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ABSTRACT

Aims. Based on a local sample from Gaia DR2 catalogue composed of 74 339 stars, we are able to derive more accurate kinematic
statistics defining the local stellar populations and classify the stars in terms of their planar and vertical orbital eccentricities.
Methods. Firstly, we carried out a kinematical characterisation of stellar populations from a tested mixture model that fits the trivari-
ate velocity cumulants up to the fourth order, maximises the entropy of the mixture probability, and minimises the χ2 error. We then
proposed several approaches to classifying the stars according to the population they are most likely to belong to. None of these ap-
proaches provided a definitive solution due to the overlapping of the partial distributions. Finally, by using the epicycle approximation,
we transformed the three-dimensional velocity probability space into a two-dimensional diagram. In one direction, the information
of the two planar velocity components is picked up by the planar eccentricity. In the other direction, the vertical eccentricity does
the same with the vertical velocity component. However, in the vertical direction, the epicycle approximation is not valid and it is
replaced by a biquadratic approximation.
Results. In the eccentricity diagram, the region of maximum probability for a population is approximately delimited by straight line.
We characterise three local kinematic populations: thin disc, thick disc (composed of two subpopulations: canonical thick disc and
metal-weak thick disc), and kinematical halo (metal-rich thick-disc plus chemical halo). The Gaia DR2 sample allows us to estimate
small mean radial differential motion of 5 ± 2 km s−1 between the thin and thick discs, and of 9 ± 3 km s−1 between both thick-disc
subpopulations, as well as between the disc and the kinematical halo. All disc populations and subpopulations have significant vertex
deviations.
Conclusions. The classification of the stars from the eccentricity diagram resolves the problem of overlapping velocity distributions
by producing a segregation that is more net, along with a more precise kinematical characterisation of populations.
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1. Introduction

In recent years, the statistical analysis of local kinematic pop-
ulations was drastically limited by the amount of data avail-
able, mainly with regard to radial velocities. The advent of the
Hipparcos Catalogue (ESA 1997) represented both a qualita-
tive and quantitative change for the better. Previously, a typ-
ical local disc sample limited to a trigonometric distance of
300 pc consisted of 13 678 stars (e.g., Cubarsi & Alcobé 2004;
Alcobé & Cubarsi 2005). To understand the extent of such an
improvement, it suffices to compare the size, N, of such a sam-
ple with the one used by Erickson (1975) to compute, for the
first time, the higher-order central velocity moments, composed
of 869 stars. In addition, we must recall that the sampling vari-
ances of the moments are proportional to 1

√
N

.
The Geneva-Copenhagen survey (GCS) catalogue

(Nordström et al. 2004; Holmberg et al. 2007) incorporated
new and more accurate radial velocity data. However, a sample
composed of F and G dwarf stars, considered the favourite
tracer populations of the history of the disc, contained the total
velocity space of 13 240 stars. Hence, this sample improved the
quality of the data, but not the size. The GCS catalogue allowed

for some previous results to be confirmed while improving
others (Famaey et al. 2007; Cubarsi et al. 2010); in particular,
the detail of the small-scale of the local velocity distribution
(Skuljan et al. 1999; Dehnen & Binney 1998; Soubiran & Girard
2005; Famaey et al. 2005), which was proven to be strongly
correlated with the planar eccentricity of the stars’ orbits (Cubarsi
2010).

By using newer radial velocity data from the RAdial
Velocity Experiment (RAVE) survey (Siebert et al. 2011;
Zwitter et al. 2008; Steinmetz et al. 2006), which incorporated
the radial velocity of 49 327 randomly selected stars, sev-
eral statistical analyses (Pasetto et al. 2012a,b; Steinmetz 2012;
Moni Bidin et al. 2012; Casetti-Dinescu et al. 2011; Smith et al.
2009a,b) have studied the velocity distribution of the galac-
tic populations from neighbourhood stellar samples of about
39 000 stars. Thanks to this more accurate data, it was possi-
ble to estimate the anisotropy of the velocity distribution and
to assert that thick disc stars have a radial mean motion that
differs from the thin disc. In addition, inside the thick disc,
a subdivision was proposed between a rapidly rotating canon-
ical thick disc and a metal-weak thick disc (MWTD). Inside
the halo, the outer and counter-rotating halo was differentiated
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from the inner halo (Carollo et al. 2010, 2019; Kordopatis et al.
2013; Beers et al. 2014). However, we might consider whether
such sets of stars should be considered as independent pop-
ulations (Haywood et al. 2018), since Di Matteo et al. (2019)
proved that the kinematically defined halo in the solar neighbour-
hood is approximately composed of a half of metal-rich thick-
disc (MRHD) stars and a half of chemical halo stars.

More recently, the European Space Agency’s Gaia mission
(Gaia Collaboration 2016) produced Gaia’s second data release
(Gaia DR2, Gaia Collaboration 2018) and just a few weeks
ago, Gaia EDR3 (Gaia Collaboration 2021a) was released. Gaia
DR2 provides position, parallax, and proper motions for ca.
1.3 × 109 stars in the Milky Way (Lindegren et al. 2018) and
radial velocity for about 7.2 million stars (Soubiran et al. 2018)
measured using a Radial Velocity Spectrograph (Cropper et al.
2018). With regard to the stellar density distribution, the pre-
cise measurement of the parallax for the bright stars allows
to focus in selected populations of stars (Miyachi et al. 2019;
Galli et al. 2019). With regard to the velocity distribution, Gaia
radial velocities have an even better precision than those of
RAVE (Sysoliatina et al. 2018; Katz et al. 2019), and the radial
velocities catalogue is more complete, with a simpler complete-
ness function, and reproduces the vertical kinematics of the disc.

In this work, we use a local sample of Gaia DR2, composed
of 74 339 stars within a solar radius of 100 pc, to characterise
in a more precise way the kinematic statistics used to define
the local stellar populations. From the statistical analysis of the
velocity space, we wish to infer some key values for the orbital
eccentricities, allowing for a net separation of the local galactic
populations.

2. Preliminaries

2.1. Stellar populations

The concept of stellar population can carry various implications.
For instance, it can refer to the chemical composition of the stars
or, alternatively, it can describe their main kinematic features
through their mean velocity and the associated tensor of covari-
ances. In this paper, we focus on the kinematical approach.

From the kinematical viewpoint, a stellar population is typ-
ically composed of many subsets of stars, possibly with well-
defined properties for each subset, such as it happens with
moving groups or stellar streams composing the galactic disc.
But a moving group itself is not a statistical population. As
described in Cubarsi (2010), the small-scale kinematics of the
disc is determined by stellar streams that are associated with
stars of low planar eccentricity. When stars with greater eccen-
tricities are considered, the specific kinematic behaviour of the
stellar streams is no longer seen and an average behaviour of the
whole set dominates.

From a statistical viewpoint, according to the law of large
numbers, the sample average of the stars that have velocities with
similar distribution tends to a Gaussian distribution that char-
acterises the kinematics of the statistical population. In other
words, a sufficiently large number of stars is required for it to
be possible to speak of a continuous velocity distribution that
describes, in terms of its mean values and moments (similarly to
the kinetic theory of gases) the macroscopic state of a population
as a whole. To this, the condition of statistical equilibrium must
be added, meaning that the phase space density function of each
population, which depends the particular integrals of motion of
its stars, is invariant under the collisionless Boltzmann equa-
tion. Such a condition is satisfied when each population is of

a Schwarzschild type (e.g., Chandrasekhar 1942; Ogorodnikov
1965; Lynden-Bell 1967), meaning that there is a Gaussian dis-
tribution in the three-dimensional velocity space, which is a par-
ticular case of ellipsoidal distribution. Moreover, since this equa-
tion is linear, we may assume (Cubarsi 2018) that the whole
stellar system is composed of a finite number of stellar popu-
lations in statistical equilibrium.

Ellipsoidal distributions are described in terms of their cen-
tral second moments (tensor of covariances) µ2, which can be
written in terms of the peculiar velocity components as (e.g.,
Binney & Tremaine 2008):

µi j ≡ σ
2
i j = 〈uiu j〉.

The second central moments account for the shape and orien-
tation of the velocity ellipsoid and for the variance σ2

l of the
velocity distribution function in an arbitrary direction, l, of the
peculiar velocity space. According to the coordinate system, if
c1, c2, and c3 are the corresponding direction cosines, we have:

σ2
l = 〈(c1u1 + c2u2 + c3u3)2〉 =

∑
i, j

ci c j µi j; i, j ∈ {1, 2, 3}.

The symmetric tensor µ−1
2 (inverse of the second central

moments µ2) is then associated with the peculiar velocity ellip-
soid:

uT · µ−1
2 · u = 1,

so that the velocity dispersions σ1, σ2, and σ3 are the semi-
axes of the ellipsoid that refers to the same coordinate axes. The
anisotropy of the velocity ellipsoid is measured by the ratio of
the velocity dispersions along the principal axes and by its ori-
entation since the principal axes need not to be aligned with the
coordinate axes. The angle between the direction from the Sun
to the Galactic Centre (GC) and the direction of the major prin-
cipal axis of the velocity ellipsoid is known as vertex deviation,
while the angle between the major principal axis and the Galac-
tic Plane (GP) is the tilt of the velocity ellipsoid.

In general, and especially when the velocity variables are
expressed without subindices, the nth central moments can be
written as (e.g., Gilmore et al. 1990):

µαβγ = 〈uα1 uβ2uγ3〉, (1)

with α + β + γ = n. This notation is used in the current paper.
In the current paper, a stellar group is referred to as a stellar

population if it can be reasonably approximated by a trivariate
Gaussian distribution, otherwise we refer to subpopulation. Such
a simplified Galaxy model with a few population components is
useful for getting a large-scale kinematical portrait depicting the
basic symmetries of the stellar velocity distribution – or the main
deviations from them (Cubarsi 2014a,b) – such as whether there
is axial or point-axial symmetry and a symmetry plane, what the
average differential motion between populations is, as well as the
shape and orientation of the respective velocity ellipsoids, etc. In
addition, these features are relative to the potential function of
the dynamical model.

2.2. Orbital eccentricities

As stated above, the velocity distribution function depends on
the isolating integrals of the star motion. The disc and the
halo stars may share some integrals of motion, for example,
the energy integral, I1, (under the hypothesis of steady-state
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system) and the angular momentum integral, I2, (under the
hypothesis of axial symmetry). Nevertheless, for disc stars, an
independent integral, I3, (e.g., Gilmore et al. 1990), related to the
low height about the GP allowing for the approximation of sep-
arability of the potential in cylindrical coordinates, makes them
distinguishable from halo stars. Hence, a combination of these
integrals defines a quadratic form, Q, that is, the velocity ellip-
soid, which characterises the Schwarzschild velocity distribution
that defines the stellar population based on its means and second
central moments.

For a population mixture, the velocity moments of the whole
stellar sample allow us to determine, with an acceptable accu-
racy, the population partial moments (Cubarsi et al. 2010). How-
ever, in the process of disentangling the partial distributions, the
stars belonging to a region where the tails of the population dis-
tributions overlap then become classified with a great level of
uncertainty. Other non-kinematical parameters can be of help,
such as the metallicity [Fe/H] and the colour b−y, but none of
them produce a net segregation (Cubarsi 2010). The alternative
approach presented here, still based on kinematical parameters,
is meant to identify the thin and thick disc stars from its pla-
nar and vertical eccentricities. In this way, the problem of such
overlapping regions is to become minimised. The reason is that
for the disc stars, the equations of the star motion can be treated
as two independent sets: one for the planar motion in the GP,
involving the integrals I1−I3 and I2, which are in direct rela-
tion to the planar eccentricity of the star (Ninković 2018), and
another, for the perpendicular motion, involving the integral I3,
which is in direct relation to the vertical eccentricity.

Let us recall the definitions of planar and vertical eccentrici-
ties. For a local disc star, under the epicycle approximation (e.g.,
Binney & Tremaine 2008), the local radius r0 and the radius rc
of the circular velocity point C1 can be expressed in terms of the
maximum and minimum orbital distances to the centre, ra and
rp (apo- and pericentric distances), as r0 ≈ rc =

ra+rp

2 . Then, the
planar eccentricity is defined from the orbital amplitude a, as:

a =
ra − rp

2
, e =

a
rc
· (2)

On the other hand, the vertical eccentricity, e′, is defined in terms
of the maximum height, zmax, about the GP as:

e′ =
zmax

rc
· (3)

The approach based on the epicycle approximation was
proven to be a promising tool in Cubarsi et al. (2010) when
working with the Geneva-Copenhagen Survey III catalogue
(Holmberg et al. 2009); in Cubarsi et al. (2017), it allowed the
authors of the study to infer features of the local potential in
relation to several symmetry hypotheses.

