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ABSTRACT

A large sample with the full space motions drawn from the Hipparcos Catalogue allows us to select some nested subsamples con-
taining an increasing number of thick disk stars. Segregated thick disk populations show a progressive decreasing vertex deviation
according to a trend of axial symmetry, as well as an increasing velocity dispersion and mean age, which are consistent with a trend
of steady state. Thus, we propose to extrapolate the oldest thick disk by using a quite general kinematic model, that is time depen-
dent and with point-to-point axial symmetry, until reaching a hypothetical stellar population with axial symmetry, vanishing radial
differential movement, and steady state. In the Galactic plane, the extrapolated population determines the point of the velocity space
with differential rotation alone, that is with no net radial motion. The present work improves the estimation of the local radial mean
velocity that we obtained in a previous work, where a raw linear extrapolation was performed. Now we complete the analysis by using
a more precise estimation based on the kinematic model. The resulting no net radial motion point has radial heliocentric velocity
U = −20 ± 1 km s−1 and rotation heliocentric velocity V = −82 ± 2 km s−1. During the disk heating process, the disk populations lose
angular momentum and radial motion while increasing the velocity dispersion. And, in particular, the thick disk loses its total radial
motion before reaching the steady state, in an attempt to recover axiality. The new estimation stresses previous conclusions about the
vanishing radial mean velocity of the stars associated with the Hyades-Pleiades supercluster, originated by large molecular clouds.
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1. Introduction

The purpose of the present work is to improve a previous study
(Alcobé & Cubarsi 2005) in which, as a consequence of the
kinematic analysis of disk populations in the solar neighbour-
hood, the parameters of thin and thick disk components were ob-
tained according to nearly ellipsoidal velocity distributions. As
the whole sample was enlarged, by selecting stars with greater
heliocentric velocity, and after extracting the thin disk compo-
nent, the thick disk local population became more representative
and showed a progressive approach to axial symmetry, accord-
ing to decreasing values of the vertex deviation of its velocity
ellipsoid.

A more detailed analysis of such a trend towards axial sym-
metry is needed to improve the estimation of the galactocen-
tric solar radial velocity, since it could be determined by work-
ing from an extreme axial and steady state thick disk or halo
population. We believe that the more precise determination of
such an asymptotic population can answer the question posed by
Famaey et al. (2005) about a subset of stars in the solar neigh-
bourhood having no net radial motion, which can be used as
a reference against which to measure the solar motion.

This analysis is carried out by using the relationships pro-
vided by the point-axial kinematic model, rather than by a linear
approximation, enabling us to relate the radial mean velocity and
the axiality index, and leading to a more precise extrapolation of
the asymptotic behaviour of such an axisymmetric and station-
ary population of the thick disk in the solar neighbourhood.

In general, the local mean velocity is obtained from an es-
timation of Oort constants, which obviously are extremely

sensible to the working sample, especially if it contains a mix-
ture of differentiated kinematic populations.

On the other hand, the relationship between these constants,
the mean velocity, and its gradients are constrained by the sym-
metry assumptions of the dynamical model. For example, it is
well known that there are only two non-null Oort constants, A
and B, if axial symmetry and pure differential rotation are as-
sumed. Otherwise, if only axial symmetry is assumed, the con-
stant K is generally non-null, but C still vanishes.

In previous work we adopted a quite general framework for
the dynamical model under the following assumptions: (1) the
stellar system is statistically homogeneous, so that the motion
of the stars admits an isolating integral that is quadratic in the
peculiar velocities (Chandrasekhar 1942); (2) the fundamental
equation of stellar dynamics is satisfied; (3) the hypotheses of
a Galactic plane of symmetry and point-to-point axial symmetry
(that is, symmetry for opposite and equidistant points through
the axis of rotation of the Galaxy) are assumed.

