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Capítol 1

Equacions diferencials de
primer ordre
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1.1. Introducció
Definició 1 Una equació diferencial ordinària és una relació entre una funció d’una
variable, y(t) (que anomenarem variable dependent), la variable independent t, i una
o vàries derivades successives de la funció,

F (t, y, y′, . . . , y(n)) = 0

Suposarem que totes les variables són reals.

Quan hi ha vàries variables independents, t1, . . . , tn, les equacions s’anomenen equa-
cions en derivades parcials. Llavors, la funció y(t1, . . . , tn) es pot derivar respecte de

cada una de les variables. Per exemple
∂y

∂ti
,
∂2y

∂ti∂tj
, etc.

Exemple 1 Un cas el proporciona la segona llei de Newton pel moviment d’un cos de
massa m, sota l’acció d’una força F . Si aquesta força depèn de l’instant t considerat,
de la posició y(t) i de la velocitat dy(t)

dt
del cos en aquest instant, es compleix

m
d2y

dt2
= f (t, y,

dy

dt
)

Exemple 2 L’estudi de circuïts elèctrics és un altre exemple d’equacions diferencials.
Per exemple, el corrent I(t) d’un circuït, pel que la tensió V (t) aplicada en cada instant
t es reparteix entre la caiguda de tensió RI(t) d’una resistència i la caiguda de tensió
L dI(t)

dt
d’una autoinducció, posades en sèrie, satisfà l’equació diferencial

L
dI

dt
+ RI = V

http://www-ma4.upc.edu/~rcubarsi/
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Exemple 3 Un altre cas són les equacions que caracteritzen a una família de corbes del
pla. Així, si considerem la família de paràboles y = Ct2, derivant obtenim y′ = 2Ct.
Eliminant el paràmetre C amb les dues equacions, obtenim la equació diferencial

y′ = 2
y

t

que expressa una propietat comú a totes les corbes de la família: el pendent de la
tangent en un punt qualsevol és el doble del pendent de la recta que uneix el punt amb
l’origen.

• En general, si g(t, y, C) = 0 representa una família de corbes, eliminant C entre
les equacions g(t, y, C) = 0 i d

dt
g(t, y(t), C) = 0, obtindrem l’equació diferen-

cial F (t, y, y′) = 0 de la família de corbes. És a dir, canviariem la informació que
proporciona C , per la que proporciona y′.

Definició 2 Anomenarem ordre d’una equació diferencial al major ordre de la derivada
que intervé en l’equació.

Per tant l’exemple 1 és d’una equació de segon ordre, mentre que els exemples 2 i 3 són
d’equacions de primer ordre.
De moment, considerarem únicament equacions de primer ordre, que escriurem en la
forma estàndard

y′ = f (t, y) (1.1)

En un interval I , una solució d’aquesta equació és una funció y = φ(t) derivable que
satisfà

φ′(t) = f (t, φ(t)), ∀t ∈ I (1.2)

http://www-ma4.upc.edu/~rcubarsi/
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1.1.1. Interpretació geomètrica

• Podem interpretar una equació diferencial y′ = f (x, y) com una equació que a cada
punt (x, y) en el que f està definida li associa una direcció de pendent f (x, y).

• El gràfic d’una solució y = φ(x) s’anomena corba integral, i els valors f (x, y)
s’anomenen camp de velocitats o direccions.

• D’una equació y′ = f (x, y) n’obtindrem una família uniparamètrica de solucions,
y = φ(x,C), que rep el nom d’integral general o solució general de l’equació.

• També podem estar interessats en determinar una solució particular de l’equació
diferencial que, per a x = x0, pren un valor donat y0. Geomètricament, es diu que
es busca la solució que passa pel punt (x0, y0).

Aquesta condició determina el valor de C en la solució general, de manera que si
y0 = φ(x0, C0), la solució desitjada és y = φ(x,C0).

Exemple 4 La solució general de l’equació y′ = ex−y ve donada per y = 1
2
ex+C e−x,

i la solució particular que satisfà y(0) = 1 s’obté quan 1 = 1
2
+C , és a dir per aC = 1

2
,

resultant y = 1
2
ex + 1

2
e−x = coshx.

http://www-ma4.upc.edu/~rcubarsi/
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1.2. Condicions d’integrabilitat
Si coneixem el valor de la variable dependent y en t0, i admetem que aquesta variable
evoluciona de manera:

• determinista, és a dir, que hi ha un lligam entre els valors passats, present i futurs,

• finita, és a dir, que en tot moment és quantificable,

• diferenciable, és a dir, que les seves variacions són prou suaus,

llavors, per a un valor de t proper a t0, podem fer una estimació de y(t) a partir de
l’aproximació lineal

y(t)− y(t0) ≈ y′(t0)(t− t0)
Una forma de poder seguir l’evolució de la variable y és disposar de la informació que
proporciona l’equació

y′ = f (t, y(t)) (1.3)

Així, sabent el valor inicial y0 = y(t0), obtindrem els valors de la funció y(t) en el seu
entorn,

y(t) ≈ y(t0) + f (t0, y0)(t− t0)
Quan fem aquest procés de manera elemental, estem precisament integrant l’equació
diferencial Eq. 1.3,

y(t)− y(t0) =

∫ t

t0

f (s, y(s))ds (1.4)

tot calculant les constants d’integració a partir de les condicions inicials.
Per a una equació d’ordre n, les condicions inicials són de la forma a0 = y(t0), a1 =
y′(t0), . . . , an−1 = y(n−1)(t0), totes avaluades en el mateix valor de la variable indepen-
dent.

http://www-ma4.upc.edu/~rcubarsi/
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L’existència i unicitat de la solució del problema de valor inicial (PVI)

y′ = f (t, y), y(t0) = y0 (1.5)

necessita unes condicions mínimes. La més freqüentment utilitzada és la següent:

Teorema 1 (d’existència i unicitat) Si f i
∂f

∂y
són contínues en un domini Ω, el pro-

blema de valor inicial y′ = f (t, y), y(t0) = y0, per a (t0, y0) ∈ Ω, admet una única
solució y(t), que està definida en un interval obert I ⊂ Ω.

Un exemple on no es compleixen aquestes condicions suficients és el següent:

Exemple 5 El problema de valor inicial y′ = y2/3, y(0) = 0, no té solució única, doncs
al menys y1(t) = (t/3)3, y2(t) ≡ 0 són solucions del problema.

També cal notar que les solucions poden tenir un abast limitat:

Exemple 6 La solució de y′ = y2 amb y(0) = 1 és y(t) = 1/(1− t) en−∞ < t < 1.
Però y(t) no pot ser solució en un interval més gran ja que no està definida per a t = 1.

http://www-ma4.upc.edu/~rcubarsi/
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1.3. Equacions integrables elementalment

Exemple 7 Integrar
dy

dt
=
t2 − 1

y2
.

Solució. Ho escrivim com
y2 dy = (t2 − 1) dt

Llavors,
y3

3
=
t3

3
− t + C; y = (t3 − 3t + 3C)1/3

X

Exemple 8 Resoldre
dy

dt
=

t

y2
+ t.

Solució. Ho escrivim com
dy

dt
=

(
1

y2
+ 1

)
t

Separant variables obtenim
y2

1 + y2
dy = t dt

i com
y2

1 + y2
= 1− 1

1 + y2
, integrant arribem a

y − arctan y =
t2

2
+ C

En aquest cas ja no és possible aïllar y en funció de t. X

http://www-ma4.upc.edu/~rcubarsi/
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1.4. Equació lineal

Definició 3 Una equació lineal de primer ordre és la que es pot escriure com

y′(t) + a(t) y(t) = f (t) (1.6)

Suposarem que a(t) i f (t) són funcions contínues en un cert interval I ⊂ R.

L’operador L ≡ d

dt
+ a(t), que associa a una funció y la funció

L[y(t)] = y′(t) + a(t) y(t) (1.7)

és una aplicació lineal de l’espai vectorial C1(I) al C(I).

