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1. Subespais associats a la matriu A

Una matriu A ∈Mm×n(R) transforma vectors d’acord amb el diagrama

Rn A−→ Rm

~x 7−→ A~x

Definirem dos subespais vectorials relacionats amb la matriu A.

Definició 1 El subespai nul NulA es defineix a partir de les seves equacions implíci-
tes:

NulA = {~x ∈ Rn| A~x = ~0 ∈ Rm}

Així,
NulA ⊆ Rn

El nombre d’equacions linealment independents (l.i.) del sistema homogeni A~x = ~0
vé donat per rkA, mentre que el nombre de graus de llibertat del sistema és n − rkA,
coincidint amb el nombre de generadors l.i. de NulA.
Per tant,

Propietat 1
dimNulA = n− rkA

http://mat-web.upc.edu/people/rafael.cubarsi/
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Ara considerem les columnes de la matriu A com a vectors generadors d’un altre
subespai vectorial.

Definició 2 El subespai columna ColA es defineix a partir de les combinacions line-
als de les columnes de A:

ColA = {~y ∈ Rm| ~y = A~x, ~x ∈ Rn}

Per tant,
ColA ⊆ Rm

El nombre de vectors base d’aquest subespai és rkA. És a dir:

Propietat 2
dimColA = rkA

Per tant,

dimNulA + dimColA = n

La darrera relació, però, no vol dir que els respectius subespais siguin complementaris,
ja que, en general, pertanyen a espais vectorials diferents.

http://mat-web.upc.edu/people/rafael.cubarsi/
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2. Subespais associats a la matriu AT

La matriu transposada AT ∈ Mn×m(R) transforma els vectors d’acord amb el següent
diagrama de l’esquerra:

Rm AT

−→ Rn Rm A−→ Rn

~y 7−→ AT~y ~y T 7−→ ~y TA

que, en termes de la matriu A, i considerant un vector com una matriu fila multiplicant
per l’esquerra de la matriu, és equivalent al diagrama de la dreta.
Ara definirem els dos subespais vectorials anteriors en relació a la matriu transposada
AT .

Definició 3 El subespai ColAT és el generat les columnes de AT :

ColAT = {~x ∈ Rn| ~x = AT~y, ~y ∈ Rm}

Ara bé, tenint en compte el segon dels diagrames anteriors, aquest espai és el mateix
que el subespai fila RowA, generat per les combinacions lineals de les files de A, fetes
per l’esquerra:

Definició 4
RowA = {~x T ∈ Rn| ~x T = ~y TA, ~y T ∈ Rm}

http://mat-web.upc.edu/people/rafael.cubarsi/
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Donat que rkA = rkAT , es compleix:

Propietat 3
ColAT = RowA ⊆ Rn

dimColAT = dimRowA = rkA

De manera semblant definim el subespai NulAT .

Definició 5 El subespai nul per l’esquerra de A, NulAT , es defineix a partir de les
seves equacions implícites:

NulAT = {~y ∈ Rm| AT~y = ~0 ∈ Rn} =

= {~y T ∈ Rm| ~y TA = ~0
T ∈ Rn}

Així,
NulAT ⊆ Rm

El nombre d’equacions l.i. del sistema homogeni AT~y = ~0 vé donat per rkA, mentre
que el nombre de graus de llibertat del sistema és m− rkA, coincidint amb el nombre
de vectors base de NulAT . Per tant,

Propietat 4
dimNulAT = m− rkA

dimNulAT + dimColAT = m

http://mat-web.upc.edu/people/rafael.cubarsi/


Plana personal

Inici

Contingut

JJ II

J I

Pàgina 8 de 18

Tornar

Full Screen

Tancar

Sortir

3. Exemples
Suposem que la matriu A té una forma esgalonada per files R resultant d’aplicar el
mètode de reducció de Gauss.
Convé recordar que si es calcula R seguint l’algoritme de Doolittle, la matriu triangular
superior R és el resultat d’una sèrie de combinacions lineals de les files de A que es pot
expressar de manera única com el producte

A = LU

on L és una matriu regular i U = R.

