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Una conseqüència del teorema de diagonalització ortogonal de matrius simètriques és la
descomposició en valors singulars d’una matriu, que generalitza la descomposició ob-
tinguda en la diagonalització de matrius quadrades. És una estratègia per a estudiar una
matriu A, possiblement rectangular, a partir de les matrius ATA i AAT , que són qua-
drades i simètriques. Recordem que una matriu simètrica real diagonalitza amb valors i
vectors propis reals. Revisem, primer, uns quants conceptes que hi estan relacionats.

1. Matriu definida positiva
Estudiant l’espai euclidià hem vist que una matriu simètricaM ∈Mn×n(R) s’anomena
definida positiva si per a tot vector no nul ~x ∈ Rn es satisfà

~x TM~x > 0

Només quan ~x = ~0, es compleix ~x TM~x = 0.

Havíem vist que una matriu és definida positiva si, i només si, tots els seus menors
principals són estrictament positius. Ara donarem dues noves equivalències.

Propietat 1
• M és simètrica definida positiva.

• Els valors propis de M són positius.

• Existeix una matriu regular B ∈Mn×n(R) tal que M = BTB.

Conseqüentment, com una matriu definida positiva diagonalitza i no té cap valor propi
nul, és invertible.

http://mat-web.upc.edu/people/rafael.cubarsi/
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En canvi, si per als vectors no nuls ~x ∈ Rn es compleix

~x TM~x ≥ 0

llavors la matriu s’anomena semidefinida positiva.

En aquest cas, els menors principals i els valors propis són no negatius.

També es pot obtenir M com el producte

M = BTB

però ara la matriu B pot ser singular.

Recíprocament, i més en general, amb B rectangular, es dóna la següent situació.

Propietat 2
Una matriu de la forma M = BTB amb B ∈Mm×n(R) és semidefinida positiva.

Òbviament, M és simètrica. D’altra banda,

~x TBTB~x = ‖B~x‖2 ≥ 0,∀~x ∈ Rn

Només en el cas en que rkB = n, l’únic vector ~x que satisfà B~x = ~0 és el vector nul.
Per tant, només en aquest cas, en que les columnes de B són linealment independents,
la matriu M és definida positiva i invertible (recordem que una situació com aquesta
apareixia en les equacions normals).

http://mat-web.upc.edu/people/rafael.cubarsi/
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2. Notació
Primer, precisarem unes qüestions de notació. En estudiar l’espai euclià denotavem
el producte escalar de dos vectors en una base ortonormal com el producte entre una
matriu fila per una matriu columna:

~a ·~b = ~a T~b = [a1, . . . , an]

 b1
...
bn


Per exemple, la matriu de producte escalar a Rn associada a una base de matriu
E = [~e1, . . . , ~en] s’escrivia com

ETE =

 ~e T
1...
~e T
n

 [~e1, . . . , ~en] =

 ~e T
1 ~e1 . . . ~e T

1 ~en... ...
~e T
n ~e1 . . . ~e T

n ~en


Fent servir la mateixa notació, la matriu formada com el producte d’una matriu columna
per una matriu fila (anomenat producte tensorial diàdic)

M = ~a~b T =

 a1
...
an

 [b1, . . . , bn] =

 a1b1 . . . a1bn
... ...

anb1 . . . anbn


és una matriu de rang 1. En general, per a dues matrius P = [~p1, . . . , ~pn];
Q = [~q1, . . . , ~qn] ∈Mn×n(R), el producte PQT és la suma de n matrius de rang 1:

PQT = [~p1, . . . , ~pn]

 ~q T
1...
~q T
n

 = ~p1~q
T

1 + · · · + ~pn~q
T
n

http://mat-web.upc.edu/people/rafael.cubarsi/
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3. Matriu de projecció
Vegem alguns exemples on apareixen sumes de matrius de rang 1. En calcular la pro-
jecció ortogonal ~p d’un vector ~x ∈ Rn sobre el subespai generat per la base ortonormal
formada per les columnes de la matriu U = [~u1, . . . , ~um] obteníem ~p = U~c, calculat
a partir de les equacions normals com UTU~c = UT~x, d’on ~c = UT~x. És a dir, els
coeficients de Fourier són ci = ~u T

i ~x. Llavors, fent PU = UUT , tenim

~p = PU~x = (~u1~u
T

1 + · · · + ~um~u
T
m )~x (1)

Propietat 3 La projecció ortogonal de ~x en la direcció del vector unitari ~ui és ~ui~u T
i ~x.

