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Capítol 1

Equacions diferencials de primer ordre

1.1 Introducció
Definició 1 Una equació diferencial ordinària és una relació entre una funció d’una vari-
able, y(t) (que anomenarem variable dependent), la variable independent t, i una o vàries
derivades successives de la funció,

F (t, y, y′, . . . , y(n)) = 0

Suposarem que totes les variables són reals.

Si F no depèn de t direm que l’equació diferencial és autònoma. Quan hi ha vàries
variables independents, t1, . . . , tn, les equacions s’anomenen equacions en derivades par-
cials. Llavors, la funció y(t1, . . . , tn) es pot derivar respecte de cada una de les variables.

Per exemple
∂y

∂ti
,
∂2y

∂ti∂tj
, etc. Les equacions en derivades parcials s’estudien en cursos

posteriors. Vegem alguns exemples:

Exemple 1 Un cas el proporciona la segona llei de Newton pel moviment d’un cos de
massa m, sota l’acció d’una força F . Si aquesta força depèn de l’instant t considerat, de
la posició y(t) i de la velocitat dy(t)

dt
del cos en aquest instant, es compleix

m
d2y

dt2
= f(t, y,

dy

dt
)

Exemple 2 L’estudi de circuïts elèctrics és un altre exemple d’equacions diferencials.
Per exemple, el corrent I(t) d’un circuït, pel que la tensió V (t) aplicada en cada instant
t es reparteix entre la caiguda de tensió RI(t) d’una resistència i la caiguda de tensió
L dI(t)

dt
d’una autoinducció, posades en sèrie, satisfà l’equació diferencial

L
dI

dt
+RI = V

Exemple 3 Un altre cas són les equacions que caracteritzen a una família de corbes del
pla. Així, si considerem la família de paràboles y = Ct2, derivant obtenim y′ = 2Ct.
Eliminant el paràmetre C amb les dues equacions, obtenim la equació diferencial

y′ = 2
y

t

5



6 R. Cubarsi

que expressa una propietat comú a totes les corbes de la família: el pendent de la tangent
en un punt qualsevol és el doble del pendent de la recta que uneix el punt amb l’origen.

En general, si g(t, y, C) = 0 representa una família de corbes, eliminant C entre les
equacions g(t, y, C) = 0 i d

dt
g(t, y(t), C) = 0, obtindrem l’equació diferencial F (t, y, y′) =

0 de la família de corbes. És a dir, canviariem la informació que proporciona C, per la
que proporciona y′.

Definició 2 Anomenem ordre d’una equació diferencial al major ordre de la derivada que
intervé en l’equació.

Per tant l’exemple 1 és d’una equació de segon ordre, mentre que els exemples 2 i 3 són
d’equacions de primer ordre.

De moment, considerarem únicament equacions de primer ordre, que escriurem en la
forma estàndard

y′ = f(t, y) (1.1)

En un interval I, una solució d’aquesta equació és una funció y = φ(t) derivable que
satisfà

φ′(t) = f(t, φ(t)), ∀t ∈ I (1.2)

1.1.1 Interpretació geomètrica

Podem interpretar una equació diferencial y′ = f(x, y) com una equació que a cada punt
(x, y) en el que f està definida li associa una direcció de pendent f(x, y).

El gràfic d’una solució y = φ(x) s’anomena corba integral, i els valors f(x, y) s’anome-
nen camp de velocitats o direccions.

D’una equació y′ = f(x, y) n’obtindrem una família uniparamètrica de solucions, y =
φ(x,C), que rep el nom d’integral general o solució general de l’equació.

També podem estar interessats en determinar una solució particular de l’equació dife-
rencial que, per a x = x0, pren un valor donat y0. Geomètricament, es diu que es busca la
solució que passa pel punt (x0, y0). Aquesta condició determina el valor de C en la solució
general, de manera que si y0 = φ(x0, C0), la solució desitjada és y = φ(x,C0).

Exemple 4 La solució general de l’equació y′ = ex − y ve donada per y = 1
2
ex + C e−x,

i la solució particular que satisfà y(0) = 1 s’obté quan 1 = 1
2

+ C, és a dir per a C = 1
2
,

resultant y = 1
2
ex + 1

2
e−x = coshx.

1.2 Condicions d’integrabilitat

Si coneixem el valor de la variable dependent y en t0, i admetem que aquesta variable
evoluciona de manera:

• determinista, és a dir, que hi ha un lligam entre els valors passats, present i futurs,

• finita, és a dir, que en tot moment és quantificable,

• diferenciable, és a dir, que les seves variacions són prou suaus,
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llavors, per a un valor de t proper a t0, podem fer una estimació de y(t) a partir de
l’aproximació lineal

y(t)− y(t0) ≈ y′(t0)(t− t0)

Una forma de poder seguir l’evolució de la variable y és disposar de la informació que
proporciona l’equació

y′ = f(t, y(t)) (1.3)

Així, sabent el valor inicial y0 = y(t0), obtindrem els valors de la funció y(t) en el seu
entorn,

y(t) ≈ y(t0) + f(t0, y0)(t− t0)

Quan fem aquest procés de manera elemental, estem precisament integrant l’equació
diferencial Eq. 1.3,

y(t)− y(t0) =

∫ t

t0

f(s, y(s))ds (1.4)

tot calculant les constants d’integració a partir de les condicions inicials.
En resoldre una equació de primer ordre fem un procés que equival a una integració,

on hi apareix una constant. En general, per a resoldre una equació d’ordre n calen n
integracions, on hi apareixen n constants.

Per a una equació d’ordre n, les condicions inicials han de ser sempre de la forma
a0 = y(t0), a1 = y′(t0), . . . , an−1 = y(n−1)(t0), totes avaluades en el mateix valor de la
variable independent.

Ara bé, l’existència i unicitat de la solució del problema de valor inicial (PVI)

y′ = f(t, y), y(t0) = y0 (1.5)

necessita unes condicions mínimes. La més freqüentment utilitzada és la següent:

Teorema 1 (d’existència i unicitat) Si f i
∂f

∂y
són contínues en un domini Ω, el pro-

blema de valor inicial y′ = f(t, y), y(t0) = y0, per a (t0, y0) ∈ Ω, admet una única solució
y(t), que està definida en un interval obert I ⊂ Ω que conté el punt (t0, y0).

Un exemple on no es compleixen aquestes condicions suficients és el següent:

Exemple 5 El problema de valor inicial y′ = y2/3, y(0) = 0, no té solució única, doncs
al menys y1(t) = (t/3)3, y2(t) ≡ 0 són solucions del problema.

També cal notar que les solucions poden tenir un abast limitat:

Exemple 6 La solució de y′ = y2 amb y(0) = 1 és y(t) = 1/(1 − t) en −∞ < t < 1.
Però y(t) no pot ser solució en un interval més gran ja que no està definida per a t = 1.



8 R. Cubarsi

1.3 Equacions integrables elementalment
Certes funcions, com ara

√
cos t i e−t2 , no admeten una primitiva que sigui una funció ele-

mental, és a dir, una combinació de funcions polinòmiques, racionals, trigonomètriques,
exponencials, etc. Per tant, fins i tot en el cas de que f(t, y) sigui una funció única-
ment de t, no sempre podrem trobar funcions elementals que siguin solucions de l’equació
diferencial y′ = f(t, y).

En general, es considera que una equació diferencial és integrable elementalment quan
és possible expressar la solució mitjançant funcions elementals, o bé primitives d’aquestes,
que no tenen per què ser necessàriament funcions elementals.

Definició 3 Direm que una equació diferencial s’expressa en la seva forma diferencial si
l’escrivim com

M(t, y)dt+N(t, y)dy = 0 (1.6)

Evidentment, la forma estàndard d’aquesta equació s’obtindria fent f(t, y) = −M(t, y)/N(t, y)
en l’Eq. 1.1.

Definició 4 S’anomenen equacions de variables separades les que, en forma diferencial,
s’escriuen com

M(t)dt+N(y)dy = 0

Llavors, la integració és immediata:∫
M(t) dt = −

∫
N(y) dy + C

També podem expressar-ho com∫ t

t0

M(s) ds = −
∫ y

y0

N(x) dx

Exemple 7 Integrar
dy

dt
=
t2 − 1

y2
.

Solució. Ho escrivim com
y2 dy = (t2 − 1) dt

Llavors,
y3

3
=
t3

3
− t+ C; y = (t3 − 3t+ 3C)1/3

X

Exemple 8 Resoldre
dy

dt
=

t

y2
+ t.

Solució. Ho escrivim com
dy

dt
=

(
1

y2
+ 1

)
t

Separant variables obtenim
y2

1 + y2
dy = t dt
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i com
y2

1 + y2
= 1− 1

1 + y2
, integrant arribem a

y − arctan y =
t2

2
+ C

En aquest cas ja no és possible aïllar y en funció de t. X
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1.4 Equació lineal
Definició 5 Una equació lineal de primer ordre és la que es pot escriure com

y′(t) + a(t) y(t) = f(t) (1.7)

L’operador L ≡ d

dt
+ a(t), que associa a una funció y la funció

L[y(t)] = y′(t) + a(t) y(t) (1.8)

és lineal. És fàcil comprovar que si c1 i c2 són dues constants arbitràries, es té

L[c1y1 + c2y2] = c1L[y1] + c2L[y2] (1.9)

Suposarem que a(t) i f(t) són funcions contínues en un cert interval I ⊂ R. Conside-
rarem que L és una aplicació lineal de l’espai vectorial C1(I) al C(I). Per tant, el conjunt
de solucions de l’equació

L[y] = f(t) (1.10)
vindrà donat per yp + yh, on yp és una solució particular de l’Eq. 1.10, i yh és del nucli de
l’operador L, ker(L), és a dir, del conjunt de solucions de

L[y] = 0 (1.11)

Aquesta darrera equació s’anomena equació homogènia associada a l’Eq. 1.10, que es
designa, per contrast, com equació completa.

