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1 Introducci6

La transformaci6é de Laplace és un métode alternatiu per a la resolucié de problemes de
valor inicial d’equacions diferencials lineals a coeficients constants. Es especialment ttil
quan, per un sistema regit per aquestes equacions, es vol relacionar la resposta del sistema
a un estimul extern amb la seva propia resposta natural (associada a la part homogénia de
I'equaci6). En particular, quan es té determinat el comportament del sistema envers un
impuls inicial, es pot avaluar la resposta davant de qualsevol altre estimul aplicat (donat
pel terme no homogeni de 'equaci6) mitjancant la integral de convolucid.

Aixi mateix, la transformada de Laplace també permet calcular de manera molt efici-
ent, més que emprant els métodes habituals ja estudiats, la resposta d’un sistema davant
de certes excitacions discontinues. Per exemple, problemes d’impulsos i variacions de
quantitat de moviment en mecanica, o problemes d’interruptors en circuits eléctrics. Al-
tres aplicacions més avancades de la transformacié de Laplace es troben exemplificades
en xarxes de circuits connectats entre si, o amb induccions mitues, on la resposta d'un
d’ells actua com a estimul extern d’un altre.

Originalment, Laplace (1749-1827) va ser el primer en fer ts de la transformada integral
—que ara porta el seu nom— en els seus treballs sobre mecanica celest. Va ser, pero,
Heaviside (1850-1925) qui posteriorment realitza el seu desenvolupament.

La transformada de Laplace no té una interpretacio fisica immediata, com és el cas de
la transformada de Fourier, que es pot relacionar, per exemple, amb ’espectre o el patro
de difraccié de fenomens de naturalesa ondulatoria.

Es una transformacio lineal que permet transformar una equacié diferencial,

d"y dy
Y Y — ft
adt"+ +a1dt+a0y f(t)
juntament amb unes condicions inicials adequades, per exemple, y(0) = y'(0) = --- =

y™~1(0) = 0, en una equaci6 algebraica de la forma
(aps" + ...+ a1s+ag) Y(s) = F(s)

S’ha d’efectuar, doncs, una transformacio, i posteriorment la inversi6 de la transformacio.

La transformada de Laplace també es pot aplicar a un sistema de varies equacions
diferencials lineals simultanies per a transformar-lo en un sistema lineal de varies equacions
algebraiques simultanies. En altres casos, el métode es pot utilitzar per a resoldre una
equacio diferencial lineal amb coeficients no constants per a transformar-la en una de
menor ordre, eventualment de més facil resolucié. Quan s’aplica a equacions diferencials
en derivades parcials, les converteix en equacions diferencials ordinaries.

A continuaci6é veurem les definicions i propietats basiques que permetran resoldre els
problemes més elementals que s’han comentat.
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2 Transformaci6é de Laplace

Comencem definint formalment la transformada de Laplace.

Definicié 1 Sigui f una funcio real definida per a 0 <t < oo, la transformada de Laplace
de f(t), que designarem per L {f(t)} o per F(s), és la funcid de la variable real s

F(s)= 2 {f(t)} = / et p(e) de (1)

on
A

/ h e S f(t)dt = Jim e S f(t) dt

0 0

En realitat, per a ser rigorosos, el limit inferior de la integral s’hauria d’avaluar en 07,
és a dir, en un valor positiu |h|, quan A — 0, pero en la practica i en el que segueix, ho
escriurem simplement com a 0.

Exemple 1 Obtenir la transformada de Laplace de la funcié f(t) = 1.
Solucié. A partir de I'equacio (1)

4 1—e 4
Z{ft)} = lim e f(t)dt = lim ————

A—o00 0 A—o00 S

1
- -, >0
= s
{oo , s<0

v
Exemple 2 Obtenir la transformada de Laplace de la funcio f(t) = e™.
Solucié. De I'equaci6 (1)
A e(afs)A -1
.,Sf{eo‘t} = lim e e dt = lim —————
A—oo [ A—o0 a— S
1
, S>
= s —
{ oo, s<
v

Exemple 3 Obtenir la transformada de Laplace de la funcio f(t) = coswt, g(t) = sinwt.

Solucié. De I'equacio (1) es té

L {coswt} :/ e eoswtdt i L {sinwt} :/ e " sinwt dt
0 0
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Observem, a més, que

0o A
L {coswt} + i {sinwt} = / e et Jt = lim pliw=s)t 4
0

A—o0 0
) e(iwfs)A -1
= lim .
A—o0 w — S

1 § 4w
— = , s>0

_ s —iw 8%+ w?
no definit | s<0

En igualar les parts reals i imaginaries d’aquesta equacio es té

£ {coswt} ° L {sinwt} = —— >0
coswty = — sinwt} = ———— , s
82 +w2 82 + CUQ

v

L’equaci6 (1) associa a cada funcié f(¢) amb una nova funci6 F(s). Tal i com suggereix

la notacio £ {f(t)}, la transformada de Laplace és un operador que actua sobre funcions.
A més, es tracta d’'un operador lineal:

Propietat 1 (Linealitat) Z {af(t) +bg(t)} =aZ{f(t)} +b L {g(t)}.

Demostracio. Per definicio,

LA{aft)+bgt)} = /OO e (af(t) +bg(t)) dt

0

_ a/oo e f(t) dt+b/oo e "g(t)dt
= aZ{f(O)} +b L {g(t)}

2.1 Funcions admissibles

Una dificultat a tenir en compte de la Definicié 1 és que la integral podria no existir per
a algun valor de s. Aixo succeeix per exemple en el cas de f(t) = e, Per a garantir que
la transformada de Laplace de f(t) existeixi almenys en un interval s > sg, s’exigeixen a
f(t) les segiients condicions:

a) La funcio f(t) és continua per seccions. Aixo significa que f(¢) té com a molt
un numero finit de discontinuitats en tot interval 0 < t < ¢, i tant el limit per
I’esquerra com per la dreta de f existeixen en tots els punts de discontinuitat. Dit
d’altra manera, f(¢) té tan sols un nimero finit de discontinuitats “de salt” en tot
interval finit. En la Figura 1 es representa la grafica d’'una tipica funcié continua
per seccions, o continua a trossos.

b) La funci6 f(t) és d’ordre exponencial, és a dir que existeixen constants M i v tals
que
lf()] < Me™, 0<t<oo
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Figura 1: Grafica d'una funcié continua per seccions.