• El conjunt de solucions de l’equació completa

L[y] = f (t) (1.8)

ve donat per yp + yh, on yp és una solució particular de l’Eq. 1.8, i yh ∈ ker(L) és
del conjunt de solucions de l’equació homogènia

L[y] = 0 (1.9)

• La diferència de dues solucions particulars ya i yb de l’equació completa, Eq. 1.8,
verifica L[ya − yb] = f − f = 0. Per tant ya − yb ∈ ker(L).

http://www-ma4.upc.edu/~rcubarsi/
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1.4.1. Equació homogènia

Resolem ara l’equació homogènia

y′h + a(t)yh = 0 (1.10)

Si yh 6= 0 podem escriure y′h/yh = −a(t) i, integrant,

ln |yh| = −
∫
a(t) dt + K; |yh| = Ce−

∫
a(t) dt

on C = eK és una constant positiva. Aquesta darrera equació equival a

yh = ±Ce−
∫
a(t) dt

la qual podem resumir en

yh = Ce−
∫
a(t) dt , C 6= 0

Però, en dividir per yh, hem perdut la solució yh = 0, que anomenarem trivial, que
sempre és solució de l’homogènia. Per tant, la solució general de l’Eq. (1.10) serà

yh = Ce−
∫
a(t) dt (1.11)

per a C qualsevol.

• El conjunt de solucions de la part homogènia de l’equació lineal de primer ordre
formen un espai vectorial de dimensió 1.

http://www-ma4.upc.edu/~rcubarsi/
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1.4.2. Equació completa: mètode de variació de les constants

Per a integrar l’equació completa n’hi ha prou amb determinar una solució particular.
Per això utilitzarem el mètode anomenat de variació de les constants, que permet inte-
grar l’equació completa quan es coneix una solució particular de l’equació homogènia,
per exemple,

φ(t) = e−
∫
a(t) dt (1.12)

Així, proposem una solució de la forma

yp = K(t)φ(t) (1.13)

essent K(t) una funció a determinar.
Substituïnt l’Eq. 1.13 a l’Eq. 1.8, i recordant que φ′(t) + a(t)φ(t) = 0, obtenim

K ′(t)φ(t) = f (t)

Per tant, excepte una constant d’integració que podem suposar nul·la,

K(t) =

∫
f (t)

φ(t)
dt,

i la solució particular serà

yp = φ(t)

∫
f (t)

φ(t)
dt (1.14)

Finalment, tot sumant-li la solució general de l’homogènia, la solució general de l’equa-
ció completa és

y = φ(t)

(∫
f (t)

φ(t)
dt + C

)
(1.15)

http://www-ma4.upc.edu/~rcubarsi/
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Exemple 9 Integrar l’equació

y′ cos t + y sin t = 1, −π
2
< t <

π

2
.

Solució. L’escrivim com

y′ + (tan t) y =
1

cos t
Integrem primer l’equació homogènia,

y′h + (tan t) yh = 0

yh = Ce−
∫
tan t dt = C cos t

Ara busquem una solució particular de l’equació completa a partir de l’Eq. 1.14, en la
forma yp(t) = K(t) cos t,

yp = cos t

∫
dt

cos2 t
= sin t

Així, la solució general de l’equació és

y = sin t + C cos t

X

http://www-ma4.upc.edu/~rcubarsi/
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Capítol 2

Equacions diferencials lineals
d’ordre superior

http://www-ma4.upc.edu/~rcubarsi/


Plana personal

Inici

Contingut

JJ II

J I

Pàgina 16 de 66

Tornar

Full Screen

Tancar

Sortir

2.1. Equacions de segon ordre
Una equació diferencial lineal de segon ordre es pot escriure en la forma

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = R(x) (2.1)

on P (x), Q(x) i R(x) són funcions que només depenen de x.

Fent servir la notació de l’operador lineal, podem escriure

L ≡ d2

dx2
+ P (x)

d

dx
+ Q(x); L[y(x)] = R(x) (2.2)

Exemple 10 Les equacions y′′ + y = 0, xy′′ − y′ + 2y = x2, són lineals de segon
ordre. La primera té coeficients constants i la segona té coeficients que són funció de la
variable independent.

En general, voldrem resoldre el PVI constituït per l’Eq. 2.1 amb unes condicions inicials

y(x0) = y0, y
′(x0) = y1

En aquest cas, l’existència i unicitat de la solució ve garantida pel següent teorema.

Teorema 2 (d’existència i unicitat) Si P (x), Q(x) iR(x) són contínues en un interval
I ⊂ R, i x0 ∈ I , aleshores existeix una única solució y(x) del problema de valor inicial

y′′ + P (x)y′ + Q(x)y = R(x); y(x0) = y0, y
′(x0) = y1

http://www-ma4.upc.edu/~rcubarsi/
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Distingirem entre:

• equació homogènia
y′′ + P (x)y′ + Q(x)y = 0 (2.3)

• equació completa
y′′ + P (x)y′ + Q(x)y = R(x) (2.4)

amb R(x) no nul·la.

La linealitat de l’operador L garanteix que

• la diferència de dues solucions de l’equació completa és solució de l’equació ho-
mogènia

• per a trobar la solució general y de l’equació completa només cal conèixer una
solució particular yp de l’equació completa i la solució general yh de l’equació
homogènia

y = yp + yh

http://www-ma4.upc.edu/~rcubarsi/
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2.1.1. Solució de l’equació homogènia

El càlcul de la solució general de l’equació homogènia es redueix a trobar una base
del kerL. Vegem el següent teorema, que també el farem servir en equacions d’ordre
superior.

Teorema 3 (Principi de superposició) Si y1, y2, . . . , yk són solucions d’una equació
lineal homogènia, llavors y = c1y1 + c2y2 + . . . + ckyk també n’és solució,
∀c1, c2, . . . , ck ∈ R.

En particular, la solució trivial n’és una solució.

Exemple 11 Anem a buscar solucions no trivials de l’equació x2y′′ + 2xy′ − 2y = 0.

Solució. Podem resoldre aquesta equació assajant solucions de la forma y = xn. Així,
y′ = nxn−1, y′′ = n(n− 1)xn−2. Si ho introduïm a l’equació, queda

n(n− 1)xn + 2nxn − 2xn = [n(n− 1) + 2n− 2]xn = 0

Llavors, per a ser vàlida la igualtat per a valors x 6= 0, només cal que n2 + n− 2 = 0.
Per tant, les solucions s’obtenen de n = 1,−2, i són x, x−2.
En general, y = c1x + c2x

−2 són solució de l’equació. X

• Quan estudiem sistemes d’equacions veurem que, per a un operador diferencial
lineal L d’ordre n, es compleix dim kerL = n. Per tant, en l’exemple anterior ja
hauriem obtingut la solució general de l’equació.

http://www-ma4.upc.edu/~rcubarsi/
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2.2. Wronskià
Si l’operador diferencial L és d’ordre n, considerarem que és una aplicació lineal de
l’espai vectorial Cn(I) a C(I), per a un cert interval I ⊂ R.

Naturalment, els conceptes de dependència i independència lineal de vectors també
s’aplicaran a les funcions pertanyents a aquests espais vectorials.

No obstant, veurem un mètode específic per a estudiar la dependència o independència
lineal de funcions.

Definició 4 Siguin f1(x), f2(x), . . . , fn(x), n funcions que suposarem derivables al-
menys fins a ordre n − 1 en un cert interval I . El seu wronskià es defineix com el
determinant

W (f1, f2, . . . , fn) =

f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
f ′′1 f ′′2 · · · f ′′n... ... · · · ...

f
(n−1)
1 f

(n−1)
2 · · · f (n−1)

n

(2.5)

En darrer terme, el wronskià W (f1, f2, . . . , fn) és una funció de la variable x en
l’interval I , per això, de vegades també escriurem W (x).
En àlgebra haviem vist que si W (f1, f2, . . . , fn) 6= 0, per a algun x ∈ I , llavors les
funcions són linealment independents. El recíproc no és sempre cert, com ho veurem en
el darrer dels següents exemples.
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Exemple 12 Calcularem el wronskià d’algunes families de funcions:

• W (sinx, cosx) =
sinx cosx
cosx − sinx

= − sin2 x− cos2 x = −1

• W (x2, x3, x4) =
x2 x3 x4

2x 3x2 4x3

2 6x 12x2
= 2x6

• W (sin2 x, 1− cos 2x) =
sin2 x 1− cos 2x

2 sinx cosx 2 sin 2x
=

= 2 sin2 x sin 2x− 2 sinx cosx(1− cos 2x) =

= sin 2x(2 sin2 x− 1 + cos2 x− sin2 x) = 0

• Les funcions f1(x) = x3 i f2(x) = |x|3 són linealment independents en tot R.