Recordem que ker(L) és un subspai vectorial de l’espai vectorial en el qual està definit
l’operador L.

Observem, també, que la diferència de dues solucions particulars ya i yb de l’equació
completa, Eq. 1.10, verifica L[ya − yb] = f − f = 0. Per tant ya − yb ∈ ker(L).

1.4.1 Equació homogènia

Resolem ara l’equació homogènia

y′h + a(t)yh = 0 (1.12)

Si yh 6= 0 podem escriure y′h/yh = −a(t) i, integrant,

ln |yh| = −
∫
a(t) dt+K; |yh| = Ce−

∫
a(t) dt

on C = eK és una constant positiva. Aquesta darrera equació equival a

yh = ±Ce−
∫
a(t) dt

la qual podem resumir en
yh = Ce−

∫
a(t) dt , C 6= 0

Però, en dividir per yh, hem perdut la solució yh = 0, que anomenarem solució trivial,
que sempre és solució de l’equació lineal homogènia. Per tant, la solució general de l’Eq.
(1.12) serà

yh = Ce−
∫
a(t) dt (1.13)

per a C qualsevol.
El conjunt de solucions de la part homogènia de l’equació lineal de primer ordre formen

un espai vectorial de dimensió 1.
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1.4.2 Equació completa: mètode de variació de les constants

Per a integrar l’equació completa n’hi ha prou amb determinar una solució particular. Per
això utilitzarem el mètode anomenat de variació de les constants, que permet integrar
l’equació completa quan es coneix una solució particular de l’equació homogènia, per
exemple, fent C = 1 en l’Eq. 1.13,

φ(t) = e−
∫
a(t) dt (1.14)

Així, proposem una solució de la forma

yp = K(t)φ(t) (1.15)

essent K(t) una funció a determinar.
Substituïnt l’Eq. 1.15 a l’Eq. 1.10 obtenim

L[yp] = K ′(t)φ(t) +K(t)φ′(t) + a(t)K(t)φ(t)

= K ′(t)φ(t) +K(t)[φ′(t) + a(t)φ(t)]

= K ′(t)φ(t) = f(t)

doncs φ′(t) + a(t)φ(t) = 0.
Per tant, excepte una constant d’integració que podem suposar nul·la,

K(t) =

∫
f(t)

φ(t)
dt,

i la solució particular serà

yp = φ(t)

∫
f(t)

φ(t)
dt (1.16)

Finalment, tot sumant-li la solució general de l’homogènia, la solució general de l’equació
completa és

y = φ(t)

(∫
f(t)

φ(t)
dt+ C

)
(1.17)

Exemple 9 Integrar l’equació

y′ cos t+ y sin t = 1, −π
2
< t <

π

2
.

Solució. L’escrivim com

y′ + (tan t) y =
1

cos t
Integrem primer l’equació homogènia, y′h + (tan t) yh = 0,

yh = Ce−
∫
tan t dt = C cos t

Ara busquem una solució particular de l’equació completa a partir de l’Eq. 1.16, en la
forma yp(t) = K(t) cos t,

yp = cos t

∫
dt

cos2 t
= sin t

Així, la solució general de l’equació és

y = sin t+ C cos t

X



Capítol 2

Equacions diferencials lineals d’ordre
superior

2.1 Equacions de segon ordre

Una equació diferencial lineal de segon ordre es pot escriure com

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = R(x) (2.1)

on P (x), Q(x) i R(x) són funcions que només depenen de x. Notem que l’equació s’està
escrivint en forma mònica, és a dir, el coeficient de la derivada d’ordre màxim és 1.

Fent servir la notació de l’operador lineal, podem també escriure

L ≡ d2

dx2
+ P (x)

d

dx
+Q(x); L[y(x)] = R(x) (2.2)

Exemple 10 Les equacions y′′ + y = 0, xy′′ − y′ + 2y = x2, són lineals de segon ordre.
La primera té coeficients constants i la segona té coeficients que són funció de la variable
independent.

En general, voldrem resoldre el PVI constituït per l’Eq. 2.1 amb unes condicions inicials

y(x0) = y0, y
′(x0) = y1

En aquest cas, l’existència i unicitat de la solució ve garantida pel següent teorema.

Teorema 2 (d’existència i unicitat) Si P (x), Q(x) i R(x) són contínues en un inter-
val I ⊂ R, i x0 ∈ I, aleshores existeix una única solució y(x) del problema de valor
inicial

y′′ + P (x)y′ +Q(x)y = R(x); y(x0) = y0, y
′(x0) = y1

en un entorn obert de x0 dins de I.

Com en les equacions de primer ordre, usarem la denominació d’equació homogènia
per a referir-nos a l’equació

y′′ + P (x)y′ +Q(x)y = 0 (2.3)

12
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i d’equació completa si ens referim a

y′′ + P (x)y′ +Q(x)y = R(x) (2.4)

amb R(x) no nul·la. La linealitat de l’operador L garanteix que la diferència de dues
solucions de l’equació completa és solució de l’equació homogènia, és a dir, pertany al
subespai vectorial kerL. De la mateixa manera, per a trobar la solució general y de
l’equació completa només cal conèixer una solució particular yp de l’equació completa i la
solució general yh de l’equació homogènia:

y = yp + yh

2.1.1 Solució de l’equació homogènia

El càlcul de la solució general de l’equació homogènia es redueix a trobar una base del
kerL. Vegem el següent teorema, que també el farem servir en equacions d’ordre superior.

Teorema 3 (Principi de superposició) Si y1, y2, . . . , yk són solucions d’una equació
lineal homogènia, llavors y = c1y1+c2y2+. . .+ckyk també n’és solució, ∀c1, c2, . . . , ck ∈ R.

Aquest resultat ens dóna un mètode per a construir solucions, ja que amb dues solu-
cions podem obtenir-ne infinites. Fixem-nos en dos casos particulars:

• Si y1 és solució d’una equació lineal homogènia, aleshores y = ky1 també ho és
∀k ∈ R.

• En particular, fent k = 0, la solució trivial y = 0 sempre és solució d’una equació
lineal homogènia.

Exemple 11 Considerem l’equació y′′ + y′ = 0. Es clar que la funció y = 1 n’és solució.
D’altra banda, la funció y = ex n’és també solució. Per tant, les funcions de la forma
y(x) = c1 + c2e

x, en són també solució.

Exemple 12 Anem a buscar solucions no trivials de l’equació x2y′′ + 2xy′ − 2y = 0.

Solució. Podem resoldre aquesta equació assajant solucions de la forma y = xn. Així,
y′ = nxn−1, y′′ = n(n− 1)xn−2. Si ho introduïm a l’equació, queda

n(n− 1)xn + 2nxn − 2xn = [n(n− 1) + 2n− 2]xn = 0

Llavors, per a ser vàlida la igualtat per a valors x 6= 0, només cal que n2 + n− 2 = 0. Per
tant, les solucions s’obtenen de n = 1,−2, i són x, x−2. En general, y = c1x + c2x

−2 són
solució de l’equació. X

Quan estudiem sistemes d’equacions veurem que, per a un operador diferencial lineal L
d’ordre n, es compleix dim kerL = n. Per tant, en l’exemple anterior ja hauriem obtingut
la solució general de l’equació.



14 R. Cubarsi

2.2 Wronskià

Generalitzant el que havíem dit per les equacions de primer ordre, si l’operador diferencial
L és d’ordre n, considerarem que és una aplicació lineal de l’espai vectorial Cn(I) a C(I),
per a un cert interval I ⊂ R. Naturalment, els conceptes de dependència i independència
lineal de vectors també s’aplicaran a les funcions pertanyents a aquests espais vectorials.
No obstant, veurem un mètode específic per a estudiar la dependència o independència
lineal de funcions.

Definició 6 Siguin f1(x), f2(x), . . . , fn(x), n funcions que suposarem derivables almenys
fins a ordre n− 1 en un cert interval I. El seu wronskià es defineix com el determinant

W (f1, f2, . . . , fn) =

f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
f ′′1 f ′′2 · · · f ′′n
...

... · · · ...
f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

(2.5)

En darrer terme, el wronskià W (f1, f2, . . . , fn) és una funció de la variable x en l’in-
terval I, per això, de vegades també escriurem W (x).

En àlgebra haviem vist que si el wronskià d’un conjunt de funcions W (f1, f2, . . . , fn)
és no nul per a algun x ∈ I, llavors les funcions són linealment independents. El recíproc
no és sempre cert, com ho veurem en el darrer dels següents exemples.

