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1 Introducció

La transformació de Laplace és un mètode alternatiu per a la resolució de problemes de
valor inicial d’equacions diferencials lineals a coeficients constants. És especialment útil
quan, per un sistema regit per aquestes equacions, es vol relacionar la resposta del sistema
a un estímul extern amb la seva pròpia resposta natural (associada a la part homogènia de
l’equació). En particular, quan es té determinat el comportament del sistema envers un
impuls inicial, es pot avaluar la resposta davant de qualsevol altre estímul aplicat (donat
pel terme no homogeni de l’equació) mitjançant la integral de convolució.

Així mateix, la transformada de Laplace també permet calcular de manera molt efici-
ent, més que emprant els mètodes habituals ja estudiats, la resposta d’un sistema davant
de certes excitacions discontínues. Per exemple, problemes d’impulsos i variacions de
quantitat de moviment en mecànica, o problemes d’interruptors en circuïts elèctrics. Al-
tres aplicacions més avançades de la transformació de Laplace es troben exemplificades
en xarxes de circuïts connectats entre si, o amb induccions mútues, on la resposta d’un
d’ells actua com a estímul extern d’un altre.

Originalment, Laplace (1749-1827) va ser el primer en fer ús de la transformada integral
–que ara porta el seu nom– en els seus treballs sobre mecànica celest. Va ser, però,
Heaviside (1850-1925) qui posteriorment realitzà el seu desenvolupament.

La transformada de Laplace no té una interpretació física immediata, com és el cas de
la transformada de Fourier, que es pot relacionar, per exemple, amb l’espectre o el patró
de difracció de fenòmens de naturalesa ondulatòria.

És una transformació lineal que permet transformar una equació diferencial,

an
dny

dtn
+ ... + a1

dy

dt
+ a0y = f(t)

juntament amb unes condicions inicials adequades, per exemple, y(0) = y′(0) = · · · =
y(n−1)(0) = 0, en una equació algebraica de la forma

(ans
n + ...+ a1s+ a0) Y (s) = F (s)

S’ha d’efectuar, doncs, una transformació, i posteriorment la inversió de la transformació.
La transformada de Laplace també es pot aplicar a un sistema de vàries equacions

diferencials lineals simultànies per a transformar-lo en un sistema lineal de vàries equacions
algebraiques simultànies. En altres casos, el mètode es pot utilitzar per a resoldre una
equació diferencial lineal amb coeficients no constants per a transformar-la en una de
menor ordre, eventualment de més fàcil resolució. Quan s’aplica a equacions diferencials
en derivades parcials, les converteix en equacions diferencials ordinàries.

A continuació veurem les definicions i propietats bàsiques que permetran resoldre els
problemes més elementals que s’han comentat.
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2 Transformació de Laplace

Comencem definint formalment la transformada de Laplace.

Definició 1 Sigui f una funció real definida per a 0 ≤ t < ∞, la transformada de Laplace
de f(t), que designarem per L {f(t)} o per F (s), és la funció de la variable real s

F (s) ≡ L {f(t)} ≡
∫

∞

0

e−stf(t) dt (1)

on
∫

∞

0

e−stf(t) dt = lim
A→∞

∫ A

0

e−stf(t) dt

En realitat, per a ser rigorosos, el límit inferior de la integral s’hauria d’avaluar en 0+,
és a dir, en un valor positiu |h|, quan h → 0, però en la pràctica i en el que segueix, ho
escriurem simplement com a 0.

Exemple 1 Obtenir la transformada de Laplace de la funció f(t) = 1.

Solució. A partir de l’equació (1)

L {f(t)} = lim
A→∞

∫ A

0

e−stf(t) dt = lim
A→∞

1− e−sA

s

=

{

1

s
, s > 0

∞ , s ≤ 0

X

Exemple 2 Obtenir la transformada de Laplace de la funció f(t) = eαt.

Solució. De l’equació (1)

L
{

eαt
}

= lim
A→∞

∫ A

0

e−steαt dt = lim
A→∞

e(α−s)A − 1

α− s

=

{ 1

s− α
, s > α

∞ , s ≤ α

X

Exemple 3 Obtenir la transformada de Laplace de la funció f(t) = cosωt, g(t) = sinωt.

Solució. De l’equació (1) es té

L {cosωt} =

∫

∞

0

e−st cosωt dt i L {sinωt} =

∫

∞

0

e−st sinωt dt
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Observem, a més, que

L {cosωt}+ iL {sinωt} =

∫

∞

0

e−steiωt dt = lim
A→∞

∫ A

0

e(iω−s)t dt

= lim
A→∞

e(iω−s)A − 1

iω − s

=











1

s− iω
=

s+ iω

s2 + ω2
, s > 0

no definit , s ≤ 0

En igualar les parts reals i imaginàries d’aquesta equació es té

L {cosωt} =
s

s2 + ω2
, L {sinωt} =

ω

s2 + ω2
, s > 0

X

L’equació (1) associa a cada funció f(t) amb una nova funció F (s). Tal i com suggereix
la notació L {f(t)}, la transformada de Laplace és un operador que actua sobre funcions.
A més, es tracta d’un operador lineal:

Propietat 1 (Linealitat) L {af(t) + bg(t)} = aL {f(t)}+ bL {g(t)}.
Demostració. Per definició,

L {af(t) + bg(t)} =

∫

∞

0

e−st
(

af(t) + bg(t)
)

dt

= a

∫

∞

0

e−stf(t) dt+ b

∫

∞

0

e−stg(t) dt

= aL {f(t)}+ bL {g(t)}

2

2.1 Funcions admissibles

Una dificultat a tenir en compte de la Definició 1 és que la integral podria no existir per
a algun valor de s. Això succeeix per exemple en el cas de f(t) = et

2

. Per a garantir que
la transformada de Laplace de f(t) existeixi almenys en un interval s > s0, s’exigeixen a
f(t) les següents condicions:

a) La funció f(t) és contínua per seccions. Això significa que f(t) té com a molt
un número finit de discontinuïtats en tot interval 0 ≤ t ≤ t0, i tant el límit per
l’esquerra com per la dreta de f existeixen en tots els punts de discontinuïtat. Dit
d’altra manera, f(t) té tan sols un número finit de discontinuïtats “de salt” en tot
interval finit. En la Figura 1 es representa la gràfica d’una típica funció contínua
per seccions, o contínua a trossos.

b) La funció f(t) és d’ordre exponencial, és a dir que existeixen constants M i γ tals
que

|f(t)| ≤ Meγt, 0 ≤ t < ∞
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f(t)

t
a b

f1 f2

f3

Figura 1: Gràfica d’una funció contínua per seccions.

Lema 1 Sigui f(t) una funció contínua per seccions i d’ordre exponencial, llavors la seva

transformada de Laplace existeix per a tot s suficientment gran. En particular, si f(t) és

contínua per seccions i |f(t)| ≤ Meγt, llavors F (s) existeix per a s > γ.