És fàcil veure que, per a x < 0, W (f1, f2) = W (x3,−x3) = 0, ja que les seves
columnes són proporcionals.

Igualment, per a x ≥ 0, W (f1, f2) = W (x3, x3) = 0.

Per tant, que el wronskià sigui nul no és sempre equivalent a que les funcions siguin
linealment dependents.
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2.3. Equacions homogènies
El nostre objectiu és ara obtenir la solució general de l’equació lineal homogènia. Ho
farem a partir de combinacions lineals de solucions linealment independents.

Lema 1 Siguin y1(x), y2(x) dues solucions de l’equació homogènia, Eq. 2.3. Llavors,
el seu wronskià, o bé no s’anul·la mai, o bé és idènticament nul.

Demostració (Lema 1). El wronskià de y1 i y2 és W (x) = y1y
′
2 − y2y

′
1. Derivant,

obtenim
W ′(x) = y1y

′′
2 + y′1y

′
2 − y2y′′1 − y′2y′1 = y1y

′′
2 − y2y′′1

Tenint en compte que

y′′1 + P (x)y′1 + Q(x)y1 = 0; y′′2 + P (x)y′2 + Q(x)y2 = 0

multipliquem la primera equació per y2, la segona per y1, i restem,

(y1y
′′
2 − y2y′′1) + P (x)(y1y

′
2 − y2y′1) = 0

És a dir,
dW

dx
+ P (x)W = 0

Per tant, el wronskià és de la forma

W (x) = Ce−
∫
P (x)dx, C ∈ R

El resultat desitjat s’obté perquè l’exponencial és sempre positiva.

Lema 2 Dues solucions y1(x), y2(x) són linealment dependents si i només si el seu
wronskià és idènticament nul.
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Teorema 4 Si y1(x), y2(x), . . . , yn(x) són n solucions linealment independents en un
interval I de l’equació lineal homogènia d’ordre n,

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = 0, x ∈ I

llavors
y = c1y1(x) + c2y2(x) + · · · + cnyn(x)

n’és la solució general en I .

Demostració. Vegem la demostració en el cas de segon ordre. En efecte, sigui y(x) una
solució qualsevol de l’equació lineal homogènia Eq. 2.3. Volem veure que existeixen
c1, c2 ∈ R tals que

y(x) = c1y1(x) + c2y2(x)

Sabem que una solució queda unívocament determinada pel coneixement del valor de
la solució i la seva derivada en un mateix punt. Per tant, només caldrà trobar els valors
c1 i c2 tals que en algun punt x0 ∈ I verifiquin

c1y1(x0) + c2y2(x0) = y(x0)
c1y

′
1(x0) + c2y

′
2(x0) = y′(x0)

Per a que aquest sistema tingui solució caldrà que el determinant

W (x0) =
y1(x0) y2(x0)
y′1(x0) y′2(x0)

sigui diferent de zero. El teorema quedarà doncs demostrat si veiem que, per a dues
solucions independents, aquest determinant és no nul. Però, això és cert pels lemes
anteriors i, a més, és vàlid per a qualsevol punt x0 ∈ I .
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Exemple 13 Veure que les funcions de la forma y = c1 sinx + c2 cosx són la solució
general de l’equació y′′+y = 0. Calcular la solució que compleix y(0) = 2, y′(0) = 3.

Solució. Vegem primer que y = sinx i y = cosx satisfan l’equació.

En efecte, si y = sinx, llavors y′ = cosx, y′′ = − sinx i y′′ + y = 0.

Així mateix, si y = cosx, llavors y′ = − sinx, y′′ = − cosx i també verifica
l’equació.

En general, les combinacions de la forma y(x) = c1 sinx + c2 cosx són també solució
de l’equació.

Ara, per a comprovar que totes les solucions són d’aquesta forma, només caldrà veure
que W (sinx, cosx) 6= 0.

En efecte, W (sinx, cosx) = −1.

Si volem que la solució compleixi les condicions inicials, imposem

c1 sin 0 + c2 cos 0 = 2
c1 cos 0− c2 sin 0 = 3

Llavors c1 = 3, c2 = 2, i la solució que busquem és y = 3 sin x + 2 cosx. X
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Una altra aplicació interessant del wronskià és la de trobar l’equació diferencial lineal i
homogènia de grau mínim satisfeta per una família determinada de funcions linealment
independents. Ho veiem tot continuant l’exemple anterior.

Exemple 14 Calcular l’equació lineal i homogènia que té per solucions sinx, cosx.

Solució. Ja hem vist que W (sinx, cosx) 6= 0. Per tant, aquestes són dues solucions
linealment independents, en tot R, d’una equació de segon ordre. Qualsevol altra solució
y(x) que sigui solució de l’equació buscada haurà de ser linealment dependent de les
solucions anteriors. Per tant, hauran de verificar

W (sinx, cosx, y(x)) =
sinx cosx y(x)
cosx − sinx y′(x)
− sinx − cosx y′′(x)

= 0

Ara només hem de calcular el determinant, per exemple, per adjunts de la tercera co-
lumna,

sinx cosx
cosx − sinx

y′′− sinx cosx
− sinx − cosx

y′+
cosx − sinx
− sinx − cosx

y = −y′′+0 y′−y = 0

L’equació d’ordre mínim és, doncs, y′′ + y = 0. X
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2.4. Equacions homogènies a coeficients constants
En general, no és fàcil trobar solucions particulars d’una equació diferencial, encara
que sigui lineal i homogènia, però quan l’equació té coeficients constants, veurem que
és molt senzill. Primer ho resoldrem per a segon ordre. Suposem l’equació

y′′(x) + py′(x) + qy(x) = 0

amb p, q ∈ R.
Podem escriure l’equació en la forma de l’operador diferencial

L ≡ d2

dx2
+ p

d

dx
+ q; L[y(x)] = 0 (2.6)

Provem ara solucions de la forma y = emx, on m és una incògnita a determinar. Com
y′ = memx, y′′ = m2emx, tindrem

L[emx] = (m2 + pm + q) emx = 0

Per tant, les funcions de la forma emx són solucions de l’Eq. 2.6 sempre que m sigui
arrel del polinomi característic

P (m) = m2 + pm + q (2.7)

L’equació P (m) = 0 s’anomena equació característica associada a l’equació diferen-
cial.
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En la resolució d’aquesta equació convé distingir diversos casos.

(i) Cas p2 − 4q > 0. L’equació característica admet dues solucions reals diferents
m1 6= m2. A més, es compleix W (em1x, em2x) 6= 0. Per tant, y1 = em1x i
y2 = em2x són dues solucions independents de l’equació diferencial. Així doncs, la
solució general serà

y(x) = c1e
m1x + c2e

m2x; c1, c2 ∈ R

(ii) Cas p2 = 4q. Només hi ha una arrel real doble, m, de l’equació característica.
Una solució és y1 = emx, però per a trobar la solució general necessitem una altra
solució linealment independent. Tot i que es pot trobar pel mètode de variació de
les constants a partir de l’anterior, ho farem amb el següent raonament:

Com L[emx] = P (m) emx, derivant respecte de m obtenim

∂

∂m
L[emx] = L[

∂

∂m
emx] = [P ′(m) + mP (m)]emx

Com m és arrel doble de P (m), també és arrel de P ′(m). Per tant, tindrem

L[xemx] = 0

Llavors, la solució general serà de la forma

y = (c1 + c2x) emx; c1, c2 ∈ R
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(iii) Cas p2 < 4q. L’equació característica no té solucions reals. Per tant, tindrem arrels
complexes conjugades α ± iβ, i e(α±iβ)x seran solucions de l’Eq. 2.6, però en
el camp complex. Ara bé, per a obtenir dues solucions reals independents només
caldrà treballar amb una de les solucions complexes. Tenint en compte la fórmula
d’Euler,

eiθ = cos θ + i sin θ

podem escriure
y = e(α+iβ)x = eαx(cos βx + i sin βx) (2.8)

Com L[e(α+iβ)x] = 0, s’hauran d’anul·lar per separat les parts real i imaginària.
Així,

L[eαx cos βx] = 0; L[eαx sin βx] = 0 (2.9)

Clarament aquestes solucions són linealment independents, doncs el seu wronskià
val

W (eαx cos βx, eαx sin βx) = βe2αx

que és diferent de zero perquè β 6= 0. Llavors, la solució general serà

y(x) = c1e
αx cos βx + c2e

αx sin βx; c1, c2 ∈ R

http://www-ma4.upc.edu/~rcubarsi/


Plana personal

Inici

Contingut

JJ II

J I

Pàgina 28 de 66

Tornar

Full Screen

Tancar

Sortir

Exemple 15 Trobar la solució general de l’equació y′′ + y′ − 6y = 0.

