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ABSTRACT

Context. In previous work, we showed how the planar and vertical eccentricities of disc stars, e and ¢’, could be used as indicators of
the stars’ kinematic populations. For a local stellar sample drawn from the Gaia DR2 catalogue, these populations were represented
geometrically in the eccentricity diagram, e’? vs. ¢2, approximately separated by straight lines.

Aims. In the current work, we propose a new relationship between the star’s perpendicular velocity and its vertical eccentricity,
allowing for a reevaluation of the critical vertical eccentricity and maximum height, z,,, specific to each population component.
Methods. We approximated the local potential function to be consistent with the actual shape of the curve that relates the maximum
vertical speed of a star and its maximum height. The curve corresponds to a non-linear restoring vertical force, where the stiffness
decreases with an increase in the maximum height. The constants involved in this fitting, together with the population velocity
dispersions, determine the specific region for each population in the eccentricity diagram.

Results. The new classification determines 88% of the sample is made up of thin disc stars and 9% of thick disc stars, whereby 3% of
the stars have been relabelled, by providing thinner thin and thick discs. Nested thin disc subsamples allow us to estimate Stromberg’s
asymmetric drift equation, leading to a heliocentric velocity of the circular orbit of V., ~ —12.9kms™!, an absolute rotation velocity
of ®, ~ 227kms™!, and a rotation component of the Galactocentric velocity of the Sun at @, ~ 240kms~'.

Conclusions. The thin disc stars of our local sample are characterised based on values 0 < e < 0.32,0 < ¢’ < 0.09, and z,.x = 0.7 kpc.
Disc stars satisfy 0 < e < 0.44, 0 < ¢’ < 0.18, zmax = 1.5kpc. The maximum vertical peculiar velocity for disc stars is found to be
wo = 115kms~!. The assumed potential provides a stellar density of the disc vanishing at zy = 1.8 kpc. The approximate behaviour
in the local disc is that a small decrease in the stiffness is associated with a relative decrease in the limiting velocity, which produces

a thinner disc and a loss of stars in the local cylinder, both in a similar proportion to the limiting velocity.

Key words. Galaxy: kinematics and dynamics — Galaxy: disk — stars: kinematics and dynamics — stars: Population II

1. Introduction

The orbital planar eccentricity behaves as an excellent sampling
parameter that allows us to distinguish a number of small-scale
features of the velocity distribution in the Galactic disc (Cubarsi
2010). Other sampling parameters, such as the absolute value
of the heliocentric velocity, metallicity [Fe/H], or colour b —y,
produce kinematically biased samples and population estimates,
unless they are complemented with other sampling criteria. Tak-
ing it one step further, in a recent paper (Cubarsi et al. 2021,
hereafter Paper I) we analysed the local velocity distribution of
disc stars to classify the local stellar kinematic populations in
terms of the stars’ planar and vertical orbital eccentricities.

We consider a kinematic population to be a sufficiently large
number of stars described from a continuous velocity distri-
bution, whose macroscopic state is characterised in terms of
its mean values and covariances. We assume that the phase
space density function of each population is invariant under
the collisionless Boltzmann equation. Such a condition is sat-
isfied when each population is of a Schwarzschild type (e.g.,
Eddington 1915; Oort 1928; Chandrasekhar 1942; Ogorodnikov
1965; Lynden-Bell 1967), namely, a Gaussian distribution in the
three-dimensional velocity space.

Article published by EDP Sciences

The planar and vertical eccentricities proved to be key val-
ues in the process of disentangling the partial distributions. In
this way, we minimised the uncertainty generated in the regions
where the tails of the population distributions overlap. Firstly, we
applied a segregation algorithm to characterise the local stellar
populations in terms of their covariance matrix and population
fractions. Then, we classified the stars according to their most
likely kinematic population and we found that when plotting the
orbital planar eccentricity in terms of the vertical velocity, the
stellar populations remained well isolated.

According to the epicycle approximation for disc stars, the
planar and vertical orbital eccentricities provide information on
the integrals of motion of the star that each population velocity
distribution function depends upon. Therefore, the stellar popu-
lation a star belongs to can be determined from its orbital eccen-
tricities. Such a classification was established based on regions
delimited approximately by a straight line on a two-dimensional
graph we refer to as the eccentricity diagram. In one direc-
tion, the information on the two planar velocity components was
picked up by the planar eccentricity, e. In the other direction, the
vertical eccentricity, e, did the same with the vertical velocity
component. Even though in the Galactic plane (GP) the planar
eccentricity provides an accurate portrait of the planar velocity
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distribution, upon moving away from the GP, the vertical epicy-
cle approximation is no longer valid and requires a better approx-
imation model, which was fitted by using a biquadratic equation
for the maximum velocity curve (MVC), namely, the one that
estimates the maximum height of a star in terms of its vertical
velocity in crossing the GP. In the current work, we want to jus-
tify and improve this approximation. We replace the approximate
formula by a more meaningful one, based on the potential func-
tion allowing a mixture of Schwarzschild distributions.

In Paper I, we used a sample composed of 74 339 stars within
a solar radius of 100 pc drawn from the second data release (Gaia
DR2, Gaia Collaboration 2018) of the European Space Agency’s
Gaia mission (Gaia Collaboration 2016). Although Gaia EDR3
(Gaia Collaboration 2021a) had already been released, a detailed
examination has shown that if Gaia EDR3 had been used, the
sample would have been slightly smaller. As for five-parameter
astrometry solution, in Gaia EDR3, only the errors are differ-
ent. By applying a quite different approach, Gaia Collaboration
(2021b) found 74281 stars within 100 pc from the Sun with
radial velocities, a conclusion that is rather similar to our own. It
is for these reasons and for the purpose of a comparison with our
previous results that here we use the same sample as in Paper I.

This paper is organised as follows. In Sect. 2 we describe
the family of potentials allowing a mixture of trivariate Gaus-
sian populations with independent mean motions. In Sect. 3, we
analyse the shape of the MVC for the local stellar sample and
determine the local constants, particularly the one accounting
for the curvature of the MVC. In Sect. 4, we apply our model
to improve the estimation of the four regions describing the disc
stellar populations in the eccentricity diagram. Also, as an appli-
cation of the method, we evaluate the asymmetric drift of several
inner thin disc subsamples. In Sect. 5, we discuss the results and
interpret some specific properties of the MVC, the potential, and
the stellar density. Finally, we summarise the results in Sect. 6.

2. Potential function

Many general features of the Galactic structure can be described
by associating a kinematic stellar population in statistical equi-
librium with a phase space density function of Schwarzschild
type. As remarked in Paper I, this type of simplified Galaxy
model, with a few population components, is useful for getting
the large-scale kinematical trends accounting for the basic sym-
metries of the stellar velocity distribution — or the main devia-
tions from them (Cubarsi 2014a,b) — such as whether there is
axial or point-axial symmetry and a symmetry plane, what is the
average differential motion between populations, the shape and
orientation of the respective velocity ellipsoids, etc. These fea-
tures are in a relation of mutual dependence with the potential
function of the dynamical model.

The Schwarzschild velocity distribution is a particular case
of ellipsoidal distribution that leads in a natural way to Stickel
potentials and the quadratic third integral that goes along
with them (e.g., Gilmore et al. 1990). Potentials satisfying the
Stéckel conditions (Pars 1965; Makarov et al. 1967) provide an
orthogonal coordinate system where the Hamilton-Jacobi equa-
tion is completely separable (e.g., Goldstein 1980, p.453 and
Appendix D).

To allow the dynamic model a few more degrees of freedom,
Chandrasekhar (1942) assumed that the tensor of the velocity
covariances, the stellar density, and the potential could explicitly
depend on time through their parameters. A stationary dynam-
ical system requires an axisymmetric potential and restricts the
differential motion of the centroids to rotation alone; however, in
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the Chandrasekhar model, differential radial and vertical mean
velocities are also possible, as well as vertex deviation and tilt of
the velocity ellipsoid. For an explicitly three-dimensional, time
dependent system, the solution involving Chandrasekhar equa-
tions provides separable potentials (Sala 1990). Depending on
some model parameters, the potential can be separable either in
spherical coordinates, prolate spheroidal coordinates, or cylin-
drical coordinates.

Nevertheless, a more realistic model is obtained by assuming
a superposition of such solutions (Cubarsi 1990). For a mixture
of populations sharing a common potential, only a few poten-
tials are admissible (Cubarsi 2014a,b). The more ’general solu-
tion’ for an axisymmetric potential can be written, in cylindrical
coordinates', as

1 P2+ U (Zz/rz)
=M@+ +— 1
U " +2z) k‘Lll( . ) o (1)
where k is a time-dependent positive function and M = _2k +

% + 13, with ¢ as the constant. The above potential, expressed in
spherical coordinates (R, 6, ¢), R? =12 + 2, tan¢g = ;, satisfies
the Stéckel condition of separability in spherical polar coordi-

nates, %ﬁ (R*UR.¢)) =0.

For steady-state stellar systems, without assuming the ellip-
soidal hypothesis, the potential allowing the alignment of the
second velocity moment tensor along an orthogonal coordinate
system takes a separable form (An & Evans 2016; Evans et al.
2016). These authors suggest that the actual case should be very
close to the spherical alignment, with a potential similar to that
of Eq. (1). Therefore, the solution involving the Chandrasekhar
equations for a mixture of ellipsoidal velocity distributions that
we use in the current approach provides a similar result, but also
for time-dependent systems.

Still, there is only one particular family of the potentials
given by Eq. (1) allowing for independent differential motion
in directions other than rotation. This appears to be the relevant
case for the radial direction. In Paper I, between the thin and
thick discs, we determined a small radial differential motion of
4-5kms~!, and between the disc stars and the kinematical halo
of about 9 km s~!, which is in agreement with the values previ-
ously estimated by Girard et al. (2006) and Smith et al. (2009).
Such a family was referred to as a quasi-stationary potentials
(Cubarsi 2014a). We write it by separating the harmonic and the
non-harmonic parts as
F(s 2
¥, s= 2. )

U=MT+2)+Uy(r,2); Uyrz) =

The factor M can be either a time-dependent function or, as in
our case where the potential is assumed to be stationary, a con-
stant; whereas F' is an arbitrary function of its argument.

