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Capitol 1

Equacions diferencials de primer ordre

1.1 Introducci6

Definicié 1 Una equacio diferencial ordinaria és una relacio entre una funcio d’una vari-
able, y(t) (que anomenarem variable dependent), la variable independent t, i una o varies
derivades successives de la funcid,

F(ty,y,...,y™)=0
Suposarem que totes les variables son reals.

Si F' no depén de t direm que l'equaci6 diferencial és autonoma. Quan hi ha varies

variables independents, tq,...,t,, les equacions s’anomenen equacions en derivades par-

cials. Llavors, la funci6 y(ti,...,t,) es pot derivar respecte de cada una de les variables.
oy 0? . : : .

Per exemple —y, —y, etc. Les equacions en derivades parcials s’estudien en cursos
ot 0t;0t;

posteriors. Vegem alguns exemples:

Exemple 1 Un cas el proporciona la seqona ller de Newton pel moviment d’un cos de
massa m, sota l’accio d’una forca F. Si aquesta forca depén de linstant t considerat, de

o : L dy(t) : :

la posicio y(t) 1 de la velocitat ?ji—t del cos en aquest instant, es compleix
d’y dy
m— = tv y 1,
el AGY )

Exemple 2 L’estudi de circuits eléctrics és un altre exemple d’equacions diferencials.
Per exemple, el corrent 1(t) d’un circuit, pel que la tensic V (t) aplicada en cada instant
t es reparteiz entre la caiguda de tensid RI(t) d’una resisténcia i la caiguda de tensio
L d;—g) d’una autoinduccio, posades en série, satisfa l’equacio diferencial

dl

L—+RI=V

dt
Exemple 3 Un altre cas son les equacions que caracteritzen a una familia de corbes del
pla. Aizi, si considerem la familia de paraboles y = Ct?, derivant obtenim y' = 2Ct.
Eliminant el parametre C' amb les dues equacions, obtenim la equacio diferencial

Y

/
—27
J ¢
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que expressa una propietat comi a totes les corbes de la familia: el pendent de la tangent
en un punt qualsevol és el doble del pendent de la recta que uneix el punt amb [’origen.

En general, si g(t,y,C) = 0 representa una familia de corbes, eliminant C' entre les
equacions ¢(t,y,C) =0 i %’g(t,y(t), C') = 0, obtindrem l'equacio6 diferencial F'(t,y,y") =
0 de la familia de corbes. Es a dir, canviariem la informaci6é que proporciona C, per la
que proporciona 3.

Definicié 2 Anomenem ordre d’una equacid diferencial al major ordre de la derivada que
intervé en l’equacid.

Per tant 'exemple 1 és d’una equaci6é de segon ordre, mentre que els exemples 2 i 3 séon
d’equacions de primer ordre.

De moment, considerarem tinicament equacions de primer ordre, que escriurem en la
forma estandard

y = [(ty) (1.1)

En un interval I, una solucié d’aquesta equacié és una funcio y = ¢(t) derivable que
satisfa

¢'(t) = f(t, (1), Vtel (1.2)

1.1.1 Interpretacié geométrica

Podem interpretar una equacio6 diferencial ¢y = f(x,y) com una equaci6é que a cada punt
(x,y) en el que f esta definida li associa una direcci6 de pendent f(z,y).

El grafic d’una soluci6 y = ¢(z) s’anomena corba integral, i els valors f(x,y) s’anome-
nen camp de velocitats o direccions.

D’una equacié y' = f(z,y) n’obtindrem una familia uniparameétrica de solucions, y =
o(z,C), que rep el nom d’integral general o solucié general de 1'equacio.

També podem estar interessats en determinar una solucio particular de I'equaci6 dife-
rencial que, per a £ = x, pren un valor donat yy. Geométricament, es diu que es busca la
soluci6 que passa pel punt (2o, yo). Aquesta condici6é determina el valor de C' en la solucio
general, de manera que si yo = ¢(xg, Cp), la solucio desitjada és y = ¢(z, Cp).

Exemple 4 La solucid general de l'equacid y' = e* — y ve donada per y = %ew +Ce™®,

i la solucid particular que satisfa y(0) = 1 s’obté quan 1 = % + C, és a dir per a C = %,
resultant y = %e‘” + %e*x = cosh x.

1.2 Condicions d’integrabilitat

Si coneixem el valor de la variable dependent y en tj, i admetem que aquesta variable
evoluciona de manera:

e determinista, és a dir, que hi ha un lligam entre els valors passats, present i futurs,
e finita, és a dir, que en tot moment és quantificable,

e diferenciable, és a dir, que les seves variacions soén prou suaus,
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llavors, per a un valor de t proper a ty, podem fer una estimacié de y(t) a partir de
I’aproximaci6 lineal

y(t) —y(to) = o' (to)(t — to)

Una forma de poder seguir I'evolucié de la variable y és disposar de la informacié que
proporciona l'equacio

y = f(ty(t)) (1.3)

Aixi, sabent el valor inicial yo = y(ty), obtindrem els valors de la funcié y(t) en el seu
entorn,

y(t) = y(to) + f(to, yo)(t — to)

Quan fem aquest procés de manera elemental, estem precisament integrant 1’equacio
diferencial Eq. 1.3,

y(t) — ylto) = / F(s,y(s))ds (1.4)

tot calculant les constants d’integraci6é a partir de les condicions inicials.

En resoldre una equaci6é de primer ordre fem un procés que equival a una integracio,
on hi apareix una constant. En general, per a resoldre una equacié d’ordre n calen n
integracions, on hi apareixen n constants.

Per a una equacié d’ordre n, les condicions inicials han de ser sempre de la forma
ap = y(to),a1 = y'(to),...,an_1 = y™ V(ty), totes avaluades en el mateix valor de la
variable independent.

Ara bé, lexisténcia i unicitat de la solucio del problema de valor inicial (PVI)

v =Fty), ylto) = (1.5)

necessita unes condicions minimes. La més freqiientment utilitzada és la segiient:

of
Teorema 1 (d’existéncia i unicitat) Si f i == son continues en un domini 2, el pro-

dy
blema de valor inicial y' = f(t,y), y(to) = vo, per a (to,yo) € 2, admet una unica solucio
y(t), que esta definida en un interval obert I C Q que conté el punt (to, yo).

Un exemple on no es compleixen aquestes condicions suficients és el seglient:

Exemple 5 El problema de valor inicial y = y*/3, y(0) = 0, no té solucid unica, doncs
al menys y1(t) = (t/3)3, y2(t) = 0 son solucions del problema.

També cal notar que les solucions poden tenir un abast limitat:

Exemple 6 La solucié de y' = y* amb y(0) = 1 és y(t) = 1/(1 —1t) en —oo < t < 1.
Pero y(t) no pot ser solucid en un interval més gran ja que no esta definida per a t = 1.
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1.3 Equacions integrables elementalment

. .42 . . . . .,
Certes funcions, com ara v/cost i e”*", no admeten una primitiva que sigui una funcié6 ele-

mental, és a dir, una combinacié de funcions polindomiques, racionals, trigonométriques,
exponencials, etc. Per tant, fins i tot en el cas de que f(t,y) sigui una funci6 tnica-
ment de ¢, no sempre podrem trobar funcions elementals que siguin solucions de I'equaci6
diferencial y' = f(t,y).

En general, es considera que una equacié diferencial és integrable elementalment quan
és possible expressar la solucié mitjancant funcions elementals, o bé primitives d’aquestes,
que no tenen per qué ser necessariament funcions elementals.

Definicié 3 Direm que una equacio diferencial s’expressa en la seva forma diferencial si
l’escrivim com
M(t,y)dt + N(t,y)dy =0 (1.6)

Evidentment, la forma estandard d’aquesta equacio s’obtindria fent f(¢,y) = —M(t,y)/N(t,y)
en I'Eq. 1.1.

Definicié 4 S’anomenen equacions de variables separades les que, en forma diferencial,
s’escriuen com

M(t)dt + N(y)dy =0

Llavors, la integracié és immediata:

/M(t)dt:—/N(y)dy+C

També podem expressar-ho com

/t:M(s) ds = —/yjN(x) dz

dy t*—1
Exemple 7 Integrar d—‘z = R
Solucié. Ho escrivim com
v dy = (t* —1)dt
Llavors,
y3 t3
L= —t4+C; y=(*—3t+30)3
3 3
v
d t
Exemple 8 Resoldre @W_ L +t.
dt  y?

Solucié. Ho escrivim com
dy 1
Yo (1)t
dt (y2 " )

y2

1492

Separant variables obtenim

dy =tdt
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1
icom — _ —1-— —— integrant arribem a
1492 1+y?

