz) e “cosx + (03 + 6456) e “sinx

Exemple 20 Resoldre y'") = 0.

Solucié. L’equacié caracteristica és m’ = 0, que té una unica arrel m = 0, de multi-
plicitat 7. La soluci6 general és

Y=2cC + Cx + 03x2 + 64333 + 055134 + cﬁx5 + 07566
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2.6. Equacions lineals no homogenies

Recordem que per a resoldre 1’equacié completa cal coneixer una solucid particular i la
solucié general de I’homogenia. Vegem com obtenir una solucio particular de 1’equacio
completa. Ho farem pel cas de I’equaci6 d’ordre 2, Eq. 2.1, que és generalitza facilment
a ordres superiors.

2.6.1. Metode de variacio de les constants

e Es la generalitzaci6 del metode que haviem usat per a equacions lineals de primer
ordre

e Es valid per a equacions diferencials amb coeficients constants o variables

Ho resoldrem per a una equacio lineal de segon ordre, escrita en forma monica,

y'+ Plx)y + Q(x)y = f(x) (2.11)

amb una funci6 arbitraria f(z) del terme independent.
Per a trobar una solucio particular y, de I'Eq. 2.11, caldra, pero, saber la soluci6 general

Yn = C1y1(x) + Coya()

de la part homogenia de I’equacid, on ¢y, ¢, s6n constants i Y1 (), y2(x) sén dues solu-
cions particulars linealment independents de I’equacié homogenia.

El metode consisteix en substituir les constants ¢y, ¢, per funcions desconegudes a de-
terminar, ¢;(x), ¢o(x), de manera que ¥, sigui de la forma

yp = c1(T)y1 (@) + co(T)ya(z) (2.12)

1 sigui soluci6 de I’Eq. 2.11.
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Substituint, obtenim un sistema lineal de dues equacions amb les incdgnites ¢;(x) i
/
(@), / /

@)y + i)y = 0

A (z)y; + cy(z)ys = f(z)

(2.13)

El determinant associat al sistema és el wronskia W (yy, 42), que €s no nul perqueé ¥, i
1o sOn linealment independents:

£ (2.14)

W yl y2
Yy Y

Resolent aquest sistema, obtindrem les derivades de les funcions incognita, 1 després
integrarem,
yzf ?Jlf

W o) = | J7

Finalment, la soluci6 particular que hem trobat €s

y1/ Yol gt Q/ylf (2.15)

La soluci6 general de I’Eq. 2.11 és, doncs,

y:yl( %/‘}fd$+01)+y2< %dm—l—@) (2.16)

c(r) =

amb c; 1 ¢ constants.
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Exemple 21 Resoldre I’equacio diferencial

1
cos 2x

y" + 4y = sin 2z —

Solucio.
Comencem amb I’equacié homogenia

y' +4dy =0

L’equaci6 caracteristica és m?+4 = 0, amb arrels m = +2i. Aleshores, la seva soluci6
general €s
Y, = C1 COS 2T + Cy SN 2

amb c; 1 ¢ constants.
Ara, trobarem una soluci6 particular de I’equaci6é completa en la forma

y = () cos 2x + cy(x) sin 2z
Hem de resoldre el sistema,
( /() cos 22 + () sin 2z = 0

\
1
4 —28in2x) + ¢y(x) 2 cos 2x = sin 2z —
k c1(z)(—2sin 2x) 4 ¢y(x) 2 cos 2x = sin 2z o

El wronskia és _
Cos 21 Sin 2x

W= —2sin2x 2cos2x =270
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Aleshores, aplicant la regla de Cramer,

1 0 sin 2x 1 sin 21
! = — = — — q] 2
@ (Z’) N 21sin2x — —cos12x 2 cos 2x 9 ( SIn” 27 + CcOoS Zx)
Analogament,
1| cos2x 0 1
! = — = — ] —
Co(x) = 2| —2sin2z sin2e — —L_ (sin 2z cos 2z — 1)

Integrant, obtenim

1 1 —cos4 in 2 1 1
cl(x):—/(— e x) dx=—£+—sin4x—11n|c082x\

2 2 COs 2T 4 16
1
co(x) = 3 sin® 2z — g

La soluci6 particular queda com

x 1 1 I T\ .
UYp = (_Z + 1—681114:13 3 In | cos 2a:|) cos 2 + (é sin® 22 — 5) sin 2z
Finalment, la soluci6 de 1’equacié demanada €s