Therefore, we limit our study to the foregoing family of
potentials, which is the more general one and consistent with an
unconstrained mixture of Gaussian stellar populations, with the
purpose of fitting the MVC. For such a stationary potential, three
particular cases were already checked in Cubarsi et al. (2017) in
order to determine the three local kinematic constants, namely,
the planar and vertical epicycle frequencies «, v, and the angular
velocity € of the circular velocity point C:

! We consider a Galactocentric cylindrical coordinate system (r, 6, 7),

with @ positive in the direction of the Galactic rotation and z perpendic-
ular to the GP and positive towards the North Galactic Pole (NGP).
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Fig. 1. Maximum height z,, (kpc) in terms of the vertical heliocentric
velocity W (kms™"), with the biquadratic fit of Paper I (discontinuous
line). The distance to the local radius is indicated in the colours.

(a) The separable potential in cylindrical coordinates, with
F(s) = P € R. This potential forces the epicycle fre-
quencies to satisfy k = 2v. The commonly accepted val-
ues are Q. ~ 27kms~ ' kpc™!, k ~ 37kms~' kpc~!, and v ~
70kms~'kpc™! (e.g., Binney & Tremaine 2008, Table 1.2).
Therefore, this potential must be rejected;

Spherical potential, with F(s) = P (1 + s)"!, P € R. This
potential forces the condition v:= Qf, which is also unsatis-
factory;

Potential allowing a deviation from spherical symmetry, with
F(s) = P (1 + Qs)"!; P,Q € R. In this case, the three local
Galactic constants could be fitted from the three parameters
M, P, Q involved in the potential. However, this potential is
still not able to explain the relationship between the star’s
vertical velocity at the GP and the maximum height it can
reach, zmax (i.€., the MVC as obtained in Paper I).

Hence, we analyse the specific shape of the local MVC in rela-
tion to the potential function. As a result, the critical vertical
eccentricities that discriminate between the different kinematic
populations in the eccentricity diagram, as well as some local
kinematic constants, are also reevaluated.

(b)

(©)

3. Vertical velocity and maximum height

It is widely known that the equation of motion of a star in the

vertical direction, with velocity Z = 4 satisfies
dz

dr?
dz _ _ou
dt 0z

::»ZdZ:—a—(udz.
0z

These relationships provide the isolating integral of motion
accounting for the conservation of the energy in the vertical
direction. For a fixed radius, r, by explicitly writing the depen-
dence on z alone, we have

Z(Zmax) Znax
f ZdZ = - f — dz
Z(0) 0 0z

% [Z(zmax)* = Z(0)*] = U©0) — U(Zmax)-

By considering stars with stable or periodical vertical motion
about the GP, since they attain the maximum velocity Z(0) and
satisfy Z(zmax) = 0, we get the well-known relationship between
the maximum vertical velocity at the GP in terms of the maxi-
mum height,

Z(0)* = 2 [U(zmax) — U0)]. 3)

If the potential is harmonic in z, namely U(r, z) = %A(r) 2Z2+B(r),
by substitution in Eq. (3) we get Z(0)> = AZ2,.. This case is
equivalent to assuming the first-order epicycle approximation,
where the height of star referred to the GP is z = b sin(v¢—g) and
its velocity, also referred to the GP (assuming the local centroid
at the GP), is Z = vb cos(vt — g). Thus, by writing the maximum
distance to the GP as zp,x = b, we get
Z(0) =V’ zpas: “
from this, we have A = 2.

For our working sample, the MVC approximately repli-
cates the behaviour of Eq. (4), but only for low heights, and it
deviates for larger values. Figure 1 relates the vertical peculiar
velocity> w = W — W, at the GP with the estimated maximum
height (squared) for each star. In Paper I, we approximated this
behaviour through a biquadratic equation, namely,
=cw’ +eowt, w=W-W,. 5)

Similarly, in Fig. 2, the left panel shows two main features:
the first, close to the origin, indicates that the relationship is
nearly linear, but this trend is progressively lost. The other is
that this loss is accompanied with an increasing dispersion of
dots, which is greater for the stars that are more distant to the
solar position. The latter feature is much more noticeable if the
vertical eccentricity is used instead of the maximum height, as
displayed in the right panel of Fig. 2 (the vertical eccentricity
has been multiplied by ry in order to compare with the graph
plotted in terms Of Zmax)-

‘We must recall that z,,,x 1s not an observable, while the ver-
tical velocity is indeed such, with a relatively small error. The
values to compute the orbital eccentricities, namely, r,, r, (max-
imum and minimum orbital distances to the centre, i.e., the apo-
and pericentric distances), and zy,ax resulted from the numerical
integration of each star orbit. In Paper I, we used the model of
the Milky Way proposed by Ninkovi¢ (1992) and assuming three
contributors to the potential of the Milky Way: the bulge, the
disc, and the corona. The contributions to the Galactic potential
of the former two were described by the same formula as that
of Miyamoto & Nagai (1975), with the only difference related to
the values of the parameters. The parameters from Gaia DR2
(five-parameter astrometry solution and radial velocity) were
used as inputs for the model and the integration of the Galac-
tocentric orbits for each star was done for 10 Gyr by using a
fourth-order Runge—Kuta method.

Depending on the approximated model, in the integration
process, the stars whose values for r, or r, are more distant to
the solar radius, rp may accumulate a larger error. On average, it
generally occurs that the greater the distance between the mean
radius ry, = % of the orbit and ry, the greater the error.

By assuming the model is enough accurate, if the vertical
velocity of a star is actually measured at the GP, we may deter-
mine the maximum height with a relatively small error’. How-
ever, if a star is not exactly at the GP, the vertical speed will be
slightly lower and the maximum height is underestimated. For

Zmax

2 The velocities of the stellar sample are given in a heliocentric coordi-
nate system, with the radial heliocentric velocity component U positive
towards the GC, the heliocentric velocity component V positive in the
direction of the Galactic rotation, and the velocity component W per-
pendicular to the GP and positive towards the NGP. The velocity of the
local centroid, i.e., the mean motion of the local sample, is expressed as
(Uo, Vo, Wo).

3 We refer to the discussion in Appendix C of Paper I on the causes of
such a dispersion and possible contributions to it.
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Fig. 2. Squared vertical peculiar velocity (W — Wy)? (km? s~2) at the GP
in terms of (leff) the squared maximum height, 72, (kpc?), and (right)
the squared vertical eccentricity, ¢’2, scaled by ry (kpc?). The distance
to the local radius is indicated by colours.
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Fig. 3. Duffing potentials (leff) with B > 0 (red) and B < 0 (blue)
compared to the harmonic potential (grey). Maximum velocity curves
(right) associated with these potentials.

this reason, to determine the MVC, we should approximate the
upper envelope of the set of dots in Fig. 2.

On the other hand, by using the vertical eccentricities instead
of maximum height, we even get a better fit for the stars whose
mean orbital radius, ry,, is closer to (or larger than) the solar
position, ry. However, for stars with r, < rp, the dispersion is
much larger.

Let us remember that under the epicycle approximation, the
orbit of a neighbouring star oscillates around the local circular
velocity point, C with radius 7. ~ ry. The following ratios:

ra—Tp ; _ Zmax
e= , €=
2r. re

(6

define the planar and vertical orbital eccentricities of the star,
respectively, which, in Paper I were used to associate the star
with one of the local kinematical stellar populations. Under this
approach, the value r. matches the value ry,,. Most stars of our
working sample satisfy r,, = rp, which is consistent with the
epicycle approximation. In such a case, the orbital eccentrici-
ties provide a homogeneous measure of the planar and vertical
orbital amplitudes, allowing us to determine the planar and ver-
tical epicycle frequencies. However, there are anomalous stars
in the sample whose orbits oscillate around a value of ry, that is
significantly different from ry. For these stars, the local epicy-
cle approximation is not appropriate. Obviously, the deviation
from the epicycle model increases depending on whether the
stars belong to the thin disc, the canonical thick disc, the metal-
weak thick disc, the metal-rich thick-disc stars, or the halo.

We discuss (at the end of Sect. 3.3) why in the planar direc-
tions this fact is avoidable and why, in the vertical direction,
it becomes necessary to distinguish between the actual vertical
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eccentricity Z::‘ of such an anomalous star, which is referred to a
circular velocity point different from the local one and the ratio
Z’% this star provides. Therefore, the stars with r,, < ry have
larger vertical eccentricities than the stars with the same z,,x and
a guiding circular orbit near ry. In other words, the former stars
have an overestimated vertical eccentricity compared to the latter
ones. On the contrary, the stars with ry,, > ry have underestimated
vertical eccentricities, but these lower values correspond to the
domain closer to the origin, where the MVC is nearly linear and
the dispersion of dots is not noticeable. Therefore, when work-
ing from vertical eccentricities, we should also fit the upper-left
envelope of the set of dots in Fig. 2.

3.1. Interpretation of the maximum velocity curve

In order to be able to qualitatively interpret the MVC, we com-
pare the potential of the harmonic oscillator with that of the
Duffing oscillator (McLachlan 1950, p.24), ¢(z) = 1Az> + 1 Bz%;
A > 0, B # 0. This simple model is an example of a non-linear
restoring force, 7(f) = —f(2), f(z) = dﬁ—(;), such as a (unit) mass-
spring system without damping, where the characteristic of the
spring is f(z) = Az + BZ>. Another case of a similar non-linear
restoring force is that of a mass at the centre of a taut, uniform
vertical wire.

If B > 0, we get a slight modification of the harmonic oscil-
lator, where the effective length of the spring decreases with
increase in the amplitude of vibration. The stiffness is defined

to be the derivative of the restoring force, i.e., s(z) = % =

% = A+3BZ2. Thus, the stiffness indicates whether the poten-
tial function ¢(z) is a convex or concave curve, so that the stiff-
ness increases (convex) or decreases (concave) with increase in
the displacement. In the current example, according as B > 0
or B < 0. For B > 0 all solutions are periodic around a single
equilibrium point, but for B < 0 there exist periodic solutions
around one equilibrium point only for z> < —4. The other two
fixed points are unstable.