2.3. Stellar sample

We used two criteria to obtain our local sample. Firstly, we
selected all the stars that have parallax greater than 10 mas. Then,
from these sources, we selected those that satisfy the two fol-
lowing conditions: the astrometric parameters are solved and for
ever source, the radial velocities must be given. In this way, we
obtained a sample consisting of 74 339 stars.

1 The epicycle approximation consists in to refer the orbit of a star
near the GP to a reference frame with its centre in the position C of
a star in the GP in circular motion with the same angular momentum
integral.

Sources with poor astrometric solutions are expected to have
small parallaxes, so they should not present a potential contami-
nation of our sample. As for radial velocities, in Gaia DR2, there
are about 4000 stars that have been reported to carry erroneous
values (information available on the site2) and for this reason,
they are not present in Gaia EDR3, pending further tests of the
local kinematics, however, we decided to keep them based on the
presumption that those stars most likely belong to the halo. Halo
stars are known to be rare, but our interest is to have as many of
them as possible in our sample.

Our examination shows that if Gaia EDR3 were used, our
sample would be slightly smaller. As for five-parameter astrom-
etry solution, in Gaia EDR3, only the errors are different. For
instance, Gaia Collaboration (2021b), in applying a quite differ-
ent approach, have found 74 281 stars within 100 pc from the
Sun with radial velocities, a conclusion that is rather similar to
our own.

When our sample of stars was finally constructed, we looked
further into the Gaia DR2 catalogue to analyse the metallicities
given by the Gaia team. Since we used only the sources with
measured radial velocity, all these sources also have values for
[Fe/H] that are given from the template parameters (Katz et al.
2019). The metallicities given in the catalogue may serve as indi-
cators because it is well-known that thin-disc stars are generally
the most metal-rich, whereas halo stars tend to be generally the
most metal-poor.

In order to determine the planar eccentricity and the max-
imum height of the Galactocentric orbits, we used the model
of the Milky Way proposed by Ninković (1992). This model
assumes three contributors to the potential of the Milky Way: the
bulge, the disc, and the corona (the subsystem consisting of dark
matter). The latter is assumed as spherically symmetric, while
the other ones are assumed to be axisymmetric. The contribu-
tions to the Galactic potential of the former two are described by
the same formula as that of Miyamoto & Nagai (1975). The only
difference concerns the values of the parameters. The parameters
from Gaia DR2 (five-parameter astrometry solution and radial
velocity) are used as input for the model. The integration of the
Galactocentric orbits for each star is done for 10 Gyr by using a
fourth-order Runge-Kuta method, from where we obtained val-
ues for ra, rp, and zmax.

2.4. Methods

Our procedure consists of three steps. Firstly, we made a
kinematical characterisation of the stellar components (further
described in Sect. 3) by applying the same statistical algorithm
(Cubarsi et al. 2010, hereafter Paper I) used for other catalogues.
The algorithm (a) uses a mixture model that fits the trivariate
cumulants up to the fourth order, (b) maximises the entropy
of the mixture probability according to a hierarchical segrega-
tion, and (c) minimises the χ2 error of the total set of cumu-
lants, which, in the optimal case, matches the maximum entropy
condition. In this way, it is possible to determine the sampling
parameters by allowing subsamples to be extracted, which con-
tain either a mixture of thin and thick discs, or a mixture of disc
and halo. As a result, each population remains characterised by
its mean velocity, its covariance matrix, and the mixture propor-
tion. For the disc, the most reliable samples are those obtained
when the sampling parameter is the absolute heliocentric veloc-
ity (the improvement achieved when using the peculiar velocity

2 https://www.cosmos.esa.int/web/gaia/
dr2-known-issues#RadialVelocitiesCrowdedRegions
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is not significant and requires a more laborious iterative pro-
cess). We are able to confirm that there is vertex deviation in
the thin and thick discs, although their differential radial motion
is very small. In addition, the MWTD, together with a part of the
MRHD stars, are still identified as belonging to the same extreme
subpopulation of the disc. Alternatively, when the samples are
selected from the absolute perpendicular velocity, it is possible
to discriminate between the thick disc and the kinematical halo
composed of MRHD stars and a few chemical halo stars.

In a second step (described in Sect. 4), the stars are labelled
according to the population they most likely belong to. Three
plausible criteria are applied and discussed, each having their
pros and cons, and ultimately, none of them provide a definitive
solution for identifying a star from its velocity components when
these components belong to an overlapping region with similar
population probability. Thus, after the stars have been labelled as
belonging to one of the populations, we may extract subsamples
of supposedly pure populations, although none of these subsam-
ples will have bell-shaped distribution, typical of the Gaussian
distributions, in any of the velocity variables.

In a third step (Sect. 5), the most likely population is
obtained, not in terms of the velocities, but in terms of the eccen-
tricities. By using the epicycle approximation for the disc stars,
we transform the three-dimensional velocity probability space
into a two-dimensional diagram. In one direction, the informa-
tion of the two planar velocity components is picked up by
the planar eccentricity, e. In the other direction, the vertical
eccentricity, e′, does the same with the vertical velocity compo-
nent. Nevertheless, upon moving away from the GP, the epicycle
approximation is no longer valid and requires an approximate
model, which is fitted by using a biquadratic equation for the
vertical velocity curve. In the eccentricity diagram (e′2 in terms
of e2), three regions of maximum likelihood with regard to
the populations become delimited by two nearly straight lines.
When the classification of the stars is carried out according to
these regions, the resulting subsamples recover the bell-shaped
curve in each velocity component, their covariances match those
expected for the corresponding populations and are obtained
with smaller sampling variances. Additionally, it solves the over-
lapping problem of the distributions by producing a more net
segregation.

3. Populations in the sample

3.1. Segregation algorithm

The method to identify kinematic populations is explained with
detail in Paper I. It was referred to as MEMPHIS algorithm.
Briefly, it consists of several complementary criteria.

We use a continuous sampling parameter P allowing to
form nested stellar subsamples that incorporate subsequent pop-
ulations orderly. There are two optimal sampling parameters,
namely P = |u|, the absolute value of the heliocentric star veloc-
ity3 u = (U,V,W), and P = |W |.

The algorithm segregates pairs of Gaussian populations (1
and 2). For consecutive segregations, population 1 is cumula-
tive (i.e. it approximates the previous segregated populations by
a single Gaussian component). As they increase the sampling
parameter, subsequent entering populations are identified as pop-
ulation 2.
3 The radial heliocentric velocity component U positive towards the
GC, the heliocentric velocity component V positive in the direction of
the Galactic rotation, and the velocity component W perpendicular to
the GP and positive towards the north galactic pole.
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Fig. 1. Local optimal values of the partition entropy, H (dimensionless),
and χ2 (scaled error) obtained from the sampling parameter P = |u|
inside the thin disc.

There are two indicators for validating the goodness of a
segregation. One is the entropy of the partition H, which must
attain a relative maximum at the end of a region of stability. The
other is the χ2 error, associated with the fitting of the velocity
cumulants up to the fourth order, which must reach a relative
minimum. For optimal cases, such extreme values are achieved
simultaneously.

3.2. Selecting by P = |u|

3.2.1. Inside the thin disc

The sampling parameter P = |u| yields an optimal segregation
for P = 50 km s−1, as it is shown in Fig. 1. However, the large
χ2 error with regard to the subsequent optimal points is indica-
tive of the poor Gaussianity of both segregated components. This
result is similar to that obtained in Alcobé & Cubarsi (2005)
for Hipparcos samples, which was interpreted as a mixture of
early-type stars and young disc stars, whose most important dif-
ferential movement took place in the radial direction. According
to Cubarsi (2010), such a subsample reflects the kinematics of
the Hyades-Pleiades moving groups and the Sirius-UMa stream,
and is not yet kinematically representative of the whole thin disc.

3.2.2. Thin and thick discs

The optimal values are shown in Fig. 2. The values P = 123
and P = 230 km s−1 detect a mixture of thin and thick disc pop-
ulations. The former identifies the core of the thin disc, t, as
population 1, and a partial thick disc4, the canonical thick disc
T−, as population 2. On the other hand, the sample selected by
P = 230, also contains a new subpopulation, the MWTD stars,
say T +. From a kinematical viewpoint, there are two subpopula-
tions within the thick disc, which altogether but not separately,
can be approximated by a Gaussian distribution. The velocity
moments (centred and non-centred) of the selected stellar sub-
samples are listed in the Appendix D, and the partial centred
moments of the population components in Table 1. The notation
used here is that of Eq. (1).

The value of P = 350 km s−1 detects a new subpopulation
composed of MRHD stars and a few halo stars5 that we refer to
as the inner halo H− subpopulation, which polarise the previous
segregation into two groups, namely, t + T−, and the remaining

4 A similar situation happened in the Hipparcos catalogue at |u| =
131 km s−1 (Alcobé & Cubarsi 2005). The resolution is now 1 km s−1.
5 A higher sampling parameter is responsible for a few stars with
unreal velocity |u| > 500 or zmax > 100 kpc (i.e. the maximum value
of |z|) introduce great sampling variances to the velocity moments, so
that the resulting sample is not good enough to carry out a segregation.
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Fig. 2. Optimal values from the sampling parameter P = |u| (km s−1).
Top: entropy, H (dimensionless), and χ2 (scaled error). Bottom: trend of
the radial velocity dispersion σ1 (on a logarithmic scale).

stars, T + + H−. Thus, the MWTD stars, labelled as T +, have
an intermediate kinematic behaviour that is alternatively assim-
ilated with the canonical thick disc or the inner halo, depending
on the composition of the sample. The bottom panel of Fig. 2
shows an unstable region for the increasing thick disc veloc-
ity dispersion σ1 (pop 2, between 123 and 230 km s−1) and an
increasing trend of the velocity dispersion of the halo population
(pop 2, from 350 onward), indicating that this population is not
completely merged to the sample, while the disc stars (pop 1)
have a stable and nearly constant radial velocity dispersion.

3.3. Selecting by P = |W|

Figure 3 shows a similar analysis for the sampling parameter
P = |W |. The value of P = 35 km s−1 yields a mixture that,
from a kinematical viewpoint, corresponds to a partial thin disc
as population 1 and a mixture of a partial thick disc and a few
kinematical halo stars as population 2. In Sect. 5.3, we analyse
such a situation in greater detail. The values from P = 130 to
170 km s−1 detect a mixture of disc stars (thin plus thick discs)
and kinematical halo6. The latter provides the lowest χ2 error
and is placed at the end of a region of stability for H. The lower
graph in Fig. 3 shows the increasing trend of the vertical veloc-
ity dispersion σ3 of the halo (inner halo H− and outer halo H+

with counter-orbiting stars), while the disc stars maintain sta-
ble values. The samples selected by P = |W | describe the disc

6 The sample obtained from W = 170 km s−1 can be improved by
just removing four stars with |u| > 500 km s−1, which are not reliable.
This reduces the error of the central velocity moments of the halo pop-
ulation in about 50%, while the resulting partial moments and mean
velocities do not sensibly change, similarly to the x values. The result-
ing sample provides total and partial velocity moments similar to the
sample obtained from W = 130 km s−1, and provides a population 1
very similar to that of the sample limited by |u| = 350 km s−1. The
bound |u| ≤ 500 was also used in Paper I to filter the Hipparcos
and the Geneva-Copenhagen Survey catalogues to avoid stars having
an erroneous estimation of the velocity, perhaps greater than the escape
velocity.
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Fig. 3. Optimal values from the sampling parameter P = |W |. Top:
entropy, H (dimensionless), and χ2 (scaled error). Bottom: trend of the
vertical velocity dispersion σ3 (on a logarithmic scale).

from similar second central moments than the sample selected by
absolute velocity, however they determine the halo with higher
velocity dispersions and lower population fraction, namely, a
more extreme halo7. These samples are extremely sensitive to
the halo component H+ in such a way that 111 stars produce a
radial mean velocity of the halo, which is entirely unexpected.

3.4. Kinematical parameters of the samples

In Appendix A, we justify in detail why the working sample is
kinematically representative of the GP. Based on this fact, we
may now extract conclusions about which subsamples provide
us with information concerning the thin disc, the thick disc, or
the halo.