Observació 1 A partir de les columnes de R que contenen un pivot (el primer element
no nul d’una fila), podem saber les columnes de A que generen el subespai ColA.

És a dir, ColA 6= ColR, però, si Ri és una columna de R que conté un pivot, la
columna i-èsima de A és un vector base de ColA.

Exemple 1 Considerem una matriu A ∈ M3×4, que transforma vectors R4 A→ R3, i
sigui R la seva forma esglaonada (amb els pivots enquadrats):

A =

 1 3 −1 1
1 1 −1 0
−3 1 3 2

 ; R =

 1 3 −1 1
0 −2 0 −1
0 0 0 0


Una base de ColA ⊆ R3 la formen els vectors de les columnes 1 i 2 de A:
{(1, 1,−3), (3, 1, 1)}.

http://mat-web.upc.edu/people/rafael.cubarsi/
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Observació 2 Les files no nul·les de R són base de RowA, ja que son combinacions
lineals de les de files de A, i són linealment independents. Per tant,

RowA = RowR

Exemple 2 Seguim l’exemple anterior. Una base de RowA ⊆ R4 la formen les files
no nules de R: {(1, 3,−1, 1), (0,−2, 0,−1)}.

Observació 3 El subespai NulA està format per vectors que satisfan el sistema homo-
geni A~x = ~0. Per tant, les seves components també verificaran el sistema equivalent
R~x = ~0. Així,

NulA = NulR

Exemple 3 Per a trobar NulA ⊆ R4, millor encara que resoldre el sistema R~x = ~0,
és fer-ho a partir de la forma esglaonada reduïda de la matriu (obtinguda pel mètode
de Gauss-Jordan), en aquest cas donada per la matriu

C =

 1 0 −1 −1/2
0 1 0 1/2
0 0 0 0


d’on x1 = x3 +

1
2
x4; x2 = −1

2
x4, amb dos graus de llibertat. Llavors,

x1

x2

x3

x4

 = x3


1
0
1
0

 + x4


1/2
−1/2

0
1

 ; NulA =

〈
1
0
1
0

 ,


1/2
−1/2

0
1


〉

http://mat-web.upc.edu/people/rafael.cubarsi/
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Hi ha una manera fàcil de calcular el subespai nul per l’esquerra NulAT si tenim la
factorització A = LU . Com L−1A = U , podem procedir de la forma següent:

Observació 4 Si ~v T = L−1i és una fila de L−1, que és enviada per A a una fila nul·la
de U ,

~v TA = ~0
T

llavors ~v T és un vector base de NulAT .

Com les files de L−1 són l.i., podem trobar tota la base de NulAT , amb tants vectors
com files nul·les tingui U .

Exemple 4 Continuant amb els exemples anteriors, es compleix

A = LU :

 1 3 −1 1
1 1 −1 0
−3 1 3 2

 =

 1 0 0
1 1 0
−3 −5 1

 1 3 −1 1
0 −2 0 −1
0 0 0 0



L−1A = U :

 1 0 0
−1 1 0
−2 5 1

 1 3 −1 1
1 1 −1 0
−3 1 3 2

 =

 1 3 −1 1
0 −2 0 −1
0 0 0 0


Pert tant, NulAT =< (−2, 5, 1) >, de la darrera fila de L−1.

Fixem-nos en que hem obtingut subespais complementaris:

R4 = NulA⊕ ColAT =

〈 1
0
1
0

 ,

 1/2
−1/2

0
1

〉⊕〈
 1

3
−1
1

 ,

 0
−2
0
−1

〉

R3 = NulAT ⊕ ColA =

〈( −2
5
1

)〉
⊕
〈(

1
1
−3

)
,

(
3
1
1

)〉

http://mat-web.upc.edu/people/rafael.cubarsi/
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4. Relació amb el producte escalar
Suposem que expressem els vectors en bases ortonormals de Rn i Rm. En aquest cas, la
mètrica dels productes escalars és la matriu identitat en cada espai.