For the Duffing oscillator, Eq. (3) becomes Z(0)* = Az2,,, +
2Bz} . Figure 3 (right) shows such a curve for values B > 0 (red)
and B < 0 (blue) (within the range of the periodic solutions), asso-
ciated with the shape of the corresponding potential (left).

Since (according to Eq. (1)) the curvature of Z(0)? is sim-
ilar to that of U(zmax), from Fig. 2 (left panel) we can inter-
pret the local neighbourhood by considering whether the stiff-
ness decreases with increase in the maximum height. In other
words, a potential provides decreasing stiffness if, for the same
velocity Z(0), it is possible to reach higher values of zp.x than
for the harmonic potential.

Let us evaluate the potential function that is consistent with
the local MVC.

3.2. Local constants

In order to determine a potential that allows us to fit the actual
velocity curve, we study a family of potentials related to Eq. (2),
which is more general than the cases previously analysed, where
F is a rational function consisting of the ratio of two homoge-
neous polynomials of degree 2,

N

F 2\ _ a1r2 +L12Z2
(’_2) T ar +ag?
3 43
While the case (a) in Sect. 2 corresponds to a constant F, the
cases (b) and (c) are particular cases related to Eq. (7). There are
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nine possible meaningful cases of Eq. (7), depending on whether
in the numerator and in the denominator only one or none of the
parameters are null. Indeed, there are not four free parameters in
Eq. (7), since at least one parameter in the numerator and one in
the denominator are not null, so that the ratio may be simplified.
Hence, there are at most three free parameters that remain, which
can be represented by the values F(0), F’(0), and F”(0).

The three local Galactic constants at the circular velocity

point r = r., z = 0, are related to the values %(Lr( (ro.0)° ‘3;;%’ (ro.0)°
and & oUu

%2 o0y which, in turn, depend on M, F(0) and F’(0). To
adjust the shape of the MVC, say its concavity, we also need to
control the parameter F"’(0).

We study the general case of Eq. (7), where a,, a», a3, as are
non-null. To this purpose, we write Eq. (7) in a more simple
form, as follows:

Bs B7?
F = A = A 8
@O =A+ 5 TA Y T e ®)
so that
F)=A, F'(0)=B, F"(0)=-2BC. 9)

In Appendix A, we can see how the constant M in Eq. (2) is
related to the planar epicycle frequency « and the constant A in
Eq. (8) is related to the angular velocity Q. through the ratio
20,
K

Ye = (10)
and both are involved in the planar motion of the stars. On the
other hand, in Appendix B we see how the constant B is related
to the vertical epicycle frequency v, which is involved in the ver-
tical motion of the stars.

3.3. Planar motion

Under the epicycle approximation, a star orbit can be referred to
the circular motion point C as

U-U.=«kacos(kt—p); V-V.= —Kyc_lasin(Kt -p), (11)
where a is the amplitude and p the phase. As a first approxima-
tion, we assume that U. = Uy and V. = Vj, i.e., the circular
motion point coincides with the local centroid. For disc stellar
samples, this assumption is generally satisfied in the radial and
vertical directions. For the rotation component, a priori, it is sat-
isfied for low eccentricity stars, that is, for thin disc stars; oth-
erwise, the asymmetric drift A = V, — V{ should be considered
in order to get a more accurate model. Therefore, under the first-
order epicycle approach, the following should be satisfied:
(U - U +y: (V-V)* =a’. (12)
Clearly, since a = r. e, this equation can be expressed in terms of
the planar eccentricity, as in Paper I (Eq. (14)). There, it was fit-
ted for several subsamples drawn from the current Gaia sample.
We obtained stable estimates by basically removing the counter-
orbiting stars of the halo. The average values for our working
sample are y2 ~ 2, k ~ 37kms~! kpc™!, U. = Uy ~ —10kms™!,
and V, = Vy ~ —20km ™!, all of them consistent with the values
that are usually assumed.

4 The case (b) corresponds to a; # 0,a, = 0, and a3 = a4 in Eq. (7),
and the case (c) to a; # 0,a, = 0, and a3 # a4, which is qualitatively
equivalent to the case a3 # 0,a4 = 0, and a; # a,.

It is worth noticing that the planar fitting did not need the
correction for the asymmetric drift. The reason is as follows: The
above ellipses describe the motion of the stars referred to their
circular velocity point, which, as commented at the beginning
of Sect. 3, not always match the local one, r.. Nevertheless, the
local constants y,. and x should not differ very much from point to
point. The former depends on ., which, while it is not constant,
its variation is relatively small around the Sun, since it satisfies
Aé) ~ A’“ . The latter does not depend on r.. Therefore, the
respective data even for different circular velocity points, could
be gathered as a single fitting.

3.4. Vertical motion

By taking Eq. (B.4)into account, the MVC given by Eq. (3) can
be written, for r = r., as

2

W (Zmaxs e) = (W=W)* =

2 2
K 2 Zmax
4 Zmax e '

.
4) ¢ 12+ Cihax
(13)

(Vz(rc) -

We note the local linear behaviour in the squared variables that
satisfies

(W= Wo)?

2
max

vz(rc) when  zZpax — O.

Therefore, we want to determine the above function w?(Zma., rc)
at the local position r, = ry. Since the remaining values W, =~
—6kms™! and v ~ 63kms ! kpc™! of Paper I for the current
sample are still valid, it is sufficient to estimate the constant C.

Nevertheless, we must remark that a part of the stars in
the sample (ca. 25%) have a value for ry, that is more than
1 kpc away from the local radius ry — we assume that this value
matches the average radius of the sample, ry ~ 8.3 kpc, which is
similar to that of Reid et al. (2014). Thus, their orbit cannot be
strictly referred to the local circular velocity point. As already
explained, Eq. (13) should be adjusted only for the stars with ry,
close to ry, namely, the green and orange dots in Fig. 1, but in
order to use all the available data, we fit the upper envelope of
the whole set of dots.

Instead of making an adhoc geometrical approximation, in
Appendix C we propose a more rigorous fitting method. As a
result, we get the (dimensionless) value C = 21 + 1. We dis-
cuss some of the consequences this value has on the potential in
Appendix D.

4. Results
4.1. Eccentricity diagram

In the solar neighbourhood, according to Eq. (13) and by taking
r. = rop and v = v(rp), the vertical peculiar velocity of a star
depends on its vertical eccentricity as

Ne?+KCce't K7
_— N—vzr(z), K=—2
1+ Ce’? 4
By inverting the above equation, we may estimate the vertical
eccentricity of a disc star that has a vertical peculiar velocity w

at the GP, obtaining the following positive solution,

w? = g(e'?) = (14)

2w?

V(N = Cw2)? + 4KCw? + (N — Cw?)

(3/2 — g—l(WZ) = (15)
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Table 1. Parameters delimiting the triangular regions R; according to the stars’ orbital parameters.

Region Sample Ao €max B] e,max Zmax BZ e/max Zmax
Ry bl <123 | 7.88x 1072 028 | 7.37x 107> 0.09 0.71 | 6.29%x 1073 0.08 0.66
Ry o] <230 | 1.00x 107" 032 | 9.33x1073 0.10 0.80 | 7.78x 1073 0.09 0.73
R; lv] <350 | 1.67x 107" 041 | 2.65x 1072 0.16 133 |2.00x1072 0.14 1.16
Ry (W <170 | 1.91x 107" 044 | 440x 1072 021 1.74|330%x10%2 0.18 1.50

Hence, the least squares fitting of Eq. (5) must be replaced by
the estimation provided by Eq. (15), while including the fitting
of the upper envelope.

In Paper I, we found four regions of the eccentricity diagram,
e’* vs. €2, corresponding to subsequent nested populations con-
tained in the working sample. These populations were obtained
from stellar subsamples selected from specific sampling parame-
ters, as indicated in Table 1. In particular, the thin disc was asso-
ciated with region R, (selected from [p] < 230kms™') and the
whole disc with Ry (selected from |W| < 130kms™', although
the subsample with [W| < 170kms™~! provided a slightly lower
x? error). By using the current approach, the estimations for the
limiting eccentricities of the nearly triangular regions R to Ry4
can now be determined with greater accuracy, in particular for
the stars with velocity satisfying Jv| > 50kms™!.

We reevaluate these regions. Thus, Eq. (21) in Paper I should
be replaced by the following one?, in terms of Eq. (14),

2

&2

1 2
+ — )< 1.
A gle™) <

NBo an

The above equation determines an area similar to a quarter
ellipse as in Paper I (Eq. (23)), which can be approximated by
the following one,

72

¢ <y,
B,

&2

—+ 18
» (1)
where B, replaces the value B; of Paper 1. The constant B, is
evaluated as follows. In Eq. (17), for e = 0, the maximum verti-
cal eccentricity ¢ satisfies g(¢?) = NBy. Then, B, = ¢*. Thus, by
writing it explicitly, according to Egs. (15) and (16),

72 12
o, O
B2 - g_l [Q //Z : /2)' (]9)
3 3

Therefore, the limiting (squared) vertical eccentricity B, is deter-
mined from the velocity dispersions of every two adjacent popu-
lations, together with the constants K, N and C, where the latter
adjusts the curvature of the MVC estimated from the envelope
of the vertical speeds in crossing the GP.

Table 1 shows the values Ay, B; and B,. For the planar
motion, the estimations A, are the same as in Paper 1. For the
vertical motion, the estimations B are those of Paper I and B,
are the new ones, obtained from the potential model.