Table 1 displays the characteristic parameters of the seg-
regated components. The values for the thin disc are stable
and consistent whether obtained from the sampling parameters
|u| = 123 km s−1, |u| = 230 km s−1, and |W | = 35 km s−1. Simi-
larly, the parameters of the whole disc are stable when obtained
sampling parameters from |W | = 130 to 170 km s−1. On the con-
trary, for the thick disc and the halo, these values depend on the
size of the sample, that is, on the fraction of stars included as
population 2, which, in addition, have larger velocities and pro-
duce unstable values for these populations.

Hence, to define the boundaries between populations in
terms of the eccentricities, the characteristic parameters for the
thin-thick segregation are to be taken from the sampling parame-
ter |u| = 230 km s−1 and for the segregation disc-halo, we use the
sampling parameter |W | = 170 km s−1. Furthermore, for a more
detailed characterisation of the subpopulations, in order to dis-
tinguish between the thin disc and the canonical thick disc, we
use the values obtained for the sampling parameter |u| = 123;
and in order to distinguish between the canonical thick disc and
the MWTD, we use those obtained for |u| = 350.

7 As expected, the kinematical halo population is identified in a very
unstable way since the working sample contains a very small fraction
of these stars.

A48, page 5 of 24

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040017&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202040017&pdf_id=3


A&A 649, A48 (2021)

Table 1. Mean velocities (km s−1), second central moments (km2 s−2), population fractions (relative to the subsample), and number of stars in
terms of the sampling parameter P (km s−1) for optimal segregations.

P Pop. n U0 V0 W0 µ200 µ020 µ002 µ110 µ101 µ011

|u| = 123 t 69% –8.4 –11.2 –6.9 887.87 249.62 225.15 66.69 –5.33 7.59
?72859 ±0.5 0.8 0.3 13.83 30.66 5.93 5.41 4.57 3.49

T− 31% –11.3 –38.4 –9.0 1731.44 629.16 551.53 151.89 13.64 –20.39
±1.0 1.3 0.7 28.15 67.30 12.34 10.37 8.82 6.74

|u| = 230 t 79% –9.3 –12.8 –7.3 899.09 191.26 207.96 91.65 –5.6 5.2
?74153 ±0.4 1.3 0.2 19.72 53.42 9.02 8.14 6.57 5.5

T = T− + T + 21% –12.1 –51.9 –9.0 2795.11 1138.25 989.07 204.42 28.96 3.03
±1.1 2.6 0.7 69.35 201.47 32.63 26.57 21.94 18.13

|u| = 350 t + T− 96% –9.7 –17.5 –7.5 1111.01 348.54 299.15 112.51 –0.26 7.5
?74272 ±0.2 3.8 0.2 17.24 65.35 6.29 8.75 5.63 5.71

T + + H− 4% –13.4 –103.8 –11.1 6250.16 1730.69 2193.22 231.09 43.28 –2.43
±1.8 9.0 1.7 328.47 1439.42 119.95 143.54 95.18 97.97

|W | = 35 t 96% –12.6 –16.0 –6.0 803.35 251.13 174.32 266.61 –10.91 12.56
?67513 ±0.2 0.1 0.1 55.89 63.86 1.20 49.88 5.37 4.74

T + H− 4% 51.0 –99.9 –0.2 6368.63 1356.51 367.29 2282.06 –5.76 86.51
±0.5 0.6 0.5 37.05 73.03 5.46 40.46 8.28 6.81

|W | = 170 D = t + T 98% –8.8 –19.4 –7.6 1084.12 429.29 335.40 28.20 –5.44 10.53
?74332 ±3.9 6.9 0.2 38.42 71.41 4.90 41.89 7.54 6.16

H 2% –99.0 –180.7 –12.7 16786.20 5503.28 4235.46 –6134.47 102.11 –29.81
±16.4 18.2 2.5 2894.86 5503.28 275.30 3213.48 492.94 329.74

Notes. t = thin disc, T = thick disc (− for canonical, + for MWTD), D = total disc, H = halo (− for inner).

4. Labelling the populations

4.1. The most likely population

Let us assume a sample Ω of stars consisting in a partition of
disc and halo populations, Ω = D∪H, where the set of disc stars
also consists in a partition of thin and thick disc populations,
D = t∪T . Given the characteristic kinematic parameters of each
stellar population, for a star s ∈ Ω we calculate the probability
of belonging to the population, S , namely, π(s ∈ S ).

Firstly, the segregation disc-halo is considered, from where
we get the velocity distribution functions (trivariate Gaussian)
for computing the probabilities of a star to belong to the disc
π(s ∈ D) and to the halo π(s ∈ H), so that π(s ∈ D) + π(s ∈
H) = 1. Secondly, from the thin-thick disc segregation, for the
stars likely belonging to the disc, we compute the probabilities
of a star to belong to the thin disc π(s ∈ t|D) and to the thick disc
π(s ∈ T |D), so that π(s ∈ t|D) + π(s ∈ T |D) = 1.

The easiest method, say L0, for labelling a star according to
one of the populations is to assign the star to the more proba-
ble population. Thus, a star can be labelled as t,T,H, although
this does not provide a relative scale among populations when,
inevitably, cases arise where a star belongs to an area where the
tails of two distributions overlap. For instance, it is possible that
a thick-disc star has a higher probability of belonging to the thin
disc, and then it is labelled incorrectly. Hence, there must be a
mutual exchange of labels established between these stars. This
should not be considered a major issue if the number of these
stars is relatively low (such as the case of the thin disc), as gen-
erally occurs when the sample is large and the populations are
significantly differentiated, but it is not negligible for the thick
disc, with a relatively low number of stars.

However, once the respective populations have been with-
drawn from the whole catalogue, as a consequence of having
cut the wings of the distributions, the resulting partial samples
will have lost the clock shape of the Gaussian distributions.
If we compute their moments we obtain some modified distri-
butions sharing the main basic trends, for instance, the means

and the second moments, but with likely modified higher-order
moments.

4.2. Population index

To determine if a star is in the overlapping region between popu-
lations or is in the most characteristic region of one of the popu-
lations, it is useful to have an index indicating, for each star, the
expected value of the population the star belongs to. The index
can also be used to extract more pure subsamples for a particu-
lar population. For this reason, we adopt two more approaches,
which allow us to quantify with a population index the stars in
relation to the populations. To each star, we assign a continuous
value x(s) ∈ [0, 3] representing the expected population the star
belongs to. Thus, the population index will be computed from
three different methods:

L0. The simplest way for labelling a star is to assign the star
a discrete value 1, 2, or 3 to x, depending on whether the most
likely population is t, T , or H.

L1. The population index is computed as a continuous
parameter from the expected value of a star to belonging to either
of the three populations, labelled as x = 0 for the thin disc, x = 2
for the thick disc, and x = 3 for the halo, namely:

x =((((
(((

((
0 π(s ∈ D) π(s ∈ t|D) + 2 π(s ∈ D) π(s ∈ T |D) + 3 π(s ∈ H).

In this case, for the sake of continuity, the probabilities are
obtained from the segregations with the same sampling parame-
ter P = |u| for all the populations.

The value representing the average kinematics of the disc is
x = 1. Within the disc, a star with a higher or equal probability
of belonging to the thin disc satisfies 0 ≤ x ≤ 1, while stars
satisfying 1 < x ≤ 2 have higher probability of belonging to
the thick disc. Although values of x > 2 represent stars with
higher probability of belonging to the halo than to the average
disc, the range of 2 < x ≤ 2.5 still contains thick-disc stars, since
these stars have higher probability of belonging to the thick disc
than to the halo. Finally, the interval 2.5 < x ≤ 3 represents
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stars with higher probability of belonging to the halo. In the next
subsection, we discuss the methods for labelling the populations
in detail.

L2. We use the probabilities obtained from the sampling
parameter P = |W | for the segregation disc-halo and the sam-
pling parameter P = |u| for the segregation thin-thick discs. In
this way, the separation of both main components disc-halo is
emphasised. The value x(s) ∈ [0, 3] is computed in two differ-
ent ways depending on whether the most likely population is
the disc or the halo. Firstly, for the stars with higher probability
of belonging to the disc, we compute the expected value x1 of
belonging to the thin disc (label x1 = 0) or to the thick disc (label
x1 = 2). Thus, x1 ∈ [0, 2] and, as with the previous method, the
value of x1 = 1 represents the average disc as well as the lim-
iting value between thin and thick disc. Secondly, for the stars
with higher probability of belonging to the halo, we compute the
expected value x2 of belonging to the disc (label x2 = 0) or to the
halo (label x2 = 2). These stars satisfy x2 ∈ (1, 2]. Then, in order
to produce a parameter x covering the total range [0, 3], the range
of x2 is modified so that for the halo stars the interval is adjacent
to the range of x1. Hence, the value x2 must be translated by 1.
Therefore:

x =

{
((((

(0 π(s ∈ t|D) + 2 π(s ∈ T |D), if π(s ∈ D) ≥ π(s ∈ H),
1 +��

���0 π(s ∈ D) + 2 π(s ∈ H), if π(s ∈ H) > π(s ∈ D).

Now the disc and halo populations remain more isolated than in
the previous case.

4.3. Comparing labelling methods

Here, we discuss these methods in detail. The approach marked
as L1 considers the three populations as independent. For each
star, the respective probabilities are:

p ≡ π(s ∈ t) = π(s ∈ D) π(s ∈ t|D)
q ≡ π(s ∈ T ) = π(s ∈ D) π(s ∈ T |D)
r ≡ π(s ∈ H),

which satisfy r = 1 − p − q. The possible values for p, q are dis-
played in Fig. 4, according to the following constraints between
them, namely,

0 ≤ p ≤ 1, 0 ≤ q ≤ 1, 0 ≤ r ≤ 1
0 ≤ p + q ≤ 1, 0 ≤ p + r ≤ 1, 0 ≤ q + r ≤ 1
0 ≤ p + q + r ≤ 1.

Panel a shows the coloured regions p ≥ 1
2 (green), q ≥ 1

2 (blue),
and r ≥ 1

2 (light red), where one of the probabilities is greater or
equal than the sum of the others.

Panel b shows the coloured regions p ≥ q and p ≥ r (green),
q ≥ p and q ≥ r (blue), r ≥ p and r ≥ q (light red), where
one of the probabilities is greater than each one of the others.
This is the case described as L0. However, in L1, it has been
assigned the index x = 0p + 2q + 3r = 3 − 3p − q to each
star. Therefore, the interval x ≤ α corresponds to the region
q ≥ 3 − α − 3p. These are the limiting lines plotted in red in
the panel c for values x = 0.5, 1, 1.5, 2, 2.5. These lines do not
match the regions where each population has higher probability.
Indeed, the regions 0 ≤ x ≤ 1 and 2.5 ≤ x ≤ 3 determine pure
thin disc and halo stars, respectively, but the range 1 ≤ x ≤ 1.5
accounts for mixed stars labelled as thin and thick disc, and the
range 1.5 ≤ x ≤ 2.5 accounts for mixed thick disc and halo
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Fig. 4. Regions (a) of higher probability than the sum of the other pop-
ulations for thin disc (green), thick disc (blue), and halo (light red).
Regions of higher probability than each one of the other populations for
cases L0 (b), L1 (c), and L2 (d).

stars. Therefore, although the parameter x has a desirable con-
tinuous behaviour for labelling the stars, it has a non negligible
uncertainty.

An alternative approach for partially avoiding such a situ-
ation is to first consider the segregation disc-halo and, after-
wards, within the disc, the segregation thin-thick disc. Such is
the approach L2, which is represented in the panel d. For the
segregation disc-halo, we consider the probabilities d = p + q =
π(s ∈ D) and r = 1 − d = 1 − p − q = π(s ∈ H). The light-red
region corresponds to probabilities r ≥ 1

2 of halo stars, where
q ≤ 1

2 − p. We refer to it as the halo region. The green and blue
areas define the disc region, where the probability of disc stars is
higher, d ≥ 1

2 , so that q ≥ 1
2 − p. In the halo region, a probability

of r ∈ [ 1
2 , 1] defines the line q = (1− r)− p, hence 0 ≤ q ≤ 1

2 − p.
Since the index is computed as x = 1+2r, the line can be written
in terms of x as q = 3−x

2 − p for values 2 ≤ x ≤ 3.
Within the disc region, for a fixed value d ≥ 1

2 , the respective
probabilities of the thin and thick discs satisfy p

d +
q
d = 1. Hence,

q = d − p defines the line in the graph corresponding to this disc
probability. Then, the index, that in this case has been evaluated
as x =

2p
d , corresponds to a point on this line of value q = d(1 −

x
2 ). Along this line, the green zone satisfies q ≤ p and 0 ≤ x ≤ 1,
while the blue zone satisfies q ≥ p and 1 ≤ x ≤ 2. In this
approach, and comparing with panel b, we see that a small part
of the halo can be mistaken as disc stars, but no disc stars are to
be labelled as halo stars.