Lema 1 Sigui f(t) una funcié continua per seccions i d’ordre exponencial, llavors la seva
transformada de Laplace existeix per a tot s suficientment gran. En particular, si f(t) és
continua per seccions i |f(t)| < Me, llavors F(s) existeix per a s > 7.

Les funcions que compleixen aixo s’anomenen “funcions admissibles”. La demostracié del
Lema 1 es fara amb I'ajuda del segiient lema del calcul integral, que s’anuncia a continuacio
perd no es demostra.

Lema 2 Sigui g(t) una funcié continua per seccions. Llavors la integral impropia [ g(t) dt
existelx si fo lg(t)| dt existeixz. Per a demostrar que aquesta ultima integral existeix, no-
més cal provar que hi ha una constant K tal que

AﬁmMﬂSK

per a tot A.

Demostracié (Lema 1). Ja que f(t) és continua per seccions, llavors la integral

fOA e S f(t)dt existeix per a tot A. Per tal de demostrar que la integral té un limit
per a tot s suficientment gran, observem que

/OA\e—Stf(t)\dt < M/OAe
M

—ste'yt dt
= (e(“”S)A — 1) <

M
=S s =Y
per a s > . Llavors, basant-nos en el Lema 2, es té que la transformada de Laplace de

f(t) existeix per a s > 7. Aixi doncs, a partir d’ara suposarem que |f(t)] < Me" i
s> . O
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3 Aplicaci6 a les equacions diferencials

La utilitat real de la transformada de Laplace per a resoldre equacions diferencials recau en
el fet que la transformada de Laplace de f'(¢) esta molt relacionada amb la transformada
de f(t). Aquest és el contingut del segiient lema.

Lema 3 (Derivacio) Sigui F'(s) = Z {f(t)}. Llavors
L)} =sZL{f(1)} = [(0) = sF(s) = f(0) (2)

Demostracio. Només cal escriure la formula per a la transformada de Laplace de f'(t),
i integrar per parts. Aixi es té
A

2} = lim e St f(t) dt

A—o0 0

A—o00 ’0 A—o0

A A
= lim e *f(t)| + lim s/ e S f(t)dt
0

A
= —f(0)+ lim s/ e S f(t) dt
0

— sF(s) - (0)

O
El segiient pas es trobar una relacio entre la transformada de Laplace de f”(t) i la de
f'(t), cosa que no és més que una conseqiiéncia del Lema 3.

Corol-lari 1 Sigui F(s) = Z{f(t)}. Llavors
ZA{f"()} = s"F(s) — sf(0) = f'(0) (3)

Demostracié. Aplicant dues vegades el Lema 3 trobem que

LWy = s2{f (1)} - f(0)
= s(sF(s) = f(0)) = f'(0)
= $°F(s) —sf(0) = f'(0)

3.1 Equaci6 diferencial lineal

Arribat aquest punt, ja tenim els elements necessaris per a passar a resoldre un problema
de valor inicial
d> d
v,

a— +

T P ey =1, y0)=w,  y(0) =y (4)

a partir de resoldre una equacié algebraica. Siguin Y (s) i F(s) les transformades de
Laplace de y(t) i f(t) respectivament. Aplicant 'operador de transformacié a ambdos
costats de l'equacioé diferencial s’obté

L Aay"(t) + by (t) + cy(t)} = F(s)
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Tenint en compte la linealitat de 'operador de transformaci6 s’obté
ZA{ay"(t) + by'(t) + cy(O)} = aZ {y" ()} + 0L {y' (1)} + L {y()}
i d’acord amb el Lema 3 i el Corol-lari 1, es té que
LYW =5sY(s) =y , L0} =5"Y(s) = sy0— yg
Per tant,
a (sY (s) = syo — yb) + b(sY (5) — o) + ¥ (s) = F(s)
Aquesta equacio algebraica implica que

Y(S): ((18—|—b)y0 a’y(,) F<8)
as?+bs+c as?+bs+c  as?+bs+c

()

L’equacio (5) descriu la transformada de Laplace de la soluci6 y(t) del problema de
valors inicials (4). Per a avaluar y(t) és necessari consultar les taules d’antitransforma-
des de Laplace. Ara bé, aixi com Y'(s) s’expressa explicitament en termes de y(t), és a
dir Y(s) = [;" e *'y(t) dt, també seria possible donar una formula explicita per a y(t).
No obstant aixo, aquesta féormula, que s’escriu simbolicament com y(t) = £~ {Y(s)},
implica una integracié respecte d’una variable complexa, cosa que va més enlla del tema
tractat en aquests apunts. Per aixo, en lloc d’aplicar la formula, es deduiran en la segiient
seccié algunes propietats funcionals de I'operador transformada de Laplace. Les propie-
tats permetran invertir per simple inspeccié moltes transformades de Laplace, és a dir,
permetran recondixer de quines funcions son transformades. Es comu referir-s’hi com a
transformada inversa o antitransformada.

Exemple 4 Resoldre el problema de valor inicial
y' =3y +2y=¢  y(0)=1,  y(0)=0

Solucié. Sigui Y (s) = Z {y(t)}. Aplicant la transformada de Laplace a ambdds membres
de I'equacio6 diferencial s’obté

1
sY (s) — s —3(sY(s) — 1) +2Y(s) = 3
S —
i aix0 implica que
1 s—3
Y =
(s) (3—3)(52—33+2)+32—33+2
1 5—3

G-DG-2(5-3)  (5-D(E-2)

Per a trobar y(t), es desenvolupa en fraccions simples cada un dels termes del segon
membre, i s’obté

1 A B C

G-D—-2)(5-3) s-1 s-2 5-3

Aixo implica que

A(s=2)(s =3)+B(s—1)(s=3)+C(s—1)(s—2) =1
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En fer s =1 s’obté A = %, fent s = 2 s’'obté B = —1, iamb s = 3 s’obté C' = % Per tant,