2
y — arctany = §+C

En aquest cas ja no és possible aillar y en funci6 de t.
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1.4 Equaci6 lineal

Definicié 5 Una equacio lineal de primer ordre és la que es pot escriure com

y'(t) +alt)y(t) = f(t) (1.7)
L’operador L = % + a(t), que associa a una funci6 y la funci6
Lly)] = y'(t) + a(t) y(t) (1.8)

és lineal. Es facil comprovar que si ¢; i ¢ son dues constants arbitraries, es té

L[clyl + ngg] = clL[yl] + CQL[yg] (19)

Suposarem que a(t) i f(t) son funcions continues en un cert interval I C R. Conside-
rarem que L és una aplicaci6 lineal de I’espai vectorial C'(I) al C(I). Per tant, el conjunt
de solucions de I’equacio

Lly] = f(t) (1.10)
vindra donat per y, + yn, on ¥, és una soluci6 particular de I'Eq. 1.10, i y;, és del nucli de
l'operador L, ker(L), és a dir, del conjunt de solucions de

Lly] =0 (1.11)

Aquesta darrera equacié s’anomena equacio homogenia associada a I’Eq. 1.10, que es
designa, per contrast, com equacio completa.

Recordem que ker(L) és un subspai vectorial de I’espai vectorial en el qual esta definit
I'operador L.

Observem, també, que la diferéncia de dues solucions particulars y, i y, de 'equacio
completa, Eq. 1.10, verifica L[y, — y») = f — f = 0. Per tant y, — y;, € ker(L).

1.4.1 Equacié homogénia
Resolem ara l’equacié homogenia

Yp +a(t)yn =0 (1.12)
Si yp, # 0 podem escriure v}, /y, = —a(t) i, integrant,

lnlyhl = —/a(t) dt + K; thl — Ce—fa(t)dt

K

on C' = e™ és una constant positiva. Aquesta darrera equacié equival a

Yp = :i:cve—fa(t) dt

la qual podem resumir en

yp = CeTe®d oLy

Pero, en dividir per gy, hem perdut la soluci6é y, = 0, que anomenarem solucié trivial,
que sempre és solucié de I'equacié lineal homogeénia. Per tant, la solucié general de ’Eq.
(1.12) sera

yp = Ce~Jal)dt (1.13)

per a C' qualsevol.
El conjunt de solucions de la part homogénia de 1’equacio lineal de primer ordre formen
un espai vectorial de dimensio 1.
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1.4.2 Equaci6é completa: métode de variacié de les constants

Per a integrar ’equacié completa n’hi ha prou amb determinar una solucié particular. Per
aixo utilitzarem el métode anomenat de variacio de les constants, que permet integrar
I'equacié completa quan es coneix una solucié particular de I'equacié homogénia, per
exemple, fent C' =1 en I'Eq. 1.13,

(t) = e e (1.14)
Aixi, proposem una soluci6 de la forma
yp = K(1)o(t) (1.15)

essent K (t) una funcié a determinar.
Substituint I’'Eq. 1.15 a 'Eq. 1.10 obtenim

Llyy] = K'{)¢(t) + K(t)¢'(t) + a(t) K (t)¢(t)
= K'(H)o(t) + K(t)[¢'(t) + a(t)o(t)]
K'(t)o(t) = f(t)
doncs ¢'(t) + a(t)o(t) = 0.

Per tant, excepte una constant d’integracié que podem suposar nul-la,

K(t) = /%dt,

Yp = gb(t)/%dt (1.16)

Finalment, tot sumant-li la soluci6é general de 'homogénia, la solucié general de 1’equacio

completa és
y=o(t) (/ %dwc) (1.17)

Exemple 9 Integrar l’equacio

i la soluci6 particular sera

, ) T s
y cost+ysint = 1, 3 <t< 5

Solucié. L’escrivim com
"+ (tant) !
ant)y = —
Y Y cost
Integrem primer 'equacié homogenia, y;, + (tant) y, = 0,
yp = Ce~ Jtntdt — reogy

Ara busquem una solucié particular de ’equacié completa a partir de I'Eq. 1.16, en la

forma y,(t) = K(t) cost,
dt
= cost =sint
Y /coszt

Aixi, la soluci6 general de 'equaci6 és

y =sint 4+ C cost
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Equacions diferencials lineals d’ordre
superior

2.1 Equacions de segon ordre
Una equaci6 diferencial lineal de segon ordre es pot escriure com

d*y dy
e + P@)% + Q(z)y = R(x) (2.1)

on P(z),Q(x) i R(x) son funcions que només depenen de z. Notem que I'equaci6 s’esta
escrivint en forma monica, és a dir, el coeficient de la derivada d’ordre maxim és 1.
Fent servir la notacié de 'operador lineal, podem també escriure

L=+ Pl) 4 Q) Lly(o)] = R(x) (22)

Exemple 10 Les equacions y" +y = 0, xy” —y' + 2y = 22, son lineals de segon ordre.
La primera té coeficients constants i la segona té coeficients que son funcid de la variable
independent.

En general, voldrem resoldre el PVI constituit per I’'Eq. 2.1 amb unes condicions inicials

y(ro) = yo, ¥'(z0) =1
En aquest cas, I'existéncia i unicitat de la soluci6é ve garantida pel seglient teorema.

Teorema 2 (d’existéncia i unicitat) Si P(z),Q(z) i R(x) son continues en un inter-
val I C R, i zg € I, aleshores existeix una unica solucid y(x) del problema de valor
wnicial

y'+ Pe)y' + Qx)y = R(x);  y(o) = yo, ¥'(x0) = 1

en un entorn obert de xo dins de I.

Com en les equacions de primer ordre, usarem la denominacié d’equacié homogénia
per a referir-nos a ’equacio

y'+ Py +Qx)y =0 (2.3)

12
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i d’equacié completa si ens referim a

y' + P(2)y + Qa)y = R(x) (2.4)

amb R(x) no nulla. La linealitat de 'operador L garanteix que la diferéncia de dues
solucions de l'equacié completa és solucié de 'equacié6 homogeénia, és a dir, pertany al
subespai vectorial ker L. De la mateixa manera, per a trobar la solucié general y de
I'equacié completa només cal conéixer una solucié particular y, de I'equacié completa i la
soluci6 general y;, de I'equacié homogeénia:

y:yp+yh

2.1.1 Solucié de ’equacié homogénia

El calcul de la solucié general de ’equacié homogénia es redueix a trobar una base del
ker L. Vegem el segiient teorema, que també el farem servir en equacions d’ordre superior.

Teorema 3 (Principi de superposicio) Si y1,ys,...,yr son solucions d’una equacid
lineal homogenia, llavors y = c1y1+cays+. . .+ cpyr també n’és solucio, Veq, co, ..., ¢ € R.

Aquest resultat ens déna un métode per a construir solucions, ja que amb dues solu-
cions podem obtenir-ne infinites. Fixem-nos en dos casos particulars:

e Si y; és soluci6 d’una equacié lineal homogeénia, aleshores y = ky; també ho és
Vk € R.

e En particular, fent £ = 0, la soluci6 trivial y = 0 sempre és solucié d’una equacioé
lineal homogeénia.

Exemple 11 Considerem [’equacic y" +vy' = 0. Es clar que la funcié y = 1 n’és solucid.
D’altra banda, la funcio y = e€* n’és també solucio. Per tant, les funcions de la forma
y(x) = c1 + c2e”, en son també solucio.

Exemple 12 Anem a buscar solucions no trivials de l'equacid z*y" + 2xy’ — 2y = 0.

Solucié. Podem resoldre aquesta equacié assajant solucions de la forma y = z". Aixi,
y =na" 1 y" =n(n—1)2"2 Si ho introduim a I'equacio, queda

n(n—1)z" 4+ 2nz" — 22" = [n(n — 1) +2n —2]2" =0

Llavors, per a ser valida la igualtat per a valors z # 0, només cal que n?> +n —2 = 0. Per
tant, les solucions s’obtenen de n = 1, -2, i séon x,2~2. En general, y = ¢,z + cox ™2 sén
solucié de I'equacio. v

Quan estudiem sistemes d’equacions veurem que, per a un operador diferencial lineal L
d’ordre n, es compleix dim ker L = n. Per tant, en I’exemple anterior ja hauriem obtingut

la soluci6 general de I'equacio.
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2.2 Wronskia

Generalitzant el que haviem dit per les equacions de primer ordre, si I'operador diferencial
L és d’ordre n, considerarem que és una aplicaci6 lineal de l'espai vectorial C™(I) a C([),
per a un cert interval / C R. Naturalment, els conceptes de dependéncia i independéncia
lineal de vectors també s’aplicaran a les funcions pertanyents a aquests espais vectorials.
No obstant, veurem un meétode especific per a estudiar la dependéncia o independéncia
lineal de funcions.