3 Let us recall that the values Ay and B, are computed from the respec-
tive velocity dispersions and population fractions of two adjacent pop-
ulations, as follows

72 12 72 12
A Q0 o0 Q0 0303 (16)
0= 55 ) — ,
2 22 2 2 2
Kry 0" — o virg oy - o}
” 011 O O ool o
where 0 =2In %7, ¥/ = T2 gpd X7 = 12
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Fig. 4. Quarter ellipses (left) defining the regions R, (closer to the ori-
gin) and R4 (farther from the origin), according to the biquadratic fit
(continuous green curves), potential model (continuous blue curves),
and epicycle approach (dotted red curves). The dotted green and blue
curves are the respective approximations from quarter ellipses. The
same regions in terms of the squared eccentricities are displayed on the
right.
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Fig. 5. Triangular regions according to Table 1, for the current potential
model (left) and for the biquadratic approximation (right). The comple-
mentary area is the halo (red).

According to the above equations, Fig. 4 compares the new
(blue) regions R; and R4, corresponding to the borders of the thin
and thick discs, with the ones obtained in Paper I (green). The
continuous curves represent the corresponding model (either the
biquadratic fit of Paper I or the model from the local potential),
while the doted curves are the respective approximations from
quarter ellipses. The small red doted curves feature the first-order
epicycle approach. The set of curves closer to the centre deter-
mine the region R,, while the farthest determine the region Ry.

The resulting eccentricity diagram for the current stellar
sample is shown in Fig. 5 for the triangular regions of Eq. (18).

When the stars are labelled according to the region their
eccentricities belong to, we obtain the diagram of Fig. 7 (left).
If the number of stars in a region R; that do not belong to the
regions R;, for j < i, is denoted as N;, and the corresponding
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Table 2. Mean velocities, central moments, and population fractions (relative to the whole sample) from the eccentricity diagram.

Pop. Uy Vo Wo 1200 Ho20 Mooz Hi10 Hio1 Ho11
P, 84% -9.24 -16.96 -6.94 819.88 352.29 168.29 88.70 6.17 2.38
£0.11 0.08 0.05 4.44 2.01 0.94 2.11 1.44 0.97
P, 4% -10.06 -26.44 -10.44 299098 1041.17 592.24 262.75 -26.98 -27.71
+097 057 043 45.53 19.49 8.91 25.00 18.14 11.87
t~P+ P, 88% -928 -17.42 -7.11 924.34 389.54 189.24 97.43 4.70 2.45
+0.12 0.08 0.05 5.09 222 1.05 237 1.62 1.08
Ps 8% -12.33 3547 -11.72 342242 1239.89 1093.67 297.07 -29.57 12.45
+0.76 0.46 0.43 44.11 25.50 11.29 21.93 19.89 13.48
Py 1.5% -19.99 -50.65 -9.22  3752.02 1292.21 2088.72 152.17 17.32 73.79
+1.90 111 1.42 129.56 43.86 40.52 58.59 72.32 48.92
T~P3+ Py 9.5% -1348 -37.75 —-11.35 3479.44 1277.17 1243.97 290.15 -24.97 16.82
+071 043 0.42 4226 22.84 1221 20.89 20.10 13.54
D~Pi+Py+P3+Ps 97.5% -9.68 -19.37 -7.51 1170.76 510.44 291.89 123.31 3.40 11.30
+0.13 0.08 0.06 6.74 3.54 1.87 3.10 2.43 1.62
H ~ Ps 25% —18.29 -96.64 —14.59 9200.65 5550.22 4041.99 32442 -212.13 -269.45
+220 171 1.46 367.09 454.90 125.87 274.15 150.49 161.99
population component as P;, we get, for the current potential 09 + Wo2o + Wooz2. Stromberg’s asymmetric drift equation (e.g.,
model®, Binney & Tremaine 2008) predicts that the larger a stellar pop-
N, = 62338, N,=3150, N;=5899, N,=1043, Ns=1909. ulation’s velocity dispersion, the more slowly it rotates about
(83.9%) (4.2%) (7.9%) (1.4%) (2.6%) the GC. There is a linear relation between the peculiar rotation

We note that these fractions do not denote areas but number of
stars in the sample that fall in the corresponding region.

Populations P; (light green area) and P, (dark green) are
associated with the thin disc, although the second subcompo-
nent is mixed with some thick disc stars. The thick disc is com-
posed of the canonical subcomponent P3 (light blue) and the
metal-weak thick disc P4 (dark blue). The kinematical halo stars
present in the sample, Ps, probably are a mixture of metal-rich
thick-disc stars and chemical halo stars (Di Matteo et al. 2019).

By comparing the actual stellar classification to that of Paper I,
we find that the thin disc has now 1.5% less stars (mainly due to
the major subpopulation P;), while the thick disc has increased
10% relative to the same population in Paper I. This is due to the
smaller maximum height now associated with these populations
(Table 1), which is more noticeable in the larger population. Thus,
the current approach provides a 10—15% thinner disc.

The respective population mean velocities and velocity
moments are listed in Table 2. The resulting velocity moments
for the thin disc are similar to those Paper I, with velocity dis-
persions (071, 0%,03) = (30.4,19.7,13.8) km s!, while those of
the thick disk, (59,35.7,35.3)kms™!, are slightly lower than
those in Paper I, (60.9,36.3,36.6) km s~ since stars previously
assigned to the thin disc are now labelled as thick disc.

4.2. Asymmetric drift

As an application of the eccentricity diagram, here we anal-
yse deeper samples of the thin disc by selecting stars within
concentric ellipses, closer to the origin, corresponding to the
thin disc, namely, region R;. We test the disc components with
regard to the asymmetric drift. Let o> be the trace of the

: : : 2 _ 2 2 2 _
velocity dispersion tensor, namely, o° = o7 + 05 + 05 =

6 Tt can be compared to the results obtained in Paper I from the
biquadratic approximation,

N, = 63219,
(85.0%)

N, = 3162,
(4.3%)

N; = 5484, N, =825,
(7.4%) (1.1%)

N5 = 1649.
(2.2%)

velocity, Vj, of a stellar population and the total velocity dis-
persion given by o and, in particular, by a0, except for very
early-type stars (Dehnen & Binney 1998). However, we find that
the trend for the thin disc is different than from the thick disc. To
prove it, we take advantage of the eccentricity diagram and form
several nested subsamples within the thin disc, according to the
stars’ eccentricities. We limit the maximum planar and vertical
eccentricities following Eq. (18), by taking as reference values
those limiting the region R, of Table 1. Hence, we consider the
subsamples that satisfy:

(20)

The value i = 0 corresponds to region R;, while higher values of
i correspond to smaller ellipses within R;. We also consider the
remaining disc samples of regions from R, to R4. We find that
the samples for i = 0,1, 2,3, corresponding to limiting eccen-
tricities (emax, €max) = (0.28,0.079), (0.23,0.065), (0.19, 0.053),
(0.15,0.043) provide stable velocity moments; whereas for i =
4,5,6, corresponding to limiting eccentricities (€max, €pay) =
(0.13,0.036), (0.10,0.029), (0.08, 0.024) do not yield stable esti-
mates. Hence, the subsamples of the lowest eccentricities reflect
the kinematics of the local moving groups and star streams, as
explained in Cubarsi (2010), rather than being statistically rep-
resentative of the thin disc population. Therefore, we use the disc
subsamples listed in Table 3.

Figure 6 (top-left panel) shows such a trend for the thin disc
subsamples (black dots), as well as for the segregated popula-
tions P; and P, (green dots). The dots without colour, for the
samples containing thick disc stars, deviate from the regres-
sion line. In terms of the heliocentric rotation velocity Vj, the
total dispersion o> (with slope —4105 + 75kms~') and the
moment Wy (With slope —2621 + 83 km s71) allow us to esti-
mate the heliocentric velocity of the circular rotation point as
V. = —12.81 + 0.06kms~! and —12.99 + 0.09 kms~!, respec-
tively. For these subsamples, the following is approximately sat-
isfied: 0 /pag0 = 1.58 + 0.02.
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Table 3. Mean velocities and central moments for nested disc subsamples according to Eq. (20).

/

€max_ €max Uy Vo Wo 1200 Ho20 Mooz W0 Hior  MHon
i=3 0.15 0.043 -10.57 -15.01 -647 419.84 188.84 108.01 4858 1.62 046
+0.10 0.07 0.05 222 1.19 0.62 1.18 1.04 0.72
i=20.19 0.053 -988 -1578 -6.60 557.62 256.18 131.27 6892 4.03 1.83
+0.10 0.07 0.05 2.85 1.48 0.72 152 123 0.85
i=1 023 0.065 -940 -16.63 -6.86 72137 327.11 16406 7941 6.07 2.09
+0.11 0.07 0.05 3.70 1.84 0.89 1.87 1.49 1.02
R 028 0.079 -9.25 -17.52 -7.15 914.04 393.13 203.81 92.60 4.88  3.57
(=0) +0.12 0.08 0.06 485 2.20 112 231 182 121
R, 032 0.09 -9.32 -18.09 -7.30 1039.84 436.52 223.82 108.21 235 6.42
+0.12 0.08 0.06 573 251 1.23 264 203 1.33
R; 041 0.14 -9.70 -19.40 -7.53 117549 515.07 284.42 12444 4.04 12.05
+0.13 0.08 0.06 6.78 358 175 312 246 1.66
R, 044 0.18 -9.75 -19.71 -7.56 1201.66 532.54 307.53 12742 2.62 14.06
+0.13 0.09 0.06 7.00 372 2.02 324 264 1.79
Notes. The first group only contains thin disc stars.
The value for V, is totally consistent with that obtained from  5e03 2000
the chemodynamical model by Schonrich et al. (2010) and dif- — o Toraina b
fers from the one given by Golubov et al. (2013), derived from ~4€031 ™ B eccthin 1500 - A
subsamples obtained from the RAVE survey (Siebert et al. 2011; i O RIR4 S
Zwitter et al. 2008; Steinmetz et al. 2006). We note that our sub- >3 * % AR v
samples are representative of the thin disc kinematics, having _ | RN g 10009 '
values for 0 as low as 420 km? s2, while the sample values of ey =
Golubov et al. (2013) for this moment vary approximately from ;gqs | SR 500+ d"
700 to 1500km? s~2. This fact is indicative that such samples “oq. o~
also contain either thick disc stars, metal-weak thick disc, or ogo0 L 0+ ‘ : :
metal—rich thiCk-diSC stars. -26 -22 -18 -14 -10 0 1000 2000 3000
When these stars are included in our fitting, the trend of Vo H200
Stromberg’s law is slightly modified, as shown in Fig. 6 (left o3 2E04
lower panel, black line for the thick disc and red line for the
thin disc). By using o2, the line that fits the thick disc popula-
tion (T = P3 + P4), the regions R3 and R4 (which contain thick  4£031
disc stars), and the whole thin disc (r = P; + P») intersects the o2 WA o2 104 & rzPLEz
horizontal axis at —10.5 + 0.1 kms~'. This value is maintained RoRa o s
(=10.4+0.1) if the halo population is included in the fitting (right ~ **] 5 % voR
lower panel, black line). . Eg;} \ reort
By assuming an average value V, ~ —12.9kms™" we may 0E0O ‘ ’ B OE00 e
evaluate the drift A, = V. — Vj for each thin disc subsample. -40 -35 -30 -25 -20 -15 -10 -100 -80 -60 -40 -20
Vo Vo