The above assumptions enabled us to consider a stellar sys-
tem that is quite close to the actual situation. Thus, for exam-
ple, (a) spiral or barred structures can be described, (b) pop-
ulation parameters are time-dependent, (c) radial and rotation
differential movement are allowed, (d) for a fixed time, the or-
bit of a local population centroid is elliptical, and (e) since the
fundamental equation is linear in the phase space density func-
tion, the whole stellar system can be described as a mixture
of populations.

Therefore, to carry out our analysis, it is necessary to use
some consequences of the described model, which are reviewed
in the following section.
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2. Radial and rotation mean velocities

In the Galactic plane, and according to previous assumptions,
the population mean velocity can be expressed by using a galac-
tocentric cylindrical coordinates system, (r, θ, z) for positions
and (Π,Θ, Z) for velocities (with the Galactic rotation defining
the positive sign of the angles), as follows (Sanz-Subirana &
Català-Poch 1987; Juan-Zornoza et al. 1990):

Π0 =

⎡⎢⎢⎢⎢⎣ k̇1

k1
+

βa′

k2
1 − Q2 + k2ar2

⎤⎥⎥⎥⎥⎦ r
2

Θ0 =
−βar

k2
1 − Q2 + k2ar2

,

(1)

where k1 and Q are arbitrary functions of time, β and k2 are con-
stants, and a is a function of time and angle. The time derivative
is denoted by a point and the angle derivative by a prima. In par-
ticular, for an axial symmetric system we get Q = 0 and a = k1.
Integrability conditions for the centroid orbit lead to the follow-
ing particular function of the angle and time for a

a(θ, t) = f (θ) g(t). (2)

Under the point-axial model, Oort constants are in general non-
null. Otherwise, under axial symmetry the radial mean velocity
becomes

Π
(cyl)
0 =

k̇1

k1

r
2
, (3)

leading to a vanishing Oort constant C. Thus, an axiality index
can be defined to quantify the deviation of the stellar population
from axial symmetry, according to

I =
C

A + B
· (4)

Let us point out two properties of the axiality index. First, I is
a function depending only on the angular coordinate, since, by
Eq. (2), the following relationship is satisfied

I(θ) =
a′(θ, t)
2a(θ, t)

=
f ′(θ)

2 f (θ)
· (5)

Second, the axiality index can be expressed explicitly depending
on the second central moments, according to the equation

I(θ) = −µ12

µ22
(6)

(the subindexes 1 and 2 refer to the Π- and Θ-velocities,
respectively).

Another index may be defined to describe how the stellar
velocity distribution differs from a spherical distribution. This is
the anisotropy index,

M =
µ11

µ22
, (7)

although sometimes it is also defined according to the expression
1 − µ22

µ11
(e.g., Binney & Tremaine 1987).

Notice that, by combining both indexes of Eqs. (6) and (7),
the vertex deviation δ of the velocity ellipsoid is given by

tan(2δ) =
2µ12

µ11 − µ22
=

2I
I − M

(8)

(obviously there is some vertex deviation only if the distribution
is not spherical, M � 1).

From the study of the mean velocity field (Juan-Zornoza
1995) the mean population velocity in the Galactic plane can
be expressed by using Oort constants, together with the forego-
ing indexes. Thus, taking into account Eq. (3), the equations in
Eq. (1) may be written as

Π0 = Π
(cyl)
0 − (M + I2)(B + A) − 2(B − A)

M − I2
Ir

Θ0 =
(M + I2)(B + A) − 2(B − A)

M − I2
r.

(9)

Therefore, from the above equations we have a relationship basi-
cally involving the radial and rotation velocities and the axiality
index:

Π0 = Π
(cyl)
0 − I(θ)Θ0(I2). (10)

Let us note that if the foregoing equation is divided by r, the term
r−1Π

(cyl)
0 depends only on the time variate. Thus, from Eq. (3), if

the system is in steady state, this term becomes null. Moreover, if
the stellar system is axisymmetric, the second term of the radial
mean velocity also becomes null.