1 1
(s—1)(s—2)(s—3) 2s—1 s—2 25-3

De manera similar,
s—3 D E
= +
(s=1)(s—2) s—1 s—2

i d’aqui
D(s—2)+E(s—1)=s—3

Ara, fent s = 1 s’obté D = 2, mentre que amb s = 2 s'obté £ = —1. Per tant,

11 1 11 2 1
Vis) = - _ 1 B
(5) 251 s5_2 3253 5.1 5_2
51 2 11
925 —1 s—2 2s5s—3

El primer terme és la transformada de Laplace de get. De manera similar, el segon i el

tercer terme son les transformades de —2¢? i %e‘%, respectivament. Conseqlientment,
5 1 5 1
Y(s)=% {;3’5 — 2 + §egt} = y(t) = éet —2e% 4 éegt

v

Observacio. En realitat existeix una infinitat de funcions amb idéntica transformada
de Laplace . Per exemple, la transformada de Laplace de les funcions

5 t 2t 1 3t :
2(t) = ¢ — 2e +§e sio t#£1,2,3
0 si t=1,2,3
és també Y(s), ja que z(t) difereix de y(t) tan sols en tres punts’. No obstant, només hi

ha una funci6 continua y(t) que té per transformada de Laplace una funci6 donada Y (s),
i és en aquest sentit que s’escriu y(t) = £ {Y(s)}.

3.2 Sistemes d’equacions

La transformada de Laplace també és ttil per a resoldre sistemes d’equacions diferencials
lineals a coeficients constants. Vegem-ho amb un exemple.

Exemple 5 Resoldre el segiient problema de valor inicial no homogeni.
2y (t) = 3x1(t) — 3wa(t) + 2

xh(t) = —6xq(t) — ¢

1Si f(t) = g(t), excepte en un nimero finit de punts, llavors f; ft)dt = ffg(t) dt
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Solucié.
Notem Xi(s) = Z {x1(t)}, Xao(s) = L {xa(t)}. Aplicant la transformada de Laplace
a ambdos membres de les dues equacions diferencials s’obté

sX1(s) — x1(0) = 3X;(s) — 3X5(s) + 2
(7)
sXs5(s) — x9(0) = —6X;(s) — S%
Substituint les condicions inicials i simplificant, tenim

(5 —3)X1(s) +3Xa(s) = 241 = =2

s

(8)
6X1(s) + sXa(s) = —L_1= _528__;_1

S

Ara cal de resoldre el sistema d’equacions, és a dir, aillar X (s), Xs(s), i buscar les
transformades inverses.

Per exemple, multipliquem la primera equacié per s, la segona per -3 i sumem. Aixo
doéna
352+ 3

(s =35 —18) X (s) =2+ s+ =

d’on

s34+ 552+ 3
s%(s+3)(s — 6)
Desenvolupant en fraccions simples, queda

1 133 28 3 18
Xi(s) < - +Z- —)

Xl(S) =

:@ s—6 s+3 s 52

Antitransformant, obtenim la primera solucio,

1
xi(t) = @(1336& — 2873 13— 18t)

De manera semblant, per a calcular la segona solucié podriem tornar enrera, eliminar
X i trobar la transformada Xs. Ara bé, en aquest cas és més rapid usar la segona de les
equacions diferencials, on no apareix el terme en xs(t), i integrar directament,

a(t) = / (=6, (t) — t) dt

Per tant, substituint-hi la primera soluci6é tindrem

1 1
To(t) = —— [ (133" — 28¢ ™ + 3)dt = ———(133e% + 56e ' + 18t) + ¢
18 108
Ara, apliquem la segona condici6 inicial per a calcular la constant d’integracio c,
1 3
—1=——=(133+56 = -
0 8( 3+56)+c, ¢ 1

La segona soluci6 és, doncs,

1
To(t) = —m(133e6t + 56e %" + 18t — 81)
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4 (Calcul de transformades

En aquesta secci6 s’obtindran algunes propietats importants de les transformades de La-
place. Utilitzant aquestes propietats sera possible calcular la transformada de la majoria
de les funcions sense haver de realitzar integracions pesades. A més, es podran invertir
moltes transformades per simple inspeccio.

Propietat 2 (Multiplicacio per t) Si Z{f(t)} = F(s), llavors

LAt )} = - F(s) (9)
Demostracio. Per definicio, F(s fo t)dt. En derivar ambdos costats de 1'equacio
respecte de s, s'obté
d d
—F - fst
ZR(s) f(e)de
= e ™) f(t)dt = —te ' f(t) dt
/ S rar= [~
= Z{-tf(t)}

O

La Propietat 2 estableix que la transformada de Laplace de la funci6 —tf(t) és la

derivada de la transformada de Laplace de f(t). Aixi doncs, si es coneix la transformada

F(s) de f(t), llavors ja no és necessari realitzar una integracié pesada per a trobar la
transformada de ¢f(t).

Exemple 6 Obtenir la transformada de Laplace de te'.

Solucié. La transformada de € és T Per tant, per la Propietat 2, la transformada de

S J—
Laplace de te! és

1 1
te'l = ——
Lt} = dss—l (5—1)2
v
Exemple 7 Obtenir la transformada de Laplace de t™.
Solucié. Utilitzant n vegades consecutives la Propietat 2 s’obté
d” dr 1 n!
ZLA{t"} = (— = —— =
= ()2 (1 = () =
v

La utilitat principal de la Propietat 2 és invertir transformades, com es mostra en els
segilients exemples.