Definicié 6 Siguin fi(x), fa(x),..., fu(x), n funcions que suposarem derivables almenys
fins a ordre n — 1 en un cert interval 1. El seu wronskia es defineixz com el determinant

fi L2

b oo I

1 " 14
W(fl?f?a“'?fn): 1 2 fn (25)

fl(ﬁ—n f2(7{—1) o 7(17{—1)
En darrer terme, el wronskia W (fi, fa,..., fn) és una funcié de la variable x en l'in-
terval I, per aix0, de vegades també escriurem W (zx).

En algebra haviem vist que si el wronskia d’un conjunt de funcions W (fi, fa,..., fn)

és no nul per a algun x € I, llavors les funcions sén linealment independents. El reciproc
no és sempre cert, com ho veurem en el darrer dels seglients exemples.

Exemple 13 Calcularem el wronskia d’algunes families de funcions:

sinx cos X

o W(sinz,cosx) = ) = —sin’x — cos?x = —1
cosr —sinx
T
o W(z% a3, 2%) =20 32° 43 |= 225
2 6z 1227
sin? 1 —cos2x

W (sin®x,1 — cos 2z) =

2sinzcosz  2sin2zx
= 2sin® rsin 22 — 2sinz cos (1 — cos2z) =
= sin 22(2sin®x — 1 + cos? x — sinz) = 0

sin? x 1 —cos2z
2sinxcosx  2sin2x

W (sin®z,1 — cos 2z) =

= 2sin® rsin 22 — 2sinz cos (1 — cos2z) =
= sin 22(2sin® x — 1 + cos? x — sinx) = 0

o Les funcions fi(x) = 2% i fo(x) = |x|> son linealment independents en tot R. Es
facil veure que, per a x < 0, W(f1, fo) = W(z?, —23) =0, ja que les seves columnes
son proporcionals. Iqualment, per a x > 0, W(f1, fo) = W (a3, 23) = 0. Per tant,
que el wronskia sigui nul no €s sempre equivalent a que les funcions siguin linealment

dependents.
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2.3 Equacions homogénies

El nostre objectiu és ara obtenir la soluci6 general de 1’equaci6é lineal homogenia. Ho
farem a partir de combinacions lineals de solucions linealment independents.

Lema 1 Siguin y,(z),y2(z) dues solucions de l’equacid homogénia, Eq. 2.3. Llavors, el
seu wronskia, o bé no s’anul-la mai, o bé és identicament nul.

Demostracio (Lema 1). El wronskia de y; i yo és W(z) = 1195 — yoy;. Derivant,
obtenim

W'(x) = y1ys + y1ys — Y2yt — Ysy1 = Y1Ys — Y2y

Tenint en compte que

vl + P(a)yy + Q(x)yr = 05 gy + P(x)yy + Q2)y2 = 0

multipliquem la primera equaci6 per ys, la segona per ¥y, i restem,

(11yy — y2y)) + P(x)(nyy — y2vh) =0

Es a dir,
aw
— 4+ Px)W =0
o T P@)

Per tant, el wronskia és de la forma
W(z)=Ce JP@d O cR
D’aqui es dedueix el resultat desitjat, ja que 'exponencial és sempre positiva.

Lema 2 Dues solucions no nul-les yi(x), y2(x) son linealment dependents en I si, i només
s, el seu wronskia €s identicament nul.

Demostracio (Lema 1).

(Condici6 suficient.) Suposem que yi(x),yo(z) son linealment dependents en . Lla-
vors, Yo(z) = cyi(z), y5(x) = cyi(x); ¢ € R. Per tant, el wronskia és W(x) = y;(z)ys(x) —
y2(@)yi(2) = yi(x) cyy(x) — cy(@) yy(x) = 0 en tot 1.

(Condici6 necessaria.) Suposem ara W(x) = y;(x)ys(z) — y2(x)yi(z) = 0 en I. Obser-
vem que, si per a un punt xy € I fos y;(x¢) = ¢} (xo) = 0, hauriem de concloure que y; ()
és la soluci6 trivial, ja que la solucié del PVI és tnica. El mateix es pot dir per a 5. Hem
d’excloure, doncs, aquesta situacié. Per tant, si y;(xg) = 0, llavors ha de ser ys(z) = 0.
I reciprocament, en els punts z tals que yo(x) # 0, llavors y;(z) # 0. Per tant, situem-
nos en qualsevol x tal que yi(x)y2(z) # 0. Si dividim y; (z)y)(x) — ya(2)y)(x) = 0 per

y1(x)ya(z), tenim zégg — zigg =0, don M@ — dnun@) Jpieorant, en resulta la propor-

dx dx
cionalitat desitjada, ys(x) = cyi(x), amb ¢ constant. A més, es complira y)(z) = cy;(z).
D’altra banda, si hi ha un punt zy tal que y;(z¢) = y2(z¢) = 0, tindrem (o) = cyy(zo),

i ja hem vist que aquestes derivades no poden ser nul-les. Per tant, també obtindrem
proporcionalitat, ys(z) = zfgiggyl(:c)
Ara ja estem en condicions d’enunciar el resultat segiient. Ho farem generalitzant a

ordres superiors.
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Teorema 4 Siyi(x),y2(x),...,yn(x) son n solucions linealment independents en un in-
terval I de [’equacio lineal homogénia d’ordre n,

an(2)y™ + a1 (@)™ + -+ ar(@)y +ag(a)y =0, wel

llavors
y = c1y1(z) + coya () + - - + ()

n’és la solucio general en 1.

Demostracié. Vegem la demostracié en el cas de segon ordre. En efecte, sigui y(z)
una solucié qualsevol de 1’equaci6 lineal homogeénia Eq. 2.3. Volem veure que existeixen
c1,co € R tals que

y(z) = c1yi () + coya(z)

Sabem que una solucié queda univocament determinada pel coneixement del valor de la
soluci6 i la seva derivada en un mateix punt. Per tant, només caldra trobar els valors ¢
i co tals que en algun punt zy € I verifiquin

c1y1(wo) + caya(wo) = y(wo)
c1yy (wo) + cayp(w0) = y'(20)

Per a que aquest sistema tingui solucié caldra que el determinant

v <[ 0

sigui diferent de zero. El teorema quedara doncs demostrat si veiem que, per a dues solu-
cions independents, aquest determinant és no nul. Pero, aixo és cert pels lemes anteriors
i, a més, és valid per a qualsevol punt z( € I.

Exemple 14 Veure que les funcions de la forma y = cysinx + cycosx son la solucio
general de lequacido y" +y = 0. Calcular la solucid que compleiz y(0) = 2,4y’ (0) = 3.

Solucié. Vegem primer que y = sinzx i y = cos z satisfan I’equaci6. En efecte, si y = sinx,
llavors ¢/ = cosz, " = —sinz iy’ +y = 0. Aixi mateix, si y = cosz, llavors ¢y =
—sinz, ¥y’ = —cosx i també verifica I'equacié. En general, les combinacions de la forma
y(x) = ¢ sinx + co cos x s6n també solucio de 'equacio.

Ara, per a comprovar que totes les solucions sén d’aquesta forma, només caldra veure
que W (sinz, cosx) # 0. En efecte, W (sinz, cosx) = —1.

Si volem que la solucié compleixi les condicions inicials, imposem

c1sin0 4 cycos0 =2
c1cos0—cysin0=3

Llavors ¢; = 3, co = 2, i la solucié que busquem és y = 3sinx + 2 cos x. v

Una altra aplicaci6 interessant del wronskia és la de trobar I'equaci6 diferencial lineal
i homogénia de grau minim satisfeta per una familia determinada de funcions linealment
independents. Ho veiem tot continuant ’exemple anterior.