Solució. L’equació característica és m2 + m− 6 = 0, amb arrels

m =
−1±

√
1 + 24

2
; m1 = 2, m2 = −3

La solució general de l’equació diferencial és doncs

y(x) = c1 e
2x + c2 e

−3x

X

Exemple 16 Trobar la solució general de l’equació y′′ + 2y′ + y = 0.

Solució. L’equació característica m2 + 2m + 1 = 0 té arrel m = −1 doble. Llavors,
la solució general serà

y(x) = (c1 + c2x) e−x

X

Exemple 17 Resoldre l’equació y′′ + y′ + y = 0.

Solució. L’equació característica és m2 + m + 1 = 0, amb arrels complexes m =
−1

2
±
√
3
2
i. Per tant, la solució general és

y = c1 e
−x

2 cos

√
3

2
x + c2 e

−x
2 sin

√
3

2
x

X
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2.5. Equacions d’ordre superior
Considerem l’equació ordre n, lineal, homogènia i a coeficients constants

y(n) + an−1y
n−1 + · · · + a1y

′ + a0y = 0 (2.10)

amb constants a0, a1, . . . , an−1 ∈ R. L’equació característica és

mn + an−1m
n−1 + · · · + a1m + a0 = 0

que pot tenir arrels reals i complexes amb diferents multiplicitats.

• Per a cada arrel real m amb multiplicitat k hi ha k solucions linealment indepen-
dents de la forma

emx, x emx, . . . , xk−1 emx

Aleshores la solució general serà

(c1 + c2x + · · · + ckx
k−1) emx

• Per a cada parella d’arrels complexes conjugades, α ± iβ, amb multiplicitat k
tindrem 2k solucions linealment independents de la forma

eαx cos βx, eαx sin βx, x eαx cos βx, x eαx sin βx, . . . , xk−1 eαx cos βx, xk−1 eαx sin βx

Aleshores, cada parella d’arrels complexes contribuirà a la solució general amb

(c1 + c2x + · · · + ckx
k−1) eαx cos βx + (ck+1 + ck+2x + · · · + c2kx

k−1) eαx sin βx
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Exemple 18 Resoldre y(3) + 3y(2) + 3y′ + y = 0.

Solució. L’equació característica és

m3 + 3m2 + 3m + 1 = (m + 1)3 = 0

L’arrel real m = −1 és triple. Aleshores la solució general és

y = (c1 + c2x + c3x
2) e−x

X

Exemple 19 Resoldre y(4) + 4y(3) + 8y(2) + 8y′ + 4y = 0.

Solució. L’equació característica ésm4+4m3+8m2+8m+4 = (m2+2m+2)2 = 0.
Les arrels complexes m = −1± i són dobles. Per tant, la solució general és

y = (c1 + c2x) e−x cosx + (c3 + c4x) e−x sinx

X

Exemple 20 Resoldre y(7) = 0.

Solució. L’equació característica és m7 = 0, que té una única arrel m = 0, de multi-
plicitat 7. La solució general és

y = c1 + c2x + c3x
2 + c4x

3 + c5x
4 + c6x

5 + c7x
6

X
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2.6. Equacions lineals no homogènies
Recordem que per a resoldre l’equació completa cal conèixer una solució particular i la
solució general de l’homogènia. Vegem com obtenir una solució particular de l’equació
completa. Ho farem pel cas de l’equació d’ordre 2, Eq. 2.1, que és generalitza fàcilment
a ordres superiors.

2.6.1. Mètode de variació de les constants

• És la generalització del mètode que havíem usat per a equacions lineals de primer
ordre

• És vàlid per a equacions diferencials amb coeficients constants o variables

Ho resoldrem per a una equació lineal de segon ordre, escrita en forma mònica,

y′′ + P (x)y′ + Q(x)y = f (x) (2.11)

amb una funció arbitrària f (x) del terme independent.
Per a trobar una solució particular yp de l’Eq. 2.11, caldrà, però, saber la solució general

yh = c1y1(x) + c2y2(x)

de la part homogènia de l’equació, on c1, c2 són constants i y1(x), y2(x) són dues solu-
cions particulars linealment independents de l’equació homogènia.
El mètode consisteix en substituir les constants c1, c2 per funcions desconegudes a de-
terminar, c1(x), c2(x), de manera que yp sigui de la forma

yp = c1(x)y1(x) + c2(x)y2(x) (2.12)

i sigui solució de l’Eq. 2.11.
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Substituïnt, obtenim un sistema lineal de dues equacions amb les incògnites c′1(x) i
c′2(x),  c′1(x)y1 + c′2(x)y2 = 0

c′1(x)y′1 + c′2(x)y′2 = f (x)
(2.13)

El determinant associat al sistema és el wronskià W (y1, y2), que és no nul perquè y1 i
y2 són linealment independents:

W =
y1 y2
y′1 y′2

6= 0 (2.14)

Resolent aquest sistema, obtindrem les derivades de les funcions incògnita, i després
integrarem,

c1(x) =

∫
−y2f
W

dx; c2(x) =

∫
y1f

W
dx

Finalment, la solució particular que hem trobat és

yp = y1

∫
−y2f
W

dx + y2

∫
y1f

W
dx (2.15)

La solució general de l’Eq. 2.11 és, doncs,

y = y1

(∫
−y2f
W

dx + c1

)
+ y2

(∫
y1f

W
dx + c2

)
(2.16)

amb c1 i c2 constants.
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Exemple 21 Resoldre l’equació diferencial

y′′ + 4y = sin 2x− 1

cos 2x

Solució.
Comencem amb l’equació homogènia

y′′ + 4y = 0

L’equació característica ésm2+4 = 0, amb arrelsm = ±2i. Aleshores, la seva solució
general és

yh = c1 cos 2x + c2 sin 2x

amb c1 i c2 constants.
Ara, trobarem una solució particular de l’equació completa en la forma

y = c1(x) cos 2x + c2(x) sin 2x

Hem de resoldre el sistema,
c′1(x) cos 2x + c′2(x) sin 2x = 0

c′1(x)(−2 sin 2x) + c′2(x) 2 cos 2x = sin 2x− 1

cos 2x

El wronskià és

W =
cos 2x sin 2x
−2 sin 2x 2 cos 2x

= 2 6= 0
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Aleshores, aplicant la regla de Cramer,

c′1(x) =
1

2

0 sin 2x
sin 2x− 1

cos 2x
2 cos 2x

=
1

2

(
− sin2 2x +

sin 2x

cos 2x

)
Anàlogament,

c′2(x) =
1

2

cos 2x 0
−2 sin 2x sin 2x− 1

cos 2x

=
1

2
(sin 2x cos 2x− 1)