La matriu ~ui~u T
i s’anomena matriu de projecció ortogonal en la direcció del vector ~ui.

Òbviament, P 2
U = PU i P T

U = PU . En general, tota matriu que satisfaci P 2 = P és una
matriu de projecció i, a més, si P T = P , la projecció és ortogonal.

Un altre cas el teníem en la diagonalització d’una matriu simètrica M ∈ Mn×n(R).
S’havia obtingut una matriu diagonal de valors propis D = diag(λ1, . . . , λn) i una
matriu de la base de vectors propis ortonormals U = [~u1, . . . , ~un], tals que

M = UDU−1 = UDUT

que dona lloc a la descomposició espectral

M = λ1~u1~u
T

1 + · · · + λn~un~u
T
n (2)

onM queda expressada com a suma de matrius de projecció de rang 1 en les respectives
direccions dels vectors propis ortonormals. Per tant, en aquesta base, M és diagonal.

http://mat-web.upc.edu/people/rafael.cubarsi/
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4. Valors singulars
Considerem les següents matrius associades a una matriu A ∈Mm×n(R):

Rn A−→ Rm Rm AT

−→ Rn Rn ATA−→ Rn Rm AAT

−→ Rm

Llavors, per a la matriu ATA, és immediat veure que es compleixen les següents propi-
etats. Denotem r = rkA.

• La matriu simètricaATA diagonalitza ortogonalment, amb valors propis λi i vectors
propis ortonormals ~vi ∈ Rn; i = 1, . . . , n.

• Per la Propietat 2, els valors propis λi són no negatius.

• Es compleix ‖A~vi‖2 = λi ≥ 0. És a dir, A~vi té mòdul σi =
√
λi.

• Els vectors ~vi ∈ Rn tals que A~vi 6= ~0 són del subespai RowA ∈ Rn (exercici).

• Els vectors ~vi de λi 6= 0 són una base ortonormal de RowA, amb dim RowA =
dim ColA = r. Formen les columnes d’una matriu Vr ∈Mn×r.

• Per a λi 6= 0, els vectors ~ui = 1
σi
A~vi ∈ Rm són ortonormals (exercici).

• Una base de ColA ∈ Rm està formada per r vectors ~ui (associats als λi 6= 0).
Formen les columnes d’una matriu Ur ∈Mm×r.

• Els r vectors no nuls ~ui = 1
σi
A~vi són vectors propis de AAT amb els mateixos

valors propis λi 6= 0 (exercici).

http://mat-web.upc.edu/people/rafael.cubarsi/
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Per tant, es compleix
A~vi = ~uiσi ; i = 1, . . . , r

el que significa que, en els respectius subespais amb bases Vr de Rn i Ur de Rm, la
matriu diagonalitza.

Definició 1 Els valors σi ≥ 0; i = 1, . . . , n; s’anomenen valors singulars.

S’ordenen de major a menor, σ1 ≥ . . . ≥ σr > 0. Només ens interessen els r diferents
de zero. Llavors, escriurem

A [~v1, . . . , ~vr] = [~u1, . . . , ~ur]

 σ1
. . .

σr

 ; AVr = UrΣr (3)

amb A ∈Mm×n, Vr ∈Mn×r, Ur ∈Mm×r i Σr ∈Mr×r.

Les propietats anteriors ténen les seves recíproques per la matriu AAT , és a dir, can-
viant els papers de A i AT i dels vectors ~ui i ~vi. Com que els valors singulars són els
mateixos, el càlcul més curt s’aconsegueix treballant amb la matriu de menor dimensió
entre AAT ∈Mm×m i ATA ∈Mn×n.

5. Vectors singulars
Fins aquí hem treballat amb r dels n vectors propis de ATA i amb r dels m vectors
propis de AAT , que són els que corresponen a valors propis diferents de zero. Ara
podem completar les bases de cada espai, afegint-hi els vectors propis corresponents als
valors propis nuls.

http://mat-web.upc.edu/people/rafael.cubarsi/
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D’una banda, a Rn hi ha n − r vectors propis ortonormals de NulA, que són els ~vi
de λi = 0. Formen les columnes d’una matriu Vn−r ∈ Mn×(n−r) i són ortogonals als
vectors de de RowA de les columnes de la matriu Vr ∈Mn×r.