Tot vector ~y T ∈ NulAT satisfà ~y TA = ~0
T

. Per tant, ~y és un vector de Rm ortogonal
a cada columna Ai de A; i = 1, . . . , n.

Propietat 5
~y · Ai = 0 ⇐⇒ NulAT ⊥ ColA

Observi’s que ColA està format per les combinacions lineals A~x, ~x ∈ Rn, i es verifica

~y T (A~x) = 0

D’aquesta forma, per a cada matriu A ∈ Mm×n(R), hem trobat els subespais ortogo-
nals: V = ColA ⊆ Rm, definit per generadors, i V ⊥ = NulAT ⊆ Rm, definit per les
equacions implícites. Es verifica dimV + dimV > = m, per tant,

Propietat 6
NulAT ⊕ ColA = Rm

http://mat-web.upc.edu/people/rafael.cubarsi/
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Semblantment, tot vector ~x ∈ NulA satisfà A~x = ~0. Per tant, ~x és un vector de Rn

ortogonal a cada fila Ai de A; i = 1, . . . ,m.

Propietat 7

Ai · ~x = 0 ⇐⇒ NulA ⊥ RowA ⇐⇒ NulA ⊥ ColAT

Com RowA = ColAT està format per les combinacions lineals de les files de A, és a
dir, ~y TA amb ~y T ∈ Rm, es satisfà

(~y TA)~x = 0

Els subespais ortogonals W = ColAT = RowA ⊆ Rn, definit per genera-
dors, i W⊥ = NulA ⊆ Rn, definit per les equacions implícites, verifiquen
dimW + dimW> = n, per tant,

Propietat 8
NulA⊕ ColAT = Rn

Si les bases no són les canòniques i les matrius de productes escalars són Gn en Rn i
Gm en Rm, és immediat obtenir les següents relacions:

Propietat 9

NulAGn ⊥Gn
ColAT ; NulAGn ⊕ ColAT = Rn

NulATGm ⊥Gm
ColA; NulATGm ⊕ ColA = Rm

http://mat-web.upc.edu/people/rafael.cubarsi/
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5. Millor aproximació a partir de ColA

Considerem una matriu
Rn A−→ Rm

i un vector ~b ∈ Rm = ColA ⊕ NulAT . Si la matriu A està formada per columnes
linealment independents, i.e., dimColA = n ≤ m, la descomposició

~b = ~b′ +~b′′; ~b′ ∈ ColA, ~b′′ ∈ NulAT

és única i proporciona la millor aproximació ~b′ de ~b a partir de ColA. La diferència
~b′′ = ~b − ~b′ ∈ NulAT és el vector que dóna l’error de l’aproximació. La norma
‖~b−~b′‖ s’anomena error quadràtic de l’aproximació.

En efecte, suposem el cas general~b /∈ ColA. Llavors existeix un vector no nul ~x ∈ Rn

tal que ~b′ = A~x ∈ ColA. Per a trobar ~x n’hi ha prou en imposar la condició ~b′′ =
~b− A~x ∈ NulAT , és a dir,

AT~b− ATA~x = ~0

Aquest sistema d’equacions, anomenat d’equacions normals, quan rkA = n (és a
dir, rkATA = n i la matriu ATA ∈ Mn×n és invertible) és compatible determinat i
proporciona la solució buscada,

~x = (ATA)−1AT~b⇒ ~b′ = A(ATA)−1AT~b

La matriu A+ ≡ (ATA)−1AT és l’anomenada matriu pseudoinversa.

http://mat-web.upc.edu/people/rafael.cubarsi/
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6. Millor aproximació a partir de RowA

La situació anterior es dóna quan es vol aproximar un sistema sobredeterminat d’equa-
cions A~x = ~b ∈ Rm amb A ∈ Mm×n i n < m, és a dir, amb més equacions que
incògnites. Semblantment, trobar la millor aproximació d’un vector ~c T ∈ Rn a partir
d’una combinació lineal de les files de A, i.e., ~y TA, es pot interpretar com un sistema
sobredeterminat d’equacions ~y TA = ~c T , on les incògnites són ara les components de
~y T ∈ Rm, amb més equacions que incògnites (n > m).