Exemple 13 Calcularem el wronskià d’algunes families de funcions:

• W (sinx, cosx) =
sinx cosx
cosx − sinx

= − sin2 x− cos2 x = −1

• W (x2, x3, x4) =
x2 x3 x4

2x 3x2 4x3

2 6x 12x2
= 2x6

• W (sin2 x, 1− cos 2x) =
sin2 x 1− cos 2x

2 sinx cosx 2 sin 2x
=

= 2 sin2 x sin 2x− 2 sinx cosx(1− cos 2x) =
= sin 2x(2 sin2 x− 1 + cos2 x− sin2 x) = 0

• W (sin2 x, 1− cos 2x) =
sin2 x 1− cos 2x

2 sinx cosx 2 sin 2x
=

= 2 sin2 x sin 2x− 2 sinx cosx(1− cos 2x) =
= sin 2x(2 sin2 x− 1 + cos2 x− sin2 x) = 0

• Les funcions f1(x) = x3 i f2(x) = |x|3 són linealment independents en tot R. És
fàcil veure que, per a x < 0, W (f1, f2) = W (x3,−x3) = 0, ja que les seves columnes
són proporcionals. Igualment, per a x ≥ 0, W (f1, f2) = W (x3, x3) = 0. Per tant,
que el wronskià sigui nul no és sempre equivalent a que les funcions siguin linealment
dependents.



Equacions diferencials lineals 15

2.3 Equacions homogènies
El nostre objectiu és ara obtenir la solució general de l’equació lineal homogènia. Ho
farem a partir de combinacions lineals de solucions linealment independents.

Lema 1 Siguin y1(x), y2(x) dues solucions de l’equació homogènia, Eq. 2.3. Llavors, el
seu wronskià, o bé no s’anul·la mai, o bé és idènticament nul.

Demostració (Lema 1). El wronskià de y1 i y2 és W (x) = y1y
′
2 − y2y

′
1. Derivant,

obtenim
W ′(x) = y1y

′′
2 + y′1y

′
2 − y2y′′1 − y′2y′1 = y1y

′′
2 − y2y′′1

Tenint en compte que

y′′1 + P (x)y′1 +Q(x)y1 = 0; y′′2 + P (x)y′2 +Q(x)y2 = 0

multipliquem la primera equació per y2, la segona per y1, i restem,

(y1y
′′
2 − y2y′′1) + P (x)(y1y

′
2 − y2y′1) = 0

És a dir,
dW

dx
+ P (x)W = 0

Per tant, el wronskià és de la forma

W (x) = Ce−
∫
P (x)dx, C ∈ R

D’aquí es dedueix el resultat desitjat, ja que l’exponencial és sempre positiva.

Lema 2 Dues solucions no nul·les y1(x), y2(x) són linealment dependents en I si, i només
si, el seu wronskià és idènticament nul.

Demostració (Lema 1).
(Condició suficient.) Suposem que y1(x), y2(x) són linealment dependents en I. Lla-

vors, y2(x) = c y1(x), y′2(x) = c y′1(x); c ∈ R. Per tant, el wronskià ésW (x) = y1(x)y′2(x)−
y2(x)y′1(x) = y1(x) c y′1(x)− c y1(x) y′1(x) = 0 en tot I.

(Condició necessària.) Suposem ara W (x) = y1(x)y′2(x)− y2(x)y′1(x) = 0 en I. Obser-
vem que, si per a un punt x0 ∈ I fos y1(x0) = y′1(x0) = 0, hauriem de concloure que y1(x)
és la solució trivial, ja que la solució del PVI és única. El mateix es pot dir per a y2. Hem
d’excloure, doncs, aquesta situació. Per tant, si y1(x0) = 0, llavors ha de ser y2(x0) = 0.
I recíprocament, en els punts x tals que y2(x) 6= 0, llavors y1(x) 6= 0. Per tant, situem-
nos en qualsevol x tal que y1(x)y2(x) 6= 0. Si dividim y1(x)y′2(x) − y2(x)y′1(x) = 0 per
y1(x)y2(x), tenim y′2(x)

y2(x)
− y′1(x)

y1(x)
= 0, d’on d ln y2(x)

dx
= d ln y1(x)

dx
. Integrant, en resulta la propor-

cionalitat desitjada, y2(x) = c y1(x), amb c constant. A més, es complirà y′2(x) = c y′1(x).
D’altra banda, si hi ha un punt x0 tal que y1(x0) = y2(x0) = 0, tindrem y′2(x0) = c y′1(x0),
i ja hem vist que aquestes derivades no poden ser nul·les. Per tant, també obtindrem
proporcionalitat, y2(x) =

y′2(x0)

y′1(x0)
y1(x).

Ara ja estem en condicions d’enunciar el resultat següent. Ho farem generalitzant a
ordres superiors.
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Teorema 4 Si y1(x), y2(x), . . . , yn(x) són n solucions linealment independents en un in-
terval I de l’equació lineal homogènia d’ordre n,

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y′ + a0(x)y = 0, x ∈ I

llavors
y = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

n’és la solució general en I.

Demostració. Vegem la demostració en el cas de segon ordre. En efecte, sigui y(x)
una solució qualsevol de l’equació lineal homogènia Eq. 2.3. Volem veure que existeixen
c1, c2 ∈ R tals que

y(x) = c1y1(x) + c2y2(x)

Sabem que una solució queda unívocament determinada pel coneixement del valor de la
solució i la seva derivada en un mateix punt. Per tant, només caldrà trobar els valors c1
i c2 tals que en algun punt x0 ∈ I verifiquin

c1y1(x0) + c2y2(x0) = y(x0)
c1y
′
1(x0) + c2y

′
2(x0) = y′(x0)

Per a que aquest sistema tingui solució caldrà que el determinant

W (x0) =
y1(x0) y2(x0)
y′1(x0) y′2(x0)

sigui diferent de zero. El teorema quedarà doncs demostrat si veiem que, per a dues solu-
cions independents, aquest determinant és no nul. Però, això és cert pels lemes anteriors
i, a més, és vàlid per a qualsevol punt x0 ∈ I.

Exemple 14 Veure que les funcions de la forma y = c1 sinx + c2 cosx són la solució
general de l’equació y′′ + y = 0. Calcular la solució que compleix y(0) = 2, y′(0) = 3.

Solució. Vegem primer que y = sinx i y = cosx satisfan l’equació. En efecte, si y = sinx,
llavors y′ = cos x, y′′ = − sinx i y′′ + y = 0. Així mateix, si y = cos x, llavors y′ =
− sinx, y′′ = − cosx i també verifica l’equació. En general, les combinacions de la forma
y(x) = c1 sinx+ c2 cosx són també solució de l’equació.

Ara, per a comprovar que totes les solucions són d’aquesta forma, només caldrà veure
que W (sinx, cosx) 6= 0. En efecte, W (sinx, cosx) = −1.

Si volem que la solució compleixi les condicions inicials, imposem

c1 sin 0 + c2 cos 0 = 2
c1 cos 0− c2 sin 0 = 3

Llavors c1 = 3, c2 = 2, i la solució que busquem és y = 3 sin x+ 2 cosx. X
Una altra aplicació interessant del wronskià és la de trobar l’equació diferencial lineal

i homogènia de grau mínim satisfeta per una família determinada de funcions linealment
independents. Ho veiem tot continuant l’exemple anterior.

Exemple 15 Calcular l’equació lineal i homogènia que té per solucions sinx, cosx.
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Solució. Ja hem vist que W (sinx, cosx) 6= 0. Per tant, aquestes són dues solucions
linealment independents, en tot R, d’una equació de segon ordre. Qualsevol altra solució
y(x) que sigui solució de l’equació buscada haurà de ser linealment dependent de les
solucions anteriors. Per tant, hauran de verificar

W (sinx, cosx, y(x)) =
sinx cosx y(x)
cosx − sinx y′(x)
− sinx − cosx y′′(x)

= 0

Ara només hem de calcular el determinant, per exemple, per adjunts de la tercera
columna,

sinx cosx
cosx − sinx

y′′ − sinx cosx
− sinx − cosx

y′ +
cosx − sinx
− sinx − cosx

y = −y′′ + 0 y′ − y = 0

L’equació d’ordre mínim és, doncs, y′′ + y = 0. X

2.4 Equacions homogènies a coeficients constants
En general, no és fàcil trobar solucions particulars d’una equació diferencial, encara que
sigui lineal i homogènia, però quan l’equació té coeficients constants, veurem que és molt
senzill. Primer ho resoldrem per a segon ordre. Suposem l’equació

y′′(x) + py′(x) + qy(x) = 0

amb p, q ∈ R.
Podem escriure l’equació en la forma de l’operador diferencial

L ≡ d2

dx2
+ p

d

dx
+ q; L[y(x)] = 0 (2.6)

Provem ara solucions de la forma y = emx, on m és una incògnita a determinar. Com
y′ = memx, y′′ = m2emx, tindrem

L[emx] = (m2 + pm+ q) emx = 0

Per tant, les funcions de la forma emx són solucions de l’Eq. 2.6 sempre que m sigui arrel
del polinomi característic

P (m) = m2 + pm+ q (2.7)

L’equació P (m) = 0 s’anomena equació característica associada a l’equació diferencial.

En la resolució d’aquesta equació convé distingir diversos casos.