Under the first-order epicycle approximation, for low eccentric-
ities, the asymmetric drift is neglected and it is approximately
satisfied W0 = yg Wo20- Under a more general model that
does not neglect the asymmetric drift, the following is fulfilled
(Cubarsi et al. 2017, Eq. (70)):

2
W00 + A7,

=, 21

Moo + A3 °F @D
where the difference Ay = U, — U, can be considered null for
the thin disc subsamples, since the radial mean velocity is nearly
constant. Therefore, we may estimate the local value y? provid-
ing the best approximation of Eq. (21). The value that fits the
local thin disc subsamples is y> = 2.19 + 0.03. The plot in the
top-right panel of Fig. 6 displays such a fit. This value is slightly
higher than the one derived in Paper I for all the working sam-
ple (¥? = 1.96), obtained by limiting the vertical velocity of the
stars as |W| < 170km s, although it is similar to that of the thin
disc sample, whose stars satisfied |[W| < 35kms™! (y? = 2.23).
Therefore, we get an approximate estimation of the asymmetric
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Fig. 6. Stromberg’s law and asymmetric drift equation adjusted for sev-
eral subsamples. Top: Stromberg’s law for thin disc subsamples (black
dots) accounting for the total velocity dispersion o> (km?s~2) and the
velocity moment WUygo (km? s72) in terms of their heliocentric rotation
velocity V, (kms™!). Fitting of Eq. (21) (right panel) for thin disc sub-
samples (red dots) using the optimal value of y.. Bottom: (left panel)
Stromberg’s law for the total thin disc (¢, red line) and the thick disc (7',
black line) subsamples; and (right panel) for thin disc, thick disc, and
halo (H) components.

drift for thin disc stars from the equation

1
A = — (U200 = ¥21020)s (22)

C

so that, if A, — 0 then o(/0, — y. = 1.48 (although, for

samples containing thick disc stars, this ratio is closer to 1.4).
The absolute rotation velocity of the circular orbit can be

estimated from Eq. (10) as ©, = %yo krp ~ 227kms™', which

4000
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0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Fig. 7. Triangular regions R; to R4 for the actual eccentricities (as
depicted in Fig. 5) obtained from Eq. (18) (leff), and exact regions
(right) obtained from Eq. (17).

provides a rotation component of the Galactocentric velocity of
the Sun O = O, — V, ~ 240kms™".

5. Discussion

In the left panel of Fig. 7, we show the eccentricity diagram for
the triangular regions obtained from the approximation given by
Eq. (18). We compare it to the right panel, where the eccentric-
ity diagram is depicted exactly, as obtained’ from Eq. (17). The
approximation from triangular regions is very exact for the thin
disc, which represents the great majority of the stars in the sam-
ple. In all the disc populations, the variation is of less than 0.5%.
Therefore, approximating by triangular regions is fully justified.

In order to check whether the current approach provides a
reliable method to isolate populations, we infer the planar and
vertical eccentricities of the stars in the sample from the stars’
velocities, according to Eqgs. (12) and (15). That is, we do not
use the actual eccentricities obtained by integration of the orbits,
but the ones estimated from our approach. In order to see how
they are reorganised, Fig. 8 depicts the eccentricity diagram for
the same stellar populations as the left panel of Fig. 7, but while
including the modified eccentricities. For the highest eccentric-
ities, the plot describes the small curvature predicted in Fig. 4,
which is similar to that of the right panel of Fig. 7. The diagram
shows that most of the populations are generally well isolated,
that is, without significant overlapping areas. However, there is
a small mixing at the borders between the regions, which cor-
responds to the tails of the respective velocity distributions, as
discussed in Paper I.

Once the stars in the sample have been assigned to one of
the populations components, we check which stars are better
described by the MVC. Figure 9 displays the vertical peculiar
velocity in terms of the maximum height and of the vertical
eccentricity. In both cases, the curve, which is the upper enve-
lope of the dots, fits the stars of populations P, and P, of the
thin disc well, and also provides an acceptable fit for the old
thick disc stars of population Ps. For population Py, as the eccen-
tricity increases, the dots become more dispersed. Clearly, the
model is not valid for the halo stars. There are several reasons
for this. One is that for the halo, the epicycle approach is not
valid. Another reason is that, by comparing Figs. 2 and 9, most
of the halo stars have the mean orbital radius farthest from the
local one, so that the eccentricities are not referred to the local
circular velocity point. Also, according to Paper I, in the halo

7 In such a case we get the following fractions,

N, = 62092,
(83.5%)

N, = 3138,
(4.2%)

N3 =5900, N4 =1057,
(7.9%) (1.4%)

Ns = 2152.
(2.9%)

Fig. 8. Regions R, to R, according to the eccentricities obtained from
Egs. (12) and (15), in terms of the star’s velocities.
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Fig. 9. Squared vertical peculiar velocity (W — W;)? (km” s~2) at the GP
in terms of (leff) the squared maximum height 22, (kpc?) and (right)
the squared vertical eccentricity ¢’> scaled by ry (kpc?), as well as the
MVC (discontinuous line) provided by the current model. The colours

indicate the population the stars belong to.

there is a fraction of counter-rotating stars for which the planar
fitting was not valid. There is also a possible dispersion that can
be attributed to uncertainties in the computation of the orbital
parameters, along with other uncertainties and errors discussed
in Paper 1. All these reasons do not invalidate the local approxi-
mation we make for the MVC, since the vertical velocity at the
GP should determine univocally the maximum height of the star
orbit. With the exception of the halo stars, the fit is more precise
in the plot in terms of the eccentricity (right panel) than in terms
of the maximum height (left panel).

The curvature of the MVC is regulated by the vertical
epicycle frequency at the origin, and by the constant C far from
the origin. The latter constant adjusts the stiffness in the verti-
cal direction of the oscillator associated with the potential. The
shape of the MVC is similar to that of Fig. 3 with B < 0, associ-
ated with a decreasing stiffness.

Let us recall that the constants involved in the potential
function, combined with the velocity dispersions of every two
adjacent populations, determine the border between these popu-
lations in the eccentricity diagram. In particular, in the following
subsections we analyse how, in the vertical direction, the maxi-
mum height and the maximum speed of disc stars depend on the
constant C. The approximation of the MVC based on the poten-
tial allows us to interpret qualitatively several aspects, such as
what behaviour of the MVC can be attributed to the disc or the
halo. A similar effect is observed with regard to the stellar den-
sity. On the contrary, the approach in Paper I, associated with an
arbitrary biquadratic function, was not liable to such speculation.
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5.1. Disc and halo contributions

On the one hand, the constants M and A are linked to properties
of the planar motion, i.e., the planar epicycle frequency « and the
local angular velocity Q.. On the other hand, the constants B and
C are related to properties the vertical motion, i.e., the vertical
epicycle frequency v determining the tangent at the origin, and
the curvature of the MVC. We now write Eq. (13) as:

1,2 2.2 14
2 9 2 2 e KT, Ce
w =ge)=vr, —— + — 23
9=V T T Trce? 23)
By defining
Ce/2
72 72
&)= ———; &)= ———
gi(e’) 17 Co? g2(e’”) 2 Co?

the preceding equation becomes

gi(e)+ga(e’®) = 1.
(24)

2
’ ’ ’ K ’
g(@?) = gi(€?) v* + ga(e”®) Z) rRe?:

Here, the factor within the parenthesis can be interpreted as a

weighted mean of the following limiting cases:

(1) Stars with low values of ¢’ (say disc stars). In particular, if
¢ — 0, then g;(¢’*>) — 1 and g»(¢’*) — 0. Hence, the domi-
nant term in Eq. (24) is (blue-dashed line in Fig. 10) is

2.2 12

gl(e;z) Vrie 2.2 12

— Ve

(2) There is a harmonic term of the potential, which, according
to Eq. (A.2), is related to «. It corresponds to an ellipsoid
of constant density. The corresponding term in Eq. (24) is
relevant for stars with higher values of ¢’ (say halo stars). If
e — oo, then gl(e’z) — 0 and 92(6’2) — 1. In this case, the
dominant term is (red-dashed line in Fig. 10)

( /2) K2r(2)612 K2r(2)e/2
g2le -
4 4

The total trend of Eqgs. (23) and (24) is shown in Fig. 10 by the
continuous black line, while the disc (first term of Eq. (23)) is
represented by the continuous blue line, and the halo (second
term of Eq. (23)) by the continuous red line. The curve is mod-
ulated by ¢’? between both straight lines, one is the tangent for
¢’ — 0, with slope vzr(z) (dashed blue line), and the other is the
asymptote for ¢’ — oo (actually, it is sufficient for ¢’ — 1), with

2.2
slope % (dashed red line).
The term g, associated with the disc, governs the curve for
e <C ‘%, namely, for z < zp with

ro
- . 25
20 \/_ ( )

For the actual values, this means zy = 1.8 kpc. We should expect
that the maximum heights zp,a.x Of the disc subpopulations sat-
isfy Zmax < zo. Otherwise, for z > zg, the dominant term is g»,
associated with the halo.