Exemple 8 Quina funcio té per transformada de Laplace

—1
(s —2)?
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Solucié. Primerament observem que
1 d 1 1
_ E——— : =& 2t
(s—2)2 dss—2 : s—2 {"}
Per tant, per la Propietat 2 es té que
1
gfl _ — _t 2t
{ (s — 2>2} )
v
. o —4s
Exemple 9 Quina funcio té per transformada de Laplace W 7
5%+
Solucié. Observem que
4s d 2 2
N — i = L {sin2t
(52 + 4)2 ds 5?2 +4 ! s2+4 {sin 2t}
Per tant, per la Propietat 2 es té que
4
Z! {—782} = —tsin2t
(s?+4)
v
. . 1
Exemple 10 Quina funcio té per transformada de Laplace TEE ?
S J—
Solucié. Podem reconeéixer facilment que
1 1
(s —4)3  ds?22s—4
Per tant, aplicant la Propietat 2 dues vegades trobem que
1 1
— g _t2 4t
(s — 4 {2 ‘
v
Propietat 3 (Multiplicacié per e*) Si F(s) = Z{f(t)}, llavors
ZL{ef(t)} = F(s — ) (10)
Demostracio. Per definicié
LA{eMft)} = / e e f(t) dt = / O F (1) dt
0 0
= / e () dt = F(s — a)
0
O

La Propietat 3 estableix que la transformada de Laplace de e™ f(t) avaluada en el punt
s ¢és igual a la transformada de f(¢) en el punt (s — a)). D’aquesta manera, si es coneix
la transformada F'(s) de f(t), llavors no és necessari calcular la integral per a trobar la

transformada de Laplace de e® f(t), només cal substituir s per s — o en F(s).
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3

Exemple 11 Determinar la transformada de Laplace de la funcié e* sint.

Solucié. La transformada de sint és 1/ (s* + 1). Per tant, per a obtenir la transformada
de Laplace de e* sint, només cal substituir s per s — 3, és a dir

. 1
& {egt Slnt} = m

v

La utilitat real de la Propietat 3 es veu clarament en invertir les transformades de
Laplace, tal i com ho mostren els segiients exemples.

Exemple 12 Quina funcid g(t) té la segiient transformada de Laplace ?

s—17

N P

Solucié. Observem que
s
Fls) = 52 4 52

i que G(s) s’obté de F(s) quan substituim s per s — 7. Per tant, per la Propietat 3,

= % {cos 5t}

s—17
= Z{e™cos bt
GomEra LA ot
v
Exemple 13 Quina funcio té per transformada de Laplace —— ¢
s2—4s+9

Solucié. Una manera de resoldre el problema és desenvolupar 1/ (s* — 4s + 9) en fraccions
simples. Perd una manera molt millor de resoldre’l és completant s?> —4s + 9 en quadrats
perfectes, de manera que

1 1 1

32—4s+9232—43+4+(9—4) (s—2)2+5

També tenim que

1 1 .
O —f{ﬁsm\/gt}

Per tant, per la Propietat 3 tenim que

1 1 1
= =2 —=e"sin Vbt
s2—4s+9  (s—2)2+5 {\/56 sm\/_}

Exemple 14 Quina funcio té per transformada de Laplace S
s2—4s+9
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Solucié. Observem que

s B 5—2 . 2
s2—4s+9 (s—2)2+5 (s—2)2+5

La funci6 s/(s*+ 5) és la transformada de Laplace de cos V/5t. Per tant, per la Propietat
3 es té que

ﬁ = Z {€2t COS \/gt}

2
m = g {€2t COS \/gt + ﬁezt Sin \/gt}

v

Com hem vist anteriorment, la transformada de Laplace és un operador lineal, és a

dir, Z{c1fi(t) + cafa(t)} = c1Fi(s) + caF5(s). Llavors, si es coneixen les transformades

Fi(s) 1 F5(s) no és necessari realitzar cap integracio per tal de trobar la transformada

de Laplace d’una combinaci6 lineal de fi(f) i fo(t). Per exemple, dues funcions que es

presenten amb molta freqiiéncia en I'estudi d’equacions diferencials son el cosinus i el sinus
hiperbolics. Aquestes funcions es defineixen per les equacions

eat + efat eat _ efat

hat = —— inh at =
cosh « 5 , sinha« 5

Per tant, segons la linealitat de la transformada de Laplace, resulta que
1 at 1 —at
Z {coshat} = 53 {e} + 53 {e="}

YRS S N
- 2\s—a s+a) s2—a?

Z A{sinhat} = %g {eat} _ %Z {e—at}
1 1 o«
- 2\s—a s+ta) s2-a?

4.1 Propietats addicionals

En aquesta seccié6 veurem algunes propietats més de la transformada de Laplace que
resulten tutils a I’hora de resoldre alguns problemes.

Propietat 4 (Integracio) Sigui £ {f(t)} = F(s), llavors

£z {/Otf(u) du} _ ) (11)

S
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Demostracio. Fent g(t fo u)du es té ¢'(t) = f(t), g(0) = 0, i per tant, utilitzant
la propietat de derivacio de la transformada de Laplace , es té

F(s) = 2 {g (1)} = 5.2 {g(1) {/ fu d“}
O

Propietat 5 (Divisié per t) Si fff) és admissible, per la qual cosa només és necessari

que existeirt el hmt_m , llavors

g{@}:/smp(u)du (12)

Demostracid. Fent g(t) = L2 f(t) = tg(t) i utilitzant la Propietat 2 s’obté que

Tt
0 A
/ F(u)du = lim F(u) du

= gt

. f(#)
fim (G) - G) = G(o) = 2 {24
(I
Observacio. Aqui s’ha utilitzat el fet, que té interés per si mateix, que si una funcio6
f(t) és admissible, la seva transformada de Laplace satisfa

lim F(s) =0 (13)

5§—00

que és conseqiiéncia immediata de 'acotacio |F(s)
ma 1.

— S—’Y’

Propietat 6 (Canvi d’escala) Sigui a > 0, llavors

2 {fat)y = -F () (14)

Demostracio. Fent at = u tenim
2{fta)) = [ ertan
0

et -t
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Propietat 7 (Funcions periodiques) Si f(t+ 1) = f(t), llavors

T
/ e S f(t)dt
0

2wy =2 (15)
Demostracio. Veiem que
) T [e'¢)
Z — —st dt = —st d —st d
oy = [ erma= [ esoas [Tt a
i fent t =T 4 w en I'tltima integral tenim
T [e'S)
_ —st —s(T+u)
F(s) /o e f(t)dt—i—/o e f(T 4 u)du
T 00
= / e f(t) dt—i—eST/ e f(u)du
0 0
T
= / e S f(t)dt + e T F(s)
0
d’on sobté
T
/ e St f(t) dt
F(s)= £ {0} = 2
O

La Taula 1 mostra les anteriors propietats de la transformada de Laplace .
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Taula 1: Propietats de la transformacié de Laplace