In order to interpret the resulting segregations and how they
depend on the method, Figs. 5 and 6 display eccentricity, e, abso-
lute velocity, |u|, maximum distance to the Galactic plane, zmax,
and vertical eccentricity, e′, in terms of x (in grey, the percent-
age of stars according to the axis on the right), as well as the
population index, x, in terms of the heliocentric velocities.
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Fig. 5. Relation between several properties and the population index (x) for case L1.

4.4. Subsamples

These labelling methods provide the following number of stars
in each population:
L0 #t = 59 715

#T = 13 907
#H = 717.

L1 #t = 59 434 (0 ≤ x ≤ 1)
#(t + T ) + (T + H) = 3699 + 4832 = 8531 (1 < x ≤ 1.5 and
1.5 < x ≤ 2)
#(T +H) = 5657 + 717 = 6374 (2 < x ≤ 2.5 and 2.5 < x ≤ 3).

L2 #t = 59 722 (0 ≤ x ≤ 1)
#T = 12 357 (1 < x ≤ 2)
#H = 2260 (2 < x ≤ 3).

The values for L0 and for L1 are computed from the samples
with |u| < 230 km s−1 and |u| < 350 km s−1. As explained above,
for the case of L1, in the range of 2 < x ≤ 3, there are many stars
that likely belong to the thick disc.

For the case of L2, the listed values come from samples
with |W | < 170 km s−1 for the segregation disc-halo, and |u| <
230 km s−1 for the segregation thin-thick disc.

The velocity moments of the samples containing thin disc
and thick disc stars are listed at the end of the Appendix D. The
moment values are nearly the same for all the labelling methods.
For the thin-disc stars, the moments are similar to the first popu-
lation obtained from the samples selected by |u| < 123, |u| < 230,
and |W | < 35 km s−1. For the total disc they are similar to the total
moments of the same samples.

4.5. Velocity distribution features

Firstly, we point out some basic features: (a) in the UV plane, the
thin disc distribution is more ellipsoidal than the thick disc; (b)
thin and thick disc distributions have a non-vanishing, although
small, vertex deviation in the UV plane, while the halo does not
have a significant one; (c) in the VW plane the disc populations
have almost spherical distribution; (d) the mean velocities for
the U and W velocity components are similar for the disc com-
ponents and the inner halo, which is indicative of stationarity, so
that the main difference between these populations takes place
in the rotation velocity component.

More specific features are below described from Figs. 5
and 6, allowing us to compare methods L1 and L2. The main
difference is due to the overlapping of thick-disc and halo pop-
ulations that occurs for 2 < x < 2.5 in method L1 (as explained
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Fig. 6. Relation between several properties and the population index (x) for case L2.

in Sect. 4). The method L2 produces a sudden change in x = 2,
however, let us note that among the 12 357 stars with 1 < x ≤ 2,
a total of 4101 satisfy 1.9 < x ≤ 2, which is nearly half of a
thick disc. Similarly, among the 2260 stars with 2 < x ≤ 3, a
total of 1226 satisfy 2.9 < x ≤ 3, which is the very core of the
kinematical halo.

For method L1, with regard to the disc (0 ≤ x ≤ 2.5), in
the range 0 ≤ x ≤ 2 the velocities, U and W, are symmet-
rically distributed around their mean. However, in the rotation
component, V , the density of stars to the right of the mean is
lower than to the left. This is specially remarkable in the range
of 1 < x ≤ 2.5, corresponding to the part where the thick disc
is dominant. That is the reason why stars in this range elicit a
radial mean velocity that is significantly lower than the stars
in the range of 0 ≤ x ≤ 1 and associated with the thin disc,
resulting in a net asymmetrical drift between thin- and thick-disc
stars.

Figures 7 and 8 are plotted to establish the velocity bounds
for the population components. The population index x is plot-
ted in terms of the heliocentric velocities. The population com-
ponents are coloured in green for the thin disc, blue for the thick
disc, and red for the halo.

For the whole disc, the velocity bounds are approximately
(all velocities are given in km s−1):

−160 ≤ U ≤ 140, −140 ≤ V ≤ 60, −120 ≤ W ≤ 100.

For the thin disc, we get approximately:

−110 ≤ U ≤ 90, −60 ≤ V ≤ 40, −50 ≤ W ≤ 40.

These ranges are also valid for the graphs of method L2, Fig. 6.
For the halo (range 2.5 < x ≤ 3 in method L1 and 2 <

x ≤ 3 in method L2), the above general features are repeated,
although the asymmetry in rotation is emphasised. In particular,
for case L1, this is a transitional region with a mixture of thick
disc and halo stars. The drift in rotation is much higher than in
the disc. There is a great lag in rotation, partially corresponding
to a subcomponent with no net galactic rotation. For the halo,
the velocity bounds are approximately

−400 ≤ U ≤ 400, −400 ≤ V ≤ 0, −170 ≤ W ≤ 160

although most of them satisfy V ≤ −50.
Similarly, in Figs. 7 and 8 we are able to visualise the dis-

tribution of several properties in terms of the velocity compo-
nents, such as the planar and vertical eccentricities (e and e′),
the maximum height (zmax), and the absolute heliocentric veloc-
ity (|u|). These properties can be contrasted with the assigned
population derived from the algorithm, indicated by the colour,
to see whether they provide independent information about the
stellar component the stars belong to.

We find that the U velocity component mixes up the popu-
lations when the eccentricities are taken into account, but it iso-
lates the disc and the halo quite well in terms of the absolute
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Fig. 7. Several properties in terms of the heliocentric velocities for case L1.

heliocentric velocity. To display such a feature, the red points
corresponding to the halo stars are plotted over those of the disc.

The V velocity component together with the planar eccen-
tricity allow us to estimate the Galactocentric rotation velocity
of the centroid in about 220−225 km s−1, which is consistent
with the commonly accepted values (Kerr & Lynden-Bell 1986)

and the Galactocentric rotation velocity of the Sun in about
225−230 km s−1. It is also possible to determine that the subset
of stars that are symmetrically distributed around the centroid
are those approximately satisfying e < 0.3. This is also evident
from the plot of the absolute value of the heliocentric velocity,
where the symmetry region corresponds to |u| ≤ 50 km s−1. This
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Fig. 8. Several properties in terms of the heliocentric velocities for case L2.

interval size of ±50 km s−1 is maintained even while increasing
the value up to approximately |u| = 140 km s−1. Then, as it goes
up to |u| = 230 km s−1 or |u| = 250 km s−1, the interval of the V
velocities becomes narrower, and afterwards it seems to expand
again, as corresponding to two sub-halo components with oppo-
site rotation. Similar features are deduced from the W compo-

nent. In this case, the maximum interval size for a constant value
|u| is reached approximately at |u| = 130 km s−1. For higher val-
ues, the size is maintained. Nevertheless, the planar eccentricity
in terms of the W velocity is the only graph, among those of
Figs. 7 and 8, that seems to isolate the three populations, with
more accuracy between the whole disc and the halo. Therefore, it
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is reasonable to associate the slight overlapping between the thin
and thick disc populations to some uncertainty in the labelling
of the populations. Thus, we take advantage of this feature of
such stellar properties for isolating regions of the graph. These
regions, where one population is predominant, are not limited by
constant values of these variables or by easily defined contours.
We examine this fact in the following section. Since there exists
a one-to-one relationship between the maximum height (or the
vertical eccentricity) and the vertical velocity, which are linked
through the potential (Eq. (C.1)), the graphs of Figs. 7 and 8
(first row and third column), where the previous relationship is
depicted, suggest that the populations can be segregated exclu-
sively in terms of the planar and vertical eccentricities.

5. Planar and vertical eccentricities

5.1. Epicycle approximation

In the attempt to devise better method for labelling the stars and
to reduce the overlapping of the stellar populations of the sam-
ple, we used the epicycle approximation for disc stars (with the
notation used in Cubarsi et al. 2017, hereafter Paper II). We con-
sider the planar and vertical eccentricities as defined in Eqs. (2)
and (3). To visualise the assignation of populations, we plot the
eccentricities of each star (regardless whether they belong to the
disc or not) versus the parameter x. In doing so, we obtain the
graphs of Figs. 5 and 6, which depend on the labelling method.
In these three cases, most of the thin disc stars (ca. 79−80% of
the sample) have a planar eccentricity of 0 ≤ e ≤ 0.35; most of
the thick disc stars (18−19% of the sample) have a planar eccen-
tricity of 0 ≤ e ≤ 0.5; and most of the halo stars (2−4% of the
sample) have a planar eccentricity of e > 0.5. We notice that the
grey line indicating the cumulative percentage of population is
consistent with the ranges of values of x assigned to each popu-
lation. A similar analysis for the absolute velocity, the maximum
distance zmax to the Galactic plane, and the vertical eccentric-
ity e′ is also shown. From those graphs we see that most thin-
disc stars satisfy |u| ≤ 120 km s−1 (consistent with the sampling
parameter |u| = 123 km s−1), zmax ≤ 1 kpc, and e′ ≤ 0.1.

Some of these features are similar to the segregation car-
ried out from the relation between vertical and planar eccentric-
ities of Paper I. For instance, for the method L2, which provides
a reliable separation of disc and halo populations, the respec-
tive planar and perpendicular eccentricities determine two well-
separated regions, which are more evident when plotting the
squared eccentricities. However, thin and thick discs still end up
partially overlapping.

It is widely recognised that the relationship between the
eccentricities and the velocity components of the local circular
motion point C at a given time t for each star can be written as
(see, e.g., Eqs. (42), (43), and (46) of Paper II):

U − Uc = κa cos(κt − ϕ), (4)

V − Vc = −κγ−1
c a sin(κt − ϕ), (5)

W −Wc = νb cos(νt − ψ). (6)

Let us remember that the planar and vertical epicycle frequencies
κ and ν are Galactic constants depending on the second deriva-
tives of the potential (e.g., Binney & Tremaine 2008); a, b, ϕ, ψ
are constants that are specific for each star, obtained from the
initial conditions of position and velocity when integrating the
equations of the star’s motion; and γc = 2Ωc κ

−1 is a dimension-
less constant depending on the angular velocity of C, which can
be assumed constant around the radius rc (as justified in Paper II,

Eq. (41)). Nevertheless, we go on to see that phases ϕ, ψ are not
needed for our calculations.

Bearing in mind Eqs. (2) and (3), we get the following rela-
tionships between positive constants:

a = rc e; b ≡ zmax = rc e′. (7)

As a first approximation, we assume that Uc = U0, Vc = V0
and Wc = W0, that is, the circular motion point coincides with
the local centroid. For disc stellar samples, this assumption is
generally satisfied in the radial and vertical directions. For the
rotation component, a priory, it is satisfied for low eccentricity
stars, that is, for thin-disc stars, otherwise the asymmetric drift
∆ = Vc − V0 should be considered to get a more accurate model.

For a given planar eccentricity, e, we find stars in the sam-
ple with radial velocities of U − U0 ∈ [−a, a] (e.g., Fig. 7, 1st
row, 1st column) and stars with peculiar rotation velocity within
the interval [−κγ−1

c a, κγ−1
c a] around the mean rotation velocity

V0, which depends on the stellar population they belong to, tend-
ing towards −220 km s−1 for the halo, or even lower values for
the counter-rotating halo (e.g., Fig. 7, 1st row, 2nd column). We
notice, however, that as the value V0 decreases, the eccentric-
ity increases, and the number of stars in the sample decreases
dramatically, so that at the corresponding eccentricity level, the
graph becomes nearly empty.