D’altra banda, a Rm hi ha una base de m− r vectors ortonormals del subespai NulAT ,
que corresponen als vectors propis ~ui de la matriu AAT de λi = 0. Formen les
columnes d’una matriu Um−r ∈ Mm×(m−r) i són ortogonals al vectors de ColA que
formaven les columnes de Ur ∈Mm×r.

Com les matrius U = [Ur, Um−r] ∈Mm×m i V = [Vr, Vn−r] ∈Mn×n són ortogonals,

UT U = Im, V T V = In, UT
r Ur = Ir, V T

r Vr = Ir

Per tant, l’Eq. 3 es pot completar afegint n− r columnes de zeros a Σr i m− r files de
zeros, fins a completar una matriu Σ ∈Mm×n. Aleshores, l’Eq. 3 es converteix en

A [~v1, . . . , ~vr︸ ︷︷ ︸
RowA

, . . . , ~vn︸ ︷︷ ︸
NulA

] = [~u1, . . . , ~ur︸ ︷︷ ︸
ColA

, . . . , ~um︸ ︷︷ ︸
NulAT

]


σ1 . . .

σr
0 · · ·... . . . 0


AV = U Σ (4)

amb, A ∈Mm×n, V ∈Mn×n, U ∈Mm×m i Σ ∈Mm×n.

Definició 2 Els vectors de les columnes de la matriu U s’anomenen vectors singulars
per l’esquerra, i els de les columnes de V són els vectors singulars per la dreta.

http://mat-web.upc.edu/people/rafael.cubarsi/
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6. Descomposició en valors singulars
Com V és invertible i V −1 = V T , a partir de l’Eq. 4 trobem una forma diagonal per a
la matriu A:

A = U ΣV T (5)

resultat d’haver triat les bases V de Rn i U de Rm. Una conseqüència important és una
nova propietat sobre la invertibilitat d’una matriu.

Propietat 4 Una matriu A ∈ Mn×n(R) és invertible si, i només si, té n valors singu-
lars diferents de zero.

Que és equivalent a dim ColA = dim RowA = n, dim NulA = dim NulAT = 0.

La descomposició equival a fer, primer, un canvi de base ortogonal en Rn, despres un
canvi d’escala entre les direccions dels vectors singulars i, finalment, un canvi de base
ortogonal en Rm.

Rn

V T
��

A //Rm

Rn
Σ
//Rm

U

OO

Alternativament, l’equació 5 s’expressa com una suma de matrius de rang 1,

A = σ1~u1~v
T

1 + · · · + σr~ur~v
T
r (6)

que també és vàlida per a l’Eq. 3, anomenada descomposició en valors singulars reduï-
da, que s’acostuma a escriure com

A = Ur Σr V
T
r (7)

http://mat-web.upc.edu/people/rafael.cubarsi/
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7. Matriu pseudoinversa
En resoldre un sistema sobredeterminat ~y = A~x,A ∈ Mm×n, per mínims quadrats
s’obté una solució ~x tal que ŷ = A~x és la projecció ortogonal del vector ~y sobre el
subespai generat per les columnes de la matriu A.
Si expressem A mitjançant la descomposició en valors singulars reduïda

A = Ur Σr V
T
r

recordant que ColA té per base Ur i tenint en comte la matriu de projecció de l’Eq. 1,
la condició anterior equival a dir que ŷ = UrU

T
r ~y . Per tant, la solució ~x satisfà

A~x = UrU
T
r ~y

Llavors,
Ur Σr V

T
r ~x = UrU

T
r ~y

Com V T
r Vr = UT

r Ur = Ir i la matriu diagonal Σr és invertible, la solució serà

~x = VrΣ
−1
r U

T
r ~y

on la matriu
A+ = VrΣ

−1
r U

T
r ∈Mn×m

és la matriu pseudoinversa de A. És fàcil veure que la solució ~x = A+~y verifica les
equacions normals i, per tant,