1. Linealitat LA{af(t)+bg(t)}y =aZ{f(t)} +bZL {g(t)}
2. Derivacio LA} =sZ{f(t)} — f(0) =sF(s) — f(0)
L)} = s"F(s) =" f(0) =+ = f71D(0)

d
3. Multiplicaci6 per t ZLA{tf(t)} = —d—F(s)
s

4. Multiplicacio per e L {e*f(t)} = F(s — «)

5. Integracio Z {/t f(u) du} = @
0

6. Divisio6 per t Z {@} = /OO F(u)du

7. Canvi d’escala Z{f(at)} = iF (2)

8. Funcions periodiques f(t+T) = f(¢)
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5 Equacions diferencials de terme no homogeni discon-
tinu

En moltes aplicacions el segon membre de la equacio diferencial ay” + by’ + cy = f(t) té
una o més discontinuitats de salt. Per exemple, una particula pot trobar-se en moviment
sota la influéncia d’una forga fi(t) i, de cop, en un temps t;, patir els efectes d’una forca
addicional f5(t). En la seccié actual es descriura com tractar aquest tipus de problemes
mitjancant la transformada de Laplace. Per comencgar, obtindrem les transformades de
Laplace d’algunes funcions discontinues senzilles.

5.1 Funci6é de Heaviside

L’exemple més senzill d’una funcié amb una sola discontinuitat de salt és la funcio6

0, 0<t<ec
Hc(t):{ 1, t>ec (16)

Aquesta funcio H.(t), de la qual es motra la grafica en la Figura 2, es coneix amb el
nom de funcio esglad o funcio de Heaviside. De vegades també apareix sota les notacions
H(t —¢) o u(t — ¢), aquesta darrera derivada del mot anglés “up” per a descriure un salt
ascendent. La seva transformada de Laplace és

LA{H (1)} = /OOO e S H (t) dt = /COO et dt

A —cs efsA
= lim et dt = lim
A—oc0 c A—oo S
e—cs
= , §>0
S
1
: -
| c

Figura 2: Grafica de H.(t)

Considerem ara una funci6é f definida en l'interval 0 < ¢ < oo, i sigui g la funcié que
s’obté de f en traslladar la grafica de f ¢ unitats cap a la dreta, tal i com mostra la Figura
3. Dit amb més precisio, g(t) = 0pera 0 <t < ¢ ig(t)= f(t—c) perat>c Una
expressio analitica adequada per a g(t) és

g(t) = He(t)f(t = ¢)

El factor H.(t) fa g igual a zero per a 0 < t < ¢, i en canviar I'argument ¢ de f per t — ¢,
f es desplaga ¢ unitats cap a la dreta. Ja que g(t) s’obté a partir de f de manera senzilla,
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caldria esperar que la seva transformada de Laplace es pogués obtenir de manera senzilla
a partir de la transformada de f(¢). A continuacié es demostrara que, efectivament, aixo
succeeix.

f(t) 9(t)
-1 : - 1
c
Figura 3: f(t) i g(t) = H.(t)f(t — ¢).
Propietat 8 Sigui F'(s) =2 {f(t)}. Llavors
LA{H () f(t =)} = e F(s) (17)
Demostracio. Per definicio,
LM -0} = [ e HDIE - o)
0
= / e S f(t—c)dt
Per a resoldre la integral convé fer el canvi ¢ =t — c.
Llavors
| etra-aa = [T ereara
c 0
— —cs —s& d
e e ae
= e “F(s)
Per tant, Z{H.(t)f(t —c)} = e L {f(t)}. 0

—S

?

Exemple 15 Quina funcio té per transformada de Laplace ¢ 5
s

Solucié. Sabem que 1/s? és la transformada de la funci6 ¢, de manera que per la Propietat
8 resulta

—S

e

= Z{H(1){t-1)}

2
La Figura 4 mostra la grafica de Hq(t)(t — 1). v
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-1
1
Figura 4: Grafica de Hy(t)(t —1).
—3s
Exemple 16 Quina funcio té per transformada de Laplace ORI y— ?
s2—2s —

Solucié. Observem que

1 1 1

§2—-25—3 s2—2s+1—4 (s—1)2-22

Jaque 1/(s? =23 =% {% sinh 2t}, de la Propietat 3 podem concloure que
1 1,.
m - g {56 smh2t}
i segons la Propietat 8 tenim que

—3s 1

673 _ {_H3(t)et3 sinh 2(t — 3)}

§2 — 25 — 2

v

Exemple 17 Sigui f(t) la funcié que val t per a 0 < t < 1, i que val 0 per at > 1.
Trobeu la transformada de Laplace de [ sense realitzar cap integracio.

Solucié. Observem primerament que f(t) pot escriure’s de la forma
f(t) =t(Ho(t) — Hi(t)) =t — tH:(2)
Per tant, segons la Propietat 2,

LWy = 2ty - Z{tH(1)}

1 d e s 1 e s e *

s2  ds s 52 S 52
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5.2 Problema de valor inicial amb funcions de Heaviside

Veurem un exemple on el terme no homogeni és una funcié continua per seccions.

Exemple 18 Resoldre el problema de valor inicial

2y dy 1 si 0<t<1l, 0 si 1<t<?2
ﬁ—BaJ&y:f(t): 1 si 2<t<3, 0 si 3<t<A4 y(0) =0, y’(O):O
1 si 4<t<b, 0 si 5<t<

Solucié. Siguin Y(s) = Z{y(t)} i F(s) = Z{f(t)}. Quan s’aplica la transformada de
Laplace als dos costats de 'equaci6 diferencial s’obté que (s*> — 3s + 2)Y(s) = F(s), de
manera que

_ F) ()
s2—=3s+2 (s—1)(s—2)

Una manera de calcular F(s) és escriure f(t) de la forma

Y(s)

f(t) = Ho(t) — Hi(t) + Ha(t) — Hs(t) + Ha(t) — H5(t)