Exemple 15 Calcular l’equacio lineal © homogénia que té per solucions sinx, cosx.
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Solucié. Ja hem vist que Wi(sinz,cosz) # 0. Per tant, aquestes sén dues solucions
linealment independents, en tot R, d'una equacié de segon ordre. Qualsevol altra soluci6
y(x) que sigui solucié de I'equacié buscada haura de ser linealment dependent de les
solucions anteriors. Per tant, hauran de verificar

sint  cosz y(x)
W(sinz,cosx,y(z)) =| cosx —sinz ' (z)|=0
—sinx —cosz Yy (x)

Ara només hem de calcular el determinant, per exemple, per adjunts de la tercera
columna,

sin x cosxT | , sinx cosx | , cosr —sinx " ,
. — . . y=-y +0y —y=0
cosr —sinx —sinx —coszx —sinx —coszx
L’equacio d’ordre minim és, doncs, 3" +y = 0. v

2.4 Equacions homogénies a coeficients constants

En general, no és facil trobar solucions particulars d’una equaci6 diferencial, encara que
sigui lineal i homogeénia, perd quan I'equaci6 té coeficients constants, veurem que és molt
senzill. Primer ho resoldrem per a segon ordre. Suposem 'equaci6

y" () + py'(z) + qy(x) = 0

amb p,q € R.
Podem escriure I'equacio6 en la forma de 'operador diferencial
2 d
= —_ . = 2.

Provem ara solucions de la forma y = ™", on m és una incognita a determinar. Com

Yy = me™® " = m2e™, tindrem

L[e™] = (m* + pm +q) ™ =0

Per tant, les funcions de la forma e™* sén solucions de I’Eq. 2.6 sempre que m sigui arrel
del polinomi caracteristic
P(m) =m?+pm +q (2.7)

L’equaci6 P(m) = 0 s’anomena equacid caracteristica associada a l'equaci6 diferencial.

En la resolucié d’aquesta equacié convé distingir diversos casos.

(i) Cas p?> — 4q > 0. L’equaci6 caracteristica admet dues solucions reals diferents
my1 # my. A més, es compleix W (e™* e™2%) £ (). Per tant, y; = e™* i yy = ™"
son dues solucions independents de l'equacié diferencial. Aixi doncs, la solucié
general sera

y(x) = 1™ 4+ ™, 1,00 €R
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(i) Cas p* = 4¢q. Només hi ha una arrel real doble, m, de 'equacié caracteristica.
Una soluci6 és y; = €™, pero per a trobar la solucié general necessitem una altra
soluci6 linealment independent. Tot i que es pot trobar pel métode de variacié de
les constants a partir de I’anterior, ho farem amb el segiient raonament:

Com L[e"™*] = P(m) ™, derivant respecte de m obtenim
L LJem] = D7) = [P'(m) + mP(m)}e™
om -~ lom B ‘

Com m és arrel doble de P(m), també és arrel de P'(m). Per tant, tindrem

Lize™] =0

Llavors, la soluci6 general sera de la forma

y=(c1+cx)e™; c1,c0€R

(iii) Cas p* < 4q. L’equaci6 caracteristica no té solucions reals. Per tant, tindrem arrels
complexes conjugades a4, i e®*#)? seran solucions de I'Eq. 2.6, perod en el camp
complex. Ara bé, per a obtenir dues solucions reals independents només caldra
treballar amb una de les solucions complexes. Tenint en compte la formula d’Euler,

0

e’ = cosf +isinf

podem escriure ‘
y = e @tPT — 0% (cos B + isin fz) (2.8)

Com L[el®+)] = 0, s’hauran d’anul-lar per separat les parts real i imaginaria. Aixi,

Lle* cos fz] = 0; Lle*sinfz] =0 (2.9)

Clarament aquestes solucions sén linealment independents, doncs el seu wronskia
val

W (e cos Bz, ™" sin fr) = Be***

que és diferent de zero perqué 5 # 0. Llavors, la solucié general sera
y(x) = 1% cos fr + 2 sin fx;  c1,c0 € R

Exemple 16 Trobar la solucidé general de equacié y" + 1y — 6y = 0.

Solucié. L’equacié caracteristica és m? +m — 6 = 0, amb arrels

= EviEry
- : :

m mp =2, mo=-3

La soluci6 general de 'equacié diferencial és doncs

y(x)=¢ e 4 cye
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Exemple 17 Trobar la solucid general de 'equacic y" + 2y’ +y = 0.

Solucié. L’equacié caracteristica m? +2m + 1 = 0 té arrel m = —1 doble. Llavors, la

soluci6 general sera
x

y(@) = (a1 + o) €

v

Exemple 18 Resoldre 'equacid iy’ +y' +y = 0.

Solucié. L’equaci6 caracteristica és m? +m+ 1 = 0, amb arrels complexes m = —% + ‘/751

Per tant, la soluci6 general és

s V3 . /3
Yy=<cC€e 2C08S—T+Ce 28IN—T
2 2

v

2.5 Equacions d’ordre superior

Generalitzem els resultats anteriors a ordre n. Considerem l’equacié lineal homogénia a
coeficients constants
y" +a, "+ @y +agy =0 (2.10)

amb constants ag, aq,...,a,_1 € R. L’equaci6 caracteristica és
m" + apym™ - Faym+ag=0

que pot tenir arrels reals i complexes amb diferents multiplicitats. Vegem quina és la
contribuci6 de cada una d’elles a la soluci6 general.

e Per a cada arrel real m amb multiplicitat £ hi ha & solucions linealment independents

de la forma

emz’xem:c’ o ,ZEk_l e

Aleshores la solucio general sera

(c1 + oz + -+ cpa™ ) em”

En particular, si 'arrel és simple (k = 1), només caldra un sol terme ce™*.

e Per a cada parella d’arrels complexes conjugades, a4/, amb multiplicitat k£ tindrem
2k solucions linealment independents de la forma

e cos B, e sin Sz, x €% cos fr, x e sin Bz, . .., ¥ e cos B, 2F 7 e sin B
Aleshores, cada parella d’arrels complexes contribuira a la solucié general amb

(c1 4 o 4 -+ ™) €% cos B 4 (Cpat + Croo® + -+ + Copx™ 1) e sin fa

En particular, si la parella d’arrels complexes és simple (k = 1), tindrem dos termes,

(¢1 cos fx + cosin fx)e™”
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Exemple 19 Resoldre y® + 3y + 3y +y = 0.
Solucié. L’equacio caracteristica, és

m? +3m* +3m+1=(m+1)>=0
L’arrel real m = —1 és triple. Aleshores la solucié general és

—T

y = (c1 + cox + c3x?) e

Exemple 20 Resoldre y™® + 4y®) + 8y + 8y + 4y = 0.

Solucié. L’equacié caracteristica és m?* +4m3 +8m? +8m +4 = (m? +2m +2)? = 0. Les
arrels complexes m = —1 4 ¢ sén dobles. Per tant, la solucié general és

y=(c1+cox)e “cosw+ (c5+ cyx) e sinx

Exemple 21 Resoldre y™® — 2y®) + 2y — 2/ 4+ 4 = 0.

Solucié. Escrivim I'equacié caracteristica, m* —2m3 +2m? — 2m +1 = 0, que té les arrels
m = 1 doble i m = +i simples. Obtenim, doncs, la soluci6é general

y = (c1 + cox) e” 4+ c3cosx + ¢y sinx

Exemple 22 Resoldre y(7) = 0.

Solucié. L’equacié caracteristica és m” = 0, que té una tnica arrel m = 0, de multiplicitat
7. La soluci6 general és

2 3 4 5 6
Y = C1 + Cox + C3X° + C4x” + 5T + Cgx” + Crx

2.6 Equacions lineals no homogénies

Recordem que per a resoldre I'equacié completa cal conéixer una solucié particular i la
solucié general de I’homogeénia. Vegem com obtenir una solucié particular de l'equaci6
completa. Ho farem pel cas de 'equacié d’ordre 2, Eq. 2.1, que és generalitza facilment
a ordres superiors.

Considerarem dos métodes:

e Metode de variaci6 de les constants. Es un metode general que serveix tant per a
equacions amb coeficients constants com no constants.

e Meétode dels coeficients indeterminats. Es un métode rapid que ens estalvia la inte-
gracio, perd que només es pot aplicar a equacions amb coeficients constants i per a
uns tipus particulars d’equacions.
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2.6.1 Meétode de variacio de les constants

Es la generalitzacié del métode que haviem usat per a equacions lineals de primer ordre,
i és valid per a equacions diferencials amb coeficients constants o variables. Ho resoldrem
per a una equacio lineal de segon ordre, escrita en forma monica,

y'+ P(a)y + Qa)y = f(x) (2.11)

amb una funci6 arbitraria f(x) del terme independent.
Per a trobar una soluci6 particular y, de I'Eq. 2.11, caldra, pero, saber la solucié
general

Yn = c1y1(z) + caya(z)

de la part homogenia de I'equacio, on ¢y, ¢ s6n constants i y; (), y2(x) son dues solucions
particulars linealment independents de I’equacié homogeénia.

El métode consisteix en substituir les constants cq,co per funcions desconegudes a
determinar, ¢;(x), c2(z), de manera que y, sigui de la forma

Yp = c1(2)y1(2) + c2()ya2(2) (2.12)

i sigui solucié de 'Eq. 2.11.