Les funcions que compleixen això s’anomenen “funcions admissibles”. La demostració del
Lema 1 es farà amb l’ajuda del següent lema del càlcul integral, que s’anuncia a continuació
però no es demostra.

Lema 2 Sigui g(t) una funció contínua per seccions. Llavors la integral impròpia
∫

∞

0
g(t) dt

existeix si
∫

∞

0
|g(t)| dt existeix. Per a demostrar que aquesta última integral existeix, no-

més cal provar que hi ha una constant K tal que

∫ A

0

|g(t)| dt ≤ K

per a tot A.

Demostració (Lema 1). Ja que f(t) és contínua per seccions, llavors la integral
∫ A

0
e−stf(t) dt existeix per a tot A. Per tal de demostrar que la integral té un límit

per a tot s suficientment gran, observem que

∫ A

0

∣

∣e−stf(t)
∣

∣ dt ≤ M

∫ A

0

e−steγt dt

=
M

γ − s

(

e(γ−s)A − 1
)

≤ M

s− γ

per a s > γ. Llavors, basant-nos en el Lema 2, es té que la transformada de Laplace de
f(t) existeix per a s > γ. Així doncs, a partir d’ara suposarem que |f(t)| ≤ Meγt i
s > γ. 2
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3 Aplicació a les equacions diferencials

La utilitat real de la transformada de Laplace per a resoldre equacions diferencials recau en
el fet que la transformada de Laplace de f ′(t) està molt relacionada amb la transformada
de f(t). Aquest és el contingut del següent lema.

Lema 3 (Derivació) Sigui F (s) = L {f(t)}. Llavors

L {f ′(t)} = sL {f(t)} − f(0) = sF (s)− f(0) (2)

Demostració. Només cal escriure la fórmula per a la transformada de Laplace de f ′(t),
i integrar per parts. Així es té

L {f ′(t)} = lim
A→∞

∫ A

0

e−stf ′(t) dt

= lim
A→∞

e−stf(t)
∣

∣

∣

A

0
+ lim

A→∞

s

∫ A

0

e−stf(t) dt

= −f(0) + lim
A→∞

s

∫ A

0

e−stf(t) dt

= sF (s)− f(0)

2

El següent pas es trobar una relació entre la transformada de Laplace de f ′′(t) i la de
f ′(t), cosa que no és més que una conseqüència del Lema 3.

Corol·lari 1 Sigui F (s) = L {f(t)}. Llavors

L {f ′′(t)} = s2F (s)− sf(0)− f ′(0) (3)

Demostració. Aplicant dues vegades el Lema 3 trobem que

L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s
(

sF (s)− f(0)
)

− f ′(0)

= s2F (s)− sf(0)− f ′(0)

2

3.1 Equació diferencial lineal

Arribat aquest punt, ja tenim els elements necessaris per a passar a resoldre un problema
de valor inicial

a
d2y

dt2
+ b

dy

dt
+ cy = f(t), y(0) = y0, y′(0) = y′0 (4)

a partir de resoldre una equació algebraica. Siguin Y (s) i F (s) les transformades de
Laplace de y(t) i f(t) respectivament. Aplicant l’operador de transformació a ambdós
costats de l’equació diferencial s’obté

L {ay′′(t) + by′(t) + cy(t)} = F (s)
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Tenint en compte la linealitat de l’operador de transformació s’obté

L {ay′′(t) + by′(t) + cy(t)} = aL {y′′(t)}+ bL {y′(t)}+ cL {y(t)}

i d’acord amb el Lema 3 i el Corol·lari 1, es té que

L {y′(t)} = sY (s)− y0 , L {y′′(t)} = s2Y (s)− sy0 − y′0

Per tant,
a
(

s2Y (s)− sy0 − y′0
)

+ b(sY (s)− y0) + cY (s) = F (s)

Aquesta equació algebraica implica que

Y (s) =
(as + b)y0
as2 + bs+ c

+
ay′0

as2 + bs + c
+

F (s)

as2 + bs+ c
(5)

L’equació (5) descriu la transformada de Laplace de la solució y(t) del problema de
valors inicials (4). Per a avaluar y(t) és necessari consultar les taules d’antitransforma-
des de Laplace. Ara bé, així com Y (s) s’expressa explícitament en termes de y(t), és a
dir Y (s) =

∫

∞

0
e−sty(t) dt, també seria possible donar una fórmula explícita per a y(t).

No obstant això, aquesta fórmula, que s’escriu simbòlicament com y(t) = L −1 {Y (s)},
implica una integració respecte d’una variable complexa, cosa que va més enllà del tema
tractat en aquests apunts. Per això, en lloc d’aplicar la fórmula, es deduiran en la següent
secció algunes propietats funcionals de l’operador transformada de Laplace. Les propie-
tats permetran invertir per simple inspecció moltes transformades de Laplace, és a dir,
permetran reconèixer de quines funcions són transformades. És comú referir-s’hi com a
transformada inversa o antitransformada.

Exemple 4 Resoldre el problema de valor inicial

y′′ − 3y′ + 2y = e3t, y(0) = 1, y′(0) = 0

Solució. Sigui Y (s) = L {y(t)}. Aplicant la transformada de Laplace a ambdós membres
de l’equació diferencial s’obté

s2Y (s)− s− 3
(

sY (s)− 1
)

+ 2Y (s) =
1

s− 3

i això implica que

Y (s) =
1

(s− 3) (s2 − 3s+ 2)
+

s− 3

s2 − 3s+ 2

=
1

(s− 1)(s− 2)(s− 3)
+

s− 3

(s− 1)(s− 2)
.

Per a trobar y(t), es desenvolupa en fraccions simples cada un dels termes del segon
membre, i s’obté

1

(s− 1)(s− 2)(s− 3)
=

A

s− 1
+

B

s− 2
+

C

s− 3

Això implica que

A(s− 2)(s− 3) +B(s− 1)(s− 3) + C(s− 1)(s− 2) = 1
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En fer s = 1 s’obté A = 1
2
, fent s = 2 s’obté B = −1, i amb s = 3 s’obté C = 1

2
. Per tant,

1

(s− 1)(s− 2)(s− 3)
=

1

2

1

s− 1
− 1

s− 2
+

1

2

1

s− 3

De manera similar,
s− 3

(s− 1)(s− 2)
=

D

s− 1
+

E

s− 2

i d’aquí
D(s− 2) + E(s− 1) = s− 3

Ara, fent s = 1 s’obté D = 2, mentre que amb s = 2 s’obté E = −1. Per tant,

Y (s) =
1

2

1

s− 1
− 1

s− 2
+

1

2

1

s− 3
+

2

s− 1
− 1

s− 2

=
5

2

1

s− 1
− 2

s− 2
+

1

2

1

s− 3

El primer terme és la transformada de Laplace de 5
2
et. De manera similar, el segon i el

tercer terme són les transformades de −2e2t i 1
2
e3t, respectivament. Conseqüentment,

Y (s) = L

{

5

2
et − 2e2t +

1

2
e3t

}

=⇒ y(t) =
5

2
et − 2e2t +

1

2
e3t

X

Observació. En realitat existeix una infinitat de funcions amb idèntica transformada
de Laplace . Per exemple, la transformada de Laplace de les funcions

z(t) =

{ 5

2
et − 2e2t +

1

2
e3t si t 6= 1, 2, 3

0 si t = 1, 2, 3

és també Y (s), ja que z(t) difereix de y(t) tan sols en tres punts1. No obstant, només hi
ha una funció contínua y(t) que té per transformada de Laplace una funció donada Y (s),
i és en aquest sentit que s’escriu y(t) = L −1 {Y (s)}.