Integrant, obtenim

c1(x) =
1

2

∫ (
−1− cos 4x

2
+

sin 2x

cos 2x

)
dx = −x

4
+

1

16
sin 4x− 1

4
ln | cos 2x|

c2(x) =
1

8
sin2 2x− x

2
La solució particular queda com

yp =

(
−x

4
+

1

16
sin 4x− 1

4
ln | cos 2x|

)
cos 2x +

(
1

8
sin2 2x− x

2

)
sin 2x

Finalment, la solució de l’equació demanada és

y =

(
c1 +−x

4
+

1

16
sin 4x− 1

4
ln | cos 2x|

)
cos 2x +

(
c2 +

1

8
sin2 2x− x

2

)
sin 2x

amb c1, c2 ∈ R.
X
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2.6.2. Equació d’ordre n

Suposem que volem determinar una solució particular d’una equació d’ordre n,

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = f (x)

on a0, a1, . . . , an−1 poden ser coeficients constants o variables, i sigui

yh = c1y1(x) + c2y2(x) + · · · + cnyn(x)

la solució general de l’equació homogènia associada, amb c1, c2, . . . , cn constants i
y1(x), y2(x), . . . , yn(x) solucions linealment independents.
Busquem una solució particular del tipus

yp = c1(x)y1(x) + c2(x)y2(x) + · · · + cn(x)yn(x)

En aquest cas, les derivades de les funcions incògnites c1(x), c2(x), . . . , cn(x) són les
solucions del sistema n× n,

c′1y1 + c′2y2 + · · · + c′nyn = 0
c′1y

′
1 + c′2y

′
2 + · · · + c′ny

′
n = 0

... ...
c′1y

(n−1)
1 + c′2y

(n−1)
2 + · · · + c′ny

(n−1)
n = f (x)

(2.17)

El determinant associat al sistema és el wronskià de y1(x), y2(x), . . . , yn(x), per
tant, no nul. A partir d’aquí es segueix el mateix procediment indicat per a equaci-
ons de segon ordre, i s’integra cadascuna de les c′k(x) per a obtenir les n funcions
c1(x), c2(x), . . . , cn(x).
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2.6.3. Mètode dels coeficients indeterminats

Buscarem solucions particulars de l’Eq. 2.11 quan f (x) és una exponencial, un poli-
nomi, un sinus o un cosinus. Veurem també que es pot aplicar en el cas de producte
d’aquestes funcions, és a dir, quan

f (x) = (a0 + a1x + · · · + anx
m)eαx sin βx + (b0 + a1x + · · · + bnx

m)eαx cos βx

El mètode també es coneix amb el nom de mètode de la conjectura prudent.

En general, si el terme no homogeni de l’equació és de la forma anterior i l’equació
característica té una arrel α + iβ de multiplicitat k, llavors cal proposar una solució
particular com

yp = xk(A0 +A1x+ · · ·+Anx
m)eαx sin βx+xk(B0 +B1x+ · · ·+Bnx

m)eαx cos βx

http://www-ma4.upc.edu/~rcubarsi/
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Exemple 22 Calcular una solució particular de

y′′ − 3y′ − 4y = 2 sin x

Solució. Si assagem amb funcions de la forma

y = A cosx + B sinx

les seves derivades seran també funcions d’aquest forma i, llavors, el nostre problema
consistirà en determinar A i B que satisfacin l’equació. En efecte,

y′ = −A sinx + B cosx, y′′ = −A cosx−B sinx

Substituïnt, obtenim

−A cosx−B sinx− 3(−A sinx + B cosx)− 4(A cosx + B sinx) = 2 sinx

és a dir
(−A− 3B − 4A) cosx− (B − 3A + 4B) sinx = 2 sinx

Per tant,
−A− 3B − 4A = 0, B − 3A + 4B = −2

La solució d’aquest sistema és A = 3
17
, B = − 5

17
.

La solució particular que trobem és

y =
1

17
(3 cosx− 5 sinx)

X
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Exemple 23 Trobar una solució particular de l’equació

y′′ − 3y′ − 4y = 4x2

Solució. Si provem un polinomi del mateix grau que la part no homogènia i substituïm,
obtindrem una igualtat entre polinomis que resoldrem igualant coeficients. Així,

y = A + Bx + Cx2, y′ = B + 2Cx, y′′ = 2C

Substituïnt,
−4Cx2 − (6C + 4B)x + (2C − 3B − 4A) = 4x2

I, igualant termes corresponents a les mateixes potències de la x, obtenim

−4C = 4, 6C + 4B = 0, 2C − 3B − 4A = 0

Per tant, C = −1, B = 3
2
, A = −13

8
.

Una solució particular és

y = −x2 +
3

2
x− 13

8
X
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Exemple 24 Calcular la solució general de

y′′ − 3y′ − 3y = e−x

Solució. Primer busquem una solució particular. Si assagem solucions del tipus

y = Ae−x

s’obté
y′ = −Ae−x, y′′ = Ae−x

Per tant, substituïnt,

Ae−x − 3(−Ae−x)− 3(Ae−x) = e−x

d’on,
(A + 3A− 3A)e−x = e−x

Per tant A = 1, i una solució particular és

y = e−x

Ara bé, la solució general de l’equació homogènia associada, y′′ − 3y′ − 3y = 0, és

yh = c1e
m1x + c2e

m2x; m1 =
3 +
√

21

2
, m2 =

3−
√

21

2

Aleshores, la solució general de la completa és

y = e−x + c1e
m1x + c2e

m2x; c1, c2 ∈ R

Observem que la solució particular que hem obtingut no és de la mateixa família d’ex-
ponencials que les obtingudes per a l’equació homogènia. X
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Exemple 25 Calcular una solució particular de l’equació y′′ − 2y′ + y = ex.

Solució. Si proposem una funció de la forma

y = Aex

i substituïm, obtenim 0 = ex, que clarament no té solució. El problema amb què ens
trobem és que la funció que proposem és ja solució de l’equació homogènia.
Si abans haguéssim resolt l’equació homogènia, hauríem vist que l’equació caracterís-
tica m2 − 2m + 1 = 0 té per solució l’arrel m = 1, de multiplicitat 2. Per tant, la
solució que proposem, i també totes les de la forma y = (A+Bx) ex, són solucions de
l’homogènia, associades a l’arrel m = 1. En aquest casos, la solució que cal proposar
és

y = Ax2 ex

és a dir, multiplicar Aex per xk, amb k igual a la multiplicitat de la corresponent arrel
de l’equació característica. Així,

y′ = 2Axex + Ax2ex, y′′ = 2Aex + 4Axex + Ax2 ex

Substituïnt,

[(2A + 4Ax + Ax2)− 2(2Ax + Ax2) + Ax2]ex = ex

Ara, simplificant i igualant termes corresponents a iguals potències de la x, obtenim

2A = 1, 4A− 4A = 0, A− 2A + A = 0

Per tant, A = 1
2
. Una solució particular és 1

2
x2 ex i la solució general és

y = (c1 + c2x +
1

2
x2) ex, c1, c2 ∈ R

X
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2.6.4. Principi de superposició

Per acabar aquest capítol, presentem un resultat interessant per a calcular solucions
particulars d’equacions diferencials lineals no homogènies. És un altre principi de
superposició, que permet fer el càlcul d’una solució particular terme a terme.

Teorema 5 Si y1(x) verifica

y′′1 + P (x)y′1 + Q(x)y1 = f1(x)

i y2(x) satisfà
y′′2 + P (x)y′2 + Q(x)y2 = f2(x)

aleshores, y(x) = y1(x) + y2(x) és solució de

y′′ + P (x)y′ + Q(x)y = f1(x) + f2(x)

http://www-ma4.upc.edu/~rcubarsi/
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Exemple 26 Determinar una solució particular de l’equació

y′′ − 3y′ − 4y = 2 sin x + 4x2

Solució. A partir del principi de superposició per a equacions no homogènies podem
obtenir

yp = y1 + y2

on y1 és una solució particular de

y′′ − 3y′ − 4y = 2 sin x

i y2 ho és de
y′′ − 3y′ − 4y = 4x2

Anteriorment ja hem estudiat aquestes equacions per separat i teníem

y1 =
1

17
(3 cosx− 5 sinx), y2 = −x2 +

3

2
x− 13

8

Per tant,

yp =
1

17
(3 cosx− 5 sinx)− x2 +

3

2
x− 13

8
X
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Capítol 3

Sistemes d’equacions
diferencials lineals
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3.1. Introducció
Definició 5 Un sistema d’equacions diferencials lineals de primer ordre és un conjunt
d’equacions en la forma

x′1(t) = a11(t)x1(t) + a21(t)x2(t) + · · · + an1(t)xn(t) + b1(t)
x′2(t) = a12(t)x1(t) + a22(t)x2(t) + · · · + an2(t)xn(t) + b2(t)

... ...
x′n(t) = a1n(t)x1(t) + a2n(t)x2(t) + · · · + ann(t)xn(t) + bn(t)

(3.1)

o de manera abreujada, en forma matricial,

~x ′ = A(t)~x +~b(t) (3.2)

on A(t) és la matriu de coeficients del sistema donat per l’Eq. 3.1, i ~b(t) és un vector
de termes independents. El sistema serà homogeni si~b(t) = ~0.