If v* > %, bearing in mind Eq. (13) and according to
the assumptions presented in Sect. 3.1, the stiffness decreases
with increase in the maximum height and vertical eccentricity.
This is the actual case. Otherwise, the stiffness would increase
with increase in the maximum height and vertical eccentricity.
Since a straight line means constant stiffness, the progressively

A58, page 10 of 17

25000 7

20000 T

D+H
—D
—H

disc limit
— —TD
— — TH
— — average

15000 1

10000 1

5000 T

0
0 0.2 0406 08 1
e

Fig. 10. Contribution of the disc and halo components to the maximum
velocity curve, i.e., local vertical peculiar velocity w = W—W, (squared,
km? s72) at the GP in terms of vertical eccentricity e’ (squared, dimen-
sionless). The continuous lines correspond to the whole curve (black),
the disc term (blue), and the halo term (red). The dashed blue and red
lines are the respective tangent (TD) and asymptote (TH), the dashed
grey line is their geometric mean, and the dashed green line marks the
bound for the vertical speed (squared) of disc stars.

decreasing stiffness only takes place in the range of low eccen-
tricities, namely, for the disc stars. Afterwards, as the vertical
eccentricity increases, the curve takes the asymptotic behaviour,
where the stiffness remains constant. This happens as the term
gl(e’z) vzrée’2 gets closer to its saturation value (it suffices for
¢ -1,
Vg

c
which is indicated by the dashed green line in Fig. 10, while the
term associated with the halo continues to rise. Therefore, such
a value can be interpreted as the upper limit for the maximum
vertical velocity of the disc stars. In Appendix E, we describe
some properties of the slope of the curve in more detail.

According to our estimates, this provides a maximum verti-
cal peculiar velocity W—W, = wg ~ 115kms™!, which is consis-
tent with the value of the sampling parameter |W| = 130kms~!
(vertical heliocentric velocity) with which (in Paper I) it was pos-
sible to establish the segregation between the disc (as population
1) and the halo (as population 2). In such a case, for greater val-
ues of the sampling parameter, the velocity moments of the disc
remained approximately constant (Paper I, Fig. 2).

In Fig. 11, the discontinuous grey line represents the term
corresponding to g; in Eq. (24), which provides the satura-
tion value, the continuous black line represents the relationship
between the maximum height provided by the potential model,
and the discontinuous red line corresponds to the biquadratic fit
of Paper I, given by Eq. (5).

The condition g(e’g) = wg is satisfied for ¢’y ~ 0.17 (e’(z) ~
0.03). This corresponds to a maximum height z.x ~ 1.5 kpc of
the region of decreasing stiffness. From this value onward, the
curve becomes nearly a straight line. The value zo is approxi-
mately the maximum height for the whole disc Rs.

Therefore, the disc stars have a bound for their maximum
vertical speed wy at the GP. For a given speed, they are able
to reach certain maximum height z, which would not exist for
a potential harmonic in the variable z (i.e., C = 0). Neverthe-
less, the progressive weakening of the stiffness within the disc is

(26)

2 _
Wy =
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Fig. 11. Maximum height z,,,x (kpc) in terms of the vertical heliocentric
velocity W (km s™!) according to different approaches: continuous black
line for the model provided by the local potential, discontinuous red line
for the biquadratic fit of Paper I, and discontinuous grey line for the disc
component alone.

——C=l11
—C=21
C=31

Fig. 12. Density p(r,z) = po(z) (x10° Mg kpc™>) in terms of z (kpc) for
C = 21 (blue), compared to other values of C.
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Fig. 13. Maximum height (left) zy (kpc) in terms of C (blue curve) from
Eq. (F.3), compared to the approximations from Eq. (F.4) (green, simi-
lar to Eq. (25)) and Eq. (F.5) (red). Maximum vertical peculiar velocity
(right) of disc stars wy (km s™!) from Eq. (26). The dashed grey lines mark
the estimated values, zo = 1.8 kpc and wy = 115kms~!, for C = 21.

compensated by the halo, which produces a total curve also with
decreasing stiffness, but which is not as intense. Therefore, the
halo contributes to stabilise the stellar orbits. We consider how
the maximum height of the disc depends on C in more detail in
the following subsection.

5.2. Stellar density

We analyse how the constant C is related to the stellar density.
Poisson’s equation, AU(r,z) = 4nGp(r, z), relates the potential
and the density at a point. The density for r = ry in terms of
z is obtained in Appendix F, by substitution of the potential

160f 160f 1

150} 150] 0.9]
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= 1001 N 04
)

10 003

90|

9 0.2]

8 80| oL

7 016 18 20 22 24 26 o

0 15 20 25 30 6 1.8 20 2.2 24 2. 0 05 i s
c % z

Fig. 14. Function Dy(z) (x10® M kpc™2) plotted in terms of C and z,
(left and central panels). The dashed grey lines mark the estimated val-
ues for C = 21 and zp = 1.8 kpc. Fraction of stars with |z] < z, relative
to the number of stars with |z| = z¢ is given in the right panel.

of Eq. (2) in Poisson’s equation. According to this simplified
model, the shape of py(z) = p(ro, z) is displayed, for positive val-
ues of z, in Fig. 12 (blue line). It is also compared to other values
for C, to show how the local minimum depends on this param-
eter. The local minimum with vanishing density determines the
maximum height zj of the disc.

In Appendix F, the value of zj is given by Eq. (F.3), together
with two approximations. One of them, Eq. (F.4), matches that
of Eq. (25), derived from the analysis of the MVC.

Figure 13 displays (left panel) the value zy in terms of C
(blue curve), as well as both approximations (dotted red and
green curves). Both approximations are valid within a wide inter-
val about the estimated value for C. Figure 13 also displays
(right panel) the maximum velocity wy of disc stars provided
by Eq. (26). The grey dashed lines mark the values for C = 21,
namely, zo = 1.8kpc and wy = 115kms™".

Therefore, the constant C, which regulates how the stiffness
decreases with increase in the maximum height, also determines
the limiting disc values for zo and wy. The greater the value of C,
the greater the descent of the stiffness and the lower the values
of zg and wy.

With regard to the stellar density, Fig. 14 displays several
properties. We consider the number of disc stars within a column
or cylinder perpendicular to the GP, of unit area, for » = ry and
Z € [—z0, 20], namely:

Do(zo) = f " oo de

20

The left and central panels of Fig. 14 depict the above density
in terms of C and zp. For the maximum height zy, within the
range of values 1.5 < zp < 2.8 (corresponding to the interval
9 < C < 30) this variation is nearly linear.

The right panel depicts the fraction of stars within the inter-
val [-z,z] C [—=z0, 20], relative to the number of stars in the inter-
val [—z2o, z0], that is, the ratio Dy(z)/Dy(z0). By comparing the
value Dy for zm.x = 1.5kpc (which was the maximum height
estimated for the disc from the velocity analysis of our working
sample) with the value Dy for zo = 1.8 kpc, we get a ratio 99.5%.
Therefore, both estimations of the maximum height of the disc
provide a similar number of stars in the local cylinder. Indeed,
according to this model, for C = 21, a fraction of 95% of the
disc stars are in the range of |z] < 1.1, and 66% of the disc stars
are in the range of |z| < 0.55, which is consistent with the current
sample. The ratio Dy(z)/Dy(zo) is nearly linear for |z| < 0.6 kpc.

We may also compare the above estimations to those
obtained for a value C = 15, which would produce a lower
decrease of the stiffness. Then, the maximum height would be
70 = 2.1kpc and the limiting velocity wy = 135kms~!, while
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Fig. 15. Relative decrease of density in the local cylinder in the range
[-z,z] (kpc), when comparing a disc model with velocity limit wy =
115kms~" (zo = 1.8kpc) to another one with wy = 135kms™" (zp =
2.1kpc).

the local density of the disc cylinder increases in about 15%. In
such a case, 95% of the disc stars satisfy |z] < 1.3, and 66% have
|z £ 0.65. Thus, as shown in to Fig. 15, a decrease of about 15%
in the limiting velocity wy (similar for the value zp), would pro-
duce a quite similar decrease, of about 14%, in the density Dy of
the local cylinder. Then, the approximate local behaviour in the
disc can be described so that a greater decrease of the stiffness
in a certain ratio is associated with a decrease in the limiting
velocity that produces a thinner disc and a loss of stars of the
local cylinder, which become unbound in a similar proportion.
This loss is distributed among all values of z, as Fig. 12 suggest.
Therefore, the loss of stiffness within the disc can be interpreted
as whether there is not enough mass in the disc to keep the stars
bounded, although this effect is afterwards mitigated by the halo.

Let us point out that the requirements for our potential have
been, on the one hand, to allow for a finite mixture of indepen-
dent Schwarzschild velocity distributions and, on the other hand,
to be consistent with the kinematic statistics estimated from our
local sample. It is generally known that, according to an assumed
potential, Poisson’s equation allows us to estimate the mass den-
sity generating such a potential. However, such a stellar density
will not match the sum of the stellar densities of the n popula-
tions involved in the mixture model. If the ith population has a
population fraction n; and a velocity distribution f;, its density
is evaluated as N; = fv f; dV, so that the contribution of all the
populations to the total density is )}; n;N; (each population has
a stellar density according to Cubarsi (2014a, Eq. (40)). How-
ever, in addition to the stars in the sample, there is an unknown
amount of stars and, in general, dark matter that has not been
considered — even though all of these factors contribute to the
potential.

6. Conclusions

In Paper I, we proposed an approach to classify the local stel-
lar populations in terms of the stars’ planar and vertical orbital
eccentricities. Such a classification was characterised by a geo-
metrical interpretation associated with regions delimited approx-
imately by a straight line in the eccentricity diagram, namely, the
plot of the squared vertical eccentricity in terms of the squared
planar eccentricity.