(i) Cas p2 − 4q > 0. L’equació característica admet dues solucions reals diferents
m1 6= m2. A més, es compleix W (em1x, em2x) 6= 0. Per tant, y1 = em1x i y2 = em2x

són dues solucions independents de l’equació diferencial. Així doncs, la solució
general serà

y(x) = c1e
m1x + c2e

m2x; c1, c2 ∈ R
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(ii) Cas p2 = 4q. Només hi ha una arrel real doble, m, de l’equació característica.
Una solució és y1 = emx, però per a trobar la solució general necessitem una altra
solució linealment independent. Tot i que es pot trobar pel mètode de variació de
les constants a partir de l’anterior, ho farem amb el següent raonament:

Com L[emx] = P (m) emx, derivant respecte de m obtenim

∂

∂m
L[emx] = L[

∂

∂m
emx] = [P ′(m) +mP (m)]emx

Com m és arrel doble de P (m), també és arrel de P ′(m). Per tant, tindrem

L[xemx] = 0

Llavors, la solució general serà de la forma

y = (c1 + c2x) emx; c1, c2 ∈ R

(iii) Cas p2 < 4q. L’equació característica no té solucions reals. Per tant, tindrem arrels
complexes conjugades α± iβ, i e(α±iβ)x seran solucions de l’Eq. 2.6, però en el camp
complex. Ara bé, per a obtenir dues solucions reals independents només caldrà
treballar amb una de les solucions complexes. Tenint en compte la fórmula d’Euler,

eiθ = cos θ + i sin θ

podem escriure
y = e(α+iβ)x = eαx(cos βx+ i sin βx) (2.8)

Com L[e(α+iβ)x] = 0, s’hauran d’anul·lar per separat les parts real i imaginària. Així,

L[eαx cos βx] = 0; L[eαx sin βx] = 0 (2.9)

Clarament aquestes solucions són linealment independents, doncs el seu wronskià
val

W (eαx cos βx, eαx sin βx) = βe2αx

que és diferent de zero perquè β 6= 0. Llavors, la solució general serà

y(x) = c1e
αx cos βx+ c2e

αx sin βx; c1, c2 ∈ R

Exemple 16 Trobar la solució general de l’equació y′′ + y′ − 6y = 0.

Solució. L’equació característica és m2 +m− 6 = 0, amb arrels

m =
−1±

√
1 + 24

2
; m1 = 2, m2 = −3

La solució general de l’equació diferencial és doncs

y(x) = c1 e
2x + c2 e

−3x

X
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Exemple 17 Trobar la solució general de l’equació y′′ + 2y′ + y = 0.

Solució. L’equació característica m2 + 2m + 1 = 0 té arrel m = −1 doble. Llavors, la
solució general serà

y(x) = (c1 + c2x) e−x

X

Exemple 18 Resoldre l’equació y′′ + y′ + y = 0.

Solució. L’equació característica és m2 +m+ 1 = 0, amb arrels complexes m = −1
2
±
√
3
2
i.

Per tant, la solució general és

y = c1 e
−x

2 cos

√
3

2
x+ c2 e

−x
2 sin

√
3

2
x

X

2.5 Equacions d’ordre superior
Generalitzem els resultats anteriors a ordre n. Considerem l’equació lineal homogènia a
coeficients constants

y(n) + an−1y
n−1 + · · ·+ a1y

′ + a0y = 0 (2.10)

amb constants a0, a1, . . . , an−1 ∈ R. L’equació característica és

mn + an−1m
n−1 + · · ·+ a1m+ a0 = 0

que pot tenir arrels reals i complexes amb diferents multiplicitats. Vegem quina és la
contribució de cada una d’elles a la solució general.

• Per a cada arrel realm amb multiplicitat k hi ha k solucions linealment independents
de la forma

emx, x emx, . . . , xk−1 emx

Aleshores la solució general serà

(c1 + c2x+ · · ·+ ckx
k−1) emx

En particular, si l’arrel és simple (k = 1), només caldrà un sol terme c emx.

• Per a cada parella d’arrels complexes conjugades, α±iβ, amb multiplicitat k tindrem
2k solucions linealment independents de la forma

eαx cos βx, eαx sin βx, x eαx cos βx, x eαx sin βx, . . . , xk−1 eαx cos βx, xk−1 eαx sin βx

Aleshores, cada parella d’arrels complexes contribuirà a la solució general amb

(c1 + c2x+ · · ·+ ckx
k−1) eαx cos βx+ (ck+1 + ck+2x+ · · ·+ c2kx

k−1) eαx sin βx

En particular, si la parella d’arrels complexes és simple (k = 1), tindrem dos termes,

(c1 cos βx+ c2 sin βx)eαx
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Exemple 19 Resoldre y(3) + 3y(2) + 3y′ + y = 0.

Solució. L’equació característica és

m3 + 3m2 + 3m+ 1 = (m+ 1)3 = 0

L’arrel real m = −1 és triple. Aleshores la solució general és

y = (c1 + c2x+ c3x
2) e−x

X

Exemple 20 Resoldre y(4) + 4y(3) + 8y(2) + 8y′ + 4y = 0.

Solució. L’equació característica és m4 + 4m3 + 8m2 + 8m+ 4 = (m2 + 2m+ 2)2 = 0. Les
arrels complexes m = −1± i són dobles. Per tant, la solució general és

y = (c1 + c2x) e−x cosx+ (c3 + c4x) e−x sinx

X

Exemple 21 Resoldre y(4) − 2y(3) + 2y(2) − 2y′ + y = 0.

Solució. Escrivim l’equació característica, m4− 2m3 + 2m2− 2m+ 1 = 0, que té les arrels
m = 1 doble i m = ±i simples. Obtenim, doncs, la solució general

y = (c1 + c2x) ex + c3 cosx+ c4 sinx

X

Exemple 22 Resoldre y(7) = 0.

Solució. L’equació característica és m7 = 0, que té una única arrel m = 0, de multiplicitat
7. La solució general és

y = c1 + c2x+ c3x
2 + c4x

3 + c5x
4 + c6x

5 + c7x
6

X

2.6 Equacions lineals no homogènies
Recordem que per a resoldre l’equació completa cal conèixer una solució particular i la
solució general de l’homogènia. Vegem com obtenir una solució particular de l’equació
completa. Ho farem pel cas de l’equació d’ordre 2, Eq. 2.1, que és generalitza fàcilment
a ordres superiors.

Considerarem dos mètodes:

• Mètode de variació de les constants. És un mètode general que serveix tant per a
equacions amb coeficients constants com no constants.

• Mètode dels coeficients indeterminats. És un mètode ràpid que ens estalvia la inte-
gració, però que només es pot aplicar a equacions amb coeficients constants i per a
uns tipus particulars d’equacions.
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2.6.1 Mètode de variació de les constants

És la generalització del mètode que havíem usat per a equacions lineals de primer ordre,
i és vàlid per a equacions diferencials amb coeficients constants o variables. Ho resoldrem
per a una equació lineal de segon ordre, escrita en forma mònica,

y′′ + P (x)y′ +Q(x)y = f(x) (2.11)

amb una funció arbitrària f(x) del terme independent.
Per a trobar una solució particular yp de l’Eq. 2.11, caldrà, però, saber la solució

general
yh = c1y1(x) + c2y2(x)

de la part homogènia de l’equació, on c1, c2 són constants i y1(x), y2(x) són dues solucions
particulars linealment independents de l’equació homogènia.

El mètode consisteix en substituir les constants c1, c2 per funcions desconegudes a
determinar, c1(x), c2(x), de manera que yp sigui de la forma

yp = c1(x)y1(x) + c2(x)y2(x) (2.12)

i sigui solució de l’Eq. 2.11.
El problema és ara trobar aquestes funcions incògnites c1(x) i c2(x). Però com que

hem passat de tenir una funció desconeguda yp a tenir-ne dues, necessitarem una equació
que les relacioni. Derivem l’Eq. 2.12 i obtenim

y′p = c′1(x)y1 + c1(x)y′1 + c′2(x)y2 + c2(x)y2

A continuació, si tornem a derivar, apareixeran les derivades segones de c1(x) i c2(x), però,
per a evitar aquesta complicació, imposarem el lligam

c′1(x)y1 + c′2(x)y2 = 0 (2.13)

Aquesta és doncs l’equació que les relaciona. Aleshores ens queda

y′p = c1(x)y′1 + c2(x)y′2

i derivant,
y′′p = c′1(x)y′1 + c1(x)y′′1 + c′2(x)y′2 + c2(x)y′′2

Ara, imposem que l’Eq. 2.12 sigui solució de l’Eq. 2.11,

c′1(x)y′1 + c1(x)y′′1 + c′2(x)y′2 + c2(x)y′′2 + P (x)c1(x)y′1+
+P (x)c2(x)y′2 +Q(x)c1(x)y1 +Q(x)c2(x)y2 = f(x)

(2.14)

i, reordenant de manera adequada, obtenim

c1(x)[y′′1 + P (x)y′1 +Q(x)y1] + c2(x)[y′′2 + P (x)y′2 +Q(x)y2] + c′1(x)y′1 + c′2(x)y′2 = f(x)

En ser y1, y2 dues solucions de l’equació homogènia, els dos primers termes anteriors es
fan zero,

y′′1 + P (x)y′1 +Q(x)y1 = 0, y′′2 + P (x)y′2 +Q(x)y2 = 0
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i tan sols ens queda,
c′1(x)y′1 + c′2(x)y′2 = f(x) (2.15)

Si apleguem les expressions Eq. 2.13 i Eq. 2.15, obtenim un sistema lineal de dues
equacions amb les incògnites c′1(x) i c′2(x),{

c′1(x)y1 + c′2(x)y2 = 0
c′1(x)y′1 + c′2(x)y′2 = f(x)

(2.16)

El determinant associat al sistema és el wronskià W (y1, y2), que és no nul perquè y1 i
y2 són linealment independents:

W =
y1 y2
y′1 y′2

6= 0 (2.17)

Resolent aquest sistema, obtindrem les derivades de les funcions incògnita, i després
integrarem,

c1(x) =

∫
−y2f
W

dx; c2(x) =

∫
y1f

W
dx

No cal sumar una constant d’integració perquè només ens interessa una solució particular.
Finalment, la solució particular que hem trobat és

yp = y1

∫
−y2f
W

dx+ y2

∫
y1f

W
dx (2.18)

La solució general de l’Eq. 2.11 és, doncs,

y = y1

(∫
−y2f
W

dx+ c1

)
+ y2

(∫
y1f

W
dx+ c2

)
(2.19)

amb c1 i c2 constants.