El problema és ara trobar aquestes funcions incognites ¢;(z) i co(z). Perd com que
hem passat de tenir una funcié desconeguda y, a tenir-ne dues, necessitarem una equacio6
que les relacioni. Derivem I'Eq. 2.12 i obtenim

Y, = i (@)yr + er(2)y) + @)y + ca(z)yo

A continuacio, si tornem a derivar, apareixeran les derivades segones de ¢; () i ca(x), pero,
per a evitar aquesta complicacié, imposarem el lligam

(@) + ch(x)ya =0 (2.13)

Aquesta és doncs 'equacioé que les relaciona. Aleshores ens queda

/ /

Yp = C1 (z)yy + c2(x)yh

i derivant,
!

Yp = A (2)yy + cr(@)y) + & (@)ys + ca(2)yy
Ara, imposem que I'Eq. 2.12 sigui solucié de I'Eq. 2.11,

A (m)y) + (@)Y + (s + ca()yy + Px)er(w)y)+
+P(x)ca()ys + Q(x)er(z)yr + Q(x)ca()y2 = f(2)

i, reordenant de manera adequada, obtenim

(2.14)

c1(@)[y) + P(x)y) + Q(2)y] + cal@)[yy + P(2)ys + Q(x)ya] + 1 (2)y; + c4(2)yy = f(2)

En ser y;,ys dues solucions de I'equacié homogénia, els dos primers termes anteriors es
fan zero,

Y+ P@)y, + Q(x)y1 =0, vh + P(x)ys + Q(z)y2 =0
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i tan sols ens queda,
(@) + dy(x)yy = f() (2.15)
Si apleguem les expressions Eq. 2.13 i Eq. 2.15, obtenim un sistema lineal de dues
equacions amb les incognites ¢} (z) i cy(x),

(2.16)

El determinant associat al sistema és el wronskia W (y;,y2), que és no nul perqué y; i
Yo sOn linealment independents:
yl y2
W = 0 2.17
Y1 Y 7 ( )

Resolent aquest sistema, obtindrem les derivades de les funcions incognita, i després
integrarem,
_wf, nt o

c(z) = W x; colx) = W

No cal sumar una constant d’integracié perqué només ens interessa una solucié particular.
Finalment, la soluci6é particular que hem trobat és

vof y1f
= dx 2.18
Yo =W / W + Y2 W ( )
La solucié general de I’'Eq. 2.11 és, doncs,
Yy=u ( ‘zj[}fdﬁ-i-ﬁ) + Y2 ( Wfdx—i—Cg) (2.19)

amb c; 1 ¢» constants.

Exemple 23 Resoldre l’equacio diferencial

y" + 4y = sin 2z —
cos 2x

Solucié. Comencem amb I'equacié homogénia
y' +4y =0

L’equaci6 caracteristica és m? + 4 = 0, amb arrels m = 42i. Aleshores, la seva soluci6
general és
Yp = €1 COS 2x + o 8in 2

amb c; 1 ¢g constants.
Ara, trobarem una soluci6 particular de I’equacié completa en la forma

y=a ($) cos 2z + 02(:10) sin 2x
Hem de resoldre el sistema,

{ i (x) cos2x + cy(x) sin2x = 0
/
1

¢ (z)(—2sin 2z) + ¢, (r) 2 cos 2x = sin 20 — —= (2.20)

cos 2z
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El wronskia és
CoS 2% sin 2z

W=| “asin2s 2c0s20 |~ 270

Aleshores, aplicant la regla de Cramer,

1 0 sin 2z 1 sin 2z
/ — — = — — 9] 2
Cl(m) o 21 sin2x — 00512:): 2 cos 2x 2 ( sin” 2z + coSs 2;5)
Analogament,
1| cos2x 0 1
/ — = — 1 —
co(x) = 3| —2sin2r sin2e - L (sin 2z cos 2z — 1)

Integrant, obtenim

1 1-— 4 in 2 1 1
cl(x):—/(— cosr , o x) dx:—§+—sin4z——ln|cos2x|

2 2 cos 2x 4 16 4
1
co(z) = 3 sin? 22 — g
La soluci6 particular queda com
1 1 1
Yp = (_2 + 6 sindzr — 1 In | cos 2x|) cos 2z + (g sin? 2z — g) sin 2x

Finalment, la soluci6é de I'equacié demanada és

1 1 1
y = (cl + —% + 1—65111495 — len ] cos2x|) cos 2z + (cz + gsin2 2 — g) sin 2z

amb ¢, ¢y € R. v

2.6.2 Equaci6é d’ordre n
Suposem que volem determinar una solucié particular d’'una equacié d’ordre n,
Y™ 4 a1y 4y +agy = f(z)
on ag, ay, - .., a,_1 poden ser coeficients constants o variables, i sigui
Yo = c1yi(z) + caya(z) + - + cayn(T)

la soluci6 general de 'equaci6 homogeénia associada, amb ¢y, co, . .., ¢, constants i y;(x),
yo(z), ..., yn(z) solucions linealment independents.
Busquem una soluci6 particular del tipus

Yp = c1(x)y1(2) + ca(@)ya(z) + - - 4 cn(T)yn(2)

En aquest cas, les derivades de les funcions incognites ¢ (), ca(x), ..., ¢ () son les solu-
cions del sistema n x n,
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Ay + Gy + 0+ Y =0
ayi o+ Gy A+ o+ gy, =0 (2.21)
n—1 n—1 n—1
S e T . (€
El determinant associat al sistema és el wronskia de yi(x), yo(z), . .., yn(z), per tant, no
nul. A partir d’aqui es segueix el mateix procediment indicat per a equacions de segon
ordre, i s’'integra cadascuna de les ¢} (z) per a obtenir les n funcions ¢ (), c2(x), . . ., c,(2).

2.6.3 Meétode dels coeficients indeterminats

Buscarem solucions particulars de ’'Eq. 2.11 quan f(x) és una exponencial, un polinomi,
un sinus o un cosinus. Veurem també que es pot aplicar en el cas de producte d’aquestes
funcions, és a dir, quan

flz) = (ap + a1z + -+ + apz™)e* sin fr + (bg + arx + -+ - + bpx™)e*  cos fr (2.22)

Descriurem el metode mitjancant exemples. El métode també es coneix amb el nom de
metode de la conjectura prudent.

Exemple 24 Calcular una solucid particular de

y" — 3y — 4y =2sinx
Solucié. Si assagem amb funcions de la forma

y= Acosx + Bsinzx

les seves derivades seran també funcions d’aquest forma i, llavors, el nostre problema
consistira en determinar A i B que satisfacin I'equaci6. En efecte,

y = —Asinz + Beosx, 3y’ =—Acosx — Bsinz

Substituint, obtenim

—Acosz — Bsinx — 3(—Asinz + Bcosz) — 4(Acosx + Bsinz) = 2sinx

és a dir
(—A—3B—4A)cosx — (B —3A+4B)sinz = 2sinx
Per tant,
—A—-3B—-4A=0, B—-3A+4B=-2
La soluci6é d’aquest sistema és A = 1—37, B = —%. La solucié particular que trobem és

Yy 3cosz — Hsinx)

:ﬁ(
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Exemple 25 Trobar una solucio particular de ’equacio
y" — 3y — 4y = 42?

Solucié. Si provem un polinomi del mateix grau que la part no homogénia i substituim,
obtindrem una igualtat entre polinomis que resoldrem igualant coeficients. Aixi,

y=A+ Bx+Cx* o =B+20z, y'=2C

Substituint,
—4C2® — (6C +4B)x + (2C — 3B — 4A) = 42

I, igualant termes corresponents a les mateixes poténcies de la x, obtenim

—4C =4, 6C+4B=0, 20 —3B—4A=0

Per tant, C = —1,B = %, A= —%. Una soluci6 particular és
5 3 13
ymoragrey

Exemple 26 Calcular la solucio general de

x

y' =3y —3y=e"
Solucié. Primer busquem una soluci6 particular. Si assagem solucions del tipus
y=Ae ”

s’obté
y/ — _Ae—x7 yl/ — Ae—m

Per tant, substituint,

Ae™® —3(—Ae™™®) —3(Ae™™) =¢e "

d’on,
(A+3A—-3A)e " =e"

Per tant A = 1, i una soluci6 particular és

—x

y=e€
Ara bé, la soluci6 general de 'equacié homogeénia associada, y” — 3y’ — 3y = 0, és

34421 3—+/21
=, m2:—

mix mox .,
yp = c1e e’ my 5 5

Aleshores, la solucio general de la completa és
y=-e "+ ™+ e 1,0 €R

Observem que la soluci6é particular que hem obtingut no és de la mateixa familia
d’exponencials que les obtingudes per a 1’equacié homogénia. v
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Exemple 27 Calcular una solucio particular de ’equacio
y' =2 ty=e"
Solucié. Si proposem una funcié de la forma
y = Ae”

i substituim, obtenim 0 = e”, que clarament no té soluci6. El problema amb qué ens
trobem és que la funcié que proposem és ja solucié de I'equacié homogénia.