3. Nearly axisymmetric and steady state population

Now we wish to describe the behaviour of the extremely thick
disk stars by assuming that: (a) their stellar distribution is close
to axisymmetry so that, according to Eq. (6), I → 0, and (b) their
average age is consistent with a nearly vanishing time evolu-
tion of their population parameters (Gómez et al. 1997; Soubiran
et al. 2003).

If the above conditions are exactly fulfilled we have, by (a),
that the second term of the right hand side in Eq. (10) is null, and,
by (b) and by taking into account Eq. (3), the first term is also
zero. Hence, such a population would have a null radial mean
velocity, as is expected for the oldest disk and halo stars (Chiba
& Beers 2000; Vallenari et al. 2006).

Notice that under the described situation, Oort constants
satisfy

A = −1
2
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∂Θ

(cyl)
0

∂r
− Θ
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0
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2
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(cyl)
0

∂r
+
Θ

(cyl)
0

r

⎞⎟⎟⎟⎟⎟⎠ , (11)

and also (e.g., Chandrasekhar 1942)

B − A
B
= M. (12)

Thus, the behaviour of the radial mean velocity around I = 0, by
Eq. (9), is obtained from the following power series of I,

Θ0(I2) = Θ0(0) +
(
∂Θ0(I2)
∂I2

)
I=0

I2 + O(I4)

= (A − B)r + 2A
M rI2 + O(I4).

(13)

Taking into account Eq. (11), we alternatively write

Θ0(I2) = Θ(cyl)
0 − r2

M
∂

∂r

⎛⎜⎜⎜⎜⎜⎝
Θ

(cyl)
0

r

⎞⎟⎟⎟⎟⎟⎠ I2 + O(I4). (14)

In the solar neighbourhood, the first and second terms of the
foregoing series are positive. The first one due to the positive
sign of the Galactic rotation in the reference frame we are using,
and the second one since the derivative is negative according to
the signs β < 0, k1 > 0, and k2 > 0 (Sala 1990).



R. Cubarsi and S. Alcobé: Radial mean velocity in the solar neighbourhood 539

Let us remark that the axiality index for the local thick disk
population was |I| ≈ 0.2 (the set of partial thick disk populations
that were obtained in Cubarsi & Alcobé (2004) had decreasing
values of |I| from 0.3 to 0.2). Thus, the terms O(I4) are clearly
negligible.

Therefore, by omitting higher order terms, we can eliminate
I between Eqs. (14) and (10). Then, the excess of the radial mean
velocity of a nearly axial population, with reference to a pure
axially symmetric population, can be measured through the fol-
lowing function of the excess of its mean rotation velocity:

(Π0 − Π(cyl)
0 )2 =

1
ρ
Θ2

0 (Θ0 − Θ(cyl)
0 ) (15)

with ρ = − r2

M
∂
∂r

(
Θ

(cyl)
0

r

)
> 0, which is constant for fixed r. Hence,

such a relationship shows how the trend toward an axially sym-
metric population, Π0 → Π(cyl)

0 and Θ0 → Θ(cyl)
0 , is constrained

in a system close to axisymmetry. In addition, for an asymptotic
stationary population Π(cyl)

0 → 0.

4. No net radial motion point

For the actual solar sample, the local thick disk was progres-
sively segregated by working from increasing nested subsam-
ples with the full space motions. The total sample (see details in
Cubarsi & Alcobé 2004) was obtained by crossing the Hipparcos
Catalogue (ESA 1997) with radial velocities from the Hipparcos
Input Catalogue INCA (ESA 1992). To obtain a representative
sample of the Galactic disk, the sample was limited to a trigono-
metric distance of 300 pc. The resulting total sample was com-
posed of 13 678 stars, where the only input data were the veloc-
ity components (U,V,W) in a Cartesian heliocentric coordinates
system, with U toward the Galactic centre, V in the rotational di-
rection, and W perpendicular to the Galactic plane and positive
in the direction of the North Galactic pole. The subsamples were
obtained according to Alcobé & Cubarsi (2005) by filtering the
whole sample by the absolute value of the total space motion,
145 ≤ |V|max ≤ 210 km s−1.