1 1 1 x
y = (01 + —% + Esinéla: — Zln | COSZ:U\) cos 2x + (62 + gsin2 2T — 5) sin 2z

amb ¢, ¢y € R.

v
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2.6.2. Equacio d’ordre n

Suposem que volem determinar una solucio particular d’una equaci6 d’ordre n,

Y+ anay" T+ ay + agy = f(z)

on ay, a, - . . , a,_1 poden ser coeficients constants o variables, 1 sigui

Yn = 1t (T) + coya() + - - - + cuyn(T)

la soluci6é general de I’equaci6 homogenia associada, amb ¢y, ¢y, . .., ¢, constants i
y1(x), ya(x), . . ., yu(x) solucions linealment independents.
Busquem una soluci6 particular del tipus

Yp = ci(@)yn(z) + ca(@)ya(z) + - + cal@)ya(z)

En aquest cas, les derivades de les funcions incdgnites ¢ (), ¢o(x), . .., c,(x) s6n les
solucions del sistema n X n,

[y + Yo + o+ 0
Javi +ar et ay, =0 217
. n—1 n—1
R A SRR AT e
El determinant associat al sistema és el wronskia de y;(x), ya2(), ..., ya(x), per

tant, no nul. A partir d’aqui es segueix el mateix procediment indicat per a equaci-
ons de segon ordre, i s’integra cadascuna de les ¢}.(x) per a obtenir les n funcions

ci(x), co(x), ..., cn(x).
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2.6.3. Metode dels coeficients indeterminats

Buscarem solucions particulars de 'Eq. 2.11 quan f(x) és una exponencial, un poli-
nomi, un sinus o un cosinus. Veurem també que es pot aplicar en el cas de producte
d’aquestes funcions, €s a dir, quan

flz)=(ag+ax+ -+ ax™)e*sin fx + (by + ayx + - - - + b,x™)e™ cos S

El metode també es coneix amb el nom de metode de la conjectura prudent.

En general, si el terme no homogeni de I’equacid és de la forma anterior 1 I’equacid
caracteristica té una arrel o + 15 de multiplicitat k, llavors cal proposar una solucié
particular com

y, = 2" (Ag+ Az +- -+ A,a™)e* sin Bz + 2" (By+ Byr +- - -+ B,x™)e™ cos S


http://www-ma4.upc.edu/~rcubarsi/

Exemple 22 Calcular una solucio particular de

y" — 3y — 4y = 2sinx
Solucié. Si assagem amb funcions de la forma

y= Acosx + Bsinx

les seves derivades seran també funcions d’aquest forma 1, llavors, el nostre problema
consistira en determinar A i B que satisfacin I’equaci6. En efecte,

y = —Asinxz + Bceosz, y'=—Acosxr — Bsinx
Substituint, obtenim

—Acosx — Bsinz — 3(—Asinz + Beosx) —4(Acosz + Bsinz) = 2sinx

és a dir
(—A—3B —4A)cosx — (B —3A+4B)sinx = 2sinx
Per tant,
—A—-—3B—-4A=0, B—-3A+4B= -2
La solucié d’aquest sistema és A = %, B = —1%.
La soluci6 particular que trobem €s
1

Y (3cosx — Hsinx)

7


http://www-ma4.upc.edu/~rcubarsi/

Exemple 23 Trobar una solucioé particular de I’equacio
y' — 3y — 4y = 4a*

Solucid. Si provem un polinomi del mateix grau que la part no homogenia i substituim,
obtindrem una igualtat entre polinomis que resoldrem igualant coeficients. Aixi,

y=A+Bx+Cx* o =B+20z, ' =2C
Substituint,
—4Cx* — (6C +4B)x + (2C — 3B — 4A) = 42*

I, igualant termes corresponents a les mateixes potencies de la x, obtenim
—4C' =4, 6C+4B=0, 20—-3B—-4A=0

Pertant, C' = —1, B = %,A = —1‘73.
Una solucid particular és

_ 23, 18
Y= 2" T8
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Exemple 24 Calcular la solucié general de

X

y' =3y —3y=e"