3.2 Sistemes d’equacions

La transformada de Laplace també és útil per a resoldre sistemes d’equacions diferencials
lineals a coeficients constants. Vegem-ho amb un exemple.

Exemple 5 Resoldre el següent problema de valor inicial no homogeni.







x′

1(t) = 3x1(t)− 3x2(t) + 2

x′

2(t) = −6x1(t)− t
x1(0) = 1, x2(0) = −1 (6)

1Si f(t) = g(t), excepte en un número finit de punts, llavors
∫

b

a
f(t) dt =

∫

b

a
g(t) dt
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Solució.
Notem X1(s) = L {x1(t)} , X2(s) = L {x2(t)}. Aplicant la transformada de Laplace

a ambdós membres de les dues equacions diferencials s’obté






sX1(s)− x1(0) = 3X1(s)− 3X2(s) +
2
s

sX2(s)− x2(0) = −6X1(s)− 1
s2

(7)

Substituïnt les condicions inicials i simplificant, tenim






(s− 3)X1(s) + 3X2(s) =
2
s
+ 1 = s+2

s

6X1(s) + sX2(s) = − 1
s2

− 1 = −s2+1
s2

(8)

Ara cal de resoldre el sistema d’equacions, és a dir, aïllar X1(s), X2(s), i buscar les
transformades inverses.

Per exemple, multipliquem la primera equació per s, la segona per -3 i sumem. Això
dóna

(s2 − 3s− 18)X1(s) = 2 + s+
3s2 + 3

s2

d’on

X1(s) =
s3 + 5s2 + 3

s2(s+ 3)(s− 6)

Desenvolupant en fraccions simples, queda

X1(s) =
1

108

(

133

s− 6
− 28

s+ 3
+

3

s
− 18

s2

)

Antitransformant, obtenim la primera solució,

x1(t) =
1

108
(133e6t − 28e−3t + 3− 18t)

De manera semblant, per a calcular la segona solució podríem tornar enrera, eliminar
X1 i trobar la transformada X2. Ara bé, en aquest cas és més ràpid usar la segona de les
equacions diferencials, on no apareix el terme en x2(t), i integrar directament,

x2(t) =

∫

(−6x1(t)− t) dt

Per tant, substituint-hi la primera solució tindrem

x2(t) = − 1

18

∫

(133e6t − 28e−3t + 3)dt = − 1

108
(133e6t + 56e−3t + 18t) + c

Ara, apliquem la segona condició inicial per a calcular la constant d’integració c,

−1 = − 1

108
(133 + 56) + c, c =

3

4

La segona solució és, doncs,

x2(t) = − 1

108
(133e6t + 56e−3t + 18t− 81)

X
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4 Càlcul de transformades

En aquesta secció s’obtindran algunes propietats importants de les transformades de La-
place. Utilitzant aquestes propietats serà possible calcular la transformada de la majoria
de les funcions sense haver de realitzar integracions pesades. A més, es podran invertir
moltes transformades per simple inspecció.

Propietat 2 (Multiplicació per t) Si L {f(t)} = F (s), llavors

L {−tf(t)} =
d

ds
F (s) (9)

Demostració. Per definició, F (s) =
∫

∞

0
f(t) dt. En derivar ambdós costats de l’equació

respecte de s, s’obté

d

ds
F (s) =

d

ds

∫

∞

0

e−stf(t) dt

=

∫

∞

0

∂

∂s

(

e−st
)

f(t) dt =

∫

∞

0

−te−stf(t) dt

= L {−tf(t)}

2

La Propietat 2 estableix que la transformada de Laplace de la funció −tf(t) és la
derivada de la transformada de Laplace de f(t). Així doncs, si es coneix la transformada
F (s) de f(t), llavors ja no és necessari realitzar una integració pesada per a trobar la
transformada de tf(t).

Exemple 6 Obtenir la transformada de Laplace de tet.

Solució. La transformada de et és
1

s− 1
. Per tant, per la Propietat 2, la transformada de

Laplace de tet és

L
{

tet
}

= − d

ds

1

s− 1
=

1

(s− 1)2

X

Exemple 7 Obtenir la transformada de Laplace de tn.

Solució. Utilitzant n vegades consecutives la Propietat 2 s’obté

L {tn} = (−1)n
dn

dsn
L {1} = (−1)n

dn

dsn
1

s
=

n!

sn+1

X

La utilitat principal de la Propietat 2 és invertir transformades, com es mostra en els
següents exemples.

Exemple 8 Quina funció té per transformada de Laplace
−1

(s− 2)2
?
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Solució. Primerament observem que

− 1

(s− 2)2
=

d

ds

1

s− 2
i

1

s− 2
= L

{

e2t
}

Per tant, per la Propietat 2 es té que

L
−1

{

− 1

(s− 2)2

}

= −te2t

X

Exemple 9 Quina funció té per transformada de Laplace
−4s

(s2 + 4)2
?

Solució. Observem que

− 4s

(s2 + 4)2
=

d

ds

2

s2 + 4
i

2

s2 + 4
= L {sin 2t}

Per tant, per la Propietat 2 es té que

L
−1

{

− 4s

(s2 + 4)2

}

= −t sin 2t

X

Exemple 10 Quina funció té per transformada de Laplace
1

(s− 4)3
?

Solució. Podem reconèixer fàcilment que

1

(s− 4)3
=

d2

ds2
1

2

1

s− 4

Per tant, aplicant la Propietat 2 dues vegades trobem que

1

(s− 4)3
= L

{

1

2
t2e4t

}

X

Propietat 3 (Multiplicació per eαt) Si F (s) = L {f(t)}, llavors

L
{

eαtf(t)
}

= F (s− α) (10)

Demostració. Per definició

L
{

eαtf(t)
}

=

∫

∞

0

e−steαtf(t) dt =

∫

∞

0

e(α−s)tf(t) dt

=

∫

∞

0

e−(s−α)tf(t) dt ≡ F (s− α)

2

La Propietat 3 estableix que la transformada de Laplace de eαtf(t) avaluada en el punt
s és igual a la transformada de f(t) en el punt (s − α). D’aquesta manera, si es coneix
la transformada F (s) de f(t), llavors no és necessari calcular la integral per a trobar la
transformada de Laplace de eαtf(t), només cal substituir s per s− α en F (s).