La millor aproximació del vector~c ∈ Rn = RowA⊕NulA a partir de RowA és única
quan les files de A són linealment independents, per tant, rkA = m ≤ n. Considerem
la descomposició

~c = ~c ′ + ~c ′′; ~c ′ ∈ RowA, ~c ′′ ∈ NulA

Ens situem en el cas general ~c /∈ RowA. Llavors existeix un vector no nul ~y ∈ Rm tal
que ~c ′ = AT~y ∈ RowA = ColAT . Per a trobar ~y n’hi ha prou en imposar la condició
~c ′′ = ~c− AT~y ∈ NulA, és a dir,

A~c− AAT~y = ~0

Si rkA = m, llavors AAT ∈ Mm×m és de rang m i el sistema d’equacions anterior,
invertible, proporciona la solució buscada,

~y = (AAT )−1A~c⇒ ~c ′ = AT (AAT )−1A~c

http://mat-web.upc.edu/people/rafael.cubarsi/
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7. Exemples
Exemple 5 Considerem el sistema A~x = ~b amb A ∈ Mm×n(R), ~b 6= ~0, m < n i
rkA = m. Llavors, hi ha un únic un vector ~x ∈ ColAT que n’és solució, tot i que el
sistema té infinites solucions.

En efecte, prenem ~x ∈ ColAT , és a dir, ~x = AT~v,~v ∈ Rm. Llavors hem de resoldre
AAT~v = ~b. Com, per l’exemple anterior, rkAAT = rkA = m, AAT ∈ Mm×m és
invertible i la solució ~v = (AAT )−1~b és única, d’on ~x = AT (AAT )−1~b ∈ ColAT .

D’altra banda, Rn = NulA ⊕ ColAT i dimNulA = n − rkA = n −m > 0. Per
tant, qualsevol vector de ~u ∈ Rn tal que ~u = ~x+ ~w, amb ~x l’anterior vector de ColAT

i ~w ∈ NulA, també és solució del sistema.

Exemple 6 Considerem el sistema A~x = ~b amb A ∈ Mm×n(R), ~b 6= ~0, n < m i
rkA = n. Depenent de si~b ∈ ColA o~b /∈ ColA, quantes solucions té el sistema? En
cas que~b /∈ ColA, quina és la projecció ortogonal de~b sobre ColA? és única?

Si ~b ∈ ColA, rkA = rk(A|~b) = n. Pel T. de Roché-Frobenius, el sistema té solució
única. Si~b /∈ ColA, rkA < rk(A|~b) i el sistema és incompatible.

Observem que Rm = NulAT ⊕ ColA i dimNulAT = m − rkA = m − n >
0. Si ~b /∈ ColA, la projecció ortogonal serà un vector ~b′ = A~x ∈ ColA tal que
AT (A~x − ~b) = 0. Com rkATA = rkA = n, ATA ∈ Mn×n(R) és invertible i la
solució ~x = (ATA)−1AT~b és única, d’on~b′ = A(ATA)−1AT~b.

http://mat-web.upc.edu/people/rafael.cubarsi/
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8. Aplicacions lineals associades a A i AT

Exemple 7 Considerem les aplicacions lineals donades per matrius a les bases canò-
niques:

Rn A−→ Rm , Rm AT

−→ Rn

Relacionarem els subespais fonamentals lligats a A i AT amb els de ATA i AAT , i
provarem les següents igualtats:

1. NulA = NulATA 2. ColAT = ColATA

3. NulAT = NulAAT 4.ColA = ColAAT

5. rkA = rkAT = rkAAT = rkATA

Primer, representem aquests subespais amb les respectives aplicacions:

A
**

∼=
,,

AT

**

∼=
,,

A
**

∼=
,,

Rn = NulA ⊕ ColAT Rm = NulAT ⊕ ColA Rn = NulA ⊕ ColAT Rm = NulAT ⊕ ColA

ATA
--

∼=
--

Rn = NulATA⊕ColATA Rn = NulATA⊕ColATA

Rm = NulAAT⊕ColAAT Rm = NulAAT⊕ColAAT

AAT

11

∼=
11

Observem que les aplicacions marcades en vermell, entre subespais de la mateixa di-
mensió, gràcies a la propietat 5, corresponen a bijeccions (∼=).

http://mat-web.upc.edu/people/rafael.cubarsi/
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Provem les igualtats.