Per tant, basant-nos en la linealitat de la transformada de Laplace s’obté que

Un altre métode per a calcular F'(s) és avaluar la integral

00 1 3 5
/ e Stf(t)dt = / e St dt + / e St dt + / et dt
0 0 2 4

1—e 8 6723 _ 6733 6745 _ 6753

= + -
S S S

Com a conseqiiéncia obtenim que

1—¢ 5 + 6—25 _ 6—35 + 6—45 _ 6—55

Yis) = s(s—1)(s —2)

El segiient pas és desenvolupar —+—— en fraccions simples, és a dir, de manera que
s(s—1)(s— ’ ’

2)
s’escrigui de la forma

1 A B C

s(s—1)(s—2) 5+s—1+3—2

Aixo implica
A(s—1)(s—2)+ Bs(s—2)+Cs(s—1)=1
Fent s = 0 trobem que A = %, fent s = 1 trobem que B = —1, i fent s = 2 s’obté que

C= % Aixi doncs,

1 !
s(s—1)(s—2) 2
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Per tant, a partir de la Propietat 8,

1 1 1 1
6 = |=—e+=e®| — Hi(t) |z — el 4 220D
y(®) [2 e+2e] 1<>[2 D 4 e
1 1 1 1
+H2<t) |:§ _ e(t72) 4 562(252):| _ H3(t) [5 _ e(t73) + 562(153):|
+H,(t) B _ ot % 62(t—4)} —H, () B ) %62(,5_5)]

Observacio. Pot verificar-se facilment que la funcio

1 1
= eltem) 4 2 p2(tm)
e + 26

2

iles seves derivades s’anul-len en ¢t = n. Per aixo, tant y(¢) com y'(t) son funcions continues
en el temps, tot i ser f(t) discontinua en t =1,2,3,41 5.

De forma més general, com la integral d’'una funci6 de Heaviside és continua, tant la
soluci6 y(t) del problema de valor inicial

dy  dy

= + —_— —'— e t , t — , / t — /

Tn T ay= /() y(to) = yo Y (to) = Yo
com la seva derivada 3/(t) son sempre funcions continues en el temps, si f(¢) és continua
a trossos. v

5.3 Delta de Dirac

En moltes aplicacions fisiques i d’enginyeria apareix sovint el problema de valor inicial

Py dy
T TP tay= f(t),

o y(0) =%,  ¥'(0) =1y (18)

on f(t) no es coneix explicitament. Aquests problemes es presenten generalment quan es
treballa amb fenomens de naturalesa impulsiva. En aquests casos, 'inica informacié que
es té de f(t) és que és igual a zero, excepte en un interval de temps molt curt tg < t < ¢y,
i que la integral sobre aquest interval és un cert nimero Iy # 0. Si Iy no és molt petit,
llavors f(t) sera molt gran en linterval ¢y < ¢ < t;. Aquestes funcions es coneixen amb el
nom de funcions d’impuls (parlant amb rigor matematic, ens hi hauriem de referir com a
funcionals o distribucions). En la Figura 5 es mostra la grafica d’'un impuls f(¢) tipic.

A principis de la década de 1930, Dirac, guanyador d’un premi Nobel per treballs
relacionats amb la mecanica quantica, va elaborar un métode forca controvertit per a
treballar amb funcions d’impuls. El seu métode es basa en el segiient raonament: Sigui
t1 cada cop més proper a ty. Llavors la funcio f(t)/I, tendeix a la funci6é que és 0 per a
t#tyiaocoperat=rty. Amés, laseva integral sobre qualsevol interval que contignui %,
val 1. Aquesta funcié es coneix amb el nom de funcid delta de Dirac, tot i que no és una
funcioé en el sentit habitual —ja Dirac la va qualificar de funcié “impropia”™, i es denota
per §(t — tg), o per 04 (t). No obstant, pot operar-se formalment amb §(t — ty) com si es
tractés d’una funcié més.
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-7

to t

Figura 5: Grafica d'una funcié d’impuls f(¢).

Formalment es pot definir §(¢ — ¢y) d’'una manera forga genérica, imposant que per a
una funcié qualsevol ¢(t), es verifiqui

b
_ _Joglte) , a<to <D
/a g(t) o(t — to) dt = { 0 , altrament (19)
En particular, prenent g(t) = 1 obtenim la segiient propietat que correspon a la

definicié donada originalment per a una funcié d’impuls,
[P8(t—to)dt =1 si a<ty<b

Es interessant posar de manifest la relacié que hi ha entre la delta de Dirac i la funcié de
Heaviside.

Propietat 9 (Derivada de la funcié esglad) Per a tot ¢ > 0 es verifica

/Ot O(u—c)du= H.(t) (20)

Aquest resultat és una conseqiiéncia immediata de la definici6. De vegades aquesta
relaci6 s’escriu, per analogia amb les funcions ordinaries, com

5(t — ) = < H. (1) (21)

volent significar que “la derivada de la funcié esglad és un impuls”. Ara bé, com s’ha
d’entendre la relaci6é anterior, si, de fet, la funcié esglad H.(t) no té derivada a t = ¢?
La manera correcta d’interpretar aquesta relacio seria pensar que les derivades d’una se-
qiiéncia de funcions diferenciables, que en el limit tendeixen a H.(t), constitueixen una
seqliéncia apropiada per a definir 6(¢ — ¢).

5.4 Terme no homogeni impulsiu
Ara podem veure que tota soluci6 y(t) de I'equacio diferencial

y | dy
=7 — 22
2z TP tay=16(t—c) (22)
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és una funci6é continua en el temps. Si integrem l'equacid, tenint en compte 'expressio
20, resulta que y'(t) és discontinua a la manera de H.(t). Com la seva integral és una
funcié continua, llavors y(t) sera una funci6é continua. Dit amb un exemple, si y(t) és la
soluci6 de 'equacié del moviment d’una particula que rep un impuls en el temps t = ¢,
aquesta particula no realitza el “canvi de lloc instantani”, siné que segueix una trajectoria
continua. La seva velocitat, en canvi, es veu sobtadament modificada.