Si abans haguéssim resolt I'equacié homogénia, hauriem vist que ’equacio6 caracteristi-
cam?—2m+1 = 0 té per solucié 'arrel m = 1, de multiplicitat 2. Per tant, la solucié que
proposem, i també totes les de la forma y = (A + Bz) e, sén solucions de 'homogeénia,
associades a 'arrel m = 1.

En aquest casos, la solucié que cal proposar és

y=Az*e"

és a dir, multiplicar Ae® per z¥, amb k igual a la multiplicitat de la corresponent arrel de
I’equaci6 caracteristica.
Aixi,
y = 2Axe” + Ax’e”, " =2Ae" 4+ 4Axe” + Ax?e”
Substituint,
[(2A4 + 4Ax + Az?) — 2(2Ax + A2®) + Ax?]e” = €”

Ara, simplificant i igualant termes corresponents a iguals poténcies de la x, obtenim

2A=1, 4A—4A=0, A—24A+A=0

Per tant, A = % Una soluci6 particular és %xQ e’ i la solucio general és

1
y = (c1+ cow + 5562) e, c,c0€ER

v

Podem donar aquest criteri de forma més general: si el terme no homogeni de ’equacio

és de la forma que apareix en I'Eq. 2.22, i I’equaci6é caracteristica té una arrel o 4 i3 de
multiplicitat k, llavors cal proposar una solucié particular com

y = [(Ag + Az + - + Ayz™)e sin fa + (By + Bz + - - + Bpz™)e cos ]
(2.23)

2.6.4 Principi de superposicid

Per acabar aquest capitol, presentem un resultat interessant per a calcular solucions parti-
culars d’equacions diferencials lineals no homogénies. Es un altre principi de superposicio,
que permet fer el calcul d’una soluci6é particular terme a terme.
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Teorema 5 Si y,(x) verifica

yi + P(x)y) + Q(2)yr = fi(z)
i yo(x) satisfa

Yy + P(2)ys + Q(2)y2 = fo(z)
aleshores, y(x) = y1(x) + ya(x) €s solucio de

y'+ P(2)y + Qz)y = fi(z) + fa(x)

Com aplicacié d’aquest resultat vegem ’exemple segiient.
Exemple 28 Determinar una solucio particular de [’equacio

y' — 3y — 4y = 2sinx + 42?

Solucié. A partir del principi de superposicié per a equacions no homogénies podem
obtenir

Yp = Y1+ Y2

on y; és una solucié particular de
y" — 3y — 4y = 2sinzx

iys ho és de
y' — 3y — 4y = 42?

Anteriorment ja hem estudiat aquestes equacions per separat i tenfem

1 3 13
Yy = 1—7(3cosx —bsinz), yy=—2°+ 3%~ %
Per tant,
3 13
Yp = 1—7(3005x — 5sinz) — 2% + 3%~ %



Capitol 3

Sistemes d’equacions diferencials lineals

3.1 Introduccid

Definicioé 7 Un sistema d’equacions diferencials lineals de primer ordre és un conjunt
d’equacions en la forma

vy(t) = ay(t)ai(t) + a(t)za(t) + - + af ()2 (t) + ba(t)
h(t) = as(t)x(t) + a2(t)wa(t) + -+ - + ah(t)z,(t) + ba(2)
: ) (3.1)
() = al(O)zi(t) + a2 (t)xa(t) + - + al(t)z,(t) + b (t)
o de manera abreujada, en forma matricial,
7= At)T + b(t) (3.2)

on A(t) és la matriu de coeficients del sistema donat per 'Eq. 3.1, i b(t) és un vector de
termes independents. El sistema sera homogeni si b(t) = 0.

3.1.1 Propietats generals

Com en el capitol anterior, podem fer servir la notaci6é d’operador diferencial per a escriure
I'Eq. 3.2,

d
Lirj=—-A(t) | ¥ 3.3
7= (5 -A0) (5.3)
Llavors, el sistema homogeni associat a I’Eq. 3.2 ve donat per
Lii] =0

i el sistema complet és .
L[z] = b(t)

Degut a la linealitat de 1'operador L, 'estructura de les solucions prové de la gene-
ralitzacié immediata de la que es tenia per a equacions diferencials escalars. Aixi, per
exemple,

e les solucions del sistema homogeni son les que pertanyen al ker L,

28
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e la soluci6 trivial és sempre solucié del sistema homogeni,

e la diferéncia de solucions particulars del sistema complet és solucié del sistema ho-
mogeni,
e la soluci6 general del sistema complet s’obté sumant una solucié particular qualsevol

a la soluci6 general del sistema homogeni,

e cs compleix el principi de superposicio, tant per les solucions del sistema homogeni,
com per les del complet.

Teorema 6 (d’existéncia i unicitat de les solucions) Si A(t) i b(t) son continues en
un interval I C R, llavors el problema de valor inicial

TI=AW)T+b(), Z(t) =Ty (3.4)
té una unica solucio en un obert contingut en I.
Destaquem les propietats i definicions segiients:
e En particular, si els coeficients de A(t) son continus Vt € R, les solucions també ho

son.

e La soluci6 Z(t) és un camp vectorial de classe C! dins R", anomenat espai de les
fases.

e Per a una solucié Z(t), el conjunt de valors (¢, Z(t)) € (I,R™) és una corba integral,
grafic de la soluci6 del sistema.

3.2 Relaci6 entre un sistema i una equacié

Vegem quina relacié hi ha entre un sistema de n equacions diferencials de primer ordre i
una unica equaci6 diferencial d’ordre n.
Considerem I'equacio

Y o (YT a ()Y + ao(t)y = f(1) (3.5)

que escrivim amb unes noves variables. Primer definim x; = y, i després definim recur-
rentment les successives derivades de y:

Ty i)
xh = x3
: (3.6)
T =Tp
= —ag(t)xy — a1 ()xy — - — ap_1(t)x, + f(¢)
Llavors, comparant amb 1'Eq. 3.1 tenim,
0 1 0 e 0 0
0 0 1 e 0 0
A =] z S b= (3.7)
0 0 0 e 1 0

—ao(t) —ai(t) —ag(t) --- —an-a(t) f(#)
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El pas d’equacié a sistema sempre és possible i, per tant, es pot considerar que les
equacions d’ordre n constitueixen un cas particular dels sistemes d’equacions diferencials.

Exemple 29 L’equacio diferencial

y' +ai(t)y +ao(t)y = f(t)

s’escriu en forma de sistema, definint x1 =y, com
) _ 0 1 Ty 0
' —ay —a o f

3.3 Sistemes homogenis

Teorema 7 Les solucions del sistema homogeni
LZt)] =0 (3.8)
formen un espai vectorial de dimensio n.

La idea és la segiient. Considerem una base {e1,...,¢e,} de R™.

......

Considerem ara les solucions (que existeixen i son tniques) ¢; dels n problemes de valor
inicial

Llavors,
i=1
és una soluci6é que verifica la condici6 inicial

Z%@(%) = To
i=1
i, per tant, és tnica. Aix{, {¢1(t), ..., dn(t)} és una base de solucions del ker L.

3.3.1 Dependéncia i independéncia lineal de funcions

Proposicié 1 Considerem un conjunt de funcions vectorials (no parlem encara de solu-
cions d’una equacid diferencial) {Z1(t),...,Z,(t)} definides per at € I, amb valors a R™.
Formem la matriu quadrada X (t) = [Z1(t), ..., Za(t)].

Si det X (t) # 0, per a algun t € I, llavors les funcions son linealment independents
en 1.

O bé, si les funcions son linealment dependents en I llavors det X (t) =0, Vt € 1.

El reciproc no és cert en general.