3.1.1. Propietats generals

Com en el capítol anterior, podem fer servir la notació d’operador diferencial per a
escriure l’Eq. 3.2,

L[~x] =

(
d

dt
− A(t)

)
~x (3.3)

Llavors, el sistema homogeni associat a l’Eq. 3.2 ve donat per

L[~x] = ~0

i el sistema complet és
L[~x] = ~b(t)

http://www-ma4.upc.edu/~rcubarsi/
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Degut a la linealitat de l’operador L, l’estructura de les solucions prové de la genera-
lització immediata de la que es tenia per a equacions diferencials escalars. Així, per
exemple,

• les solucions del sistema homogeni són les que pertanyen al kerL,

• la solució trivial és sempre solució del sistema homogeni,

• la diferència de solucions particulars del sistema complet és solució del sistema
homogeni,

• la solució general del sistema complet s’obté sumant una solució particular qualse-
vol a la solució general del sistema homogeni,

• es compleix el principi de superposició, tant per les solucions del sistema homoge-
ni, com per les del complet.
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Teorema 6 (d’existència i unicitat de les solucions) SiA(t) i~b(t) són contínues en un
interval I ⊂ R, llavors el problema de valor inicial

~x ′ = A(t) ~x +~b(t), ~x(t0) = ~x0 (3.4)

té una única solució en un obert contingut en I .

Destaquem les propietats i definicions següents:

• En particular, si els coeficients de A(t) són continus ∀t ∈ R, les solucions també
ho són.

• La solució ~x(t) és un camp vectorial de classe C1 dins Rn, anomenat espai de les
fases.

• Per a una solució ~x(t), el conjunt de valors (t, ~x(t)) ∈ (I,Rn) és una corba inte-
gral, gràfic de la solució del sistema.
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3.2. Relació entre un sistema i una equació
Considerem l’equació

y(n) + an−1(t)y
n−1 + · · · + a1(t)y

′ + a0(t)y = f (t) (3.5)

que escrivim en unes noves variables. Primer definim x1 = y, i després definim recur-
rentment les successives derivades de y:

x′1 = x2

x′2 = x3
...
x′n−1 = xn
x′n = −a0(t)x1 − a1(t)x2 − · · · − an−1(t)xn + f (t)

(3.6)

Llavors, comparant amb l’Eq. 3.1 tenim,

A(t) =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1

−a0(t) −a1(t) −a2(t) · · · −an−1(t)

 ; ~b(t) =


0
0
...
0
f (t)

 (3.7)

El pas d’equació a sistema sempre és possible i, per tant, es pot considerar que les equa-
cions d’ordre n constitueixen un cas particular dels sistemes d’equacions diferencials.
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Exemple 27 L’equació diferencial

y′′ + a1(t)y
′ + a0(t)y = f (t)

s’escriu en forma de sistema, definint x1 = y, com(
x′1
x′2

)
=

(
0 1
−a0 −a1

)(
x1

x2

)
+

(
0
f

)

3.3. Sistemes homogenis

Teorema 7 Les solucions del sistema homogeni

L[~x(t)] = ~0 (3.8)

formen un espai vectorial de dimensió n.

3.3.1. Dependència i independència lineal de funcions

Proposició 1 Considerem un conjunt de funcions vectorials (no parlem encara de solu-
cions d’una equació diferencial) {~x1(t), . . . , ~xn(t)} definides per a t ∈ I , amb valors
a Rn. Formem la matriu quadrada X(t) = [~x1(t), . . . , ~xn(t)].
Si detX(t) 6= 0 per a algun t ∈ I , llavors les funcions són linealment independents en
I .
O bé, si les funcions són linealment dependents en I , llavors detX(t) = 0, ∀t ∈ I .

El recíproc no és cert en general.
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3.3.2. Matriu fonamental de solucions

Definició 6 Si {~x1(t), . . . , ~xn(t)} són n solucions l’Eq. 3.8, linealment independents
en l’interval I , llavors, la matriu

X(t) = [~x1(t), . . . , ~xn(t)] (3.9)

s’anomena matriu fonamental de solucions del sistema homogeni.

Per tant, una matriu fonamental de solucions del sistema ~x ′ = A(t)~x satisfà

X ′(t) = A(t)X(t)

Vegem algunes propietats de la matriu fonamental de solucions en relació al PVI de
l’Eq. 3.4.

• Tota solució de l’Eq. 3.4 s’obté a partir d’una combinació lineal de les columnes
de X(t). Si ho expressem matricialment, tenim

~x(t) = X(t)~c (3.10)

El vector constant ~c ∈ Rn es calcula a partir d’una condició inicial

~x0 = X(t0)~c

• Com les columnes de X(t) són linealment independents, la matriu és invertible.
Per tant,

detX(t) 6= 0,∀t ∈ I (3.11)

El determinant de la matriu fonamental de solucions és el wronskià de les solucions.
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• La solució del PVI es pot escriure substituïnt

~c = X−1(t0)~x0

en l’Eq. 3.10:
~x(t) = X(t)X−1(t0)~x0 (3.12)

• En particular, la solució trivial ~x(t) = ~0,∀t ∈ I , és la única solució del sistema
homogeni amb condició inicial ~x(t0) = ~0.

• En general, si X(t) és matriu fonamental de solucions i M és una matriu regular,
llavors X(t)M també és una matriu fonamental de solucions.

• La matriu fonamental obtinguda com

Φ(t) = X(t)X−1(t0)

és la única que verifica
Φ(t0) = I

S’anomena matriu fonamental principal.

La segona de les propietats ens proporciona el recíproc de la Proposició 1:

Proposició 2 Les columnes d’una matriu de solucions X(t) són linealment indepen-
dents si, i només si, detX(t) 6= 0.
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Exemple 28 Si ~x1 = (1, t)T , ~x2 = (t2, 0)T són solució de ~x ′ = A(t)~x, calcular A(t).

Solució. Derivant, obtenim ~x ′1 = (0, 1)T , ~x ′2 = (2t, 0)T . Per tant, es complirà(
0 2t
1 0

)
= A(t)

(
1 t

2

t 0

)
Si t 6= 0, és a dir, per a t < 0 o per a t > 0, la matriu de solucions

X(t) =

(
1 t

2

t 0

)
és invertible (és una matriu fonamental de solucions). Llavors,

A(t) =

(
0 2t
1 0

)(
1 t

2

t 0

)−1
=

(
0 2t
1 0

) −1

t3

(
0 −t2
−t 1

)
=
−1

t3

(
−2t2 2t

0 −t2
)

X
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Exemple 29 Calcular la solució de

~x ′(t) =

(
1 0
0 2t

)
~x(t)

tal que ~x(t0) = (a, b)T .

Solució. En aquest cas podem escriure i resoldre les dues equacions per separat

x′1 = x1, x′2 = 2tx2

d’on
x1(t) = aet−t0, x2(t) = bet

2−t20

Per tant, (
x1(t)
x2(t)

)
=

(
et−t0 0

0 et
2−t20

)(
a
b

)
Observem que la matriu fonamental del sistema és principal:(

et 0
0 et

2

)(
et0 0
0 et

2
0

)−1
=

(
et−t0 0

0 et
2−t20

)
X
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3.4. Matriu exponencial
Havíem vist que les funcions exponencials generaven les solucions de les equacions
diferencials lineals (excepte en un factor polinòmic, per a arrels múltiples), incloent
també les solucions associades a arrels complexes de l’equació característica.
Això es pot generalitzar si usem una sèrie de matrius que pren com a patró la sèrie de la
funció exponencial d’una variable real, et = 1 + t + 1

2
t2 + · · · + 1

n!
tn + · · · .