A+ = (ATA)−1AT

La matriu pseudoinversa satisfà (equacions de Moore-Penrose)

AA+A = A ; A+AA+ = A+ ; (AA+)T = AA+ ; (A+A)T = A+A

http://mat-web.upc.edu/people/rafael.cubarsi/
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8. Aplicacions
L’equació 6 s’utilitza per a fer aproximacions d’una matriu a partir dels primers termes
de la sèrie quan la dimensió és molt gran. El comportament dominant d’una matriu està
associat al valor singular major, mentre que els altres hi van afegin detalls. Això s’usa
per a compressió d’imatges i per a indexació de continguts a internet. També és la base
de l’anàlisi de components principals en estadística, per a determinar quines variables
són les que produeixen més dispersió. Numèricament, el nombre de valors singulars
positius és una forma estable d’avaluar el rang d’una matriu. El valor σ1/σr s’anomena
nombre de condició de la matriu A, i és indicatiu de com la solució d’un sistema d’e-
quacions associat a aquesta matriu es veu afectada pels errors dels seus coeficients. Un
nombre de condició gran dóna lloc a un problema mal condicionat.

9. Exemples

Exemple 1 Trobem els valors i vectors singulars de A =

(
1 0
0 −3

)
.

Com A = 3
(

0 0
0 −1

)
+
(

1 0
0 0

)
, la matriu és suma de matrius de rang 1, d’acord amb

l’Eq. 2. Els valors singulars i la descomposició són únics, per tant, σ1 = 3 i σ2 = 1.
D’altra banda, aquestes matrius es poden escriure com(

0 0
0 −1

)
=
(

0
−1

)
( 0 1 ) ;

(
1 0
0 0

)
=
(

1
0

)
( 1 0 )

d’on, els respectius vectors singulars, per la dreta i per l’esquerra, són

~v1 =
(

0
1

)
, ~v2 =

(
1
0

)
; ~u1 =

(
0
−1

)
, ~u2 =

(
1
0

)
que són unitaris i ortogonals dos a dos.

http://mat-web.upc.edu/people/rafael.cubarsi/
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Exemple 2 Calculem la descomposició en valors singulars la matriu A =

 7 1
0 0
5 5

.

La matriu A ∈M3×2 s’expressarà com UΣV T amb

U ∈M3×3, Σ ∈M3×2, V ∈M2×2

Primer diagonalitzem la matriu

ATA =
(

7 0 5
1 0 5

)( 7 1
0 0
5 5

)
=
(

74 32
32 26

)
Recordem que els valors propis d’una matriu M , 2 × 2, es poden calcular directament
com

λ1,2 =
1

2
(trM ±

√
tr2M − 4 detM)

d’on obtenim els valors propis i els valors singulars, ja ordenats de major a menor,

λ1 = 90⇒ σ1 = 3
√

10, λ2 = 10⇒ σ2 =
√

10

El vector propi de λ1 = 90 és un vector ~v1 ∈ Nul(ATA− 90I) = Nul
(
−16 32
32 −64

)
.

Per tant, ~v1 = 1√
5

(
2
1

)
, ja normalitzat, és un vector singular de A per la dreta.

Calculem el corresponent vector singular per l’esquerra,

~u1 =
1

σ1

A~v1 =
1

3
√

10

(
7 1
0 0
5 5

)
1√
5

(
2
1

)
=

1√
2

(
1
0
1

)
que és unitari.

http://mat-web.upc.edu/people/rafael.cubarsi/
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El vector propi de λ2 = 10 és un vector ~v2 ∈ Nul(ATA− 10I) = Nul
(

64 32
32 16

)
.

Llavors, ~v2 = 1√
5

(
1
−2

)
, ja normalitzat, és l’altre vector singular de A per la dreta, que

és ortogonal a ~v1. Observem que aquest vector s’hauria pogut trobar directament com
l’unitari ortogonal a ~v1, en ser V una base ortonormal de R2. En dimensió superior,
però, cal calcular sempre el vector propi.
El respectiu vector singular per l’esquerra és

~u2 =
1

σ2

A~v2 =
1√
10

(
7 1
0 0
5 5

)
1√
5

(
1
−2

)
=

1√
2

(
1
0
−1

)
que és unitari i ortogonal a ~u1. Aquí no passa com abans, que aquesta operació ens la

podíem estalviar, ja que vectors proporcionals a
(

0
1
0

)
també serien ortogonals a ~u1.