Transformada de Laplace i equacions diferencials 15

Exemple 11 Determinar la transformada de Laplace de la funció e3t sin t.

Solució. La transformada de sin t és 1/ (s2 + 1). Per tant, per a obtenir la transformada
de Laplace de e3t sin t, només cal substituir s per s− 3, és a dir

L
{

e3t sin t
}

=
1

(s− 3)2 + 1

X

La utilitat real de la Propietat 3 es veu clarament en invertir les transformades de
Laplace, tal i com ho mostren els següents exemples.

Exemple 12 Quina funció g(t) té la següent transformada de Laplace ?

G(s) =
s− 7

25 + (s− 7)2

Solució. Observem que

F (s) =
s

s2 + 52
= L {cos 5t}

i que G(s) s’obté de F (s) quan substituim s per s− 7. Per tant, per la Propietat 3,

s− 7

(s− 7)2 + 25
= L

{

e7t cos 5t
}

X

Exemple 13 Quina funció té per transformada de Laplace
1

s2 − 4s+ 9
?

Solució. Una manera de resoldre el problema és desenvolupar 1/ (s2 − 4s+ 9) en fraccions
simples. Però una manera molt millor de resoldre’l és completant s2 − 4s+9 en quadrats
perfectes, de manera que

1

s2 − 4s+ 9
=

1

s2 − 4s+ 4 + (9− 4)
=

1

(s− 2)2 + 5

També tenim que
1

s2 + 5
= L

{

1√
5
sin

√
5t

}

Per tant, per la Propietat 3 tenim que

1

s2 − 4s+ 9
=

1

(s− 2)2 + 5
= L

{

1√
5
e2t sin

√
5t

}

X

Exemple 14 Quina funció té per transformada de Laplace
s

s2 − 4s+ 9
?
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Solució. Observem que

s

s2 − 4s+ 9
=

s− 2

(s− 2)2 + 5
+

2

(s− 2)2 + 5

La funció s/(s2 + 5) és la transformada de Laplace de cos
√
5t. Per tant, per la Propietat

3 es té que
s− 2

(s− 2)2 + 5
= L

{

e2t cos
√
5t
}

i
s

s2 − 4s+ 9
= L

{

e2t cos
√
5t+

2√
5
e2t sin

√
5t

}

X

Com hem vist anteriorment, la transformada de Laplace és un operador lineal, és a
dir, L {c1f1(t) + c2f2(t)} = c1F1(s) + c2F2(s). Llavors, si es coneixen les transformades
F1(s) i F2(s) no és necessari realitzar cap integració per tal de trobar la transformada
de Laplace d’una combinació lineal de f1(t) i f2(t). Per exemple, dues funcions que es
presenten amb molta freqüència en l’estudi d’equacions diferencials són el cosinus i el sinus
hiperbòlics. Aquestes funcions es defineixen per les equacions

coshαt =
eαt + e−αt

2
, sinhαt =

eαt − e−αt

2

Per tant, segons la linealitat de la transformada de Laplace, resulta que

L {coshαt} =
1

2
L

{

eαt
}

+
1

2
L

{

e−αt
}

=
1

2

(

1

s− α
+

1

s+ α

)

=
s

s2 − α2

i

L {sinhαt} =
1

2
L

{

eαt
}

− 1

2
L

{

e−αt
}

=
1

2

(

1

s− α
− 1

s + α

)

=
α

s2 − α2

4.1 Propietats addicionals

En aquesta secció veurem algunes propietats més de la transformada de Laplace que
resulten útils a l’hora de resoldre alguns problemes.

Propietat 4 (Integració) Sigui L {f(t)} = F (s), llavors

L

{
∫ t

0

f(u) du

}

=
F (s)

s
(11)
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Demostració. Fent g(t) =
∫ t

0
f(u) du es té g′(t) = f(t), g(0) = 0, i per tant, utilitzant

la propietat de derivació de la transformada de Laplace , es té

F (s) = L {g′(t)} = sL {g(t)} = sL

{
∫ t

0

f(u) du

}

2

Propietat 5 (Divisió per t) Si
f(t)
t

és admissible, per la qual cosa només és necessari

que existeixi el limt→0
f(t)
t

, llavors

L

{

f(t)

t

}

=

∫

∞

s

F (u) du (12)

Demostració. Fent g(t) = f(t)
t

, f(t) = tg(t) i utilitzant la Propietat 2 s’obté que

∫

∞

s

F (u) du = lim
A→∞

∫ A

s

F (u) du

= lim
A→∞

∫ A

s

− d

du
G(u) du

= lim
A→∞

(

G(s)−G(A)
)

= G(s) = L

{

f(t)

t

}

2

Observació. Aquí s’ha utilitzat el fet, que té interès per si mateix, que si una funció
f(t) és admissible, la seva transformada de Laplace satisfà

lim
s→∞

F (s) = 0 (13)

que és conseqüència immediata de l’acotació |F (s)| ≤ M
s−γ

, vista anteriorment en el Le-
ma 1.

Propietat 6 (Canvi d’escala) Sigui a > 0, llavors

L {f(at)} =
1

a
F
(s

a

)

(14)

Demostració. Fent a t = u tenim

L {f(at)} =

∫

∞

0

e−stf(at) dt

=

∫

∞

0

e−
s

a
uf(u)

ds

a
=

1

a
F
(s

a

)

2
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Propietat 7 (Funcions periòdiques) Si f(t+ T ) = f(t), llavors

L {f(t)} =

∫ T

0

e−stf(t) dt

1− e−sT
(15)

Demostració. Veiem que

L {f(t)} =

∫

∞

0

e−stf(t) dt =

∫ T

0

e−stf(t) dt+

∫

∞

T

e−stf(t) dt

i fent t = T + u en l’última integral tenim

F (s) =

∫ T

0

e−stf(t) dt+

∫

∞

0

e−s(T+u)f(T + u) du

=

∫ T

0

e−stf(t) dt+ e−sT

∫

∞

0

e−suf(u) du

=

∫ T

0

e−stf(t) dt+ e−sTF (s)

d’on sobté

F (s) = L {f(t)} =

∫ T

0

e−stf(t) dt

1− e−sT

2

La Taula 1 mostra les anteriors propietats de la transformada de Laplace .
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Taula 1: Propietats de la transformació de Laplace

1. Linealitat L {af(t) + bg(t)} = aL {f(t)}+ bL {g(t)}

2. Derivació L {f ′(t)} = sL {f(t)} − f(0) = sF (s)− f(0)

L
{

f (n)(t)
}

= snF (s)− sn−1f(0)− · · · − f (n−1)(0)