Solucid. Primer busquem una soluci6 particular. Si assagem solucions del tipus

s’obté

Per tant, substituint,
Ae ™ —3(—Ae ™) —3(Ae ™) =e€"
d’on,
(A+3A—-3A)e " =¢€"
Per tant A = 1, i una solucié particular és

X

y=e
Ara bé, la soluci6 general de 1’equacié homogenia associada, iy — 3y’ — 3y = 0, és

34421 3-v21

mi1x mox .
Yp = e e my 5 5

M2
Aleshores, la soluci6 general de la completa €s
y=-e "+ e 4+ ce™" c,c0 €R

Observem que la soluci6 particular que hem obtingut no és de la mateixa familia d’ex-
ponencials que les obtingudes per a I’equacié homogenia. v


http://www-ma4.upc.edu/~rcubarsi/

Plana personal

Inici

Contingut

L >

RN [N

Pagina 40 de 66

Tornar

Full Screen

Tancar

Sortir

Exemple 25 Calcular una solucid particular de I'equacié y" — 2y + y = e”.

Solucid. Si proposem una funcié de la forma
y = Ae”

i substituim, obtenim 0 = e*, que clarament no té solucié. El problema amb que ens
trobem €s que la funcié que proposem ¢€s ja soluci6 de 1’equacié homogenia.
Si abans haguéssim resolt I’equacié homogenia, hauriem vist que 1’equacio caracteris-
tica m? — 2m + 1 = 0 té per soluci6 I'arrel . = 1, de multiplicitat 2. Per tant, la
soluci6 que proposem, i també totes les de la forma y = (A + Bx) e”, s6n solucions de
I’homogenia, associades a I’arrel ' = 1. En aquest casos, la solucié que cal proposar
és

y=Ax’e"
és a dir, multiplicar Ae® per z*, amb k igual a la multiplicitat de la corresponent arrel
de I’equacio caracteristica. Aixi,

y = 2Axe” + Ax’e”, " =2Ae" +4Axe” + Azt e”
Substituint,
[(2A + 4Ax + Ax®) — 2(2Ax + Az?) + Ax’le” = e”
Ara, simplificant i igualant termes corresponents a iguals potencies de la &, obtenim
2A=1, 4A—4A=0, A—-2A+A=0
Per tant, A = % Una soluci6 particular és %x2 e” 1 la soluci6 general és

12 x
y:<01+0233+§33)6, C1,C0 €ER
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2.6.4. Principi de superposicio

Per acabar aquest capitol, presentem un resultat interessant per a calcular solucions
particulars d’equacions diferencials lineals no homogenies. Es un altre principi de
superposicio, que permet fer el calcul d’una soluci6 particular terme a terme.

Teorema 5 Si () verifica
yi + P(x)y; + Q@) = filz)

i yo() satisfa
Yy + P(2)y, + Qa)ys = fol2)

aleshores, y(x) = y1(x) + ya(x) és solucid de

y' + P(x)y + Q(v)y = fi(x) + fo(z)
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Exemple 26 Determinar una solucio particular de [’equacio

y' — 3y — 4y = 2sinz + 42

Solucid. A partir del principi de superposicié per a equacions no homogenies podem

obtenir
Yp = Y1 T Y2

on y; €s una solucid particular de
y" — 3y — 4y = 2sinx

1Y, ho és de
y' — 3y — 4y = 4a*

Anteriorment ja hem estudiat aquestes equacions per separat i teniem

L 3 13
y1=1—7(3008$—581nx), y2=—$2+§x—§
Per tant, ' . N
Yy = 1—7(3COS£E —5sinz) — 2% + S
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Capitol 3

Sistemes d’equacions
diferencials lineals


http://www-ma4.upc.edu/~rcubarsi/

Plana personal

Inici

Contingut

L >

RN [N

Pagina 44 de 66

Tornar

Full Screen

Tancar

Sortir

3.1. Introduccio

Definicio 5 Un sistema d’equacions diferencials lineals de primer ordre és un conjunt
d’equacions en la forma

i (t) = ai(t)x(t) + a2(t)ze(t) + - - - + al(t)xz,(t) + bi(¢)
ﬂf’z(lf) = ay(t)z1(t) + a3(t)zs(t) oot a3 (8)xa(t) + ba(?) a1
2 () = ah(O)mt) +a2(D)aalt) + -+ a(E)z(t) + b(t)
o de manera abreujada, en forma matricial,
7' = AT+ b(t) (3.2)

—

on A(t) és la matriu de coeficients del sistema donat per 'Eq. 3.1, i b(t) és un vector

de termes independents. El sistema sera homogeni si g(t) = 0.