According to Paper I, in the GP the planar eccentricities
described consistently the planar velocity distribution of the
stars. However, upon moving away from the GP, the vertical
epicycle approximation was no longer valid and required a better
approximation model. In this work, we improve such an approx-
imation by taking into account a plausible model for the local
potential function, making it possible to elicit several properties,
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such as the maximum height of disc stars and their maximum
speed in crossing the GP.

We consider a kinematical stellar population as a sufficiently
large number of stars whose velocity distribution is trivariate
Gaussian, and we take the potential to be consistent with an
unconstrained mixture of populations (Cubarsi 2014a). Within
this family, potentials with spherical symmetry or separable in
cylindrical coordinates are unable to fit the model. Therefore, we
consider a model that allows us to evaluate, in addition to other
local Galactic constants, the curvature of the MVC, associated
with a constant C, which determines the possible regions where
the non-harmonic part of the potential generates an attractive or
arepulsive force. Our fitting method yields the value C = 21 + 1,
always generating an attractive force.

In the vertical direction, we have taken the Duffing oscillator
as a model of a non-linear restoring force. The shape of the MVC
is similar to the model of Fig. 3 with B < 0, associated with a
decreasing degree of stiffness. In the local neighbourhood, we
can interpret it so that the stiffness decreases with increase in
the maximum height. Hence, for the same vertical velocity, it is
possible to reach a higher maximum height than for the harmonic
potential.

In particular, the constant C determines the limiting maxi-
mum height, zy, and the maximum speed at the GP, wy, for the
disc. The greater the value of C, the greater the descent of the
stiffness, and the lower the values of zy and wy. With regard to
the local stellar density, this is expected to produce a thinner disc
and a loss of disc stars of the local cylinder.

The improved model allows us to reevaluate the critical pla-
nar and vertical eccentricities in the eccentricity diagram in
order to discriminate between the different kinematic popula-
tions contained in the current Gaia local sample. The thin disc is
described by the quarter ellipse satisfying

82 e/2

<1
100101 " 778x103 —

that is, for 0 < ¢ < 032, 0 < ¢ < 0.09, with a maximum
height zmax = 0.73 kpc. The whole disc is described by the region
satisfying

62 erZ

+ <1,
191x10°!  330x102 ~

that is, 0 < e < 044, 0 < ¢ < 0.18, zmax = 1.50kpc. We
confirm that the approximation of the eccentricity diagram from
triangular regions is very accurate and there is no need of using
the exact representation from Eq. (17).

Therefore, the vertical values obtained for the biquadratic
approximation of Paper I were slightly overestimated. By com-
paring the current stellar classification, we find that the thin
disc (88%) of our local sample now has 1.5% fewer stars,
while the thick disc (9%) has increased relatively in 10%. In
total, a 3% of stars were misclassified by the previous approach
among populations P; to Ps. However, such a variation has a
low impact on the velocity moments, with velocity dispersions
(01,02,03) = (30,20, 14) and (59,36,35)kms™" for the thin
and thick discs, respectively. Nevertheless, the current approach
provides a 10—15% thinner disc.

As an application of the eccenticity diagram, we anal-
ysed several nested subsamples within the thin disc to estimate
Stromberg’s asymmetric drift equation. The thin disc is well
represented from samples with limiting eccentricities 0.15 <
emax < 0.32,0.043 < €'1ax < 0.09 in the eccentricity diagram.
Lower-limiting eccentricities did not yield stable estimates, but
rather reflect the kinematics of the local moving groups and star




R. Cubarsi et al.: Orbital eccentricities as indicators of stellar populations. II.

streams (Cubarsi 2010). The trend for the thin disc is different
from that by including thick disc stars. Within the thin disc, we
have estimated the heliocentric velocity of the circular rotation
point as V., = —12.81 + 0.06 km s~! a value consistent with
that obtained by Schonrich et al. (2010). Consequently, the abso-
lute rotation velocity of the circular orbit has been evaluated in
®. ~ 227kms~!, which provides a rotation component of the
Galactocentric velocity of the Sun @ ~ 240kms™!.

In addition, we have provided an approximated formula,
Eq. (21), to estimate the asymmetric drift A, within the thin disc
from the velocity dispersions o; and o, according to the opti-
mal value for the constant y, = 1.48 +£0.01. This value is slightly
higher than the one derived in Paper I for all the working sample
(y. = 1.40), obtained by limiting the vertical heliocentric veloc-
ity of the stars as [W| < 170 kms~!, although it is similar to that
of the thin disc sample, whose stars satisfied [W| < 35kms™!
(y. = 1.49). Thus, for the thin disc, we have, if A, — 0, then
o1/ = ye = 1.48.

The interpretation of the MVC leads to a maximum vertical
peculiar velocity for disc stars wy = 115kms™', which is con-
sistent with the limiting sampling parameter |W| = 130 kms™!
(vertical heliocentric velocity) used in Paper I to select a disc
subsample. On the other hand, the potential together with the
Poisson equation provide an upper bound zy = 1.8 kpc for the
disc, which is consistent with the maximum height estimated
for the disc subpopulations of the working sample. Indeed, the a
fraction of 95% of disc stars should be in the range |z| < 1.1 kpc,
and 66% in the range |z| < 0.55 kpc.

At the moment, we have fulfilled the first purpose established
in Paper I, which was to justify and improve the approximation
of the MVC. In addition to maintaining the other purposes, we
think that it might be worth studying how the approach improves
by using a second order epicycle approximation, such as the one
proposed by Kalnajs (1979). Likewise, we propose to explore
other models for the integration of the stellar orbits. Similarly, to
compare the behaviour of the MVC associated with other poten-
tials, such as those listed in the galpy python package®, and study
their consequences, namely, the mutual dependence between the
maximum height of the disc, the vertical velocity limit, and the
local stellar density.
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Appendix A: Constants M and A

In Cubarsi et al. (2017, Eq. (24)), the following operator L pro-
vides the planar epicycle frequency « for a circular orbit with
radius r = r, at the GP,

K(re) = LI U, 0); L[ ]_(6622 3£) [-]. (A.1)
2 ror

For the potential in Eq. (2), we get

LIU]=8M+ % (85F'(s) + 45°F"(5)),

which yields

L[U](r.,0) = 8M = «* = 8M > 0 (constant). (A.2)

Therefore, for the current family of potentials, only the harmonic
part determines the planar epicycle frequency, which does not
depend on the distance r.

In addition, the angular velocity of the circular orbit satisfies

Q2 = rlc’ma(rr'o) . Hence, by taking into account Eq. (9), we get

2
A=F0)= % (K— - Qg) r (A3)

4
According to the local values, we get A < 0.
The ratio y. = 2% informs about several local properties.
For example, it is possible to evaluate which is the predomi-
nant term in the local potential U(r., 0). By taking into account
Egs. (8), (A.2), and (A.3), we may write the local potential at the
GP around r, as

K2 1 (& s r
3" +2(4 _QC)?

U, 0) =

Hence, by taking into account Eq. (10), we have

P r4
U(r,0) = —r + —(1 - Vn) (A.4)
For y2 = 1 the local potential behaves as the harmonic potential,
while for y? = 2 the second term of Eq. (A.4) is negative and
compensates for the harmonic potential. In Paper I, we could see
that actual data provide a value of ? that is close to 2. This has
implications for the angular velocity. Let us recall, as pointed out
in Paper I, that the angular velocity of the circular velocity point
satisfies

0Q.(r)
or

_ ]_73 2Qc(rc).

e e e

Hence, a value y2 = 1 implies an angular velocity that, locally,
is nearly constant, while a value y> = 2 provides an angular

velocity satisfying %=| = - thatis, Q o L.

Appendix B: Constant B

The vertical epicycle frequency at the local circular velocity
point, r = r, is defined as

’Uu
2(r,) = —— ) B.1
=75 (B.1)
For the potential in Eq. (2), we get
2
1
% =2M + 7 (2F'(s) + 4sF"(s)), (B.2)
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so that

VA(re) = 2M + ZF;(O)- (B.3)

C

For a non-harmonic potential, the vertical epicycle frequency
depends on r.. We may estimate the constant B in Eq. (8) from
the corresponding local values as

2
B=F(0)= 1(v (rc)—%)r;‘. (B.4)

According to the local values, we get B > 0.

Appendix C: Fitting method for the constant C

As justified previously, the upper envelope of the dots displayed
in Fig. 2, matching the stars satisfying r, ~ ry, corresponds to
the MVC. This curve must be calibrated locally, only for the
stars whose orbit is consistent with the epicycle approximation,
although the epicycle approximation in the vertical direction will
be afterwards improved and replaced by the model provided by
the potential.

To this end, we consider a series of subsamples of stars
depending on a positive value ¢, having increasing planar ampli-
tude a < ¢ around 7, = ry, hence, by progressively increasing the
planar eccentricity. In every subsample, we include the stars with
a mean radius ry, between r. — 6 and r. + ¢, with a maximum pla-
nar amplitude §. This is justified from Fig. C.1, where, for each
star, the planar amplitude a is plotted in terms of the mean orbital
radius ry,. We see that, for a fixed amplitude a, the mean orbital
radius satisfies r. —a < r, < r. + a, with r. = 8.3 kpc.

Fig. C.1. Orbital planar amplitude a (kpc) in terms of the orbital mean
radius ry, (kpc), whose average value is r. = 8.3 kpc.

In the interval [
be estimated as

re — 0, re + 0], the constant 2B in Eq. (13) can

K2 K
2B~ (vz(rc -8) - Z) (re =) ~ (v2(rc +6) - Z) (re + 0)".
Therefore, we assume
2
= (vz(éf) : KZ) (2 - 8,
where ¢ is an intermediate radius satisfying v(¢) >
(&) — v(re) when § — 0.