3. Multiplicació per t L {tf(t)} = − d

ds
F (s)

4. Multiplicació per eαt L {eαtf(t)} = F (s− α)

5. Integració L

{
∫ t

0

f(u) du

}

=
F (s)

s

6. Divisió per t L

{

f(t)

t

}

=

∫

∞

s

F (u) du

7. Canvi d’escala L {f(at)} =
1

a
F
(s

a

)

8. Funcions periòdiques f(t+ T ) = f(t)

L {f(t)} =
1

1− e−sT

∫ T

0

e−stf(t) dt
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5 Equacions diferencials de terme no homogeni discon-
tinu

En moltes aplicacions el segon membre de la equació diferencial ay′′ + by′ + cy = f(t) té
una o més discontinuïtats de salt. Per exemple, una partícula pot trobar-se en moviment
sota la influència d’una força f1(t) i, de cop, en un temps t1, patir els efectes d’una força
addicional f2(t). En la secció actual es descriurà com tractar aquest tipus de problemes
mitjançant la transformada de Laplace. Per començar, obtindrem les transformades de
Laplace d’algunes funcions discontínues senzilles.

5.1 Funció de Heaviside

L’exemple més senzill d’una funció amb una sola discontinuïtat de salt és la funció

Hc(t) =

{

0 , 0 ≤ t < c
1 , t ≥ c

(16)

Aquesta funció Hc(t), de la qual es motra la gràfica en la Figura 2, es coneix amb el
nom de funció esglaó o funció de Heaviside. De vegades també apareix sota les notacions
H(t− c) o u(t− c), aquesta darrera derivada del mot anglès “up” per a descriure un salt
ascendent. La seva transformada de Laplace és

L {Hc(t)} =

∫

∞

0

e−stHc(t) dt =

∫

∞

c

e−st dt

= lim
A→∞

∫ A

c

est dt = lim
A→∞

e−cs − e−sA

s

=
e−cs

s
, s > 0

t
c

1

Figura 2: Gràfica de Hc(t)

Considerem ara una funció f definida en l’interval 0 ≤ t < ∞, i sigui g la funció que
s’obté de f en traslladar la gràfica de f c unitats cap a la dreta, tal i com mostra la Figura
3. Dit amb més precisió, g(t) = 0 per a 0 ≤ t < c, i g(t) = f(t − c) per a t ≥ c. Una
expressió analítica adequada per a g(t) és

g(t) = Hc(t)f(t− c)

El factor Hc(t) fa g igual a zero per a 0 ≤ t < c, i en canviar l’argument t de f per t− c,
f es desplaça c unitats cap a la dreta. Ja que g(t) s’obté a partir de f de manera senzilla,
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caldria esperar que la seva transformada de Laplace es pogués obtenir de manera senzilla
a partir de la transformada de f(t). A continuació es demostrarà que, efectivament, això
succeeix.

t t
c

f(t) g(t)

Figura 3: f(t) i g(t) = Hc(t)f(t− c).

Propietat 8 Sigui F (s) = L {f(t)}. Llavors

L {Hc(t)f(t− c)} = e−csF (s) (17)

Demostració. Per definició,

L {Hc(t)f(t− c)} =

∫

∞

0

e−stHc(t)f(t− c) dt

=

∫

∞

c

e−stf(t− c) dt

Per a resoldre la integral convé fer el canvi ξ = t− c.
Llavors

∫

∞

c

e−stf(t− c) dt =

∫

∞

0

e−s(ξ+c)f(ξ) dξ

= e−cs

∫

∞

0

e−sξf(ξ) dξ

= e−csF (s)

Per tant, L {Hc(t)f(t− c)} = e−csL {f(t)}. 2

Exemple 15 Quina funció té per transformada de Laplace
e−s

s2
?

Solució. Sabem que 1/s2 és la transformada de la funció t, de manera que per la Propietat
8 resulta

e−s

s2
= L {H1(t)(t− 1)}

La Figura 4 mostra la gràfica de H1(t)(t− 1). X
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t
1

Figura 4: Gràfica de H1(t)(t− 1).

Exemple 16 Quina funció té per transformada de Laplace
e−3s

s2 − 2s− 3
?

Solució. Observem que

1

s2 − 2s− 3
=

1

s2 − 2s+ 1− 4
=

1

(s− 1)2 − 22

Ja que 1/(s2 − 22) = L
{

1
2
sinh 2t

}

, de la Propietat 3 podem concloure que

1

(s− 1)2 − 22
= L

{

1

2
et sinh 2t

}

i segons la Propietat 8 tenim que

e−3s

s2 − 2s− 3
= L

{

1

2
H3(t)e

t−3 sinh 2(t− 3)

}

X

Exemple 17 Sigui f(t) la funció que val t per a 0 ≤ t < 1, i que val 0 per a t ≥ 1.
Trobeu la transformada de Laplace de f sense realitzar cap integració.

Solució. Observem primerament que f(t) pot escriure’s de la forma

f(t) = t
(

H0(t)−H1(t)
)

= t− tH1(t)

Per tant, segons la Propietat 2,

L {f(t)} = L {t} − L {tH1(t)}

=
1

s2
+

d

ds

e−s

s
=

1

s2
− e−s

s
− e−s

s2

X
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5.2 Problema de valor inicial amb funcions de Heaviside

Veurem un exemple on el terme no homogeni és una funció contínua per seccions.

Exemple 18 Resoldre el problema de valor inicial

d2y

dt2
−3

dy

dt
+2y = f(t) =







1 si 0 ≤ t < 1, 0 si 1 ≤ t < 2
1 si 2 ≤ t < 3, 0 si 3 ≤ t < 4
1 si 4 ≤ t < 5, 0 si 5 ≤ t < ∞

y(0) = 0, y′(0) = 0

Solució. Siguin Y (s) = L {y(t)} i F (s) = L {f(t)}. Quan s’aplica la transformada de
Laplace als dos costats de l’equació diferencial s’obté que (s2 − 3s + 2)Y (s) = F (s), de
manera que

Y (s) =
F (s)

s2 − 3s+ 2
=

F (s)

(s− 1)(s− 2)

Una manera de calcular F (s) és escriure f(t) de la forma

f(t) = H0(t)−H1(t) +H2(t)−H3(t) +H4(t)−H5(t)

Per tant, basant-nos en la linealitat de la transformada de Laplace s’obté que

F (s) =
1

s
− e−s

s
+

e−2s

s
− e−3s

s
+

e−4s

s
− e−5s

s

Un altre mètode per a calcular F (s) és avaluar la integral
∫

∞

0

e−stf(t) dt =

∫ 1

0

e−st dt+

∫ 3

2

e−st dt+

∫ 5

4

e−st dt

=
1− e−s

s
+

e−2s − e−3s

s
+

e−4s − e−5s

s

Com a conseqüència obtenim que

Y (s) =
1− e−s + e−2s − e−3s + e−4s − e−5s

s(s− 1)(s− 2)