For the vertical eccentricity and the vertical velocity compo-
nent, by taking into account that the height of star referred to the
GP is z = b sin(νt − ψ) and that our stellar sample is approxi-
mately on the GP, we have sin(νt −ψ) ≈ 0 and cos(νt −ψ) ≈ ±1.
Therefore, for a fixed vertical eccentricity, we may find stars with
values W −W0 ≈ −νb or W ≈ νb, but not within these values, as
shown in Figs. 7 and 8 (3rd row, 3rd column). Thus, in the GP,
Eq. (6) becomes:

|W −W0| = νb. (8)

However, the above graphs are not actually V-shaped. It is
for this reason that the foregoing equation, associated with the
epicycle approach, is replaced in Sect. 5.3.2 by a more general
approximation.

5.2. Most likely population from eccentricities

To evaluate which population a star is most likely to belong to
in terms of the planar and vertical eccentricities, we compare
the probability density functions of two consecutive segregated
populations (with regard to the order induced by the sampling
parameter P), namely, thin disc versus thick disc, and disc versus
halo.

Let us consider a star s with velocity u. We write the respec-
tive partial velocity density functions for two populations, S ′
and S ′′, as f ′(u) = π(u|S ′) and f ′′(u) = π(u|S ′′), which are
assumed to be Schwarzschild distributions. The total probabil-
ity density function is obtained from superposition as f (v) =
n′ f ′(u) + n′′ f ′′(u), where n′ = π(s ∈ S ′) and n′′ = π(s ∈ S ′′).
According to the epicycle approximation, the respective partial
velocity ellipsoids are aligned along their symmetry axes. In
terms of the planar and vertical eccentricities, we want to deter-
mine the population component with with the highest probabil-
ity. For instance, we want to see whether:

n′ f ′(u) ≥ n′′ f ′′(u). (9)

Such a condition is derived in Appendix B, where we define:

Σ′ =
σ′1σ

′
2σ
′
3

n′
, Σ′′ =

σ′′1σ
′′
2σ
′′
3

n′′
, Q = 2 ln

Σ′′

Σ′
(10)
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Fig. 9. Planar and vertical eccentricities (left) and squared eccentricities
(right) of the stars labelled according to method L2 (green for thin disc,
blue for thick disc, and red for halo).

and we get Eq. (B.5), which can be expressed as:

a2

A
+

b2

B
≤ 1; A =

Q
κ2

σ′1
2σ′′1

2

σ′′1
2 − σ′1

2 , B =
Q
ν2

σ′3
2σ′′3

2

σ′′3
2 − σ′3

2 · (11)

Alternatively, by taking into account Eq. (7) in terms of the
eccentricities, we can also write:

e2

A0
+

e′2

B0
≤ 1; A0 =

A
r2

0

, B0 =
B
r2

0

· (12)

Since the velocity dispersions of the thin disc, thick disc, and
halo increase progressively, that is, σ′′1

2
− σ′1

2 > 0 and σ′′3
2
−

σ′3
2 > 0, and their population fractions decrease, that is, n′ > n′′,

the values of A, B, A0, B0, and Q are positive. In such a case, the
two foregoing equations define a quarter ellipse. Alternatively, if
we write Eq. (12) as:

e′2 ≤ B0

(
1 −

e2

A0

)
(13)

we get a triangle region for the squared eccentricities e2 and e′2.
We refer to the last representation as an eccentricity diagram.

Figure 9 displays these regions, estimated from the popula-
tion index for the labelling method L2. Despite the fact that the
segregation was carried out from the velocities instead of the
eccentricities, we can observe the tendency of the disc (green
plus blue dots) and the halo (red dots) to separate. On the con-
trary, stars labelled as thin- and thick-disc clearly overlap. This
is due to the labelling inaccuracy.

5.3. Determining the local constants

Several remarks must be made about the samples used to deter-
mine the local kinematic parameters of disc stars. If the 111
stars of the counter-rotating halo are included, that is, stars with
V < −230 km s−1, the fitting for V0 is not reliable. It leads to a
circular motion point with positive heliocentric rotation veloc-
ity – which does not make any sense. Even so, some stars still
introduce a significant uncertainty, such as those with a likely
erroneous heliocentric velocity greater than 500 km s−1. We find
that all these unreliable stars are excluded when considering
only the stars with a planar heliocentric velocity

√
U2 + V2 <

230 km s−1.
The samples selected from the sampling parameter |W |

always contain stars with great eccentricity for which the epicy-
cle approximation is not valid. The reason can be deduced from
the graph of Fig. 7 in the first row, third column, where we see
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Fig. 10. Fitting by using the orbital amplitude a and (right) by using the
planar eccentricity e (left). Fitting of Eq. (14) (continuous line) for disc
stars, excluding the counter-rotating halo.

that even for low values |W | the planar eccentricities can reach
maximum values.

Nevertheless, the above remark supports the explanation of
how the sampling parameter P = |W | exhibited the proper
behaviour to segregate populations: the algorithm worked appro-
priately since there were enough stars in each population com-
ponent to be segregated. Thus, the sampling parameter |W | = 35
provided a segregation of thin disc, on the one hand, and thick
disc plus halo, on the other hand, although their distributions are
slightly truncated, mainly those of the thick disc and the halo.
Hence, the thin disc was rather well identified as population 1,
although a partial thick disc and a partial halo (stars with higher
eccentricities) remained mixed into population 2. For these rea-
sons, the most representative samples of the disc to determine
the local parameters are those selected from the absolute helio-
centric velocity |u|.

5.3.1. Planar fitting

Firstly, we fit the linear relationship given of Eq. (B.2). Bearing
in mind Eq. (7), we write it as:

e2 = k1(U − Uc)2 + k2(V − Vc)2; k1 =
1
κ2r2

c
, k2 =

γ2
c

κ2r2
c
· (14)

We use the estimation obtained by fitting e instead of the orbital
amplitude, a, because the eccentricities of the stars in the sample
are referred to by their circular velocity point, rc, and, in many
cases, this value is far from r0. However, the ratio e = a

rc
always

satisfies the condition e ≤ 1. Therefore, the planar eccentric-
ities (linked to the planar epicycle frequency and to the angu-
lar rotation velocity, which, as commented above, are approx-
imately constant in a wide region around r0) are marked by a
condition that is homogeneous for all the stellar sample, regard-
less of whether rc is similar to or different from r0. Instead, if we
use the orbital amplitude a, the local value of a

r0
is unconstrained

(and much greater than 1 for most halo stars) and has a great
dispersion depending on the star’s value rc. This is illustrated in
Fig. 10 via a comparison of the left and right plots.

The resulting parameters are listed in Table 2. They are very
stable for the thin and thick discs, that is, with either of the sam-
ples containing stars with a population index 0 ≤ x ≤ α for
0.5 ≤ α ≤ 2.5 (method L2), as well as for samples selected as
|u| ≤ 50, |u| ≤ 123. The fitting for disc stars is shown in Fig. 10
(continuous line) for values: Uc = −10 km s−1, Vc = −20 km s−1,
γ2

c = 1.96, κ2r2
c = 9.45 × 104 km2 s−2.

We note that we get a value of γ2
c ≈ 2, which is consis-

tent with the ratio µ11/µ22 ≈ 2 of the optimal sample selected
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Table 2. Fitting parameters of Eq. (14) for several subsamples.

Sample Uc Vc γ2
c κ2r2

c

0 ≤ x ≤ 0.5 –9.98 –20.37 1.92 9.28 × 104

0 ≤ x ≤ 1 –10.02 –20.28 1.94 9.32 × 104

0 ≤ x ≤ 1.5 –10.05 –20.27 1.95 9.36 × 104

0 ≤ x ≤ 2 –10.10 –20.31 1.97 9.46 × 104

0 ≤ x ≤ 2.5 –10.12 –20.33 1.98 9.49 × 104

|u| ≤ 50 –10.01 –20.41 1.88 9.17 × 104

|u| ≤ 123 –9.98 –20.42 1.97 9.45 × 104

|u| ≤ 230 –10.10 –20.56 2.02 9.83 × 104

|u| ≤ 350 –10.53 –15.26 1.43 9.95 × 104

|W | ≤ 35 –10.33 –20.01 2.23 1.10 × 105

|W | ≤ 130 –9.90 –19.75 2.30 1.17 × 105

|W | ≤ 170 –10.22 –15.38 1.96 1.16 × 105

Notes. The population index is for the labelling method L2.

from |u| ≤ 230, containing mostly thin- and thick-disk stars. In
Fig. 10 (right), we show the fitting obtained by excluding the
stars with absolute velocity |u| > 500, the stars of the counter-
rotating halo, V < −230, as well as the halo stars with a planar
velocity

√
U2 + V2 < 230.

By assuming r0 = rc = 8.3 kpc (Reid et al. 2014),
which is the average value of the mean orbital radius of
the stars in the sample, the values obtained from the popu-
lation index yield a planar epicycle frequency κ = 36.9 ±
0.2 km s−1 kpc−1, which is consistent with the commonly
assumed value (Binney & Tremaine 2008). The values for
(Uc,Vc), match the mean velocities (U0,V0) obtained for the cor-
responding disc samples selected by P = |u| as well as P = |W |
(tables in Appendix D) with an error of ±1. Hence, we can con-
firm the assumption that the local centroid is approximately in a
circular orbit.

Furthermore, fitting from planar eccentricities means it is not
necessary to estimate the asymmetric drift. In other words, we
get a value, Vc, that matches the mean velocity, V0; whereas
working with the orbital amplitude, the former value would dif-
fer from the latter depending on the asymmetric drift of the
subsample. The reason for this is the following: the ellipses of
Eq. (14) describe the motion of the stars referred to their circu-
lar velocity point, that is, their mean radius, say rm, which not
always match the local one rc. However, the local constants γc
and κ should not differ very much from point to point. On the
one hand, the latter does not depend on rc. On the other hand,
the former depends on the angular velocity of the circular veloc-
ity Ωc = 1

2κγc, which, although it is not constant, satisfies the
following (Paper II, Eq. (39)):

∂Ωc(r)
∂r

∣∣∣∣∣
rc

=
κγ−1

c − 2Ωc(rc)
rc

=
1 − γ2

c

γ2
c

2Ωc(rc)
rc

· (15)

Therefore, around the Sun,
∣∣∣∣∆Ωc

Ωc

∣∣∣∣ ≈ ∣∣∣∣∆rc
rc

∣∣∣∣. Hence, this variation is
relatively small. Thus, the respective fittings, even for different
circular velocity points, can be gathered as the same fitting.

5.3.2. Vertical fitting

Although the amplitude of the graph e vs. U −U0 varies linearly,
it does not in the graph e′ versus W−W0, as shown in Fig. 7, sec-
ond row, third column. Figure 11 shows that the approximation
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Fig. 11. Relation e′2−W (left) and z2
max−W (right), for thin-disc (green),

thick-disc (blue), and halo (red) stars. The continuous grey line is the
biquadratic fit for the stars satisfying |u| < 50 km s−1.

of linear dependence is valid only for small values of zmax and
e′ for the core of the thin disc. The absolute value of the slope
increases with higher values of zmax. When fitting the vertical
motion, it occurs the opposite to the planar fitting. The vertical
eccentricity of a star has been defined depending on the radius rc
to which is referred its circular orbit. For the local stellar sample,
rc covers a wide range around r0; then, for the same value zmax,
we may get lower or higher vertical eccentricities. However, the
vertical amplitude zmax is quite homogeneous among the stars in
the sample, meaning that it is not sensitive to the mean orbital
radius of the star. This fact that the vertical eccentricity is not
appropriate for the vertical fitting, is illustrated in Fig. 11, where
the graph on the left, plotted in terms of e′, shows a greater dis-
persion of dots (they form something similar to layers), espe-
cially for thick-disc and halo stars, than the graph on the right,
plotted in terms of zmax. In Appendix C, we discuss this situa-
tion in detail. The graph on the right of Fig. 11 also depicts the
biquadratic fit (grey continuous line) for

z2
max = c1(W −Wc)2 + c2(W −Wc)4 (16)

by using the average values obtained from the samples selected
according to population index, corresponding to values c1 =
2.49 × 10−4 kpc2 s2 km−2, c2 = 4.99 × 10−8 kpc2 s4 km−4, Wc =
−6.1 km s−1.

Hence, for these stars, the value ν corresponding to the ratio

1
ν2 = lim

W→Wc

z2
max

(W −Wc)2 = c1 (17)

can be estimated as ν = 63.4±0.1 km s−1 kpc−1, which is consis-
tent with (although slightly lower than) the commonly assumed
value of 70 (Binney & Tremaine 2008). The parameters are quite
stable for different subsamples, as shown in Table 3.