According to Eq. (15), the differential radial mean velocity
referring to a cylindrical system, U0 −U (cyl)

0 , was plotted against
the galactocentric rotation mean velocity Θ0 (Fig. 1). In the new
coordinates system, the increment of radial velocity is obtained
from Eqs. (6) and (10) as

∆U0 = U0 − U (cyl)
0 =

µUV

µVV
Θ0. (16)

As is shown in Fig. 1, the rotation mean velocity of the axially
symmetric and steady state thick disk is extrapolated at ∆U0 = 0,
leading to a value of Θ(cyl)

0 = 138 ± 2 km s−1. Notice that this

point satisfies U0 = U (cyl)
0 = 0.

On the other hand, Fig. 2 displays the location of the pop-
ulation A2, which we associated with young disk stars (Alcobé
& Cubarsi 2005), as well as the progressive partial thick disks
up to the population T of the complete sample, which are clearly
aligned in the plane of radial-rotation heliocentric velocities UV .

Let us remark that, in the previous paper, we isolated
two non-Gaussian components within the thin disk, which were
labeled as A1 and A2. Both components had the mean veloci-
ties and the rotation and vertical velocity dispersions well de-
fined, but the radial velocity dispersion was obtained with a great
error, which indicates the non-Gaussianity of these subcompo-
nents. We showed that the subcomponent A2 approximately sat-
isfied the asymmetric drift relationship, similarly to older thin
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Fig. 1. According to a point-axial system close to axial symmetry, the
graph shows how the excess of radial mean velocity ∆U0 = U0 −U (cyl)

0 ,
referring to a pure axial system, and the mean rotation velocity Θ0 are
related. The plotted points correspond to several increasing thick disk
populations selected for 145 ≤ |V|max ≤ 210 km s−1. The continuous
line is the regression curve of the points according to Eq. (15), which
intersects the horizontal axis at Θ(cyl)

0 = 138 ± 2 km s−1. This value
corresponds to the mean rotational velocity of the extrapolated thick
disk.

disk stars, although neither the subcomponent A1 nor the thick
disk component fulfilled such a relation. In addition, we com-
pared our segregated populations with the analysis of the thin
disk small-scale structure by Soubiran & Girard (2005). They
had found that there was a different chemical and kinematical
behaviour between the super metal rich part and the rest of the
thin disk. The half of the thin disk stars with [Fe/H] > +0.20 had
motion consistent with that of the Hyades-Pleiades supercluster,
which in the velocity space can be associated with the subcom-
ponent A1. On the other hand, the other part was composed of
older stars, which was consistent with the fact that our subcom-
ponent A2 satisfied the typical asymmetric drift relation for disk
stars. For this reason, although there is in fact some mixture of
stars with different ages in both subcomponents, and for the sake
of referring to them according to their kinematic behaviour, we
named them early type stars and young disk stars, respectively.

We also showed that, by selecting samples from a maximum
heliocentric velocity |V|max > 125 km s−1, a clear discontinu-
ity in the velocity dispersions was found, by detaching thin and
thick disks. However, we also found that there was a continuous
trend involving the mean velocities of young disk stars, old thin
disk stars, and the thick disk population. Such a continuous trend
corresponds to the nearly linear fitting that is displayed in Fig. 2.

Thus, that regression line is extrapolated up to the heliocen-
tric rotation velocity of the asymptotic thick disk, V = −82 ±
2 km s−1, with zero radial velocity (by assuming a local mean
rotation velocity Θ� = 220 km s−1). That is, we are able to de-
termine the heliocentric mean radial velocity corresponding to
a galactocentric mean rotation velocity Θ(cyl)

0 = 138 km s−1 for
such an asymptotic population.