1. NulA = NulATA.
Vegem que NulA ⊂ NulATA. Si ~x ∈ NulA ⊂ Rn, llavors A~x = ~0 ∈ Rm, d’on
ATA~x = ~0 ∈ Rn. Per tant, ~x ∈ NulATA.
Ara provem que NulATA ⊂ NulA. Si ~x ∈ NulATA ∈ Rn, llavors ATA~x =
~0 ∈ Rn i ~xTATA~x = 0. És a dir, ‖A~x‖ = 0, el qual implica A~x = ~0. És a dir,
~x ∈ NulA.

2. ColAT = ColATA. Vegem que ColAT ⊂ ColATA. Llavors, per a tot vector
~x ∈ ColAT ⊂ Rn, ∃~v ∈ ColA ⊂ Rm tal que ~x = AT~v. És a dir, ~x = ATA~c, per
a cert ~c ∈ Rn. Per tant, ~x ∈ ColATA.
Ara provem que ColATA ⊂ ColAT . Això és immediat, doncs si ~x ∈ ColATA ⊂
Rn, ∃~v ∈ Rn tal que ~x = AT (A~v). Per tant, ~x ∈ ColAT .

3 i 4. NulAT = NulAAT , ColA = ColAAT . Es demostren com les anteriors.

5. rkA = rkAT = rkAAT = rkATA.
Com rkA = rkAT = dimColA = dimColAT , rkATA = dimColATA
i rkAAT = dimColAAT , per les igualtats 2 i 4 obtenim rkA = rkATA =
rkAAT .

Una conseqüència d’aquestes propietats és que si A = AT , llavors

NulA = NulAn, rkA = rkAn; ∀n ∈ N, n ≥ 1

http://mat-web.upc.edu/people/rafael.cubarsi/
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Exemple 8 Donat el sistema A~x = ~b, A ∈ Mm×n(R), ~b 6= ~0, anem a justificar les
següents afirmacions:

1. Existeix un vector~b ∈ Rm que fa el sistema incompatible si i només si rkA < m.
En aquest cas, dimNulAT > 0 i dimColA < m.

2. Si A és la matriu d’un epimorfisme, el sistema mai será incompatible.

3. Existeix un vector ~b ∈ Rm que fa el sistema compatible indeterminat si i només
si rkA < n. En aquest cas, dimNulA > 0, dimRowA < n i tot sistema
compatible té infinites solucions.

4. Si A és la matriu d’un monomorfisme, tot sistema compatible té solució única.

En efecte,

1. Incompatible vol dir que rkA < rk(A|~b); com rk(A|~b) ≤ m, llavors rkA < m.
D’altra banda, si dimColA = rkA < m, com dimNulAT + rkA = m, llavors
dimNulAT > 0 i tot vector~b ∈ NulAT fa el sistema incompatible.

2. Si A és la matriu d’un epimorfisme, llavors rkA = m, NulAT = {~0} i ColA =

Rm. Per tant, ∀~b ∈ Rm, rkA = rk(A|~b) = m. És a dir, el sistema és compatible.

3. Compatible indeterminat vol dir que rkA = rk(A|~b) < n. D’altra banda, si
dimRowA = rkA < n, dimNulA = n − rkA > 0; per tant, si a una so-
lució del sistema li afegim un vector de NulA, continuarà essent solució.

4. Si A és la matriu d’un monomorfisme, rkA = n. Pert tant, NulA = {~0} i
RowA = Rn. Un sistema compatible satisfarà rkA = rk(A|~b) = n, per tant,
tindrà solució única i entre RowA i ColA hi haurà una bijecció.

http://mat-web.upc.edu/people/rafael.cubarsi/
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