5.4. Eccentricity diagram

5.4.1. Linear approximation

Firstly, we use the linear model of the epicycle approximation
instead of the biquadratic fitting of Eq. (16) to carry out a test of
the eccentricity diagram. By assuming rc = r0, we write Eq. (8)
as:

e′2 = p (W −W0)2; p =
1
ν2r2

0

· (18)

For the perpendicular motion, across the whole stellar sam-
ple, we use the estimation ν = 63.4 km s−1 kpc−1, which, accord-
ing to Table 3 is shared by all the subsamples with 0 ≤ x ≤ 2.5.
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Table 3. Parameters obtained by fitting Eq. (16).

Sample Wc c1 c2 ν

0 ≤ x ≤ 0.5 −5.98 2.49 × 10−4 4.19 × 10−8 63.4
0 ≤ x ≤ 1 −6.04 2.48 × 10−4 4.84 × 10−8 63.5
0 ≤ x ≤ 1.5 −6.12 2.48 × 10−4 5.02 × 10−8 63.4
0 ≤ x ≤ 2 −6.21 2.50 × 10−4 5.11 × 10−8 63.3
0 ≤ x ≤ 2.5 −6.17 2.49 × 10−4 4.99 × 10−8 63.3
|u| ≤ 50 −6.05 2.36 × 10−4 5.98 × 10−8 65.1
|u| ≤ 123 −5.98 2.59 × 10−4 4.39 × 10−8 62.2
|u| ≤ 230 −6.27 2.51 × 10−4 5.48 × 10−8 63.1

Notes. The population index is for the labelling method L2.

By assuming r0 = 8.3 kpc, we get ν2r2
0 = 2.77 × 105 km2 s−2.

For the planar motion, we use the estimations γ2
c = 1.96 and

κ2r2
0 = 9.45× 104 km2 s−2, also approximately shared, according

to Table 2, by all the subsamples with 0 ≤ x ≤ 2.5.
By taking into account the velocity moments and population

fractions for the subsamples listed in Table 1 we determine the
constants A0 and B0 for the limits of the triangular regions Ri
listed in Table 4.

5.4.2. A more precise approximation

We now modify the model by taking into account the biquadratic
approximation of Eq. (16), written as:

e′2 = p (W −W0)2 + q (W −W0)4, (19)

where p = c1
r2

0
and q = c2

r2
0
. Then, the peculiar vertical velocity in

terms of the vertical eccentricity may be written as:

(W −W0)2 =

√
p2 + 4qe′2 − p

2q
=

e′2

p
2

1 +
√

1 + 4αe′2
; α = qp−2.

(20)

If q = 0 we get the linear relationship of Eq. (18). We note that
the value

α =
q
p2 =

c2r2
0

c2
1

obtained in the current fitting yields a value α ≈ 55. On the
other hand, e′2 can reach values close to 0.1. Therefore 4αe′2 is
not always lesser than 1. Hence, Taylor expansions of the square
root in Eq. (20) should be avoided. Thus, Eq. (12) becomes:

e2

A0
+

e′2

B0

2

1 +
√

1 + 4αe′2
≤ 1. (21)

The above equation is an area quite similar to the quarter ellipse
of Eq. (12), but with the vertical semiaxis modified, as it is shown
in Fig. 12, green and blue curves on the left. For e = 0, the
maximum value ζ for the vertical eccentricity satisfies:

ζ2

B0

2

1 +
√

1 + 4αζ2
= 1 =⇒ ζ =

√
B0 + αB2

0. (22)

Hence, Eq. (21) can be approximated as

e2

A0
+

e′2

B1
≤ 1; B1 = B0(1 + αB0). (23)

Equation (13) becomes modified and approximated in the same
way as

e′2 ≤ B1

(
1 −

e2

A0

)
· (24)

As displayed in Fig. 12, since the thin-disc stars (within the
region limited by R2) have low eccentricities, the approximation
of the biquadratic fit (green curve) by a modified ellipse (black
dashed curve) does not introduces a significant error. For the
whole disc (within the region limited by R4, blue curve), the error
is greater, due to the thick-disc stars with higher eccentricities,
although qualitatively, the approximated ellipse is still meaning-
ful and easier to describe. In any case, both approximations are
far better than the linear approach (red dotted lines). Thus, the
triangular regions can be improved according to the values B1
listed in Table 4. The resulting eccentricity diagram, is shown in
Fig. 13.

The stars can now be labelled according to the regions of
the above diagram. The number of stars in a region, Ri, that do
not belong to the regions, R j, for j < i is denoted as Ni, and
the corresponding population or subpopulation component as Pi.
Thus,

N1 = 63219, N2 = 3162, N3 = 5484, N4 = 825, N5 = 1649.

The means and second central moments of these components are
listed in Table 5.

6. Discussion

There are two ways which allow us to check whether the regions
selected from eccentricities instead of the population index
depict the expected properties and, in particular, whether they
isolate populations. One is the plot e in terms of W, suggested
in the previous section. We see in Fig. 14 (left) that the popula-
tions remain well isolated, without overlapping areas. The other
is shown in Fig. 14 (right), where the stars are labelled accord-
ing to the eccentricity diagram instead of the population index
from the methods L1 or L2. For each star we plot the quan-
tity p(W − W0)2 + q(W − W0)4, expressed in Eq. (19), versus
c1(U −U0)2 + c2(V −V0)2, from Eq. (14), by using the local con-
stants obtained in the corresponding fittings, i.e., p, q, c1, and c2.
The first three constants are equivalent to κ, γc and ν, while the
latter measures the deviation from the linear model in the vertical
component of the velocity. Therefore, with these local constants,
the planar eccentricity and the vertical eccentricity can be used to
determine the stars’ population. The loss of linearity in the ver-
tical component of the epicycle model justifies the slightly con-
vex shape of the contours separating the corresponding regions
in the graph, which was predicted in Fig. 12 (right). Neverthe-
less, the approximate values for the maximum eccentricities that
determine the respective regions can be estimated with enough
accuracy from the corrected elliptical model given by Eq. (23).

The mean velocities and the second central moments of
the subsamples selected by star eccentricities of Table 5 can
be now compared to the values of Table 1 obtained from the
MEMPHIS algorithm to identify the populations. The values for
P1 + P2 are consistent with those of the thin disc t (population 1)
obtained from the sampling parameters |u| = 123, |u| = 230, and
|W | = 35 km s−1, although, in general, the method of eccentrici-
ties provides a slightly higher value for the moment µ020, which
is compensated for by using a lower differential rotation veloc-
ity. Therefore, we can associate the triangular region up to R2
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Table 4. Fitting parameters for the elliptical model, Eq. (13), and for the improved model, Eq. (24), with their corresponding bounds.

Region Sample A0 emax B0 e′max zmax B1 e′max zmax

R1 |u| ≤ 123 7.88 × 10−2 0.28 5.62 × 10−3 0.07 0.6 7.37 × 10−3 0.09 0.7
R2 |u| ≤ 230 1.00 × 10−1 0.32 6.78 × 10−3 0.08 0.7 9.33 × 10−3 0.10 0.8
R3 |u| ≤ 350 1.67 × 10−1 0.41 1.46 × 10−2 0.12 1.00 2.65 × 10−2 0.16 1.3
R4 |W | ≤ 170 1.91 × 10−1 0.44 2.06 × 10−2 0.14 1.2 4.40 × 10−2 0.21 1.7

Fig. 12. Quarter ellipses (left) define the regions up to R2 (green line)
and up to R4 (blue line) according to the biquadratic approximation:
Eq. (21). The red dotted lines are for the linear model, Eq. (18). The
black dashed lines are approximation of the biquadratic model by an
ellipse, Eq. (23). Right: corresponding regions in terms of the squared
eccentricities.
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Fig. 13. Triangular regions according to Eq. (12) (left). The comple-
mentary area is the halo (red). Right: same plot for the actual stars in
the sample.

with the thin disc population8. We note that on the one hand, the
subsample P1 has a moment µ002 still too low compared with the
respective populations 1 of the mentioned samples to be consid-
ered the full thin disc. On the other hand, for the subsample P2,
this moment is a bit short compared with the thick disc samples
obtained as population 2 from the sampling parameters |u| = 230
and |u| = 350. Therefore, we should consider the stars of the
subsample P2 as a tail of the thin disc that have a behaviour sim-
ilar to the stars of a tail of the thick disc and, therefore, not an
independent subpopulation.

For the same reasons, the subsamples P3 and P4 can
be considered thick-disc samples. The heliocentric rotation
velocity of about −57 km s−1 for the subsample P4 is consis-
tent with that of the MWTD stars, which may vary between
−120 and −50 km s−1, depending on the selected samples (e.g.,
Carollo et al. 2010; Ruchti et al. 2011; Kordopatis et al. 2013;

8 As a general rule, the more reliable moment to depend on is µ020,
since µ200 has greater sampling variance and µ020 is very sensible to the
rotation velocity obtained from the mixture model.

−150 −100 −50 0 50 100 150

W

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

e

0.00 0.05 0.10 0.15 0.20

c�*(U-U0)^2+c�*(V-V0)^2

0.00

0.01

0.02

0.03

0.04

0.05

p
*
(W

-W
0
)^

2
+
q
*
(W

-W
0
)^

4

Fig. 14. Plot e versus W that isolates populations (left). Plot p(W −
W0)2 + q(W −W0)4 versus c1(U −U0)2 + c2(V − V0)2 that isolates pop-
ulations and reproduces the eccentricity diagram (right).

Beers et al. 2014). Hence, subsample P3 can be associated with
the canonical subcomponent and P4 with the MWTD. Neverthe-
less, it is worth noticing the difference in radial motion of about
9 km s−1 between these two subpopulations.

The values for P1 + P2 + P3 + P4 are similar to the total
moments of the sample selected from |u| ≤ 123, which con-
tained the thin and thick discs, and are similar to the population
1 obtained from |W | ≤ 170. Those values are slightly lower than
the total moments of the samples selected from |u| ≤ 230 and
|u| ≤ 350 (which may indicate that these ones are contaminated
with halo stars). Furthermore, the values corresponding to the
samples P1 + P2 + P3 (not shown in the table) match the ones of
population 1 obtained for the sample |u| ≤ 350, a finding that is
consistent with the interpretation that the latter sample contains a
mixture of thin-disc and canonical thick-disc stars. The samples
limited by |W | = 130 and |u| = 350 yield a similar population 1,
composed of thin-disc and canonical thick-disc stars.

With regard to P5, the moments are similar to those of the
halo obtained from the sampling parameter |W | = 170 (in partic-
ular µ002). However, the rotation heliocentric velocity is signifi-
cantly lower in the latter sample, while that of P5 is comparable
to the one of population 2 from the samples selected as |u| ≤ 350
and |W | ≤ 35, which indicates that P5 still contains some MWTD
stars mixed with the MRHD stars. It is not possible to be more
precise with regard to this point, as among the few stars with
|u| > 230, we find MWTD stars mixed with MRHD stars, with a
few chemical halo stars (some of them belonging to the counter-
rotating halo) and with stars with likely errors in their estima-
tions. Hence, the parameters of the kinematical halo of our disc
sample are only a wholesale estimation.

The mean metallicities [Fe/H] of these subsamples decrease
from P1 to P5. The kinematical halo component P5 can be
associated with the MRHD, in agreement with Di Matteo et al.
(2019). With regard to the chemical halo stars having
[Fe/H]<−1, the current sample only contains 565 stars satisfy-
ing such a condition. This set of stars does not conform an own
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Table 5. Mean velocities, central moments, and population fractions (relative to the whole sample) for the populations and subpopulations obtained
from the eccentricity diagram.