Equacions diferencials lineals 31

3.3.2 Matriu fonamental de solucions

Definicié 8 Si {#(t),...,Zn(t)} son n solucions 'Eq. 3.8, linealment independents en
linterval I, llavors, la matriu

X(t) = [#1(t), ..., % (t)] (3.9)
s’anomena matriu fonamental de solucions del sistema homogeni.
Per tant, una matriu fonamental de solucions del sistema ' = A(t)Z satisfa
X'(t) = A(t) X(t)

Vegem algunes propietats de la matriu fonamental de solucions en relacié al PVI de
I'Eq. 3.4.

e Tota soluci6 de 'Eq. 3.4 s’obté a partir d’'una combinacié lineal de les columnes de
X(t). Si ho expressem matricialment, tenim

Z(t) = X(t)c (3.10)
El vector constant ¢ € R" es calcula a partir d'una condici6 inicial

o = X (to)@

e Com les columnes de X () son linealment independents, la matriu és invertible i,
per tant,
det X(t) £0,vt eI (3.11)

El determinant de la matriu fonamental de solucions és el wronskia de les solucions.

e La soluci6 del PVI es pot escriure substituint

en 'Eq. 3.10:
T(t) = X ()X (to) o (3.12)

e En particular, la soluci6 trivial Z(t) = 0,Vt € I, és la tnica solucié del sistema

homogeni amb condici6 inicial Z(t,) = 0.

e En general, si X(¢) és matriu fonamental de solucions i M és una matriu regular,
llavors X (t)M també és una matriu fonamental de solucions.

e La matriu fonamental obtinguda com

verifica

Dty) = 1

i s’Tanomena matriu fonamental principal.
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La segona de les propietats ens proporciona el reciproc de la Proposicio 1:

Proposicié 2 Les columnes d’una matriu de solucions X (t) son linealment independents
si, i només si, det X (t) # 0.

Exemple 30 Si 7 = (1,t)7, 7y = (t3,0)T son solucid de T ' = A(t)¥, calcular A(t).
Solucié. Derivant, obtenim #{ = (0,1)7, 7%, = (2t,0)T. Per tant, es complira

(V)i )

Sit+#0,ésadir, perat<0operat>0,lamatriu de solucions

X@:(ig)

és invertible (és una matriu fonamental de solucions). Llavors,

A= (0217 Tofo a1 0 £\ -1 (2 n
S \1 0 t 0 \10) ¥\t 1 ) 0 -t
v

Vegem un sistema senzill de resoldre.

Exemple 31 Calcular la solucio de

tal que Z(to) = (a,b)T.
Solucié. En aquest cas podem escriure i resoldre les dues equacions per separat

¥y =1, b =2txy

d’on

z1(t) = aet™",  xy(t) = bet 1

()= (0 ) (5)

Observem que la matriu fonamental del sistema és principal:

et 0 e 0\ et=to 0
0 e 0 el - 0 et

Per tant,
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3.4 Matriu exponencial

Haviem vist que les funcions exponencials generaven les solucions de les equacions dife-
rencials lineals (excepte en un factor polinomic, per a arrels multiples), incloent també les
solucions associades a arrels complexes de ’equacié caracteristica.

Aixo es pot generalitzar si usem una série de matrius que pren com a patro la série de
la funci6 exponencial d’una variable real, ¢! =1+t + %t2 + -+ %t” + -

Es pot demostrar que, com la série escalar, la série de matrius és uniformement con-
vergent, la qual cosa permet sumar séries d’aquest tipus, fer productes entre elles, inclis
derivades i integrals, tot mantenint la convergéncia.

Definicié 9 Si A és una matriu n X n, la matriu exponencial es defineiz com la série
infinita de matrius
o0
Ak
A _

k=0

Per tant, e* € M, .
Propietat 1 Fem un resum de les propietats més importants:
o ' =1.

Si AB = BA, llavors e ef = A8 = B 4.

o cleA=e" =1 don(e?) P =e4

dete? £ 0, VA.

o Si A= PBP', aleshores e = PeP P71

Exemple 32 Vegem uns casos particulars:

1. Si \ és un escalar, eM = eI.

2. Si A =diag(ai,...,a,), llavors e* = diag(e™, ..., e™).
3. Si A =diag(Ay, ..., A,) ésuna matriu diagonal per blocs, llavors e = diag(e?, ... er).
4. Si A" =0, llavors e* =1 + A+ %AQ + 4 ﬁA"il.

Proposicié 3 Considerem A € M, «,, una matriu constant i una variable t € R. Ales-
hores,

d
aeAt = Aet (3.14)

Ara podem passar de treballar amb séries de matrius a fer-ho amb séries de vectors. Per

exemple, per a qualsevol vector ¥, que no depengui de t,

d

7 (e ) = AeMv (3.15)

I, també considerant séries de vectors, tenim la segilient propietat important:
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Propietat 2 Considerem A € M, (R) i una variable real t. Donat un escalar \ i un
vector constant U, es compleix

ey = M Ay (3.16)

Aquesta propietat és dedueix immediatament del primer dels exemples i del fet que les
matrius A/ i (A—AI) commuten. Si ara la combinem amb el darrer dels exemples, obtenim
una propietat que sera molt util a I’hora de resoldre sistemes d’equacions diferencial lineals:

Propietat 3 Si existeiz un nombre natural n tal que (A — NI)" ¥ = 0, llavors

t2 tn—l

M= M (I A=A+ 5 (A= A+ -+ P (A— M)"—l) 7 (3.17)

(n—1)
En particular, tenim,

Proposicio 4 Si v és vector propi de A amb valor propi X, llavors ¥ també és vector propi
de e amb valor propi .

Es dedueix de la proposicié anterior, amb t = 1.

3.5 Sistema homogeni a coeficients constants
Estudiem el cas en que la matriu del sistema homogeni
7= AT (3.18)

te coeficients constants, A € M,y (R).
Pels resultats que hem vist en la seccié anterior, podem afirmar el segiient:

A

e L’equaci6 3.14 garanteix que la matriu e** és una matriu de solucions de I'Eq. 3.18.

e Com el determinant det e* # 0, les columnes de matriu de solucions sén linealment
independents V¢ € R. Per tant, e és una matriu fonamental principal de solucions.

e Si X(¢) és una matriu fonamental de solucions de 'Eq. 3.18, existeix una matriu
regular i constant C' tal que e* = X (t) C.
Fixades unes condicions inicials en ¢t = tg, tindrem e = X(t,)C, d’on C =
X_l(to) eAtO.

Podem doncs concloure,

Teorema 8 Tota matriu fonamental de solucions X (t) del sistema homogeni, Eq. 3.18,
és de la forma

X(t) = e X (t)
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3.5.1 Soluci6 del sistema

Ara només queda saber com escriure la matriu fonamental e? sense haver de recorrer
a la série infinita que la defineix. Per aixd només cal trobar n vectors linealment inde-
pendents v € R™ que proporcionin les n solucions linealment independents de I'Eq. 3.18,
en la forma e?*#. Aquests vectors els proporciona el teorema de descomposicié primaria
d’endomorfismes, que el podem recordar tot enunciant-lo pel polinomi minim associat a
la matriu A.

Teorema 9 Sigui pa(\) = (=1)"p* - p* (S5 nigr(p) = n) la descomposicid fac-
torial del polinomi caracteristic de la matriu A € Moyxpn, @ ma(X) = pi™ ---p** la del
polinomi minim. Aleshores, [’espai vectorial E es descomposa en suma directa dels se-
glients subespais invariants,

E =%kerp"(f) @ - ®kerp,*(f)

amb dim ker p™ = dim ker p™ = n;gr(p;).

Vegem com so6n les solucions en termes de les arrels del polinomi caracteristic.

3.5.2 Arrels reals simples

Sigui A; una arrel real simple de p4()), és a dir, un valor propi de A. Si ¥/ és el seu vector
propi, es complira

(A= )\DT=0

aleshores, tenint en compte ’'Eq. 3.17, tindrem una solucié del sistema Eq. 3.18 en la
forma

Z(t) = M7 = My (3.19)

Exemple 33 Resoldre el PVI

Solucié.
Primer busquem els valors propis la matriu,

det(A— X)) = _54_A _21_A =N +7A+6=(A+1)(\+6)
Per tant, les arrels del polinomi caracteristic séon A\; = —1, A3 = —6. Ara busquem els
vectors propis. Per a A\; = —1, hem de resoldre

() ()0

i 1
d’on y = 4x. Per tant, un vector propi sera ( 4 >



36 R. Cubarsi

Ara, per a Ay = —6, resolem
11 z\ (0
4 4 y ) \O0
) . -1
d’on x = —y. Per tant, un vector propi sera 1 )

La soluci6 general d’aquest sistema homogeni és, doncs,

1 -1 et —e 6t c
— . —t —6t o 1

Ara només queda calcular les constants, a fi de satisfer la condici6 inicial.