Exemple 23 Resoldre l’equació diferencial

y′′ + 4y = sin 2x− 1

cos 2x

Solució. Comencem amb l’equació homogènia

y′′ + 4y = 0

L’equació característica és m2 + 4 = 0, amb arrels m = ±2i. Aleshores, la seva solució
general és

yh = c1 cos 2x+ c2 sin 2x

amb c1 i c2 constants.
Ara, trobarem una solució particular de l’equació completa en la forma

y = c1(x) cos 2x+ c2(x) sin 2x

Hem de resoldre el sistema,{
c′1(x) cos 2x+ c′2(x) sin 2x = 0
c′1(x)(−2 sin 2x) + c′2(x) 2 cos 2x = sin 2x− 1

cos 2x

(2.20)
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El wronskià és
W =

cos 2x sin 2x
−2 sin 2x 2 cos 2x

= 2 6= 0

Aleshores, aplicant la regla de Cramer,

c′1(x) =
1

2

0 sin 2x
sin 2x− 1

cos 2x
2 cos 2x

=
1

2

(
− sin2 2x+

sin 2x

cos 2x

)
Anàlogament,

c′2(x) =
1

2

cos 2x 0
−2 sin 2x sin 2x− 1

cos 2x

=
1

2
(sin 2x cos 2x− 1)

Integrant, obtenim

c1(x) =
1

2

∫ (
−1− cos 4x

2
+

sin 2x

cos 2x

)
dx = −x

4
+

1

16
sin 4x− 1

4
ln | cos 2x|

c2(x) =
1

8
sin2 2x− x

2

La solució particular queda com

yp =

(
−x

4
+

1

16
sin 4x− 1

4
ln | cos 2x|

)
cos 2x+

(
1

8
sin2 2x− x

2

)
sin 2x

Finalment, la solució de l’equació demanada és

y =

(
c1 +−x

4
+

1

16
sin 4x− 1

4
ln | cos 2x|

)
cos 2x+

(
c2 +

1

8
sin2 2x− x

2

)
sin 2x

amb c1, c2 ∈ R. X

2.6.2 Equació d’ordre n

Suposem que volem determinar una solució particular d’una equació d’ordre n,

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = f(x)

on a0, a1, . . . , an−1 poden ser coeficients constants o variables, i sigui

yh = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

la solució general de l’equació homogènia associada, amb c1, c2, . . . , cn constants i y1(x),
y2(x), . . . , yn(x) solucions linealment independents.

Busquem una solució particular del tipus

yp = c1(x)y1(x) + c2(x)y2(x) + · · ·+ cn(x)yn(x)

En aquest cas, les derivades de les funcions incògnites c1(x), c2(x), . . . , cn(x) són les solu-
cions del sistema n× n,
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
c′1y1 + c′2y2 + · · · + c′nyn = 0
c′1y
′
1 + c′2y

′
2 + · · · + c′ny

′
n = 0

...
...

c′1y
(n−1)
1 + c′2y

(n−1)
2 + · · · + c′ny

(n−1)
n = f(x)

(2.21)

El determinant associat al sistema és el wronskià de y1(x), y2(x), . . . , yn(x), per tant, no
nul. A partir d’aquí es segueix el mateix procediment indicat per a equacions de segon
ordre, i s’integra cadascuna de les c′k(x) per a obtenir les n funcions c1(x), c2(x), . . . , cn(x).

2.6.3 Mètode dels coeficients indeterminats

Buscarem solucions particulars de l’Eq. 2.11 quan f(x) és una exponencial, un polinomi,
un sinus o un cosinus. Veurem també que es pot aplicar en el cas de producte d’aquestes
funcions, és a dir, quan

f(x) = (a0 + a1x+ · · ·+ anx
m)eαx sin βx+ (b0 + a1x+ · · ·+ bnx

m)eαx cos βx (2.22)

Descriurem el mètode mitjançant exemples. El mètode també es coneix amb el nom de
mètode de la conjectura prudent.

Exemple 24 Calcular una solució particular de

y′′ − 3y′ − 4y = 2 sin x

Solució. Si assagem amb funcions de la forma

y = A cosx+B sinx

les seves derivades seran també funcions d’aquest forma i, llavors, el nostre problema
consistirà en determinar A i B que satisfacin l’equació. En efecte,

y′ = −A sinx+B cosx, y′′ = −A cosx−B sinx

Substituïnt, obtenim

−A cosx−B sinx− 3(−A sinx+B cosx)− 4(A cosx+B sinx) = 2 sinx

és a dir
(−A− 3B − 4A) cosx− (B − 3A+ 4B) sinx = 2 sin x

Per tant,
−A− 3B − 4A = 0, B − 3A+ 4B = −2

La solució d’aquest sistema és A = 3
17
, B = − 5

17
. La solució particular que trobem és

y =
1

17
(3 cosx− 5 sinx)

X
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Exemple 25 Trobar una solució particular de l’equació

y′′ − 3y′ − 4y = 4x2

Solució. Si provem un polinomi del mateix grau que la part no homogènia i substituïm,
obtindrem una igualtat entre polinomis que resoldrem igualant coeficients. Així,

y = A+Bx+ Cx2, y′ = B + 2Cx, y′′ = 2C

Substituïnt,
−4Cx2 − (6C + 4B)x+ (2C − 3B − 4A) = 4x2

I, igualant termes corresponents a les mateixes potències de la x, obtenim

−4C = 4, 6C + 4B = 0, 2C − 3B − 4A = 0

Per tant, C = −1, B = 3
2
, A = −13

8
. Una solució particular és

y = −x2 +
3

2
x− 13

8

X

Exemple 26 Calcular la solució general de

y′′ − 3y′ − 3y = e−x

Solució. Primer busquem una solució particular. Si assagem solucions del tipus

y = Ae−x

s’obté
y′ = −Ae−x, y′′ = Ae−x

Per tant, substituïnt,
Ae−x − 3(−Ae−x)− 3(Ae−x) = e−x

d’on,
(A+ 3A− 3A)e−x = e−x

Per tant A = 1, i una solució particular és

y = e−x

Ara bé, la solució general de l’equació homogènia associada, y′′ − 3y′ − 3y = 0, és

yh = c1e
m1x + c2e

m2x; m1 =
3 +
√

21

2
, m2 =

3−
√

21

2

Aleshores, la solució general de la completa és

y = e−x + c1e
m1x + c2e

m2x; c1, c2 ∈ R

Observem que la solució particular que hem obtingut no és de la mateixa família
d’exponencials que les obtingudes per a l’equació homogènia. X
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Exemple 27 Calcular una solució particular de l’equació

y′′ − 2y′ + y = ex

Solució. Si proposem una funció de la forma

y = Aex

i substituïm, obtenim 0 = ex, que clarament no té solució. El problema amb què ens
trobem és que la funció que proposem és ja solució de l’equació homogènia.

Si abans haguéssim resolt l’equació homogènia, hauríem vist que l’equació característi-
ca m2−2m+1 = 0 té per solució l’arrel m = 1, de multiplicitat 2. Per tant, la solució que
proposem, i també totes les de la forma y = (A + Bx) ex, són solucions de l’homogènia,
associades a l’arrel m = 1.

En aquest casos, la solució que cal proposar és

y = Ax2 ex

és a dir, multiplicar Aex per xk, amb k igual a la multiplicitat de la corresponent arrel de
l’equació característica.