El següent pas és desenvolupar 1
s(s−1)(s−2)

en fraccions simples, és a dir, de manera que
s’escrigui de la forma

1

s(s− 1)(s− 2)
=

A

s
+

B

s− 1
+

C

s− 2

Això implica
A(s− 1)(s− 2) +Bs(s− 2) + Cs(s− 1) = 1

Fent s = 0 trobem que A = 1
2
, fent s = 1 trobem que B = −1, i fent s = 2 s’obté que

C = 1
2
. Així doncs,

1

s(s− 1)(s− 2)
=

1

2

1

s
− 1

s− 1
+

1

2

1

s− 2

= L

{

1

2
− et +

1

2
e2t

}
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Per tant, a partir de la Propietat 8,

y(t) =

[

1

2
− et +

1

2
e2t

]

−H1(t)

[

1

2
− e(t−1) +

1

2
e2(t−1)

]

+H2(t)

[

1

2
− e(t−2) +

1

2
e2(t−2)

]

−H3(t)

[

1

2
− e(t−3) +

1

2
e2(t−3)

]

+H4(t)

[

1

2
− e(t−4) +

1

2
e2(t−4)

]

−H5(t)

[

1

2
− e(t−5) +

1

2
e2(t−5)

]

Observació. Pot verificar-se fàcilment que la funció

1

2
− e(t−n) +

1

2
e2(t−n)

i les seves derivades s’anul·len en t = n. Per això, tant y(t) com y′(t) són funcions contínues
en el temps, tot i ser f(t) discontínua en t = 1, 2, 3, 4 i 5.

De forma més general, com la integral d’una funció de Heaviside és contínua, tant la
solució y(t) del problema de valor inicial

d2y

dt2
+ p

dy

dt
+ qy = f(t), y(t0) = y0, y′(t0) = y′0

com la seva derivada y′(t) són sempre funcions contínues en el temps, si f(t) és contínua
a trossos. X

5.3 Delta de Dirac

En moltes aplicacions físiques i d’enginyeria apareix sovint el problema de valor inicial

d2y

dt2
+ p

dy

dt
+ qy = f(t), y(0) = y0, y′(0) = y′0 (18)

on f(t) no es coneix explícitament. Aquests problemes es presenten generalment quan es
treballa amb fenòmens de naturalesa impulsiva. En aquests casos, l’única informació que
es té de f(t) és que és igual a zero, excepte en un interval de temps molt curt t0 ≤ t ≤ t1,
i que la integral sobre aquest interval és un cert número I0 6= 0. Si I0 no és molt petit,
llavors f(t) serà molt gran en l’interval t0 ≤ t ≤ t1. Aquestes funcions es coneixen amb el
nom de funcions d’impuls (parlant amb rigor matemàtic, ens hi hauríem de referir com a
funcionals o distribucions). En la Figura 5 es mostra la gràfica d’un impuls f(t) típic.

A principis de la dècada de 1930, Dirac, guanyador d’un premi Nobel per treballs
relacionats amb la mecànica quàntica, va elaborar un mètode força controvertit per a
treballar amb funcions d’impuls. El seu mètode es basa en el següent raonament: Sigui
t1 cada cop més proper a t0. Llavors la funció f(t)/I0 tendeix a la funció que és 0 per a
t 6= t0 i a ∞ per a t = t0. A més, la seva integral sobre qualsevol interval que contignui t0
val 1. Aquesta funció es coneix amb el nom de funció delta de Dirac, tot i que no és una
funció en el sentit habitual –ja Dirac la va qualificar de funció “impròpia”–, i es denota
per δ(t − t0), o per δt0(t). No obstant, pot operar-se formalment amb δ(t− t0) com si es
tractés d’una funció més.
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t

f(t)

t0 t1

Figura 5: Gràfica d’una funció d’impuls f(t).

Formalment es pot definir δ(t − t0) d’una manera força genèrica, imposant que per a
una funció qualsevol g(t), es verifiqui

∫ b

a

g(t) δ(t− t0) dt =

{

g(t0) , a ≤ t0 ≤ b
0 , altrament

(19)

En particular, prenent g(t) = 1 obtenim la següent propietat que correspon a la
definició donada originalment per a una funció d’impuls,

δ(t− t0) = 0 si t 6= t0
∫ b

a
δ(t− t0) dt = 1 si a ≤ t0 ≤ b

És interessant posar de manifest la relació que hi ha entre la delta de Dirac i la funció de
Heaviside.

Propietat 9 (Derivada de la funció esglaó) Per a tot c ≥ 0 es verifica
∫ t

0

δ(u− c) du = Hc(t) (20)

Aquest resultat és una conseqüència immediata de la definició. De vegades aquesta
relació s’escriu, per analogia amb les funcions ordinàries, com

δ(t− c) =
d

dt
Hc(t) (21)

volent significar que “la derivada de la funció esglaó és un impuls”. Ara bé, com s’ha
d’entendre la relació anterior, si, de fet, la funció esglaó Hc(t) no té derivada a t = c?
La manera correcta d’interpretar aquesta relació seria pensar que les derivades d’una se-
qüència de funcions diferenciables, que en el límit tendeixen a Hc(t), constitueixen una
seqüència apropiada per a definir δ(t− c).

5.4 Terme no homogeni impulsiu

Ara podem veure que tota solució y(t) de l’equació diferencial

d2y

dt2
+ p

dy

dt
+ qy = I δ(t− c) (22)
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és una funció contínua en el temps. Si integrem l’equació, tenint en compte l’expressió
20, resulta que y′(t) és discontínua a la manera de Hc(t). Com la seva integral és una
funció contínua, llavors y(t) serà una funció contínua. Dit amb un exemple, si y(t) és la
solució de l’equació del moviment d’una partícula que rep un impuls en el temps t = c,
aquesta partícula no realitza el “canvi de lloc instantani”, sinó que segueix una trajectòria
contínua. La seva velocitat, en canvi, es veu sobtadament modificada.