La base ortonormal de la matriu U té tres vectors. Ens en falta un. Aquest vector és
~u3 ∈ NulAT , que el podem calcular a partir d’aquesta condició, o bé imposant que

sigui ortogonal a ~u1 i ~u2, i unitari. Així, ~u3 =

(
0
1
0

)
.

Per tant, la descomposició en valors singulars de A és

A = UΣV T =


1√
2

1√
2

0

0 0 1
1√
2
−1√

2
0


 3
√

10 0
0
√

10
0 0

( 2√
5

1√
5

1√
5
−2√

5

)

Observem que hem hagut de completar la matriu Σ, que té la mateixa dimensió que la
matriu original A, amb una fila de zeros.

http://mat-web.upc.edu/people/rafael.cubarsi/
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Exemple 3 Descomposem en valors singulars la matriu A =

(
3 3 2
2 3 −2

)
.

En primer lloc, fixem-nos en les dimensions dels espais que transformen les matrius:

R3 A−→ R2 R2 AT

−→ R3 R3 ATA−→ R3 R2 AAT

−→ R2

És més ràpid treballar amb la matriu AAT que no pas amb ATA, a canvi d’intecanviar
els papers de V i U . Ens els dos casos hem de buscar els valors propis positius que, en
ser els mateixos, n’hi ha 2 com a màxim. Per tant, diagonalitzem la matriu 2× 2

AAT =
(

3 3 2
2 3 −2

)( 3 2
2 3
2 −2

)
=
(

17 8
8 17

)
Calculem els valors propis com en l’exemple anterior, i obtenim

λ1 = 25⇒ σ1 = 5, λ2 = 9⇒ σ2 = 3

El vector propi de λ1 = 25 és un vector ~u1 ∈ Nul(AAT − 25I) = Nul
(
−8 8
8 −8

)
.

Per tant, ~u1 =

(
1/
√
2

1/
√
2

)
, ja normalitzat, és un vector singular de A per l’esquerra.

Calculem el corresponent vector singular per la dreta, que serà unitari,

~v1 =
1

σ1

AT~u1 =
1

5

(
3 2
2 3
2 −2

)(
1/
√
2

1/
√
2

)
=

 1/
√
2

1/
√
2

0


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El vector propi de λ2 = 9 és un vector ~u2 ∈ Nul(AAT − 9I) = Nul
(

8 8
8 8

)
.

Llavors, ~u2 =

(
− 1/
√
2

1/
√
2

)
, ja normalitzat, és l’altre vector singular per l’esquerra deA,

ortogonal a ~u1.
El respectiu vector singular per la dreta, també unitari i ortogonal a ~v1, és

~v2 =
1

σ2

AT~u2 =
1

3

(
3 2
2 3
2 −2

)(
− 1/
√
2

1/
√
2

)
=

1

3

 − 1/
√
2

1/
√
2

− 4/
√
2


Ja tenim la descomposició en valors singulars reduïda:

A = σ1~u1~v
T

1 + σ2~u2~v
T

2 = 5

(
1/
√
2

1/
√
2

)(
1√
2

1√
2

0
)

+

+3

(
− 1/
√
2

1/
√
2

)(
−1

3
√

2
1

3
√

2
−4
3
√

2

)
=

5

2

(
1 1 0
1 1 0

)
+

1

2

(
1 −1 4
−1 1 −4

)
Per a calcular la matriu de la base ortonormal completa V ens falta un vector ~v3 ∈
NulA, que també el podem calcular imposant que sigui ortogonal a ~v1 i ~v2, i unitari.

Així, ~v3 = 1
3

( −2
2
1

)
. Finalment, la descomposició completa queda com

A = UΣV T =

(
1√
2
−1√

2
1√
2

1√
2

)(
5 0 0
0 3 0

)
1√
2

1√
2

0
−1
3
√

2
1

3
√

2
−4

3
√

2
−2
3

2
3

1
3


on, Σ, amb la mateixa dimensió queA, s’ha acabat d’omplir amb una columna de zeros.
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