Així,
y′ = 2Axex + Ax2ex, y′′ = 2Aex + 4Axex + Ax2 ex

Substituïnt,
[(2A+ 4Ax+ Ax2)− 2(2Ax+ Ax2) + Ax2]ex = ex

Ara, simplificant i igualant termes corresponents a iguals potències de la x, obtenim

2A = 1, 4A− 4A = 0, A− 2A+ A = 0

Per tant, A = 1
2
. Una solució particular és 1

2
x2 ex i la solució general és

y = (c1 + c2x+
1

2
x2) ex, c1, c2 ∈ R

X
Podem donar aquest criteri de forma més general: si el terme no homogeni de l’equació

és de la forma que apareix en l’Eq. 2.22, i l’equació característica té una arrel α + iβ de
multiplicitat k, llavors cal proposar una solució particular com

y = xk [(A0 + A1x+ · · ·+ Anx
m)eαx sin βx+ (B0 +B1x+ · · ·+Bnx

m)eαx cos βx]
(2.23)

2.6.4 Principi de superposició

Per acabar aquest capítol, presentem un resultat interessant per a calcular solucions parti-
culars d’equacions diferencials lineals no homogènies. És un altre principi de superposició,
que permet fer el càlcul d’una solució particular terme a terme.
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Teorema 5 Si y1(x) verifica

y′′1 + P (x)y′1 +Q(x)y1 = f1(x)

i y2(x) satisfà
y′′2 + P (x)y′2 +Q(x)y2 = f2(x)

aleshores, y(x) = y1(x) + y2(x) és solució de

y′′ + P (x)y′ +Q(x)y = f1(x) + f2(x)

Com aplicació d’aquest resultat vegem l’exemple següent.

Exemple 28 Determinar una solució particular de l’equació

y′′ − 3y′ − 4y = 2 sin x+ 4x2

Solució. A partir del principi de superposició per a equacions no homogènies podem
obtenir

yp = y1 + y2

on y1 és una solució particular de

y′′ − 3y′ − 4y = 2 sin x

i y2 ho és de
y′′ − 3y′ − 4y = 4x2

Anteriorment ja hem estudiat aquestes equacions per separat i teníem

y1 =
1

17
(3 cosx− 5 sinx), y2 = −x2 +

3

2
x− 13

8

Per tant,

yp =
1

17
(3 cosx− 5 sinx)− x2 +

3

2
x− 13

8

X



Capítol 3

Sistemes d’equacions diferencials lineals

3.1 Introducció
Definició 7 Un sistema d’equacions diferencials lineals de primer ordre és un conjunt
d’equacions en la forma

x′1(t) = a11(t)x1(t) + a21(t)x2(t) + · · ·+ an1 (t)xn(t) + b1(t)
x′2(t) = a12(t)x1(t) + a22(t)x2(t) + · · ·+ an2 (t)xn(t) + b2(t)

...
...

x′n(t) = a1n(t)x1(t) + a2n(t)x2(t) + · · ·+ ann(t)xn(t) + bn(t)

(3.1)

o de manera abreujada, en forma matricial,

~x ′ = A(t)~x+~b(t) (3.2)

on A(t) és la matriu de coeficients del sistema donat per l’Eq. 3.1, i ~b(t) és un vector de
termes independents. El sistema serà homogeni si ~b(t) = ~0.

3.1.1 Propietats generals

Com en el capítol anterior, podem fer servir la notació d’operador diferencial per a escriure
l’Eq. 3.2,

L[~x] =

(
d

dt
− A(t)

)
~x (3.3)

Llavors, el sistema homogeni associat a l’Eq. 3.2 ve donat per

L[~x] = ~0

i el sistema complet és
L[~x] = ~b(t)

Degut a la linealitat de l’operador L, l’estructura de les solucions prové de la gene-
ralització immediata de la que es tenia per a equacions diferencials escalars. Així, per
exemple,

• les solucions del sistema homogeni són les que pertanyen al kerL,

28
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• la solució trivial és sempre solució del sistema homogeni,

• la diferència de solucions particulars del sistema complet és solució del sistema ho-
mogeni,

• la solució general del sistema complet s’obté sumant una solució particular qualsevol
a la solució general del sistema homogeni,

• es compleix el principi de superposició, tant per les solucions del sistema homogeni,
com per les del complet.

Teorema 6 (d’existència i unicitat de les solucions) Si A(t) i ~b(t) són contínues en
un interval I ⊂ R, llavors el problema de valor inicial

~x ′ = A(t) ~x+~b(t), ~x(t0) = ~x0 (3.4)

té una única solució en un obert contingut en I.

Destaquem les propietats i definicions següents:

• En particular, si els coeficients de A(t) són continus ∀t ∈ R, les solucions també ho
són.

• La solució ~x(t) és un camp vectorial de classe C1 dins Rn, anomenat espai de les
fases.

• Per a una solució ~x(t), el conjunt de valors (t, ~x(t)) ∈ (I,Rn) és una corba integral,
gràfic de la solució del sistema.

3.2 Relació entre un sistema i una equació
Vegem quina relació hi ha entre un sistema de n equacions diferencials de primer ordre i
una única equació diferencial d’ordre n.

Considerem l’equació

y(n) + an−1(t)y
n−1 + · · ·+ a1(t)y

′ + a0(t)y = f(t) (3.5)

que escrivim amb unes noves variables. Primer definim x1 = y, i després definim recur-
rentment les successives derivades de y:

x′1 = x2
x′2 = x3
...
x′n−1 = xn
x′n = −a0(t)x1 − a1(t)x2 − · · · − an−1(t)xn + f(t)

(3.6)

Llavors, comparant amb l’Eq. 3.1 tenim,

A(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
−a0(t) −a1(t) −a2(t) · · · −an−1(t)

 ; ~b(t) =


0
0
...
0
f(t)

 (3.7)
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El pas d’equació a sistema sempre és possible i, per tant, es pot considerar que les
equacions d’ordre n constitueixen un cas particular dels sistemes d’equacions diferencials.

Exemple 29 L’equació diferencial

y′′ + a1(t)y
′ + a0(t)y = f(t)

s’escriu en forma de sistema, definint x1 = y, com(
x′1
x′2

)
=

(
0 1
−a0 −a1

)(
x1
x2

)
+

(
0
f

)

3.3 Sistemes homogenis
Teorema 7 Les solucions del sistema homogeni

L[~x(t)] = ~0 (3.8)

formen un espai vectorial de dimensió n.

La idea és la següent. Considerem una base {~e1, . . . , ~en} de Rn.
En ella, qualsevol condició inicial s’expressa com

~x(t0) = ~x0 =
n∑
i=1

xi~ei

Considerem ara les solucions (que existeixen i són úniques) ~φi dels n problemes de valor
inicial

L[~φi] = ~0, φ(t0) = ~ei; i = 1, . . . , n

Llavors,

~x(t) =
n∑
i=1

xiφi(t)

és una solució que verifica la condició inicial
n∑
i=1

xiφi(t0) = ~x0

i, per tant, és única. Així, {~φ1(t), . . . , ~φn(t)} és una base de solucions del kerL.

3.3.1 Dependència i independència lineal de funcions

Proposició 1 Considerem un conjunt de funcions vectorials (no parlem encara de solu-
cions d’una equació diferencial) {~x1(t), . . . , ~xn(t)} definides per a t ∈ I, amb valors a Rn.
Formem la matriu quadrada X(t) = [~x1(t), . . . , ~xn(t)].

Si detX(t) 6= 0, per a algun t ∈ I, llavors les funcions són linealment independents
en I.

O bé, si les funcions són linealment dependents en I llavors detX(t) = 0, ∀t ∈ I.

El recíproc no és cert en general.
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3.3.2 Matriu fonamental de solucions

Definició 8 Si {~x1(t), . . . , ~xn(t)} són n solucions l’Eq. 3.8, linealment independents en
l’interval I, llavors, la matriu

X(t) = [~x1(t), . . . , ~xn(t)] (3.9)

s’anomena matriu fonamental de solucions del sistema homogeni.

Per tant, una matriu fonamental de solucions del sistema ~x ′ = A(t)~x satisfà

X ′(t) = A(t)X(t)

Vegem algunes propietats de la matriu fonamental de solucions en relació al PVI de
l’Eq. 3.4.

• Tota solució de l’Eq. 3.4 s’obté a partir d’una combinació lineal de les columnes de
X(t). Si ho expressem matricialment, tenim

~x(t) = X(t)~c (3.10)

El vector constant ~c ∈ Rn es calcula a partir d’una condició inicial

~x0 = X(t0)~c

• Com les columnes de X(t) són linealment independents, la matriu és invertible i,
per tant,

detX(t) 6= 0,∀t ∈ I (3.11)

El determinant de la matriu fonamental de solucions és el wronskià de les solucions.

• La solució del PVI es pot escriure substituïnt

~c = X−1(t0)~x0

en l’Eq. 3.10:
~x(t) = X(t)X−1(t0)~x0 (3.12)

• En particular, la solució trivial ~x(t) = ~0,∀t ∈ I, és la única solució del sistema
homogeni amb condició inicial ~x(t0) = ~0.

• En general, si X(t) és matriu fonamental de solucions i M és una matriu regular,
llavors X(t)M també és una matriu fonamental de solucions.

• La matriu fonamental obtinguda com

Φ(t) = X(t)X−1(t0)

verifica
Φ(t0) = I

i s’anomena matriu fonamental principal.
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La segona de les propietats ens proporciona el recíproc de la Proposició 1:

Proposició 2 Les columnes d’una matriu de solucions X(t) són linealment independents
si, i només si, detX(t) 6= 0.

Exemple 30 Si ~x1 = (1, t)T , ~x2 = (t2, 0)T són solució de ~x ′ = A(t)~x, calcular A(t).