Per a resoldre el problema de valor inicial que mostra l’equació (18) pel mètode de la
transformada de Laplace, només cal saber quina és la transformada de Laplace de δ(t−t0).
Això ho podem obtenir directament de l’equació (19)

L {δ(t− t0)} ≡
∫

∞

0

e−stδ(t− t0) dt = e−st0 , t0 ≥ 0

Exemple 19 Trobar la solució del problema de valor inicial

d2y

dt2
− 4

dy

dt
+ 4y = 3 δ(t− 1) + δ(t− 2), y(0) = 1, y′(0) = 1

Solució. Sigui Y (s) = L {y(t)}. Quan apliquem la transformada de Laplace als dos
costats de l’equació diferencial, obtenim que

s2Y (s)− s− 1− 4(sY (s)− 1) + 4Y (s) = 3e−s + e−2s

o el que és el mateix,

(s2 − 4s+ 4)Y (s) = s− 3 + 3e−s + e−2s

Per tant tenim que

Y (s) =
s− 3

(s− 2)2
+

3e−s

(s− 2)2
+

e−2s

(s− 2)2

Observem ara que 1/(s− 2)2 = L {te2t}. Llavors,

3e−s

(s− 2)2
+

e−2s

(s− 2)2
= L

{

3H1(t)(t− 1)e2(t−1) +H2(t)(t− 2)e2(t−2)
}

Per tal d’invertir el primer terme de Y (s) observem que

s− 3

(s− 2)2
=

s− 2

(s− 2)2
− 1

(s− 2)2
= L

{

e2t
}

− L
{

te2t
}

Així doncs,

y(t) = (1− t)e2t + 3H1(t)(t− 1)e2(t−1) +H2(t)(t− 2)e2(t−2)

Observació. Resulta il·lustratiu resoldre aquest problema per la via llarga, és a dir,
trobar y(t), per separat, en cadascun dels intervals 0 ≤ t < 1, 1 ≤ t < 2 i 2 ≤ t < ∞. Per
0 ≤ t < 1 tenim que y(t) satisfà el problema de valor inicial

d2y

dt2
− 4

dy

dt
+ 4y = 0, y(0) = 1, y′(0) = 1
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L’equació característica d’aquesta equació diferencial és r2 − 4r+ 4 = 0, que té per arrels
r1 = r2 = 2. Per tant, qualsevol solució y(t) ha de ser de la forma y(t) = (a1 + a2t)e

2t.
Les constants a1 i a2 es determinen a partir de les condicions inicials

1 = y(0) = a1 i 1 = y′(0) = 2a1 + a2

Per tant, a1 = 1, a2 = −1 i y(t) = (1− t)e2t per a 0 ≤ t < 1. Ara y(1) = 0 i y′(1) = −e2.
En l’instant t = 1 la derivada de y(t) s’incrementa sobtadament en 3 unitats. Per tant,
per a 1 ≤ t < 2 es té que y(t) satisfà el problema de valor inicial

d2y

dt2
− 4

dy

dt
+ 4y = 0 y(1) = 0 y′(1) = 3− e2

Ja que les condicions inicials ens vénen donades en t = 1, la solució s’escriurà de la forma
y(t) =

(

b1+ b2(t−1)
)

e2(t−1). Les constants b1 i b2 es determinen a partir de les condicions
inicials

1 = y(1) = b1 i 3− e2 = y′(1) = 2b1 + b2

Així doncs, b1 = 0, b2 = 3− e2 i y(t) = (3− e2)(t− 1)e2(t−1), on 1 ≤ t < 2. Ara tenim que
y(2) = (3− e2)e2 i y′(2) = 3(3− e2)e2. En l’instant t = 2, la derivada de y(t) s’incrementa
sobtadament en 1 unitat. Conseqüentment, per a 2 ≤ t < ∞ tenim que y(t) satisfà el
problema de valor inicial

d2y

dt2
− 4

dy

dt
+ 4y = 0 y(2) = e2(3− e2) y′(2) = 1 + 3e2(3− e2)

Per tant, y(t) =
(

c1 + c2(t− 2)
)

e2(t−2). Les constants c1 i c2 es determinen a partir de les
equacions

e2(3− e2) = c1 i 1 + 3e2(3− e2) = 2c1 + c2

Així tenim que

c1 = e2(3− e2), c2 = 1 + 3e2(3− e2)− 2e2(3− e2) = 1 + e2(3− e2)

i

y(t) =
[

e2(3− e2) +
(

1 + e2(3− e2)
)

(t− 2)
]

e2(t−2) , t ≥ 2

X

Observació. Seria interessant verificar que, efectivament, aquesta expressió coinci-
deix amb la que s’ha obtingut anteriorment mitjançant el mètode de la transformada de
Laplace. A diferència del que succeïa en l’Exemple 18, on el resultat era una funció contí-
nua amb derivada contínua, ara es pot comprovar que la solució obtinguda en l’Exemple
19 també és contínua, però, en canvi, la seva derivada no ho és. Es veu fàcilment que la
funció (t− n)e2(t−n) és nul·la en t = n, però no ho és la seva derivada.

La Taula 2 mostra les transformades de Laplace de les funcions més usuals.
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6 Integral de convolució

Considerem el problema de valor inicial

d2y

dt2
+ p

dy

dt
+ qy = f(t), y(0) = 0, y′(0) = 0 (23)

Sigui Y (s) = L {y(t)} i F (s) = L {f(t)}. Apliquem la transformada de Laplace als dos
costats de l’equació i obtenim

(s2 + ps+ q) Y (s) = F (s)

que implica

Y (s) =
F (s)

s2 + ps + q

Fixem-nos ara només en la part

H(s) =
1

s2 + ps+ q
(24)

Si la seva transformada inversa es denota per

h(t) = L
−1 {H(s)} (25)

aquesta funció pot ser interpretada com la solució de l’equació homogènia, amb f(t) = 0,
amb unes condicions inicials no homogènies h(0) = 0, h′(0) = 1. Aquesta solució s’entén
habitualment com la resposta natural del sistema, doncs és el resultat d’una mínima
pertorbació de les condicions d’equilibri del sistema, sense estímuls externs.

Similarment, la funció h(t) també es pot interpretar com la la solució de l’equació
diferencial on la part no homogènia s’ha substituït per un impuls a l’origen, f(t) = δ(t),
i que satisfà les condicions inicials homogènies h(0) = 0, h′(0) = 0. Recordem que
L {δ(t)} = 1. Per aquest motiu h(t) també s’anomena resposta impulsional.

Ara interpretarem la solució particular y(t) de l’equació completa. Mitjançant les
respectives transformades, podem posar y(t) en funció de h(t) i f(t),

L {y(t)} = L {f(t)} · L {h(t)} = F (s) ·H(s)

A H(s) se la denomina funció de transferència. Resulta natural preguntar-se si existeix
un relació senzilla i directa entre aquestes funcions. Lògicament seria més fàcil si y(t)
fos el producte de f(t) i h(t), però òbviament això no succeeix. No obstant, existeix una
manera de combinar dues funcions f i g per tal de formar una nova funció f ∗ g que és
semblant a la multiplicació i compleix que

L {(f ∗ g)(t)} = L {f(t)} · L {g(t)}

Aquesta combinació de f i g apareix amb freqüència en moltes aplicacions i es coneix per
convolució de f amb g.