5(0)2(411 _})(2):(5)

Resolent aquest sistema, obtenim ¢; = %, Co = —%. Per tant, la soluci6 del PVI és

o et _ebt % B %e—t + %e—ﬁt
Z(t) = Je—t o6t _2 )= 2t 2 -6t
5 5 5

3.5.3 Arrels complexes simples

De manera semblant a I’Exemple 7 de la secci6 Descomposicio primaria dels apunts d’al-
gebra lineal Polinomis de matrius 1 descomposicid primaria, si \; = o £ i son arrels

complexes simples del polinomi caracteristic amb vectors propis respectius d =+ ib, alesho-
res, les dues solucions reals son les parts real i imaginaria de

T(t) = M7 = @G 4 ib) = e*(cos Bt + i sin Bt)(@ + ib)

Es a dir,
(t) = e**(cos Bt @ — sin St b)
(t) = e™(sin Bt d + cos Bt b)

S B

(3.20)

3.5.4 Arrels multiples
Multiplicitats algebraica i geométrica iguals

Si A, és una arrel real de p4(A) de multiplicitat m, i existeixen m vectors propis linealment
independents, v7, ..., 7,, associats a aquest valor propi, llavors les m solucions indepen-
dents de I'Eq. 3.18 s’obtenen de la mateixa manera que en I’'Eq. 3.19, una per a cada
vector propi:

- i

Ti(t) = ety =Ny i=1,...,m

Si l'arrel és complexa, es fa el mateix amb les solucions de I'Eq. 3.20.
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Multiplicitats algebraica i geométrica diferents

Sigui A; una arrel real de ps(\) de multiplicitat n;, i suposem que existeixen menys de n;
vectors propis linealment independents. Llavors, pel teorema de descomposicié primaria
d’endomorfismes, sabem que dimker(A — A\;I)™ = n;, on m; és la poténcia del factor
d’aquesta arrel en el polinomi minim m4(A). Llavors existeixen n; vectors linealment
independents ¥, ..., U, que compleixen

(A—)\]])m]’l?z:(_)', izl,...,nj

Per tant, d’acord amb I'Eq. 3.17, les n; solucions independents seran de la segiient forma.
Si, U € ker(A — \;1)™,

t2 th—l
F(t) = Al = Mt (1170 + tuy + 3 Wy + -+ + m tﬁmj_l) (3.21)
amb

Si I'arrel és complexa, cal donar separadament una solucié per la part real i la part
imaginaria de I’Eq. 3.21, com s’ha fet en 'Eq. 3.20.

Existeix una relacié de recurréncia entre els vectors w, anteriors, que és tutil a 'hora
de simplificar els calculs:

—

Proposicioé 5 Considerem la solucio de I’Eq. 3.21 associada a un vector v = wy €
ker(A — \;1)™. Llavors, els segiients vectors de la série verifiquen

W = (A= Ny € ker(A— N1)™ ™% k=1,...,m;—1 (3.22)

Observacio. Com que entre els n; vectors del ker(A — A\;1)™ ja s’hi troba, com a
minim, un vector de cada ker(A — \; I Y, amb 1 < k < m;, podem formar una primera
familia de solucions amb el maxim nombre de vectors linealment independents del ker(A —
A\;I). Després, per a buscar vectors del ker(A — \;1)? ho farem a partir dels anteriors,
tot aplicant la llei de recurréncia de 'Eq. 3.22. Es a dir, si 9, € ker(A — \;I), un vector
Uy € ker(A — \;1)? el trobarem resolent el sistema

(A= N1)Ty, =1 (3.23)
i aixi successivament, fins a completar els n; vectors desitjats. Vegem-ho amb un exemple.

Exemple 34 Resoldre el PVI

Solucié.
Busquem els valors propis la matriu,

7T—A 1

det(A—\) = 4 3

=X —10A+25=(A—5)?



38 R. Cubarsi

Per tant, I’arrel del polinomi caracteristic és A = 5, doble. Ara busquem un vector propi

per a aquest valor.
2 1 z\ (0
-4 =2 y ) \0

1

9 ) De moment, una solucio

d’on y = —2x. Per tant, un vector propi sera v; = (

particular del sistema homogeni sera

Evidentment, dim ker(A—>57) = 1. Com la matriu del sistema no diagonalitza, haurem
de trobar l'altra solucié particular a partir d’un vector linealment independent de 1’ante-
rior, que sigui del ker(A — 5I)?. Aquest vector, 0, d’acord amb 1'Eq. 3.23, el trobarem

resolent (A — 51)v, = 1.
2 1\ [(z\ [ 1
4 2 y )~ 22

d’on y =1 —2z. Fent x = 0 tenim v, = ( ? ) Aixi, I'altra solucié particular sera

so=[(1)+ ()]

Finalment, la solucié general del sistema homogeni és Z(t) = ¢1Z1(t) + c2Z5(t), que, en
forma de matriu fonamental de solucions, s’escriu com

:E’(t)=€5t(_; 1—t2t)(2)

Ara només queda calcular les constants per a satisfer la condici6 inicial.

-39 (2)-(2)

Resolent aquest sistema, obtenim ¢; = 2, ¢y = —1. Per tant, la solucié del PVI és

o= (ot ) ()= (A%

3.6 Sistemes no homogenis

Com en el cas d’equacions no homogénies d’ordre n, veurem el métode de variacié de
les constants per a sistemes d’equacions lineals. Aquest procediment permet trobar una
soluci6 particular del sistema complet a partir de la solucié general del sistema homogeni,
encara que la matriu del sistema no tingui coeficients constants.
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Suposem que X (¢) és una matriu fonamental de solucions de 'Eq. 3.18, i assajem una

soluci6 de I'Eq. 3.2 en la forma
Tp(t) = X (t) €t) (3.24)

Substituint aquesta soluci6 proposada en I'Eq. 3.2, veurem com ha de ser la funcié
vectorial ¢(t):

-

X'(O)Et) + X(0)E'(t) = AB)X (D)e(t) + b(t)

Pero com que la matriu fonamental de solucions del sistema homogeni compleix
X'(t)e(t) = A(t) X (t)elt)

ens queda

X ()& (t) = b(t)

Resolent aquest sistema per a ¢ ’(t), i integrant, haurem obtingut la solucié particular
buscada. En efecte, com det X (t) # 0, podem invertir el sistema,

() = XU WB():  alt) = / X5t dt

Per tant, una soluci6 particular sera

7(t) = X (t) / XH(1)b(¢t) dt (3.25)

Finalment, podem escriure la solucié general del sistema complet tot afegint-hi la soluci6
general del sistema homogeni:

Z(t) = X(t) ( / XN ()b(t) dt + 5) , CeR" (3.26)

Exemple 35 Trobar la solucio general del sistema

(=5 1N, o 6
x-( 4_2)x+e _1

Solucié. El sistema homogeni ja havia estat estudiat en I'exemple 33. La matriu fona-

mental de solucions era
et bt
X(t) = 4€_t e—6t

La seva inversa és

B L e 1ot et o3t
0 =x20i0 = (S i ) (S )= (G )

Ara integrem cada component,

[aioa=( Jo, )= (42
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I ja podem escriure la soluci6 particular,

= 10T et —e L3t o 23
a0 =xt [xwioa=( o 00 ) (i )= i)
8 24

Finalment, la soluci6é general del sistema complet és

. 1 —1 =
Z(t) = cre” ( 4 ) + coe” ( 1 ) + e* < % >
24

Observem que també hauriem pogut provar el métode dels coeficients indeterminats

amb una solucié particular de la forma e? Z; : v

En el métode dels coeficients indeterminats per a sistemes d’equacions, la soluci6é que
es conjectura segueix basicament els mateixos criteris que per a equacions escalars, espe-
cialment quan el tipus de solucié proposada no pot ser una solucié del sistema homogeni.
En cas contrari, cal tenir en compte que la independéncia de la solucié proposada respecte
de les solucions de I’homogénia recau més en el caracter vectorial de les constants, que no
pas en el tipus de funcions que es proposen. Per exemple, el sistema

S, (1 0. Lt 0
7=\ 9 )Tt
.o 0 . -
) ie ( 1 ) com a solucions de la part homogeénia. Podem proposar una

1

t
admet e < 0

soluci6 particular, que no sigui soluci6 del sistema homogeni, del tipus e’ < a ) i obtenir,

per coeficients indeterminats, a = —1. Com que ( ) no és vector propi associat al

-1
0 . - C - s
1) tot i contenir I’exponencial €', no satisfa
I’equacié homogenia, sind que satisfa la completa.
A part dels métodes vistos, hi ha maneres alternatives de resoldre equacions i sistemes
d’equacions diferencials lineals, com per exemple, aplicar la transformada de Laplace.

valor propi 1, la solucié particular e