Es pot demostrar que, com la sèrie escalar, la sèrie de matrius és uniformement conver-
gent, la qual cosa permet sumar sèries d’aquest tipus, fer productes entre elles i inclús
derivades i integrals, tot mantenint la convergència.

Definició 7 Si A és una matriu n × n, la matriu exponencial es defineix com la sèrie
infinita de matrius

eA =
∞∑
k=0

Ak

k!
(3.13)

Per tant, eA ∈Mn×n.

Propietat 1 Fem un resum de les propietats més importants:

• e0 = I .

• Si AB = BA, llavors eA eB = eA+B = eB eA.

• eAe−A = e0 = I , d’on (eA)−1 = e−A.

• det eA 6= 0, ∀A.

• Si A = P B P−1 aleshores eA = P eB P−1.
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Exemple 30 Vegem uns casos particulars:

1. Si λ és un escalar, eλI = eλI .

2. Si A = diag(a1, . . . , an), llavors eA = diag(ea1, . . . , ean).

3. Si A = diag(A1, . . . , An) és una matriu diagonal per blocs, llavors
eA = diag(eA1, . . . , eAn).

4. Si An = 0, llavors eA = I + A + 1
2
A2 + · · · + 1

(n−1)!A
n−1.

Proposició 3 Considerem A ∈ Mn×n una matriu constant i una variable t ∈ R. Ales-
hores,

d

dt
eAt = AeAt (3.14)

Ara podem passar de treballar amb sèries de matrius, a fer-ho amb sèries de vectors. Per
exemple, per a qualsevol vector ~v, que no depengui de t,

d

dt

(
eAt ~v

)
= AeAt ~v (3.15)
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I, també considerant sèries de vectors, tenim la següent propietat important:

Propietat 2 Considerem A ∈Mn×n(R) i una variable real t. Donat un escalar λ i un
vector constant ~v, es compleix

eAt ~v = eλt e(A−λI)t ~v (3.16)

Si ara la combinem amb el darrer dels exemples, obtenim una propietat que serà molt
útil a l’hora de resoldre sistemes d’equacions diferencial lineals:

Propietat 3 Si existeix un nombre natural n tal que (A− λI)n ~v = ~0, llavors

eAt~v = eλt
(
I + t (A− λI) +

t2

2
(A− λI)2 + · · · + tn−1

(n− 1)!
(A− λI)n−1

)
~v

(3.17)

En particular, tenim,

Proposició 4 Si ~v és vector propi de A amb valor propi λ, llavors ~v també és vector
propi de eA amb valor propi eλ.

que es dedueix de la proposició anterior, amb t = 1.
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3.5. Sistema homogeni a coeficients constants
Estudiem el cas en que la matriu del sistema homogeni

~x ′ = A~x (3.18)

te coeficients constants, A ∈Mn×n(R).
Pels resultats que hem vist en la secció anterior podem afirmar el següent:

• L’equació 3.14 garanteix que la matriu eAt és una matriu de solucions de l’Eq. 3.18.

• Com el determinant det eAt 6= 0, les columnes de matriu de solucions són lineal-
ment independents ∀t ∈ R. Per tant, eAt és una matriu fonamental principal de
solucions.

• Si X(t) és una matriu fonamental de solucions de l’Eq. 3.18, existeix una matriu
regular i constant C tal que eAt = X(t)C .

Fixades unes condicions inicials en t = t0, tindrem eAt0 = X(t0)C , d’on C =
X−1(t0) e

At0.

Podem doncs concloure,

Teorema 8 Tota matriu fonamental de solucions X(t) del sistema homogeni, Eq. 3.18,
és de la forma

X(t) = eA(t−t0)X(t0)
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3.5.1. Solució del sistema

Ara només queda saber com escriure la matriu fonamental eAt sense haver de recórrer
a la sèrie infinita que la defineix. Per això cal trobar n vectors linealment independents
~v ∈ Rn que proporcionin les n solucions linealment independents de l’Eq. 3.18 en la
forma eAt~v. Aquests vectors els proporciona el teorema de la descomposició primària
d’endomorfismes, que el podem recordar tot enunciant-lo pel polinomi mínim associat
a la matriu A.

Teorema 9 Sigui pA(λ) = (−1)n pn11 · · · pnkk (
∑k

i=1 ni gr(pi) = n) la descomposició
factorial del polinomi característic de la matriuA ∈Mn×n, imA(λ) = pm1

1 · · · pmk

k la
del polinomi mínim. Aleshores, l’espai vectorial E es descomposa en suma directa dels
següents subespais invariants,

E = ker pm1
1 (f )⊕ · · · ⊕ ker pmk

k (f )

amb dim ker pmi = dim ker pni = nigr(pi).

Vegem com són les solucions en termes de les arrels del polinomi característic.

3.5.2. Arrels reals simples

Sigui λj una arrel real simple de pA(λ), és a dir, un valor propi de A. Si ~v és el seu
vector propi, es complirà

(A− λjI)~v = ~0

aleshores, tenint en compte l’Eq. 3.17, tindrem una solució del sistema Eq. 3.18 en la
forma

~x(t) = eAt~v = eλjt~v (3.19)
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Exemple 31 Resoldre el PVI

~x ′ =

(
−5 1

4 −2

)
~x; ~x(0) =

(
1
2

)
Solució.
Primer busquem els valors propis la matriu,

det(A− λI) =
−5− λ 1

4 −2− λ = λ2 + 7λ + 6 = (λ + 1)(λ + 6)

Per tant, les arrels del polinomi característic són λ1 = −1, λ2 = −6. Ara busquem els
vectors propis. Per a λ1 = −1, hem de resoldre(

−4 1
4 −1

) (
x
y

)
=

(
0
0

)

d’on y = 4x. Per tant, un vector propi serà
(

1
4

)
.

Ara, per a λ2 = −6, resolem (
1 1
4 4

) (
x
y

)
=

(
0
0

)

d’on x = −y. Per tant, un vector propi serà
(
−1

1

)
.
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La solució general d’aquest sistema homogeni és, doncs,

~x(t) = c1e
−t
(

1
4

)
+ c2e

−6t
(
−1

1

)
=

(
e−t −e−6t

4e−t e−6t

)(
c1
c2

)
Ara només queda calcular les constants, a fi de satisfer la condició inicial.

~x(0) =

(
1 −1
4 1

)(
c1
c2

)
=

(
1
2

)
Resolent aquest sistema, obtenim c1 = 3

5
, c2 = −2

5
. Per tant, la solució del PVI és

~x(t) =

(
e−t −e−6t

4e−t e−6t

)(
3
5

−2
5

)
=

(
3
5
e−t + 2

5
e−6t

12
5
e−t − 2

5
e−6t

)
X

3.5.3. Arrels complexes simples

De manera semblant a l’Exemple 7 de la secció Descomposició primària dels apunts
d’àlgebra lineal Polinomis de matrius i descomposició primària, si λj = α ± iβ són
arrels complexes simples del polinomi característic amb vectors propis respectius~a±i~b,
aleshores, les dues solucions reals són les parts real i imaginària de

~x(t) = eAt~v = e(α+iβ)t(~a + i~b) = eαt(cos βt + i sin βt)(~a + i~b)

És a dir,
~x1(t) = eαt(cos βt~a− sin βt~b)

~x2(t) = eαt(sin βt~a + cos βt~b)
(3.20)
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3.5.4. Arrels múltiples

3.5.4.1. Multiplicitats algebràica i geomètrica iguals

Si λj és una arrel real de pA(λ) de multiplicitat m, i existeixen m vectors propis line-
alment independents, ~v1, . . . , ~vm associats a aquest valor propi, llavors les m solucions
independents de l’Eq. 3.18 s’obtenen de la mateixa manera que en l’Eq. 3.19, una per a
cada vector propi:

~xi(t) = eAt~vi = eλjt~vi; i = 1, . . . ,m

Si l’arrel és complexa, es fa el mateix amb les solucions de l’Eq. 3.20.