Hence the heliocentric radial velocity of such an axisym-
metric population with no radial movement may be estimated as
U = −20 ± 1 km s−1, referring to the Sun. Such radial velocity
is very similar to the mean radial velocity of early-type subcom-
ponent A1, which was isolated within the thin disk structure.
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Fig. 2. The graph shows the location of the young disk population cen-
troid A2 and partial disk populations up to the complete thick disk T ,
which share a common direction in the plane of radial-rotation helio-
centric velocities UV . Their straight line fit is extrapolated up to the he-
liocentric rotation velocity V = −82 ± 2 km s−1 (horizontal dashed line)
of the asymptotic thick disk, with zero radial mean velocity. Hence the
heliocentric radial velocity of such an axisymmetric population may be
estimated as U = −20 ± 1 km s−1 (vertical dashed line), which is very
close to the mean radial velocity of the early-type population A1.

5. Discussion

According to Famaey et al. (2005), the subcomponent associated
with the Hyades-Pleiades supercluster originated from a com-
mon large molecular cloud radially perturbed by a spiral wave.
Similarly, Skuljan et al. (1999) described a complex three branch
structure between the subcomponents A1 and A2, along the major
axis of the thin disk, which they suggest to be associated with the
presence of several adjacent spiral arms. In addition, Soubiran &
Girard (2005) explained the effect of a Galactic bar moving stars
from circular to eccentric orbits. The above arguments enable us
to give some interpretations of our results.

The non-Gaussianity, in the radial direction, of the veloc-
ity distribution of early type stars A1 and young disk stars A2 is
completely consistent with the assumption of a radial perturba-
tion, which would not allow such subcomponents to reach the
statistical equilibrium.

The centroid of the A1 subcomponent is moving on a nearly
circular orbit, A2 is moving on an elliptical orbit, and A2 has
a kinematic behaviour corresponding to stars older than A1.
Therefore it is plausible to admit that, in the solar neighbourhood
and according to Fig. 2, starting from newborn stars, a radial per-
turbation impels stars toward the Galactic centre up to the stage
of the youngest disk population A2.

We already mentioned that thin and thick disks were suc-
cessfully deconvolved, despite having overlapping broad wings,
which could produce the effect of an intermediate population.
The discontinuity between both disks, which is usually related to
how the thick disk was created, could clearly be seen from their
velocity dispersions. In the previous paper we showed that be-
fore and after the discontinuity, both disk populations had some
kind of heating mechanism, but also we found, as mentioned
above, that despite the discreteness of the disks, the radial and
rotation mean velocities maintained an intriguing nearly con-
stant proportion. Thus we can affirm that, as they get older, the

–20

–10

0

10

20

30

40

50

60

120 140 160 180 200 220

U

V

A2

T

(a)

(b)

Fig. 3. For increasing thick disk populations, the difference between
both regression curves, a) U0 − U (cyl)

0 and b) U0, measures the non-
vanishing time-dependent term Π(cyl)

0 of the radial mean velocity for
a pure axial system. The graphic uses galactocentric UV velocities.
The discontinuous line shows the estimation of the no net radial mo-
tion point obtained from a linear extrapolation as in previous work.

disk populations partially lose their average angular momentum
at the same time that they lose radial motion and increase their
velocity dispersion. In addition, the sequences of the oldest thick
disk stars follow a trend of steady state and axiality toward the
no net radial motion point.

Finally, by putting together previous plots in Fig. 3, now in
a galactocentric UV plane, the difference between both regres-
sion curves, (a) U0 − U (cyl)

0 and (b) U0, allows us to estimate the

time dependent term −U (cyl)
0 = Π

(cyl)
0 of Eq. (1), which is clearly

non-null for the local thick disk.
We can conclude that both terms contributing to the mean

radial velocity in Eq. (10) are acting in opposite senses and are
more important for younger than for older stars. The term due
to the deviation from axial symmetry increases the radial mo-
tion toward the Galactic centre, while the time dependent term
opposes it in an attempt to recover the axial symmetry, which is
reached for the extrapolated population.
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