3.1.1. Propietats generals

Com en el capitol anterior, podem fer servir la notacié d’operador diferencial per a
escriure ’Eq. 3.2,

d
Lix|=——-—A@l)| © 3.3
7] ( - — Al )) (3.3)
Llavors, el sistema homogeni associat a I’Eq. 3.2 ve donat per
Li#] =0

1 el sistema complet és
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Degut a la linealitat de I’operador L, I’estructura de les solucions prové de la genera-
litzaci6 immediata de la que es tenia per a equacions diferencials escalars. Aixi, per
exemple,

e les solucions del sistema homogeni son les que pertanyen al ker L,
e ]la soluci¢ trivial és sempre solucio del sistema homogeni,

e la diferencia de solucions particulars del sistema complet €s solucid del sistema
homogeni,

e la solucid general del sistema complet s’obté€ sumant una soluci6 particular qualse-
vol a la soluci6 general del sistema homogeni,

e ¢s compleix el principi de superposicid, tant per les solucions del sistema homoge-
ni, com per les del complet.
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interval I C R, llavors el problema de valor inicial

e »| Z'= A@t)Z+b(t), Z(t) = T, (3.4)

té una unica solucio en un obert contingut en 1.
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Destaquem les propietats 1 definicions segiients:

Pagina 46 de 66 e En particular, si els coeficients de A(t) sén continus V¢ € R, les solucions també
ho son.
w—" e La soluci6 Z(t) és un camp vectorial de classe C' dins R", anomenat espai de les
fases.
e e Per a una soluci6 Z(t), el conjunt de valors (¢, Z(t)) € (I, R") és una corba inte-

gral, grafic de la soluci6 del sistema.
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3.2. Relacio entre un sistema i una equacio
Considerem I’equaci6

g ana (YT s at)y + aolt)y = f(t) (3-5)

que escrivim en unes noves variables. Primer definim 27 = vy, 1 després definim recur-
rentment les successives derivades de y:

T, = Ty
Ty = T3
: (3.6)
x =z,
= —ag(t)r; — a1(t)xy — -+ — ap_1(t)x, + f(T)
Llavors, comparant amb I’Eq. 3.1 tenim,

0 1 0 e 0 0
0 0 1 .. 0 0

A(t) = : : S : b = 3.7)
0 0 0 o 1 0

—ag(t) —ai(t) —ax(t) -+ —ay1(t) f (@)

El pas d’equacio a sistema sempre €s possible 1, per tant, es pot considerar que les equa-
cions d’ordre n constitueixen un cas particular dels sistemes d’equacions diferencials.
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Exemple 27 L’equacio diferencial

v +at)y +aot)y = f(t)

s’escriu en forma de sistema, definint x1 = vy, com
()= (S ) (2) (%)
515'2 —Qp —a ) J

3.3. Sistemes homogenis

Teorema 7 Les solucions del sistema homogeni
LiZt)] =0 (3.8)

formen un espai vectorial de dimensio n.

3.3.1. Dependencia i independeéncia lineal de funcions

Proposicio 1 Considerem un conjunt de funcions vectorials (no parlem encara de solu-
cions d’una equacié diferencial) {Z(t), ..., T,(t)} definides per at € I, amb valors
a R". Formem la matriu quadrada X (t) = [T1(t), ..., Z,(t)].

Sidet X(t) # 0 per aalgunt € I, llavors les funcions son linealment independents en
I

O bé, si les funcions son linealment dependents en I, llavors det X (t) = 0, Vt € .

El reciproc no és cert en general.
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3.3.2. Matriu fonamental de solucions

Definicié 6 Si {Z(t),...,Z,(t)} soén n solucions I’Eq. 3.8, linealment independents
en linterval I, llavors, la matriu

X&) = [T1(t),. .., )] (3.9)

s’anomena matriu fonamental de solucions del sistema homogeni.