Solució. Derivant, obtenim ~x ′1 = (0, 1)T , ~x ′2 = (2t, 0)T . Per tant, es complirà(
0 2t
1 0

)
= A(t)

(
1 t

2

t 0

)
Si t 6= 0, és a dir, per a t < 0 o per a t > 0, la matriu de solucions

X(t) =

(
1 t

2

t 0

)
és invertible (és una matriu fonamental de solucions). Llavors,

A(t) =

(
0 2t
1 0

)(
1 t

2

t 0

)−1
=

(
0 2t
1 0

)
−1

t3

(
0 −t2

−t 1

)
=
−1

t3

(
−2t2 2t

0 −t2
)
X

Vegem un sistema senzill de resoldre.

Exemple 31 Calcular la solució de

~x ′(t) =

(
1 0
0 2t

)
~x(t)

tal que ~x(t0) = (a, b)T .

Solució. En aquest cas podem escriure i resoldre les dues equacions per separat

x′1 = x1, x′2 = 2tx2

d’on
x1(t) = aet−t0 , x2(t) = bet

2−t20

Per tant, (
x1(t)
x2(t)

)
=

(
et−t0 0

0 et
2−t20

)(
a
b

)
Observem que la matriu fonamental del sistema és principal:(

et 0

0 et
2

)(
et0 0

0 et
2
0

)−1
=

(
et−t0 0

0 et
2−t20

)
X
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3.4 Matriu exponencial
Havíem vist que les funcions exponencials generaven les solucions de les equacions dife-
rencials lineals (excepte en un factor polinomic, per a arrels múltiples), incloent també les
solucions associades a arrels complexes de l’equació característica.

Això es pot generalitzar si usem una sèrie de matrius que pren com a patró la sèrie de
la funció exponencial d’una variable real, et = 1 + t+ 1

2
t2 + · · ·+ 1

n!
tn + · · · .

Es pot demostrar que, com la sèrie escalar, la sèrie de matrius és uniformement con-
vergent, la qual cosa permet sumar sèries d’aquest tipus, fer productes entre elles, inclús
derivades i integrals, tot mantenint la convergència.

Definició 9 Si A és una matriu n × n, la matriu exponencial es defineix com la sèrie
infinita de matrius

eA =
∞∑
k=0

Ak

k!
(3.13)

Per tant, eA ∈Mn×n.

Propietat 1 Fem un resum de les propietats més importants:

• e0 = I.

• Si AB = BA, llavors eA eB = eA+B = eB eA.

• eAe−A = e0 = I, d’on (eA)−1 = e−A.

• det eA 6= 0, ∀A.

• Si A = P B P−1, aleshores eA = P eB P−1.

Exemple 32 Vegem uns casos particulars:

1. Si λ és un escalar, eλI = eλI.

2. Si A = diag(a1, . . . , an), llavors eA = diag(ea1 , . . . , ean).

3. Si A = diag(A1, . . . , An) és una matriu diagonal per blocs, llavors eA = diag(eA1 , . . . , eAn).

4. Si An = 0, llavors eA = I + A+ 1
2
A2 + · · ·+ 1

(n−1)!A
n−1.

Proposició 3 Considerem A ∈ Mn×n una matriu constant i una variable t ∈ R. Ales-
hores,

d

dt
eAt = AeAt (3.14)

Ara podem passar de treballar amb sèries de matrius a fer-ho amb sèries de vectors. Per
exemple, per a qualsevol vector ~v, que no depengui de t,

d

dt

(
eAt ~v

)
= AeAt ~v (3.15)

I, també considerant sèries de vectors, tenim la següent propietat important:
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Propietat 2 Considerem A ∈ Mn×n(R) i una variable real t. Donat un escalar λ i un
vector constant ~v, es compleix

eAt~v = eλt e(A−λI)t~v (3.16)

Aquesta propietat és dedueix immediatament del primer dels exemples i del fet que les
matrius λI i (A−λI) commuten. Si ara la combinem amb el darrer dels exemples, obtenim
una propietat que serà molt útil a l’hora de resoldre sistemes d’equacions diferencial lineals:

Propietat 3 Si existeix un nombre natural n tal que (A− λI)n ~v = ~0, llavors

eAt~v = eλt
(
I + t (A− λI) +

t2

2
(A− λI)2 + · · ·+ tn−1

(n− 1)!
(A− λI)n−1

)
~v (3.17)

En particular, tenim,

Proposició 4 Si ~v és vector propi de A amb valor propi λ, llavors ~v també és vector propi
de eA amb valor propi eλ.

Es dedueix de la proposició anterior, amb t = 1.

3.5 Sistema homogeni a coeficients constants

Estudiem el cas en que la matriu del sistema homogeni

~x ′ = A~x (3.18)

te coeficients constants, A ∈Mn×n(R).
Pels resultats que hem vist en la secció anterior, podem afirmar el següent:

• L’equació 3.14 garanteix que la matriu eAt és una matriu de solucions de l’Eq. 3.18.

• Com el determinant det eAt 6= 0, les columnes de matriu de solucions són linealment
independents ∀t ∈ R. Per tant, eAt és una matriu fonamental principal de solucions.

• Si X(t) és una matriu fonamental de solucions de l’Eq. 3.18, existeix una matriu
regular i constant C tal que eAt = X(t)C.

Fixades unes condicions inicials en t = t0, tindrem eAt0 = X(t0)C, d’on C =
X−1(t0) e

At0 .

Podem doncs concloure,

Teorema 8 Tota matriu fonamental de solucions X(t) del sistema homogeni, Eq. 3.18,
és de la forma

X(t) = eA(t−t0)X(t0)
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3.5.1 Solució del sistema

Ara només queda saber com escriure la matriu fonamental eAt sense haver de recórrer
a la sèrie infinita que la defineix. Per això només cal trobar n vectors linealment inde-
pendents ~v ∈ Rn que proporcionin les n solucions linealment independents de l’Eq. 3.18,
en la forma eAt~v. Aquests vectors els proporciona el teorema de descomposició primària
d’endomorfismes, que el podem recordar tot enunciant-lo pel polinomi mínim associat a
la matriu A.

Teorema 9 Sigui pA(λ) = (−1)n pn1
1 · · · p

nk
k (

∑k
i=1 ni gr(pi) = n) la descomposició fac-

torial del polinomi característic de la matriu A ∈ Mn×n, i mA(λ) = pm1
1 · · · p

mk
k la del

polinomi mínim. Aleshores, l’espai vectorial E es descomposa en suma directa dels se-
güents subespais invariants,

E = ker pm1
1 (f)⊕ · · · ⊕ ker pmk

k (f)

amb dim ker pmi = dim ker pni = nigr(pi).

Vegem com són les solucions en termes de les arrels del polinomi característic.

3.5.2 Arrels reals simples

Sigui λj una arrel real simple de pA(λ), és a dir, un valor propi de A. Si ~v és el seu vector
propi, es complirà

(A− λjI)~v = ~0

aleshores, tenint en compte l’Eq. 3.17, tindrem una solució del sistema Eq. 3.18 en la
forma

~x(t) = eAt~v = eλjt~v (3.19)

Exemple 33 Resoldre el PVI

~x ′ =

(
−5 1

4 −2

)
~x; ~x(0) =

(
1
2

)
Solució.

Primer busquem els valors propis la matriu,

det(A− λI) =
−5− λ 1

4 −2− λ = λ2 + 7λ+ 6 = (λ+ 1)(λ+ 6)

Per tant, les arrels del polinomi característic són λ1 = −1, λ2 = −6. Ara busquem els
vectors propis. Per a λ1 = −1, hem de resoldre(

−4 1
4 −1

) (
x
y

)
=

(
0
0

)

d’on y = 4x. Per tant, un vector propi serà
(

1
4

)
.
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Ara, per a λ2 = −6, resolem(
1 1
4 4

) (
x
y

)
=

(
0
0

)

d’on x = −y. Per tant, un vector propi serà
(
−1

1

)
.

La solució general d’aquest sistema homogeni és, doncs,

~x(t) = c1e
−t
(

1
4

)
+ c2e

−6t
(
−1

1

)
=

(
e−t −e−6t

4e−t e−6t

)(
c1
c2

)
Ara només queda calcular les constants, a fi de satisfer la condició inicial.