Per a resoldre el problema de valor inicial que mostra 'equacié (18) pel métode de la
transformada de Laplace, només cal saber quina és la transformada de Laplace de §(t—tp).
Aix0 ho podem obtenir directament de 'equacio (19)

ZL{ot—ty)} = / e o(t —to) dt = e *"0, to >0
0

Exemple 19 Trobar la solucio del problema de valor inicial

d2y dy /
Tz Aty =30-1)+0(t-2),  y(0)=1, ¢ (0)=1

Solucié. Sigui Y(s) = Z{y(t)}. Quan apliquem la transformada de Laplace als dos
costats de 'equaci6 diferencial, obtenim que

s2Y(s) —s—1—4(sY(s) — 1) +4Y(s) =3¢ 5 e
o el que és el mateix,
(s> —45+4)Y(s) =5 —3+3e e %

Per tant tenim que

s—3 N 3e~* N e
(=22 (s=2)?? (s—2)
Observem ara que 1/(s — 2)* = £ {te*'}. Llavors,

Y(s) =

3e~5 N 6_28
(s =2 (s—2)?
Per tal d’invertir el primer terme de Y'(s) observem que
5—3 5 —2 1

(5—2)2:(3—2)2_(5—2)2:"%{6 =2 {te”}

=2 {3H(t)(t — 1)e*"™ ) + Hy(t)(t — 2)e*}

Aixi doncs,

y(t) = (1= t)e® + 3Hi(8)(t — 1)e**Y + Ha(t)(t — 2)e*?

Observacio. Resulta il-lustratiu resoldre aquest problema per la via llarga, és a dir,
trobar y(t), per separat, en cadascun dels intervals 0 <t < 1,1 <t <212 <t < oo. Per
0 <t <1 tenim que y(t) satisfa el problema de valor inicial

d’y  dy

E—éla—kzly:(), y(0) =1, y'(0) =1
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L’equaci6 caracteristica d’aquesta equacié diferencial és r? — 4r +4 = 0, que té per arrels
ry = 719 = 2. Per tant, qualsevol soluci6 y(t) ha de ser de la forma y(t) = (a; + ast)e*.
Les constants a; i as es determinen a partir de les condicions inicials

1=95(0)=a i 1=4'(0) =2a; + ay

Per tant, a; =1, a3 = —11iy(t) = (1 —t)e*! pera0 <t < 1. Aray(l) =01iy/'(1) = —€>
En l'instant ¢ = 1 la derivada de y(¢) s’'incrementa sobtadament en 3 unitats. Per tant,
per a1l <t < 2esté que y(t) satisfa el problema de valor inicial

d’y  dy
P 4y =0 1) =0 /1:3_2
T2 A Ty y(1) y'(1) €
Ja que les condicions inicials ens vénen donades en t = 1, la soluci6 s’escriura de la forma
y(t) = (b1 +ba(t —1)) €2, Les constants b; i by es determinen a partir de les condicions
inicials
Il=y(l)=b i 3—e>=9(1)=2b +by

Aixi dones, by =0, by =3 —e2iy(t) = (3—€?)(t—1)e2 Y on 1 <t < 2. Ara tenim que
y(2) = (3—e?)e? iy/(2) = 3(3—¢€?)e?. En l'instant ¢ = 2, la derivada de y(t) s’'incrementa
sobtadament en 1 unitat. Conseqiientment, per a 2 < ¢ < oo tenim que y(t) satisfa el
problema de valor inicial

d*y

dy
o 4% +4y =0 y(2) = *(3 — €?) y'(2) =14 36*(3 — ¢€?)

Per tant, y(t) = (c; + c2(t — 2))e**=2). Les constants ¢; i ¢» es determinen a partir de les
equacions

(3 —e*)=¢a i 14 3e*(3 —e?) = 2¢; + ¢

Aixi tenim que

ey = e*(3—¢€?), co=1+3e*(3—¢*) —2e*(3—¢*) =1+e*(3—¢?)

y(t)=[e#B—€*) + (1+e*3—¢€*))(t —2)] 2 >9
v

Observacio. Seria interessant verificar que, efectivament, aquesta expressioé coinci-
deix amb la que s’ha obtingut anteriorment mitjancant el métode de la transformada de
Laplace. A diferéncia del que succeia en I’Exemple 18, on el resultat era una funcié conti-
nua amb derivada continua, ara es pot comprovar que la solucié obtinguda en I’Exemple
19 també és continua, perod, en canvi, la seva derivada no ho és. Es veu facilment que la
funcio (t —n)e?*=™ és nul-la en ¢ = n, perd no ho és la seva derivada.

La Taula 2 mostra les transformades de Laplace de les funcions més usuals.
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6 Integral de convoluci6

Considerem el problema de valor inicial

Py dy )
@+pa+qy=f(t), y(0) =0, y'(0) =0 (23)

Sigui Y(s) = Z{y(t)} 1 F(s) = Z{f(t)}. Apliquem la transformada de Laplace als dos
costats de ’equaci6 i obtenim

(s +ps+q)Y(s) = F(s)

que implica

F(s)
Y(s)= 35—
s +ps+gq
Fixem-nos ara només en la part

H(s) = 5 (24)

§) = ————

s2+ps+q

Si la seva transformada inversa es denota per

h(t) =27 {H(s)} (25)

aquesta funcié pot ser interpretada com la solucié de I'equacié homogénia, amb f(t) = 0,
amb unes condicions inicials no homogeénies h(0) = 0, A'(0) = 1. Aquesta solucié s’entén
habitualment com la resposta natural del sistema, doncs és el resultat d’'una minima
pertorbacio de les condicions d’equilibri del sistema, sense estimuls externs.

Similarment, la funcié h(t) també es pot interpretar com la la solucié de l'equacio
diferencial on la part no homogenia s’ha substituit per un impuls a l'origen, f(t) = 0(¢),
i que satisfa les condicions inicials homogénies h(0) = 0, A'(0) = 0. Recordem que
Z{(t)} = 1. Per aquest motiu h(t) també s’anomena resposta impulsional.