Per tant, una matriu fonamental de solucions del sistema ' = A(¢)Z satisfa
X'(t) = A(t) X (t)

Vegem algunes propietats de la matriu fonamental de solucions en relacio al PVI de
I’Eq. 3.4.

e Tota soluci6 de ’Eq. 3.4 s’obté a partir d’una combinaci6 lineal de les columnes
de X (). Si ho expressem matricialment, tenim

r(t) = X(t)c (3.10)
El vector constant ¢ € R" es calcula a partir d’una condici6 inicial

f() — X(to)g

e Com les columnes de X (¢) s6n linealment independents, la matriu és invertible.
Per tant,

det X(t) £0,Vt € I (3.11)

El determinant de la matriu fonamental de solucions és el wronskia de les solucions.
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e [a solucid del PVI es pot escriure substituint
5 — X_l(t())fo

en I’Eq. 3.10:
Z(t) = X)X 'ty T (3.12)

e En particular, la solucié trivial Z(t) = 0 ,Vt € I, és la tinica soluci6 del sistema
homogeni amb condici6 inicial () = 0.

e En general, si X (¢) és matriu fonamental de solucions i M és una matriu regular,
llavors X ()M també és una matriu fonamental de solucions.

e [.a matriu fonamental obtinguda com

¢és la Unica que verifica

Olty) = I

S’anomena matriu fonamental principal.

La segona de les propietats ens proporciona el reciproc de la Proposicio 1:

Proposici6 2 Les columnes d’una matriu de solucions X (t) son linealment indepen-
dents si, i només si, det X (t) # 0.
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Exemple 28 Si 7'; = (1,t)7, 7, = (t2,0)” son solucié de ¥' = A(t)Z, calcular A(t).

Solucié. Derivant, obtenim &} = (0,1)%, Z 4, = (2t,0)". Per tant, es complira

(15)-10(i0)

Sit=#£0,ésadir,perat < Qoperat > 0, la matriu de solucions

wo-(15)

és invertible (és una matriu fonamental de solucions). Llavors,

2 -1 2
(02N 1 AN o2 -1 0 £\ —1 (-2 2
a=(V5) () -0%) = (5 T)-w (0" %)

v
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Exemple 29 Calcular la solucio de

tal que Z(ty) = (a,b)’.

Solucid. En aquest cas podem escriure i resoldre les dues equacions per separat
/ /
Ty = T1, Ty = 2T

d’on .
x1(t) = ae™", xy(t) = be"

(2) = (%0 o) (3)

Observem que la matriu fonamental del sistema és principal:

el 0 el 0 _1_ et~
0 et 0 efo N 0 et"

Per tant,
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3.4. Matriu exponencial
Plana personal p

Haviem vist que les funcions exponencials generaven les solucions de les equacions
- diferencials lineals (excepte en un factor polinomic, per a arrels multiples), incloent
també les solucions associades a arrels complexes de 1’equacio caracteristica.
Aix0 es pot generalitzar si usem una serie de matrius que pren com a patro la serie de la
Contingut funcié exponencial d’una variable real, e = 1 + ¢ + %t2 + -+ %t” + -
Es pot demostrar que, com la serie escalar, la serie de matrius €s uniformement conver-
gent, la qual cosa permet sumar series d’aquest tipus, fer productes entre elles 1 inclas

L > derivades i integrals, tot mantenint la convergéncia.
<] Definicio 7 Si A és una matriu n X n, la matriu exponencial es defineix com la serie
infinita de matrius
Ak
o = E A— (3.13)
Pagina 53 de 66 ' ’

A
Per tant, e* € M, xp.

Tornar

Propietat 1 Fem un resum de les propietats més importants:

Full Screen 0
e ¢’ = 1.
e Si AB = BA, llavors e e? = eA1tB = B 4,
oecled=el=1 don(e?) =

o o detet #£ 0, VA
e SiA= P B P !aleshores e = PeP P71,

Tancar
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Exemple 30 Vegem uns casos particulars:

1. Si X és un escalar, eM = eI
2. Si A = diag(ay, ..., a,), lavors et = diag(e®, ..., e™).

3. 8i A =diag(Ay, ..., A,) és una matriu diagonal per blocs, llavors
et = diag(e, ... e

e
4. Si A" =0, llavorse® =1 + A + %Az + 4 (nil)!A”_l.