~x(0) =

(
1 −1
4 1

)(
c1
c2

)
=

(
1
2

)
Resolent aquest sistema, obtenim c1 = 3

5
, c2 = −2

5
. Per tant, la solució del PVI és

~x(t) =

(
e−t −e−6t

4e−t e−6t

)(
3
5

−2
5

)
=

(
3
5
e−t + 2

5
e−6t

12
5
e−t − 2

5
e−6t

)
X

3.5.3 Arrels complexes simples

De manera semblant a l’Exemple 7 de la secció Descomposició primària dels apunts d’àl-
gebra lineal Polinomis de matrius i descomposició primària, si λj = α ± iβ són arrels
complexes simples del polinomi característic amb vectors propis respectius ~a± i~b, alesho-
res, les dues solucions reals són les parts real i imaginària de

~x(t) = eAt~v = e(α+iβ)t(~a+ i~b) = eαt(cos βt+ i sin βt)(~a+ i~b)

És a dir,
~x1(t) = eαt(cos βt~a− sin βt~b)

~x2(t) = eαt(sin βt~a+ cos βt~b)
(3.20)

3.5.4 Arrels múltiples

Multiplicitats algebràica i geomètrica iguals

Si λj és una arrel real de pA(λ) de multiplicitat m, i existeixen m vectors propis linealment
independents, ~v1, . . . , ~vm associats a aquest valor propi, llavors les m solucions indepen-
dents de l’Eq. 3.18 s’obtenen de la mateixa manera que en l’Eq. 3.19, una per a cada
vector propi:

~xi(t) = eAt~vi = eλjt~vi; i = 1, . . . ,m

Si l’arrel és complexa, es fa el mateix amb les solucions de l’Eq. 3.20.
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Multiplicitats algebràica i geomètrica diferents

Sigui λj una arrel real de pA(λ) de multiplicitat nj, i suposem que existeixen menys de nj
vectors propis linealment independents. Llavors, pel teorema de descomposició primària
d’endomorfismes, sabem que dim ker(A − λjI)mj = nj, on mj és la potència del factor
d’aquesta arrel en el polinomi mínim mA(λ). Llavors existeixen nj vectors linealment
independents ~v1, . . . , ~vnj

que compleixen

(A− λjI)mj~vi = ~0; i = 1, . . . , nj

Per tant, d’acord amb l’Eq. 3.17, les nj solucions independents seran de la següent forma.
Si, ~v ∈ ker(A− λjI)mj ,

~x(t) = eAt~v = eλjt
(
~w0 + t~w1 +

t2

2
~w2 + · · ·+ tmj−1

(mj − 1)!
~wmj−1

)
(3.21)

amb
~wk = (A− λjI)k~v; k = 0, . . . ,mj − 1

Si l’arrel és complexa, cal donar separadament una solució per la part real i la part
imaginària de l’Eq. 3.21, com s’ha fet en l’Eq. 3.20.

Existeix una relació de recurrència entre els vectors ~wk anteriors, que és útil a l’hora
de simplificar els càlculs:

Proposició 5 Considerem la solució de l’Eq. 3.21 associada a un vector ~v = ~w0 ∈
ker(A− λjI)mj . Llavors, els següents vectors de la sèrie verifiquen

~wk = (A− λjI)~wk−1 ∈ ker(A− λjI)mj−k; k = 1, . . . ,mj − 1 (3.22)

Observació. Com que entre els nj vectors del ker(A − λjI)mj ja s’hi troba, com a
mínim, un vector de cada ker(A − λjI)k, amb 1 ≤ k ≤ mj, podem formar una primera
família de solucions amb el màxim nombre de vectors linealment independents del ker(A−
λjI). Després, per a buscar vectors del ker(A − λjI)2 ho farem a partir dels anteriors,
tot aplicant la llei de recurrència de l’Eq. 3.22. És a dir, si ~v1 ∈ ker(A− λjI), un vector
~v2 ∈ ker(A− λjI)2 el trobarem resolent el sistema

(A− λjI)~v2 = ~v1 (3.23)

i així successivament, fins a completar els nj vectors desitjats. Vegem-ho amb un exemple.

Exemple 34 Resoldre el PVI

~x ′ =

(
7 1
−4 3

)
~x; ~x(0) =

(
2
−5

)
Solució.

Busquem els valors propis la matriu,

det(A− λI) =
7− λ 1
−4 3− λ = λ2 − 10λ+ 25 = (λ− 5)2
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Per tant, l’arrel del polinomi característic és λ = 5, doble. Ara busquem un vector propi
per a aquest valor. (

2 1
−4 −2

) (
x
y

)
=

(
0
0

)
d’on y = −2x. Per tant, un vector propi serà ~v1 =

(
1
−2

)
. De moment, una solució

particular del sistema homogeni serà

~x1(t) = e5t
(

1
−2

)
Evidentment, dim ker(A−5I) = 1. Com la matriu del sistema no diagonalitza, haurem

de trobar l’altra solució particular a partir d’un vector linealment independent de l’ante-
rior, que sigui del ker(A − 5I)2. Aquest vector, ~v2, d’acord amb l’Eq. 3.23, el trobarem
resolent (A− 5I)~v2 = ~v1. (

2 1
−4 −2

) (
x
y

)
=

(
1
−2

)
d’on y = 1− 2x. Fent x = 0 tenim ~v2 =

(
0
1

)
. Així, l’altra solució particular serà

~x2(t) = e5t
[(

0
1

)
+ t

(
1
−2

)]
Finalment, la solució general del sistema homogeni és ~x(t) = c1~x1(t) + c2~x2(t), que, en
forma de matriu fonamental de solucions, s’escriu com

~x(t) = e5t
(

1 t
−2 1− 2t

)(
c1
c2

)
Ara només queda calcular les constants per a satisfer la condició inicial.

~x(0) =

(
1 0
−2 1

)(
c1
c2

)
=

(
2
−5

)
Resolent aquest sistema, obtenim c1 = 2, c2 = −1. Per tant, la solució del PVI és

~x(t) = e5t
(

1 t
−2 1− 2t

)(
2
−1

)
= e5t

(
2− t
−5 + 2t

)
X

3.6 Sistemes no homogenis
Com en el cas d’equacions no homogènies d’ordre n, veurem el mètode de variació de
les constants per a sistemes d’equacions lineals. Aquest procediment permet trobar una
solució particular del sistema complet a partir de la solució general del sistema homogeni,
encara que la matriu del sistema no tingui coeficients constants.
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Suposem que X(t) és una matriu fonamental de solucions de l’Eq. 3.18, i assajem una
solució de l’Eq. 3.2 en la forma

~xp(t) = X(t)~c(t) (3.24)

Substituïnt aquesta solució proposada en l’Eq. 3.2, veurem com ha de ser la funció
vectorial ~c(t):

X ′(t)~c(t) +X(t)~c ′(t) = A(t)X(t)~c(t) +~b(t)

Però com que la matriu fonamental de solucions del sistema homogeni compleix

X ′(t)~c(t) = A(t)X(t)~c(t)

ens queda
X(t)~c ′(t) = ~b(t)

Resolent aquest sistema per a ~c ′(t), i integrant, haurem obtingut la solució particular
buscada. En efecte, com detX(t) 6= 0, podem invertir el sistema,

~c ′(t) = X−1(t)~b(t); ~c(t) =

∫
X−1(t)~b(t) dt

Per tant, una solució particular serà

~xp(t) = X(t)

∫
X−1(t)~b(t) dt (3.25)

Finalment, podem escriure la solució general del sistema complet tot afegint-hi la solució
general del sistema homogeni:

~x(t) = X(t)

(∫
X−1(t)~b(t) dt+ ~c

)
, ~c ∈ Rn (3.26)

Exemple 35 Trobar la solució general del sistema

~x ′ =

(
−5 1

4 −2

)
~x+ e2t

(
6
−1

)
Solució. El sistema homogeni ja havia estat estudiat en l’exemple 33. La matriu fona-
mental de solucions era

X(t) =

(
e−t −e−6t

4e−t e−6t

)
La seva inversa és

X−1(t) =

(
1
5
et 1

5
et

−4
5
e6t 1

5
e6t

)
Per tant, la solució particular ~xp(t) = X(t)~c(t) satisfarà

~c ′(t) = X−1(t)~b(t) =

(
1
5
et 1

5
et

−4
5
e6t 1

5
e6t

)(
6e2t

−e2t
)

=

(
e3t

−5e8t

)
Ara integrem cada component,∫

X−1(t)~b(t) dt =

( ∫
e3t dt∫
−5e8t dt

)
=

(
1
3
e3t

−5
8
e8t

)
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I ja podem escriure la solució particular,

~xp(t) = X(t)

∫
X−1(t)~b(t) dt =

(
e−t −e−6t

4e−t e−6t

)(
1
3
e3t

−5
8
e8t

)
= e2t

(
23
24

−17
24

)
Finalment, la solució general del sistema complet és

~x(t) = c1e
−t
(

1
4

)
+ c2e

−6t
(
−1

1

)
+ e2t

(
23
24

−17
24

)
Observem que també hauríem pogut provar el mètode dels coeficients indeterminats

amb una solució particular de la forma e2t
(
a1
a2

)
. X

En el mètode dels coeficients indeterminats per a sistemes d’equacions, la solució que
es conjectura segueix bàsicament els mateixos criteris que per a equacions escalars, espe-
cialment quan el tipus de solució proposada no pot ser una solució del sistema homogeni.
En cas contrari, cal tenir en compte que la independència de la solució proposada respecte
de les solucions de l’homogènia recau més en el caràcter vectorial de les constants, que no
pas en el tipus de funcions que es proposen. Per exemple, el sistema

~x ′ =

(
1 0
0 2

)
~x+ et

(
0
1

)

admet et
(

1
0

)
i e2t

(
0
1

)
com a solucions de la part homogènia. Podem proposar una

solució particular, que no sigui solució del sistema homogeni, del tipus et
(

0
a

)
i obtenir,

per coeficients indeterminats, a = −1. Com que
(

0
−1

)
no és vector propi associat al

valor propi 1, la solució particular et
(

0
−1

)
, tot i contenir l’exponencial et, no satisfà

l’equació homogènia, sinó que satisfà la completa.
A part dels mètodes vistos, hi ha maneres alternatives de resoldre equacions i sistemes

d’equacions diferencials lineals, com per exemple, aplicar la transformada de Laplace.