Ara interpretarem la soluci6 particular y(t) de l'equacié completa. Mitjancant les
respectives transformades, podem posar y(t) en funci6 de h(t) i f(t),

Ly} =Z2{f0)}- Z{nt)} = F(s)- H(s)

A H(s) se la denomina funcid de transferéncia. Resulta natural preguntar-se si existeix
un relacié senzilla i directa entre aquestes funcions. Logicament seria més facil si y(t)
fos el producte de f(t) i h(t), pero dbviament aixd no succeeix. No obstant, existeix una
manera de combinar dues funcions f i ¢ per tal de formar una nova funcié f * g que és
semblant a la multiplicaci6 i compleix que

L{(fxg))} =Z{f )} - Z{9(t)}

Aquesta combinacié de f i g apareix amb freqiiéncia en moltes aplicacions i es coneix per
convolucio de f amb g.

Definicié 2 La convolucio (f * g)(t) de f amb g es defineix per mitja de l’equacio

(f*g)(t) = / £t — w)g(u) du (26)
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Observacio. Els limits entre 0 i ¢ de la integral de convolucié van associats al fet que
aquestes funcions estan definides per a t € [0,00). Si el seu domini fos (—o0, c0), llavors
la integral de convoluci6 tindria limits entre —oo i 0o.

Per exemple, si f(t) =sin2t i g(t) = e, llavors
t 2
(f=9g)(t)= / sin 2(t — w)e" du
0

6.1 Propietats

L’operador de convoluci6 satisfa les propietats segiients.

Propietat 1 L’operador convolucio compleix la llei commutativa de la multiplicacio, és
a dir, (f xg)(t) = (g [)(1).

Demostracio. Per definici6é tenim que

(% g)(t) = / £t — w)g(u) du

Fent el canvi t — u = ( en la integral obtenim que

0

(fxg)(t) = — [ J(Qg(t—¢)d¢

Es igualment facil comprovar les segiients propietats:

Propietat 2 L’operador convolucio compleix la ller distributiva de la multiplicacio, és a
dir,

felg+h)=Fxg+fxh

Propietat 3 L’operador convolucio compleix la ller associativa de la multiplicacio, €s a
dir, (fxg)*h=fx*(g*h).

Propietat 4 La convolucio de qualsevol funcio f amb la funcio zero és igual a zero.

D’altra banda, 'operador convoluci6 es distingeix de 'operador multiplicacié en que
fx1+#fifx*f+# f2 De fet, la convolucié6 d'una funcié f amb ella mateixa pot inclis
ser negativa.

Exemple 20 Calcular la convolucid de f(t) =t* amb g(t) = 1.

Solucié. A partir de la Propietat 1 tenim que

3

(f*g)(lt)z(g*t)(t)=/0 1-u2du:%
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Exemple 21 Calcular la convolucio de f(t) = cost amb ella mateiza i demostrar que no
sempre €s positiva.

Solucié. Per definicié tenim que
t
(fxf)t) = / cos(t — u) cos u du
0
t
= / (cost cos® u + sin ¢ sin u cos u) du
0

¢ ¢
1+ cos2u
= cost/ +7(1lu+sint/ sin u cosu du
0 0

2
B t sin2t sin® ¢
= cost (5 + 1 ) + 5
_ tcost+sintcos®t +sin’t
N 2
_ tcost +sint(cos?t + sin®¢t)
B 2
_ lcost+sint

2

Aquesta funci6 és clarament negativa per a
Cn+1r <t< (2n+1)7r+g; n=0,1,2...

v
A continuacio es demostrara que la transformada de Laplace de f * g és el producte
de la transformada de Laplace de f i la transformada de Laplace de g.

Teorema 1

L{(fxg))} =Z{f )} - Z{9(t)} (27)

Demostracio. Per definici6é tenim que

2oy = [ e[ [ 1 wot)au) a

Aquesta integral iterativa és igual a la integral doble

//R e f(t —u)g(u) dudt

on R és la regi6 triangular descrita en la Figura 6. Integrant primer respecte ¢, enlloc de
u, s’obté

2wy = [ ot | [Tetra-wa] a

En fer t — u = & trobem que

[ et [T e pg)ag
u 0
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u
1
_V
W
R
-1
Figura 6: Area sota la funcié u = t.
Per tant, es compleix que
2{( 00} = [ ot | [T eresie de] au
0 0
= [ stwea | [T e ag
0 0
= Z{f®); - Z{9t)}
O
Exemple 22 Trobar la transformada de Laplace inversa de la funcio
a
s2(s? + a?)
Solucié. Observem que
1 . a .
; - Z{t} 1 m - f{smat}
Per tant, pel Teorema 1 sabem que
o a ! .
< {m} = /O(t—u)smaudu
at — sin at
T2
v

Exemple 23 Trobar la transformada de Laplace inversa de la funcio
1
s(s? + 2s + 2)
Solucié. Observem que

1 1
24+ 25+2 (s+1)2+1

é:gg} i

< {e_t sin t}
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Per tant, pel Teorema 1

1 t
71 — —u .
< {—5(52+25+2)} /0 e “sinudu

1
—(1—e*(cost +sint
2( e "(cost + sint))
v
Observacio. Ara podem donar resposta al problema que es plantejava en 'equacio
23. Sigui A(t) la soluci6 de 'equacioé y” + py’ + qy = 0, que satisfa les condicions inicials
h(0) =01 A'(0) = 1. Llavors

) = O+ h(0) = [ 7= hw)du (28)

és la solucio particular de 'equacio y” + py' 4+ qy = f(t), que satisfa les condicions inicials
y(0) = 4/(0) = 0. Freqiientment, 1’equacio (28) és forga més facil d’utilitzar que el métode
de variacié de parametres. La generalitzacié a unes condicions inicials qualsevols és ben
senzilla a partir de ’equacio 5.
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Taula 2: Transformades de Laplace de les funcions més comuns
f(t) F(s) f(t) F(s)
1 ] a
1 1 B (s>0) |09 sinh at R (s > a)
" n! - n!
2 t prEs) (s >0) | 10. t"e G o)y (s > a)
N 1 s? — 32
3 ot — (s >a) | 11. t cos it 1 ) (s >0)
S ) 20s
4 cos ft T (s >0) | 12. t sin 5t 2+ ) (s >0)
. B 1
6. e cosft v a (s>a) | 14. H.(t)=H(t—c) c” (s >0)
(s —a)? + 52 s
at p
7. e™sin St ool (s >a) | 15. o(t) 1
8. coshat ° (s >a) | 16.  ,(t) =(t —a) e (a>0)