n

Proposicio 3 Considerem A € M,,,, una matriu constant i una variable t € R. Ales-
hores,

d
et = Aet (3.14)

Ara podem passar de treballar amb series de matrius, a fer-ho amb series de vectors. Per
exemple, per a qualsevol vector ¥, que no depengui de ¢,

% (e ¥) = AeM T (3.15)
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I, també considerant series de vectors, tenim la segiient propietat important:

Propietat 2 Considerem A € M,,,,(R) i una variable real t. Donat un escalar \ i un
vector constant U, es compleix

et = M At 7 (3.16)

Si ara la combinem amb el darrer dels exemples, obtenim una propietat que sera molt
util a I’hora de resoldre sistemes d’equacions diferencial lineals:

Propietat 3 Si existeix un nombre natural n tal que (A — \I)" U = 0, lavors

t2 tn—l

et — o <[+t(A—)\I)+§(A—>\I)2+---+ '(A—)\I)”l)ﬁ

(n—1)
(3.17)

En particular, tenim,

Proposicio 4 Si v és vector propi de A amb valor propi ), llavors U també és vector

propi de e amb valor propi €.

que es dedueix de la proposicié anterior, amb ¢ = 1.
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3.5. Sistema homogeni a coeficients constants

Estudiem el cas en que la matriu del sistema homogeni
T’ =AY (3.18)

te coeficients constants, A € M,,,.,(R).
Pels resultats que hem vist en la secci6 anterior podem afirmar el segiient:

A

e ’equaci6 3.14 garanteix que la matriu e és una matriu de solucions de ’Eq. 3.18.

e Com el determinant det e # 0, les columnes de matriu de solucions sén lineal-
ment independents V¢ € R. Per tant, e" és una matriu fonamental principal de
solucions.

e Si X (t) és una matriu fonamental de solucions de I'Eq. 3.18, existeix una matriu
regular i constant C' tal que e = X (¢) C.
Fixades unes condicions inicials en ¢ = £, tindrem e = X () C, d’on C' =

)(_1 (to) €At0.

Podem doncs concloure,

Teorema 8 Tota matriu fonamental de solucions X (t) del sistema homogeni, Eq. 3.18,
és de la forma

X(t) = e X (¢)
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3.5.1. Solucio del sistema

Ara només queda saber com escriure la matriu fonamental e’ sense haver de recérrer
a la serie infinita que la defineix. Per aixo cal trobar n vectors linealment independents
v € R" que proporcionin les n solucions linealment independents de I'Eq. 3.18 en la
forma e'T. Aquests vectors els proporciona el reorema de la descomposicio primaria
d’endomorfismes, que el podem recordar tot enunciant-lo pel polinomi minim associat

a la matriu A.

n , 11

Teorema 9 Sigui p4(\) = (=1)"p" - pi* (X8 nigr(p;) = n) la descomposicié
factorial del polinomi caracteristic de la matriu A € M, ., ima(A) = pi"* - pi* la
del polinomi minim. Aleshores, I’espai vectorial E es descomposa en suma directa dels
segiients subespais invariants,

E =kerpi"(f)® - ® kerp*(f)

amb dim ker p™ = dim ker p™ = n;gr(p;).

Vegem com son les solucions en termes de les arrels del polinomi caracteristic.

3.5.2. Arrels reals simples

Sigui \; una arrel real simple de p4(\), és a dir, un valor propi de A. Si U és el seu
vector propi, es complira

(A= NDT=0

aleshores, tenint en compte ’Eq. 3.17, tindrem una soluci6 del sistema Eq. 3.18 en la
forma
Z(t) = e = VT (3.19)
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Exemple 31 Resoldre el PVI
S (-9 1Yo .. (1
T —( A _2):1:, 7(0) = (2>
Solucid.

Primer busquem els valors propis la matriu,

det(A — \) = _54_)‘ _21_)\=A2+7>\+6= (A+1)(\+6)
Per tant, les arrels del polinomi caracteristic son \; = —1, A\, = —06. Ara busquem els
vectors propis. Per a A\; = —1, hem de resoldre

—4 1 x\ (0
4 —1 y ) \0
; . (1
d’on y = 4x. Per tant, un vector propi sera ( 4 )

(1) ()-0)

d’on x = —y. Per tant, un vector propi sera ( 1

Ara, per a Ay = —6, resolem
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La solucio6 general d’aquest sistema homogeni €s, doncs,

oy (1 el -1\ [ et —e™ 1
Z(t) = cre (4)—|—626 1) =gt oo o

Ara només queda calcular les constants, a fi de satisfer la condicio6 inicial.