Pop. U0 V0 W0 µ200 µ020 µ002 µ110 µ101 µ011

P1 85% –9.23 –17.04 –7.05 829.09 356.93 179.35 88.23 6.01 2.25
± 0.11 0.08 0.05 4.45 2.01 1.02 2.12 1.50 1.02

P2 4% –10.00 –26.99 –10.05 3080.59 1077.88 653.61 281.89 –48.77 –16.75
± 0.11 0.08 0.05 4.45 2.01 1.02 2.12 1.50 12.78

t ∼ P1 + P2 89% –9.27 –17.52 –7.19 936.36 395.76 202.35 97.80 3.51 2.70
± 0.99 0.58 –10.05 45.66 19.89 9.99 26.46 19.34 12.78

P3 7.5% –13.21 –37.61 –11.18 3621.42 1281.57 1205.20 299.61 –22.38 35.50
± 0.81 0.48 0.47 47.12 27.18 13.47 23.71 22.24 15.10

P4 1% –21.91 –57.16 –10.62 4190.59 1237.61 2211.36 148.14 –39.25 –17.32
± 2.25 1.22 1.64 159.00 51.78 54.79 71.99 89.24 56.87

T ∼ P3 + P4 8.5% –14.35 –40.16 –11.10 3704.46 1319.28 1336.81 299.14 –25.14 27.35
± 0.77 0.46 0.46 45.95 24.79 14.38 22.97 22.57 15.11

D ∼ P1 + P2 + P3 + P4 98% –9.71 –19.48 –7.53 1178.66 516.58 302.03 124.40 2.59 11.86
± 0.13 0.08 0.06 6.59 3.57 1.99 3.12 2.50 1.68

H ∼ P5 2% –18.55 –103.75 –14.86 10125.91 5865.47 4190.30 –420.76 –205.00 –325.77
± 2.48 1.89 1.59 418.90 525.05 144.63 311.24 171.90 144.63

(Gaussian) population, but together with the MRHD stars, they
become one single component.

7. Conclusions

The combination of methods explained in this work has allowed
us to characterise thin- and thick-disc stars in terms of their pla-
nar and vertical eccentricities with the help of the eccentricity
diagram. In a first step, by using a local disc sample from the
Gaia DR2 catalogue composed of 74 339 stars within a solar
radius of 100 pc, we applied the MEMPHIS segregation algo-
rithm to obtain the central velocity moments of its stellar popu-
lation components (by associating each kinematical population
with one Schwarzschild velocity distribution).

In Appendix A, we prove that the determination of the
GP is quite accurate, with an error of ±20 pc, which might
produce a maximum error of about ±1.3 km s−1 in the esti-
mation of the vertical velocities. According to Table 1, we
obtained the following velocity dispersions: for the thin disc
(σ1, σ2, σ3) = (30, 14, 14) km s−1 (77% of the total sample),
for the thick disc (σ1, σ2, σ3) = (53, 34, 31) km s−1 (21% of the
total sample). Together, they form the disc, with (σ1, σ2, σ3) =
(32, 19, 18) km s−1 (98% of the total sample), while the remain-
ing halo stars have (σ1, σ2, σ3) = (110, 56, 57) km s−1 (2% of
the total sample). Within the thick disc, two subcomponents
are distinguished: one of them associated with the MWTD
(Carollo et al. 2010, 2019) and the latter with non-Gaussian
distribution.

As in our previous analyses from other catalogues
(Cubarsi et al. 2010; Alcobé & Cubarsi 2005; Cubarsi & Alcobé
2004) we get a small but significant vertex deviation of the disc
populations and subpopulations, although now they are accom-
panied by more accurate estimates. The differential mean radial
motion between populations is very small, but non-null, for the
thin disc and the canonical thick disc, 5±2 km s−1, and it is more
significant, namely, 9 ± 3 km s−1, between the canonical thick
disc and the MWTD stars. The few stars of the kinematical halo
composing our sample do not show a significant tilt nor vertex
deviation of the velocity ellipsoid. However, they also maintain a
difference of radial mean velocity of about 9 km s−1 with regard
to the disc.

The dispersions for the thin disc are similar to those
obtained by using the same segregation algorithm published
in Alcobé & Cubarsi (2005) for a Hipparcos sample and in
Cubarsi et al. (2010) for a GCS sample. However, they differ
from those obtained by Anguiano et al. (2018) by using the Gaia
DR1 catalogue with chemical labelling. As commented at the
beginning, the concepts of stellar population from a chemical
or a kinematical approach do not match, since a chemical pop-
ulation is not constrained by the shape of the velocity distri-
bution, which is a condition for our model. For the remaining
populations, the actual sample provides slightly lower disper-
sions, although the sampling parameters for the optimal segre-
gations are similar. We attribute it to the different composition
of the sample.

In terms of the orbital eccentricities, the thin disc and the
whole disc are respectively associated with the following trian-
gular regions:

A: e′2 ≤ 9.33 × 10−3
(
1 −

e2

1.00 × 10−1

)
; 0 ≤ e ≤ 0.32; 0 ≤ e′ ≤ 0.10 (zmax = 0.8 kpc),

B: e′2 ≤ 4.40 × 10−2
(
1 −

e2

1.91 × 10−1

)
; 0 ≤ e ≤ 0.44; 0 ≤ e′ ≤ 0.21 (zmax = 1.7 kpc).

If the couple (e, e′) ∈ A, the star can be considered to belong to
the thin disc; if (e, e′) ∈ B\A, the star can be considered to belong
to the thick disc; otherwise, it is a star of the kinematical halo.
These regions have been defined in a more exact way by taking
into account Eq. (16), although, in such a case, the eccentricity
diagram describes the above regions in a less simple way.

There are two main advantages of labelling the stars accord-
ing to the method of eccentricities instead of the inference meth-
ods L1 and L2. One is that there are no overlapping areas. Of
course, these regions depend on the kinematical parameters used
to discriminate the populations. A change in these parameters
will not provide a dramatic change, but it can determine a region
with an uncertain classification. The other advantage is that at
the border between these regions, there is no a concentration of
stars, as it happened with the methods L1 and L2. Let us remem-
ber that for the method L2, the interval 1.9 < x ≤ 2 contained
a half-thick disc. Instead, once it reached the average eccentrici-
ties (and maximum height) of the thin-disc distribution, the star
density decreases rapidly as eccentricities decrease.

In a future work, we would like to justify and improve the
approximation given by Eq. (16) for the vertical velocity curve
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expressed in Eq. (C.1). This can provide us with useful informa-
tion about the local shape of the potential function, allowing us
to replace this approximate formula by a more meaningful one.

Similarly, it would be interesting to deepen the study of the
age-velocity dispersion relation through the stars’ orbital eccen-
tricities. The power law σi ∝ tα, which can be fitted with
αi ' 0.3 for the radial and rotation velocities, i = 1, 2 (e.g.,
Binney & Tremaine 2008), by assuming that the average epicy-
cle energy of a disc’s stellar population is ER ∝ σ2

1 led to a
consideration of the sampling parameter P = |u| as highly corre-
lated with the age t in Alcobé & Cubarsi (2005). This was related
to the increasing radial velocity dispersion of disc stellar sam-
ples in terms of the sampling parameter P and the corresponding
saturations of σ1 indicating that the thin disc or the thick disc
populations were totally included in the sample. Now, the linear
behaviour given by Eq. (14), when taking average values, leads
to the relationship 〈e2〉 = k1σ

2
1 + k2σ

2
2. Therefore, the average

squared planar eccenricity of a disc stellar sample could be used
as an estimate 〈e2〉 ∝ t2α of the average age of its stars.
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A102
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Appendix A: Considering whether the sample is
representative of the GP

The purpose of this section is to analyse how the velocity
moments depend on the determination of the GP and how these
moments might indicate that we are dealing with a GP represen-
tative stellar sample. The second central moment most affected
by a bad determination of the GP is µ002 = 〈(W−W0)2〉 (brackets
denote mean values). The key question is whether its actual value
accounts for the true value on the GP or whether it becomes
slightly modified since most of the stars in the stellar sample
could be placed a bit over the GP, say 0.1 kpc. A necessary cor-
rection of such a value can be interpreted in two ways:

(a) It can be assumed that we actually work with a sample
taken basically from the GP but the covariances are computed
with regard to an erroneous mean. The centroid velocity, W0,
may be inexact due to a biased kinematic behaviour of some
stars. For instance, the sample limited by |W | < 35 (heliocentric
velocities) yields a value W0 = −5.7, whilst the sample satisfying
|W | < 170 produces a value of W0 = −7.7 km s−1. In such a
case, if the vertical centroid velocity at the GP is W1 instead of
the measured value W0, then, the corresponding second moment
should be:

〈(W −W1)2〉 = 〈[(W −W0) + (W0 −W1)]2〉

= 〈(W −W0)2〉 − (W0 −W1)2.

Thus, we should correct the moment with regard to an amount
corresponding to the difference (∆W)2 = (W0 − W1)2. Accord-
ing to the epicycle approximation, such a difference, in z = 0,
is related to a difference in the height over the GP ∆z, such
that (∆W)2 ≈ ν2(∆z)2. If |∆z| . 0.1, then |∆W | . 7. In this
case, the correction of the moment may be estimated in less than
50 km2 s−2.

(b) Alternatively, we may assume that the sample is slightly
displaced from the GP. In such a case we will use the depen-
dency of the moments in terms of the position (r, z) provided
by the Chandrasekhar model, where the velocity distribution is,
by hypothesis, quadratic in the peculiar velocities (in our case,
trivariate Gaussian). Such relationships and their gradients are
given in Cubarsi (2014a). We only need the following ones:

µ002 =
k1 + k4z2

k1k3 + k1k4r2 + k3k4z2 ,

∂µ002

∂z2 =
k1k2

4r2

(k1k3 + k1k4r2 + k3k4z2)2 ,

µ101 =
k4rz

k1k3 + k1k4r2 + k3k4z2 ,

where the k’s are positive constants. Then, by setting the notation
of µGP

002 as the value at the GP, corresponding to z = 0, it satisfies:

µ002 ≤
k1

k1k3 + k1k4r2 +
k4z2

k1k3 + k1k4r2 + k3k4z2 = µGP
002 +

∣∣∣∣∣ zr µ101

∣∣∣∣∣ .
Therefore, we have9

∂µ002

∂z2

∣∣∣∣∣
z=0

> 0, µ002 − µ
GP
002 ≤

∣∣∣∣∣ zr µ101

∣∣∣∣∣ .
9 This approach is valid if we assume an approximate Gaussian veloc-
ity distribution for the whole disc. If we assume that the disc is the
mixture of two Gaussian distributions, this behaviour applies to each
Gaussian component, where the differential mean vertical velocity is
very small and proportional to z. Therefore, it is also a valid approxima-
tion for each population.

The factor z
r has an order of magnitude of −2 and the moment

µ101 clearly vanishes with regard to its sampling variance for all
the working samples as well as for their segregated populations.
In any case, for the working samples, we have an order of magni-
tude of 1. Therefore, the variation of the moment µ002 is at most
of few units, similar to its sampling variance. Then, we should
abandon the interpretation of case (b).

We have other resources to test whether we are working
with a GP sample, assuming that the GP is a symmetry plane
for the velocity distribution. If we take a kinematical repre-
sentative sample, such as the one limited by |u| < 350 (which
excludes some anomalous stars and contains the entire disc), we
can check the symmetry about z = 0 from the moments with
odd powers in the vertical peculiar velocity. As seen above, the
moment µ101 is clearly null. The moment µ011 is slightly differ-
ent from zero, although very low, which is still possible in an
axisymmetric model (Cubarsi 1990) where the mean velocities
would not be even functions of z. Therefore, this may suggest a
small (local) break in the assumption of a symmetry plane. The
third moments µ201 and µ021 vanish (within 2σ error) and µ003
is very small (−738 ± 312). These moments, at z = 0, should
vanish.

According to case (a), let us estimate the possible deviation
from the GP, by assuming that W1 (different from W0) should
be the exact mean vertical velocity in the GP. We assume that
U0 and V0 are the mean radial and rotation velocities in the GP,
which are provided without a significant error by our sample. We
also assume that the planar and vertical velocity distributions are
independent (which is quite true, since the only significant non-
vanishing non-diagonal moment is µ110, responsible for a small
vertex deviation). Thus,

�
�µGP

201 = 〈(U − U0)2(W −W1)〉

= 〈(U − U0)2[(W −W0) + (W0 −W1)]〉 = µ201 + µ200∆W.

Hence,

∆W = −
µ201

µ200
· (A.1)

Similarly,

�
�µGP

021 = 〈(V − V0)2(W −W1)〉

= 〈(V − V0)2[(W −W0) + (W0 −W1)]〉 = µ021 + µ020∆W

Hence,

∆W = −
µ021

µ020
· (A.2)

Finally,

�
�µGP

003 = 〈(W −W1)3〉 = 〈[(W −W0) + (W0 −W1)]3〉

= µ003 + 3µ002∆W − 2(∆W)3.