3.5.4.2. Multiplicitats algebràica i geomètrica diferents

Sigui λj una arrel real de pA(λ) de multiplicitat nj, i suposem que existeixen menys
de nj vectors propis linealment independents. Llavors, pel teorema de descomposició
primària d’endomorfismes, sabem que dim ker(A− λjI)mj = nj, on mj és la potència
del factor d’aquesta arrel en el polinomi mínim mA(λ). Llavors, existeixen nj vectors
linealment independents ~v1, . . . , ~vnj que compleixen

(A− λjI)mj~vi = ~0; i = 1, . . . , nj

Per tant, d’acord amb l’Eq. 3.17, les nj solucions independents seran de la següent
forma. Si ~v ∈ ker(A− λjI)mj ,

~x(t) = eAt~v = eλjt
(
~w0 + t~w1 +

t2

2
~w2 + · · · + tmj−1

(mj − 1)!
~wmj−1

)
(3.21)

amb
~wk = (A− λjI)k~v; k = 0, . . . ,mj − 1

Si l’arrel és complexa, cal donar separadament solucions per a la part real i imaginària
de l’Eq. 3.21, com s’ha fet en l’Eq. 3.20.
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Existeix una relació de recurrència entre els vectors ~wk anteriors, que és útil a l’hora de
simplificar els càlculs:

Proposició 5 Considerem la solució de l’Eq. 3.21 associada a un vector ~v = ~w0 ∈
ker(A− λjI)mj . Llavors, els següents vectors de la sèrie verifiquen

~wk = (A− λjI)~wk−1 ∈ ker(A− λjI)mj−k; k = 1, . . . ,mj − 1 (3.22)

Observació. Com que entre els nj vectors del ker(A − λjI)mj ja hi ha, com a mínim,
un vector de cada ker(A − λjI)k, amb 1 ≤ k ≤ mj, llavors podem formar una
primera família de solucions amb el màxim nombre de vectors linealment independents
del ker(A−λjI). Després, per a buscar vectors del ker(A−λjI)2 ho farem a partir dels
anteriors, tot aplicant la llei de recurrència de l’Eq. 3.22. És a dir, si ~v1 ∈ ker(A−λjI),
un vector ~v2 ∈ ker(A− λjI)2 el trobarem resolent el sistema

(A− λjI)~v2 = ~v1 (3.23)

i així successivament, fins a completar els nj vectors desitjats. Vegem-ho amb un exem-
ple.

Exemple 32 Resoldre el PVI

~x ′ =

(
7 1
−4 3

)
~x; ~x(0) =

(
2
−5

)
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Solució.
Busquem els valors propis la matriu,

det(A− λI) =
7− λ 1
−4 3− λ = λ2 − 10λ + 25 = (λ− 5)2

Per tant, l’arrel del polinomi característic és λ = 5, doble. Ara busquem un vector propi
per a aquest valor. (

2 1
−4 −2

) (
x
y

)
=

(
0
0

)
d’on y = −2x. Per tant, un vector propi serà ~v1 =

(
1
−2

)
. De moment, una solució

particular del sistema homogeni serà

~x1(t) = e5t
(

1
−2

)
Evidentment, dim ker(A − 5I) = 1. Com la matriu del sistema no diagonalitza, hau-
rem de trobar l’altra solució particular a partir d’un vector linealment independent de
l’anterior, que sigui del ker(A − 5I)2. Aquest vector, ~v2, d’acord amb l’Eq. 3.23, el
trobarem resolent (A− 5I)~v2 = ~v1.(

2 1
−4 −2

) (
x
y

)
=

(
1
−2

)
d’on y = 1− 2x. Fent x = 0 tenim ~v2 =

(
0
1

)
. Així, l’altra solució particular serà

~x2(t) = e5t
[(

0
1

)
+ t

(
1
−2

)]
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Finalment, la solució general del sistema homogeni és ~x(t) = c1~x1(t) + c2~x2(t), que,
en forma de matriu fonamental de solucions, s’escriu com

~x(t) = e5t
(

1 t
−2 1− 2t

)(
c1
c2

)
Ara només queda calcular les constants per a satisfer la condició inicial.

~x(0) =

(
1 0
−2 1

)(
c1
c2

)
=

(
2
−5

)
Resolent aquest sistema, obtenim c1 = 2, c2 = −1. Per tant, la solució del PVI és

~x(t) = e5t
(

1 t
−2 1− 2t

)(
2
−1

)
= e5t

(
2− t
−5 + 2t

)
X
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3.6. Sistemes no homogenis
Com en el cas d’equacions no homogènies d’ordre n, veurem el mètode de variació
de les constants per a sistemes d’equacions lineals. Aquest procediment permet trobar
una solució particular del sistema complet a partir de la solució general del sistema
homogeni, encara que la matriu del sistema no tingui coeficients constants.
Suposem que X(t) és una matriu fonamental de solucions de l’Eq. 3.18, i assajem una
solució de l’Eq. 3.2 en la forma

~xp(t) = X(t)~c(t) (3.24)

Substituïnt-la en l’Eq. 3.2 veurem com ha de ser la funció vectorial ~c(t):

X ′(t)~c(t) + X(t)~c ′(t) = A(t)X(t)~c(t) +~b(t)

Però com que la matriu fonamental de solucions del sistema homogeni compleix

X ′(t)~c(t) = A(t)X(t)~c(t)

ens queda
X(t)~c ′(t) = ~b(t)

Resolent aquest sistema per a ~c ′(t) i integrant, obtenim la solució particular buscada.
En efecte, com detX(t) 6= 0, podem invertir el sistema,

~c ′(t) = X−1(t)~b(t); ~c(t) =

∫
X−1(t)~b(t) dt
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Per tant, una solució particular serà

~xp(t) = X(t)

∫
X−1(t)~b(t) dt (3.25)

Finalment, podem escriure la solució general del sistema complet tot afegint-hi la solu-
ció general del sistema homogeni:

~x(t) = X(t)

(∫
X−1(t)~b(t) dt + ~c

)
, ~c ∈ Rn (3.26)

Exemple 33 Trobar la solució general del sistema

~x ′ =

(
−5 1

4 −2

)
~x + e2t

(
6
−1

)
Solució.
El sistema homogeni ja havia estat estudiat en l’exemple 31. La matriu fonamental de
solucions era

X(t) =

(
e−t −e−6t

4e−t e−6t

)
La seva inversa és

X−1(t) =

(
1
5
et 1

5
et

−4
5
e6t 1

5
e6t

)
Per tant, la solució particular ~xp(t) = X(t)~c(t) satisfarà

~c ′(t) = X−1(t)~b(t) =

(
1
5
et 1

5
et

−4
5
e6t 1

5
e6t

)(
6e2t

−e2t
)

=

(
e3t

−5e8t

)
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Ara integrem cada component,∫
X−1(t)~b(t) dt =

( ∫
e3t dt∫
−5e8t dt

)
=

(
1
3
e3t

−5
8
e8t

)
I ja podem escriure la solució particular,

~xp(t) = X(t)

∫
X−1(t)~b(t) dt =

(
e−t −e−6t

4e−t e−6t

)(
1
3
e3t

−5
8
e8t

)
= e2t

(
23
24

−17
24

)
Finalment, la solució general del sistema complet és

~x(t) = c1e
−t
(

1
4

)
+ c2e

−6t
(
−1

1

)
+ e2t

(
23
24

−17
24

)
Observem que també hauríem pogut provar el mètode dels coeficients indeterminats

amb una solució particular de la forma e2t
(
a1
a2

)
.

X
En el mètode dels coeficients indeterminats per a sistemes d’equacions, la solució que es
conjectura segueix bàsicament els mateixos criteris que per a equacions escalars, però,
en aquest cas, les constants són vectors.
A part dels mètodes vistos, hi ha maneres alternatives de resoldre equacions i sistemes
d’equacions diferencials lineals, com per exemple, aplicar la transformada de Laplace.
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