A maximum amplitude ¢ around r, corresponds to a maxi-
mum planar eccentricity & satisfying § = r. &. Thus,

v(r.) and

2
2B = (z(rc)—KZ)r —( 2(&) - )r (1-&»% (C.1)
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We now define the following function, which is a slight modifi-
cation of Eq. (13),

(C2)

2 2 2
K 2 Zmax .
4 40

o) 2
f(Zmax,rm)z_Zmax"'(V (rO)__ T > >
Fm + CZmax

Around the local circular velocity point, r. = ry, we consider
the value v(£) as an average value, valid for all the stars in the
subsample, so that, according to Eq. (C.1), the function f can
also be expressed as

Zﬁ‘lax
ri + CZmax
(C.3)

2 2

Je(Zmaxs 'm) = KZ Zoax + (vz(g-‘) - KZ) 3 (1 —&%)?

Now, we analyse the change of slope, ¢ = f./z2,, by writing
the last term depending on the vertical eccentricity ¢’ = 2, as

m

LS 2 <\ 7 N
Je(Zmaxs 'm) = Ziax 7 +|v(©) - 7 g(l - &) T+ce?l
For a small §, since rp — 6 < ry, < rog + 9, in average, for the
2

subsample we may approximate :—” ~ 1. In this way, it is possi-
ble to justify that the slope g decreases with ¢’ for fixed &, and,
similarly, the slope decreases with &> for fixed e’. Thus, for sub-
samples containing stars with increasing planar eccentricity we
will get curves that, in average, have lower slope.

Therefore, the function f, defined in Eq. (C.3) is a decreasing
function of the non-negative value &2, which satisfies:

f(ZmaXa rm) = fs(zmax, rm) < 11_{% fg(Zmax, I‘m) = wz(zmax, 1’0).
(C4)
Then, we may adjust the parameters of the MVC by determining

the upper limit of the points plotted from the function f (Fig. C.2,
right) instead of by using the curve W (Zmax, 7'm) (Fig. C.2, left).
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Fig. C.2. Squared maximum vertical peculiar velocity (W — W;)?
(km?s72) compared to those predicted by W*(Zmax, 7m) (left) and by
f(Zmax,> 'm) (right). The colours indicate different planar eccentricities.

The fitting of this curve, by assuming ry = 8.3, and using
the estimates from Paper I, v(ry) = 63kms~'kpc™' and x =
37kms~! kpc™!, provides the value C = 21 + 1, which is used to
plot the MVC in Fig. 9.

Appendix D: Local potential

With the local constants M, A, B, and C already evaluated, we
may estimate the local approximation of the potential given by
Egs. (2) and (8). It is interesting to focus on the non-harmonic
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Fig. D.1. Level curves for the potential U(r, z), together with the con-
tributed terms U, and U, for the actual value C = 21.
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Fig. D.2. Contour plots for the terms Uy, U, and the potential U for
the critical case C = 11 (top) compared to a case with C = 6 (bottom).

part Uy. The harmonic part produces a trivial attractive force for
M > 0. For the actual constants, in particular C = 21, the level
curves for the total potential ¢ and the term U are displayed in
Fig. D.1.

There is a critical value for C that determines qualitatively
the shape of the potential. In the actual case A < 0 and B > 0. If

we define Cy = —f, we may write Eq. (8) as
B 1 -
Fls)= A+ —25_ _ 4 13- Cos,
1+Cs 1+Cs

According to our working sample, the limiting value is Cy = 11,
which is lower than the actual value for C.

Although it goes beyond the scope of this paper, it is easy
to see that the sign of the force in the radial direction associated
with U, depends on the sign of C — Cy. If C — Cyp > 0, as in
the actual case, being A < 0, this force is always attractive. On
the other hand, if C — Cy < 0, this force would have opposite
signs depending on the region of the Galaxy. To make a compar-
ison with Fig. D.1, we show in Fig. D.2 the contour plots for the
critical case and a case with C < Cy.

The case C = Cy is equivalent to F(s) = %CS. This expres-
sion was studied in Cubarsi et al. (2017) and could not fit to the
actual MVC.

It is also illustrative to write the potential by separating the
spherical part Uy, depending on R? = r? + 72, and the remaining
part U, which is proportional to z>. Then, we may write the
potential as U = Ur + U, with

Up=M (P +2)+

, D.1
r?+z? -

A B 2
Z:(r2+zz +r2+Cz2) 2 (D2)
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The level curves for U, are also displayed in Fig. D.1. In all the
cases, far from the origin, the potential is approximately spher-
ical, due to the harmonic term. The non-harmonic term U is
the one providing the general features of U, specially close to
the origin. On the other hand, the contribution of the term U, is
regulated by the constant C.

Appendix E: Average slope

With regard to Fig. 10, we aim to prove that the intersection of
the curve w? = g(¢’*) and the horizontal line w? = w? determines
the straight line w? = pg ¢’? passing through the origin, whose
slope is the geometrical mean (grey-dashed line in Fig. 10) of
the slopes of both limiting tangents, namely:

VK

Po = 75'70

Firstly, we explicitly write the abscissa of the intersection

g(e’(z)) = w%. According to Egs. (23) and (26), we have

1 e’} 2 Ccey 2

LY N L . 0 = 2L, (E.1)
C 1+Cel 4 1+Ce} Ck

Now we prove that the straight line w2 = pye’?, at ¢’ = e’g

takes the value w(z). Thus, according to Egs. (26) and (E.1), we
have

2.2
_er

Therefore, in the range of 0 < e < e’%, the disc and halo
coexist, although the former, with lower eccentricity stars, is
obviously prevailing. Within this range, in the angular region of
Fig. 10 where the slope p = w?/e’? takes values vzré > p = po,
the stiffness decreases as increasing the vertical eccentricity.

In the range of ¢’> > ¢’ 0 2 (mostly corresponding to halo stars),
m the angular region where p = w?/e’? takes values py > p >

, the stiffness remains nearly constant.

We calculate the slope of the velocity curve at the limiting
point e’g. The derivative of Eq. (23) is

4

2.2

Vg K15 CeQ2+Ce?)

1o 12
=—°0 4
9= Trcerr T4 “(rcery

At ¢”? e’(z), according to Eq. (E.1), by simplifying, we get
g'(€d) = k*r3(2 + £ For the actual estimates, in the range
0<e?< e'%, g’(e’z) drops 86%, while in the range 0 < 2 <1,

g'(€’*) drops 90%. Then, it is justified to affirm that from e’g

onward the slope is nearly constant.

Appendix F: Local density

In cylindrical coordinates, by assuming axial symmetry, Pois-
son’s equation gives the expression

. 10U . o*u
r or 072

’Uu

AU = —
or?

= 4nGp(r, 7). (F.1)

The gravitational constant is G = 4.301 x 1076 km? s= kpc M.
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For the potential in Eq. (2), we calculate the following poten-
tial derivatives in terms of F(s), bearing in mind that s = j—z

aair[ =2Mr — l (2F(s) + 2sF'(s)),
U .,
oz =M+ (6F(s) + 145F'(5) + 45°F"(s)).

Thus, together with Eq. (B.2), we can write Poisson’s equation
as

AU = 6M + ri4 (4F(s) + 2(1 + 65)F'(5) + 4(s + s)F"(s)) = 4nGp

By applylng a substitution for F(s), from Eq. (8), namely,
2BC

F'(s) = (1+Cs)2 and F"(s) = —Teo in the foregoing expres-
sion, we get
4A ZB 1+ (8-3C)s+6Cs*+2C%s
A 6M + =4 .
U=oM+Z+a (I +Csp 7o
(F2)

If we plot the local density po(z) = p(ro,z) (Fig. F.1, left panel),
we observe that for C = 21 there is a local minimum of py(z),
approximately with vanishing density, which would determine
the maximum height z of the disc by producing a clear separa-
tion of the disc and halo components. For higher values of C, the
density of this minimum would be negative (green dashed line),
which would make no sense. Instead, for lower values of C, the
disc and halo components would virtually overlap (green dashed
line), also by producing a relative minimum of density.

— C=221
——C=11
C=26

30 /
20

10

35 40 45
k

= po(z) (x10° My kpc™?) in terms of z (kpc) for

Fig. F.1. Density p(ro, z)
C = 21 (blue), compared to other values of C (left). Minimum value for
C required to produce a non-negative density, in terms of « (right).

We calculate the abscissa zp of this minimum. The density
derivative is

dp(r.2) _ 8GBz C(C—-3)s—(C-73)
9z o (1+Cs)*

The local minimum for r = ry must satisfy C(C — )s (c %)
0, from where, by assuming C > 4 we have

2 4
Z C-3
o ®
o C(C-3%)

It is interesting to point out two approximations of the above
equation. Firstly, we consider a more coarse approximation. If
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C > ‘3—‘, we may consider C — % ~C - ‘3—‘ ~ C, which is within

the error range obtained for this constant. It yields

20 & Jo . (F4)

VC

Such an estimation matches the expression for zg in Eq. (25),
derived from the analysis of the MVC.

Secondly, we consider a more accurate one. We may assume
2 Cc-%
C(C-3)~C*~C*-% . Then, s~ —5 = =2

42 4
-4 C+3

. Therefore,

o

/ 4
C+§

In Fig. 13 (left), we may observe that both are good approxima-
tions.

Now, we determine the minimum value of C that guarantees
a non-negative density from the equation p(ry, zo(C)) = 0. The
value of C is especially dependent on M, which is a function

20 & (FS5)

of k alone. Then, by assuming fixed values for v and y., such
a relationship implies that the minimum C and « are mutually
dependent, as shown in Fig. 13 (right panel). The critical value
can be expressed analytically in terms of M, A, and B, by using
the approximation of Eq. (F.4), as

8B
C=—
B—12M 1} - 8A

It so happens that the value C ~ 21 we estimated is higher
than the minimum values derived for the thin and thick discs.
However, the value k ~ 41 kms™! kpc’1 obtained for the whole
working sample selected as [W| < 170kms~! in Paper I, is fully
consistent with such a critical value C =~ 21. Therefore, in order
to estimate some properties of the local stellar density of the disc,
we adopt this approximated model, where the local minimum of
vanishing density takes place at the point zy. Even though such
a model implies that there is no overlapping between disc and
halo, which seems unrealistic, it is a simple way to obtain an
alternative measurement of the maximum height of the disc.
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