-4 1) (2)-(3)

Resolent aquest sistema, obtenim ¢; = =, Cy = —%. Per tant, la soluci6 del PVI és

. e—t _6—6t §€_t _|_ 26_6t
o= (170 ()= (8

3.5.3. Arrels complexes simples

w

DU [

De manera semblant a I’Exemple 7 de la seccié Descomposicio primaria dels apunts
d’algebra lineal Polinomis de matrius i descomposicio primaria, si \; = o % i3 sén
arrels complexes simples del polinomi caracteristic amb vectors propis respectius a :I:z'l;,
aleshores, les dues solucions reals son les parts real 1 imaginaria de

Z(t) = M = TG + ib) = e(cos Bt + isin Bt)(a + ib)

Es a dir, .

— at ~ —

7)(t) = e(cos Bt @ — sin Bt b) (3.20)
5(t) = e™(sin St d + cos St b)
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3.5.4. Arrels multiples
3.5.4.1. Multiplicitats algebraica i geometrica iguals

Si \; és una arrel real de p4(A) de multiplicitat m, i existeixen m vectors propis line-
alment independents, ¥/, . . . , U, associats a aquest valor propi, llavors les m solucions
independents de I’Eq. 3.18 s’obtenen de la mateixa manera que en I’Eq. 3.19, una per a
cada vector propi:

Zi(t) = et =N i=1,....m

Si I’arrel és complexa, es fa el mateix amb les solucions de I’Eq. 3.20.

3.5.4.2. Multiplicitats algebraica i geometrica diferents

Sigui A; una arrel real de p4(A) de multiplicitat n;, i suposem que existeixen menys
de n; vectors propis linealment independents. Llavors, pel teorema de descomposicio
primaria d’endomorfismes, sabem que dim ker(A — \;1)™ = n;, on m; és la potencia
del factor d’aquesta arrel en el polinomi minim m4(\). Llavors, existeixen n; vectors
linealment independents 7, . . ., U, que compleixen

Per tant, d’acord amb I’Eq. 3.17, les n; solucions independents seran de la segiient
forma. Si U’ € ker(A — A\, I)™,
At At t* g
Z(t)=e"v=eV" (Wy+tw, + =Wy +++++ ———-—1W,,._ 3.21
g R ey ) CED

amb

Wy = (A= N0, k=0,....,m; —1

Si I’arrel €s complexa, cal donar separadament solucions per a la part real 1 imaginaria
de I’Eq. 3.21, com s’ha fet en I’Eq. 3.20.
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Existeix una relacié de recurréncia entre els vectors w,, anteriors, que és ttil a I’hora de
simplificar els calculs:

Proposicié 5 Considerem la solucié de I’Eq. 3.21 associada a un vector U = W, €
ker(A — A, I)™. Llavors, els segiients vectors de la série verifiquen

W, = (A — MD)Wy € ker(A = N,D)™ ™" k=1,...,m;—1 (3.22)

Observacié. Com que entre els n; vectors del ker(A — A\;1)™ ja hi ha, com a minim,
un vector de cada ker(A — A\, 1), amb 1 < k < my, llavors podem formar una
primera familia de solucions amb el maxim nombre de vectors linealment independents
del ker(A— \,;T). Després, per a buscar vectors del ker(A— ;1) ho farem a partir dels
anteriors, tot aplicant la llei de recurréncia de I'Eq. 3.22. Es a dir, si @, € ker(A—\;1),
un vector U, € ker(A — \;I)? el trobarem resolent el sistema

1 aixi successivament, fins a completar els n; vectors desitjats. Vegem-ho amb un exem-
ple.