Definició 2 La convolució (f ∗ g)(t) de f amb g es defineix per mitjà de l’equació

(f ∗ g)(t) =
∫ t

0

f(t− u)g(u) du (26)



Transformada de Laplace i equacions diferencials 29

Observació. Els límits entre 0 i t de la integral de convolució van associats al fet que
aquestes funcions estan definides per a t ∈ [0,∞). Si el seu domini fos (−∞,∞), llavors
la integral de convolució tindria límits entre −∞ i ∞.

Per exemple, si f(t) = sin 2t i g(t) = et
2

, llavors

(f ∗ g)(t) =
∫ t

0

sin 2(t− u)eu
2

du

6.1 Propietats

L’operador de convolució satisfà les propietats següents.

Propietat 1 L’operador convolució compleix la llei commutativa de la multiplicació, és

a dir, (f ∗ g)(t) = (g ∗ f)(t).
Demostració. Per definició tenim que

(f ∗ g)(t) =
∫ t

0

f(t− u)g(u) du

Fent el canvi t− u = ζ en la integral obtenim que

(f ∗ g)(t) = −
∫ 0

t

f(ζ)g(t− ζ) dζ

=

∫ t

0

g(t− ζ)f(ζ) dζ ≡ (g ∗ f)(t)

2

És igualment fàcil comprovar les següents propietats:

Propietat 2 L’operador convolució compleix la llei distributiva de la multiplicació, és a

dir,

f ∗ (g + h) = f ∗ g + f ∗ h

Propietat 3 L’operador convolució compleix la llei associativa de la multiplicació, és a

dir, (f ∗ g) ∗ h = f ∗ (g ∗ h).

Propietat 4 La convolució de qualsevol funció f amb la funció zero és igual a zero.

D’altra banda, l’operador convolució es distingeix de l’operador multiplicació en que
f ∗ 1 6= f i f ∗ f 6= f 2. De fet, la convolució d’una funció f amb ella mateixa pot inclús
ser negativa.

Exemple 20 Calcular la convolució de f(t) = t2 amb g(t) = 1.

Solució. A partir de la Propietat 1 tenim que

(f ∗ g)(t) = (g ∗ t)(t) =
∫ t

0

1 · u2 du =
t3

3

X
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Exemple 21 Calcular la convolució de f(t) = cos t amb ella mateixa i demostrar que no

sempre és positiva.

Solució. Per definició tenim que

(f ∗ f)(t) =

∫ t

0

cos(t− u) cosu du

=

∫ t

0

(cos t cos2 u+ sin t sin u cosu) du

= cos t

∫ t

0

1 + cos 2u

2
du+ sin t

∫ t

0

sin u cosu du

= cos t

(

t

2
+

sin 2t

4

)

+
sin3 t

2

=
t cos t+ sin t cos2 t + sin3 t

2

=
t cos t+ sin t(cos2 t+ sin2 t)

2

=
t cos t+ sin t

2
.

Aquesta funció és clarament negativa per a

(2n+ 1)π ≤ t ≤ (2n+ 1)π +
π

2
; n = 0, 1, 2 . . .

X

A continuació es demostrarà que la transformada de Laplace de f ∗ g és el producte
de la transformada de Laplace de f i la transformada de Laplace de g.

Teorema 1

L {(f ∗ g)(t)} = L {f(t)} · L {g(t)} (27)

Demostració. Per definició tenim que

L {(f ∗ g)(t)} =

∫

∞

0

e−st

[
∫ t

0

f(t− u)g(u) du

]

dt

Aquesta integral iterativa és igual a la integral doble
∫∫

R

e−stf(t− u)g(u) du dt

on R és la regió triangular descrita en la Figura 6. Integrant primer respecte t, enlloc de
u, s’obté

L {(f ∗ g)(t)} =

∫

∞

0

g(u)

[
∫

∞

u

e−stf(t− u) dt

]

du

En fer t− u = ξ trobem que
∫

∞

u

e−stf(t− u) dt =

∫

∞

0

e−s(u+ξ)f(ξ) dξ
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u

t

u =
t

R

Figura 6: Àrea sota la funció u = t.

Per tant, es compleix que

L {(f ∗ g)(t)} =

∫

∞

0

g(u)

[
∫

∞

0

e−stesξf(ξ) dξ

]

du

=

[
∫

∞

0

g(u)e−su du

][
∫

∞

0

e−sξf(ξ) dξ

]

≡ L {f(t)} · L {g(t)}

2

Exemple 22 Trobar la transformada de Laplace inversa de la funció

a

s2(s2 + a2)

Solució. Observem que

1

s2
= L {t} i

a

s2 + a2
= L {sin at}

Per tant, pel Teorema 1 sabem que

L
−1

{

a

s2(s2 + a2)

}

=

∫ t

0

(t− u) sin au du

=
at− sin at

a2

X

Exemple 23 Trobar la transformada de Laplace inversa de la funció

1

s(s2 + 2s+ 2)

Solució. Observem que

1

s
= L {1} i

1

s2 + 2s+ 2
=

1

(s+ 1)2 + 1
= L

{

e−t sin t
}
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Per tant, pel Teorema 1

L
−1

{

1

s(s2 + 2s+ 2)

}

=

∫ t

0

e−u sin u du

=
1

2

(

1− e−t(cos t + sin t)
)

X

Observació. Ara podem donar resposta al problema que es plantejava en l’equació
23. Sigui h(t) la solució de l’equació y′′ + py′ + qy = 0, que satisfà les condicions inicials
h(0) = 0 i h′(0) = 1. Llavors

y(t) = f(t) ∗ h(t) =
∫ t

0

f(t− u) h(u) du (28)

és la solució particular de l’equació y′′ + py′+ qy = f(t), que satisfà les condicions inicials
y(0) = y′(0) = 0. Freqüentment, l’equació (28) és força més fàcil d’utilitzar que el mètode
de variació de paràmetres. La generalització a unes condicions inicials qualsevols és ben
senzilla a partir de l’equació 5.
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Taula 2: Transformades de Laplace de les funcions més comuns

f(t) F (s) f(t) F (s)

1. 1
1

s
(s > 0) 9. sinhαt

α

s2 − α2
(s > α)

2. tn
n!

sn+1
(s > 0) 10. tneαt

n!

(s− α)n+1
(s > α)

3. eαt
1

s− α
(s > α) 11. t cos βt

s2 − β2

(s2 + β2)2
(s > 0)

4. cos βt
s

s2 + β2
(s > 0) 12. t sin βt

2βs

(s2 + β2)2
(s > 0)

5. sin βt
β

s2 + β2
(s > 0) 13. H(t)

1

s
(s > 0)

6. eαt cos βt
s− α

(s− α)2 + β2
(s > α) 14. Hc(t) = H(t− c)

e−cs

s
(s > 0)

7. eαt sin βt
β

(s− α)2 + β2
(s > α) 15. δ(t) 1

8. coshαt
s

s2 − α2
(s > α) 16. δa(t) = δ(t− a) e−as (a ≥ 0)