Exemple 32 Resoldre el PVI
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Solucio.
Busquem els valors propis la matriu,

T—X 1
—4 3=\

Per tant, I’arrel del polinomi caracteristic é&s A = 5, doble. Ara busquem un vector propi

per a aquest valor.
2 1 x\ (0
—4 =2 y /) \0

1
—2

det(A— M) =

=X — 10\ +25 = (A —5)’

d’on y = —2x. Per tant, un vector propi sera v; = ( > . De moment, una solucio

particular del sistema homogeni sera

Evidentment, dim ker(A — 5I) = 1. Com la matriu del sistema no diagonalitza, hau-
rem de trobar 1’altra soluci6 particular a partir d’un vector linealment independent de
I’anterior, que sigui del ker(A — 5I)% Aquest vector, U5, d’acord amb 1’Eq. 3.23, el
trobarem resolent (A — 51)vUy = .

(< =2) (5)= (=)

d’ony =1 — 2x. Fent z = 0 tenim U, = ( (1) ) Aixi, I’altra soluci6 particular sera

ORI
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Finalment, la soluci6 general del sistema homogeni és Z(t) = c1Z1(t) + c2@(t), que,
en forma de matriu fonamental de solucions, s’escriu com

f(t>=65t(_§ 1—t2t) <2>

Ara només queda calcular les constants per a satisfer la condici6 inicial.

=1 (5) (=)

Resolent aquest sistema, obtenim ¢; = 2, co = —1. Per tant, la solucié del PVI és

= (L L ) ()= (200
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3.6. Sistemes no homogenis

Com en el cas d’equacions no homogenies d’ordre n, veurem el metode de variacio
de les constants per a sistemes d’equacions lineals. Aquest procediment permet trobar
una solucid particular del sistema complet a partir de la solucié general del sistema
homogeni, encara que la matriu del sistema no tingui coeficients constants.

Suposem que X (¢) és una matriu fonamental de solucions de I’Eq. 3.18, i assajem una
soluci6 de I’Eq. 3.2 en la forma

(1) = X(t)et) (3.24)

Substituint-la en I’Eq. 3.2 veurem com ha de ser la funci6 vectorial ¢(t):

—

X'(t)et) + X()E'(t) = A(t) X (t)e(t) + b(t)
Pero com que la matriu fonamental de solucions del sistema homogeni compleix
X'(t)e(t) = A X (¢)elt)

ens queda

—

X()@'(t) = b(t)

Resolent aquest sistema per a ¢ '(¢) i integrant, obtenim la solucié particular buscada.
En efecte, com det X (¢) # 0, podem invertir el sistema,

&) = X DB): ) = / X0t dt
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Per tant, una solucio particular sera

t) / X1 t)b(t) dt (3.25)

Finalment, podem escriure la solucié general del sistema complet tot afegint-hi la solu-
ci0 general del sistema homogeni:

(/ X t)dt + c> ceR" (3.26)

Exemple 33 Trobar la solucio general del sistema
= _5 ]. — 2 6
r = < 4 _9 )% +e _q
Solucio.

El sistema homogeni ja havia estat estudiat en I’exemple 31. La matriu fonamental de

solucions era , o
e’ —e
X@) — ( Lot o6t )

N let Lt
X 1<t> — (_% 6t 1 Gt)

La seva inversa és

€ €

Per tant, la solucié particular z,(t) = X (¢)c(t) satisfara

. B 5 let let 662t 63t
()= X080 = ( g 1) ( Jen ) = (5w )
D D
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Ara integrem cada component,

/X—l(t)l?(t) dt = (If_%?’;gilt) = <_§EZ)

I ja podem escriure la solucid particular,

50 = x) [xiwd= (0 Co ) (i )= ( )

Finalment, la soluci6 general del sistema complet és

1 —1 23
f(t):cle_t(4) +cge—6t< 1)+62t<_ﬁ)
24

Observem que també hauriem pogut provar el metode dels coeficients indeterminats

. . aq
amb una soluci6 particular de la forma e ( 4 ) :
2

En el metode dels coeficients indeterminats per a sistemes d’equacions, la solucié que es
conjectura segueix basicament els mateixos criteris que per a equacions escalars, pero,
en aquest cas, les constants sO6n vectors.

A part dels metodes vistos, hi ha maneres alternatives de resoldre equacions i sistemes
d’equacions diferencials lineals, com per exemple, aplicar la transformada de Laplace.


http://www-ma4.upc.edu/~rcubarsi/
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