This is a depressed cubic equation in ∆W, (∆W)3 − 3
2µ002∆W −

1
2µ003 = 0, with roots

∆W =
µ003

µ002
, ∆W = −

µ003

2µ002
· (A.3)

Since, for the working samples, we have µ021 . 0, µ201 . 0, and
µ003 . 0, from the above equations we must conclude,

∆W ≈ −
µ201

µ200
≈ −

µ021

µ020
≈ −

µ003

2µ002
· (A.4)
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These quotients provide us with values of 0.6±0.3, 1.3±0.8, 3.9±
1.6, respectively. By assuming a possible error within 2σ, the
three quotients would be satisfied altogether if ∆W is between
0.6 and 1.3 km s−1.

In summary, a correction of µ002 by a quantity (∆W)2 of a one
or two units can be carried out, but this is not necessary since it
is similar to its sampling variance. We can safely affirm that we
are working with a sample basically drawn from the GP.

An error of 100 pc in the GP, associated with a value ∆W =
7, would produce moments µ201 = −∆Wµ200 ≈ 9000, µ021 =
−∆Wµ020 ≈ 4900, and µ003 = −2∆Wµ002 ≈ 5300, which are
between 5 and 10 times greater than the actual values. Therefore,
the error in the determination of the GP, by taking the maximum
estimate ∆W = 1.3, should not be greater than 20 pc.

A non-null value for the moment µ011 would indicate that,
locally, there is a slight asymmetry of the velocity distribution
with respect to the GP. However, when the segregation disc-halo
is carried out, such a moment is nearly null for the disc (7.5 ± 6)
and also for the MRHD plus the inner halo (−2 ± 98). The total
moment (−19.6±3) is basically due to the differential velocities,

µ011 = n′n′′(V ′0 − V ′′0 )(W ′0 −W ′′0 ),

since the difference W ′0 −W ′′0 is not null. The mean value for the
disc is W ′0 ≈ −7.5, which is a value similar to that of the local
centroid. Nevertheless, the mean value for the halo is W ′′0 ≈ −13
if the segregation is carried out from the sample limited by
|W | = 170. This would suggest that the vertical velocity dis-
tribution of the halo stars contained in the working sample is not
symmetric about the GP. Such a correction in about 4−6 km s−1,
should be only applied to the halo, and would be associated with
an error ∆z of about 60−85 pc. However, the halo is scarcely rep-
resentative in our sample and is the less reliable component.

Appendix B: Condition for most likely population

Equation (9) can be explicitly written as:
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(B.1)

According to the epicycle approximation via Eqs. (4), (5),
and (8), we have:

(U − U0)2 + γ2
c (V − V0)2 = κ2a2, (B.2)

(W −W0)2 = ν2b2, (B.3)

and it approximately satisfies (Paper II, Eq. (61)):

σ′1
2

= γ2
cσ
′
2

2, σ′′1
2

= γ2
cσ
′′
2

2,

so that by taking logarithms and simplifying the equation, we
write Eq. (B.1) as

ln n′ − ln(σ′1σ
′
2σ
′
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2σ′′3
2 · (B.4)

By using the parameters defined in Eq. (10), and rearranging
terms, we get the following condition:

Q ≥ κ2a2

 1
σ′1

2 −
1
σ′′1

2

 + ν2b2

 1
σ′3

2 −
1
σ′′3

2

 , (B.5)

which involves the star amplitudes a and b instead of its
velocities.

Appendix C: Errors in fitting the vertical
eccentricities
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Fig. C.1. Dots plotted in terms of distances |rc−r0| with the maximum
height referred to rc (left) and to r0 (right).

There is a behaviour related to the vertical eccentricities that
affects the stars but not always in the same way, as shown Fig. 11
(left), where the stars indexed as halo (red) define an inner and
more convex curve to that of the disc stars.

Locally, the value of the vertical epicycle frequency ν can be
assumed as constant. However, the solar sample contains many
stars with a mean orbital radius rc between 4 and 6 kpc, so that
they come from a far inner region of the Galaxy (there are also
many stars with rc > r0, but they are less problematic). Even
without considering that these stars might be oscillating accord-
ing to a slightly different vertical epicycle frequency associated
with the circular velocity point far from r0, when their orbits
reach the solar position at the local circular velocity point r0, we
come to assume the values e, e′, and zmax that have been obtained
from an approximated potential at rc instead of r0. With these
values it is possible to have some deviations from the model.

A more detailed analysis, displayed in Fig. C.1 (left), shows
that the stars escaping the main trend are those with rc more
distant to the solar radius r0. This is more important for the stars
with rc < r0 than for rc > r0. If the maximum height is referred to
r0 (Fig. C.1, right), the dispersion is lower. There are also some
non-reliable stars that can be removed to lessen the dispersion,
such as those with zmax > 15, |u| > 500, |W | > 170, and minimum
distance to the GC rp < 0.1.

When passing through the GP, all the stars have attained
maximum vertical speed. There is one relationship between zmax
and W at z = 0, given by the potential U at r0 once integrated
the third equation of motion, z̈ = − ∂U

∂z . We refer to it as the max-
imum velocity curve:

1
2

W2(r0, 0) = U(r0, zmax) −U(r0, 0). (C.1)

Thus, such a great dispersion shown in the previous graphs
(except small dispersions allowed by some measurement errors)
makes no sense. Since the values of W are solely based on obser-
vational data, we cannot change them. We should conclude that
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Fig. C.2. Relationship between errors in z2, b2, and w2 from Eq. (C.4).

the estimations of zmax and, especially, e′ have some deviations
from the values they should attain at the local radius, because
they are estimated at values rc, different from r0.

We analyse the errors in fitting:

e′2 = a1w2 + a2w4, w = W −W0. (C.2)

Without taking into account any specific model for the poten-
tial, simply by using the fit, in a first approximation, by differ-
entiating the above expression, we get dw2

de′2 = 1
a1+2a2w2 . Let us

take b = zmax. Since the squared vertical eccentricity for a star
with a circular orbit with radius r is e′2 = b2

r2 , then de′2
dr2 = − e′2

r2 ,
so that, dw2

dr2 = dw2

de′2
de′2
dr2 = −w2

r2
a1+a2w2

a1+2a2w2 . Since the velocities must
always be lower than the velocity measured at the GP, by defin-
ing ϕ(w2) = a1+a2w2

a1+2a2w2 , we may estimate:

∆w2 = w2ϕ(w2)
∆r2

r2 = 2w2ϕ(w2)
∆r
r
·

Thus, we should translate the curve for the vertical eccentricities
with regard to the solar radius r0 in a quantity:

∆e′2 = 2(a1 + 2a2w2)w2ϕ(w2)
∆r
r0
· (C.3)

We note that the value ϕ(w2) varies from 1 to 1
2 as w varies from

0 to∞.
There are still three possible errors to consider: (a) the error

due to a bad estimation of the Galactic plane (GP) z = 0; (b) the
error in determining the maximum height zmax; and (c) the error
due to a bad determination of the W velocity. To study these
errors we assume a linear propagation of the error according to
the epicycle approximation. Then, the variables z and w satisfy
(e.g., Paper II, Eqs. (21) and (43)),

z2 +
w2

ν2 = b2. (C.4)

The error due to a bad determination of the GP is obtained by
differentiating Eq. (C.4), assuming a b constant. Thus, the error
propagation corresponds to:

∆w2 = ν2∆z2.
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Fig. C.3. Maximum vertical velocity at r0 (black), the errors for the
determination of the GP and the maximum height (red), an estimation of
20% relative error in the velocity (blue), an estimation of 50% relative
variation around the radius r0 (orange), and the sum of all the errors
(grey).

Since the local sample contains stars within a radius of 0.1
pc, we may assume a maximum error of ∆z2 = 0.22. That is, by
assuming ν = 70, ∆w2 ≈ 200.

On the other hand, the same variation in w2 at z = 0 (see
Fig. C.2) can be interpreted as an error in z2 for constant b2, or
as an error in b2 under a correct determination of the GP. Hence,
we assume that, at worst, an erroneous determination of ∆b2 pro-
duces an error of ∆w2 that is similar to the error due to the deter-
mination of the GP.

Now, we determine how the error due to a bad determination
of the velocities, ∆w2, is translated to e′2. Let us assume a relative
error ∆w

w = β, hence ∆w2

w2 = 2β.
Thus, to Eq. (C.3) we must add these three possible errors,

as follows,

∆e′2 = (a1 + 2a2w2)∆w2 = 2(a1 + 2a2w2)
[
∆z2 + w2β + w2ϕ(w2)

∆r
r0

]
·

(C.5)

The impact of these errors can be seen in Fig. C.3. The red line
accounts for the error due to the term ∆z2. Between the black
and the red lines, we can see most of the thin-disc stars and a
large share of the thick-disc stars. The blue line corresponds to
a value of β = 0.2. Although it seems excessive to assume an
error of 20% in the determination of the W velocities, there are
still a lot of disc stars excluded from this explanation. Clearly,
the prevailing error is the one associated with the different rc
for each star, corresponding to the orange line. The addition of
all the errors is represented in the grey line, which explains the
dispersion of the dots. For this reason, we fit the curve Eq. (16)
instead of Eq. (C.2).
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Appendix D: Tables of moments

Table D.1. Moments for 72 859 stars with |u| ≤ 123 km s−1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.13 –9.29 0.13
010 0.00 0.08 –19.58 0.08
001 0.00 0.07 –7.58 0.07
ORDER2
200 1150.09 6.44 1236.41 6.68
110 109.62 3.02 291.57 4.40
020 524.70 3.30 908.15 5.55
101 1.81 2.60 72.25 2.84
011 11.10 1.88 159.56 2.59
002 326.86 2.43 384.34 2.67
ORDER3
300 4313.60 373.19 –28545.92 630.27
210 –5019.28 151.04 –31267.81 272.15
120 –1394.12 113.50 –14125.34 257.82
030 –8251.89 165.00 –46584.41 462.46
201 –349.41 112.94 –9757.20 182.42
111 –144.40 69.35 –2493.51 107.37
021 28.89 59.23 –7291.06 167.33
102 168.80 94.29 –3429.65 121.25
012 –1879.38 73.99 –9573.78 117.23
003 –475.50 127.43 –8345.75 181.37
ORDER4
400 4340607.85 50618.06 4783455.44 54202.03
310 231202.88 13664.36 958486.69 22988.86
220 677033.79 7418.46 1498700.09 15874.45
130 141992.23 7831.50 782829.06 18618.44
040 1071053.68 15943.06 3071623.67 41596.00
301 5926.13 13337.94 232561.98 14713.62
211 11001.91 4154.13 259208.25 6847.60
121 692.49 3262.13 117905.69 6486.82
031 11626.51 5955.11 375885.66 13145.60
202 492546.46 6665.33 594507.38 7515.65
112 20281.19 3010.60 114956.99 4714.22
022 257111.49 4207.99 514404.86 7818.64
103 –4266.41 6194.06 69749.10 7136.09
013 3637.49 5086.17 211724.34 7498.30
004 536037.75 11942.60 666494.29 13877.93

Table D.2. Moments for 74 153 stars with |u| ≤ 230 km s−1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.13 –9.91 0.13
010 –0.00 0.09 –20.84 0.09
001 0.00 0.07 –7.68 0.07
ORDER2
200 1291.92 8.24 1390.06 8.63
110 133.03 4.37 339.46 5.97
020 637.77 5.53 1071.93 8.20
101 2.30 3.36 78.36 3.62
011 15.33 2.87 175.31 3.72
002 369.71 3.14 428.66 3.36
ORDER3
300 348.35 743.87 –39021.21 1051.88
210 –12267.93 358.28 –43867.83 541.67
120 –1958.15 349.08 –18121.45 554.29
030 –19244.37 616.88 –68157.28 1076.09
201 –525.79 261.36 –11244.09 333.21
111 –254.25 172.93 –3060.26 232.66
021 –271.53 252.53 –9140.37 397.83
102 –787.09 181.07 –5069.15 212.70
012 –5009.55 193.87 –14176.74 259.22
003 –704.42 226.12 –9672.91 287.02
ORDER4
400 6699282.63 133209.14 7455916.77 140241.56
310 424487.12 48880.65 1641338.74 68506.54
220 1431031.96 37416.90 2757020.81 56261.63
130 161980.78 46714.29 1132886.48 72957.77
040 2677540.74 102770.44 6131332.80 171995.16
301 2820.47 40652.48 318725.10 42648.01
211 23512.11 17732.25 378771.18 24369.66
121 1980.93 18061.16 161725.93 26136.59
031 16023.51 37424.00 576263.73 56764.04
202 835143.25 20777.21 977743.40 21948.40
112 83738.75 13035.29 253069.73 17359.82
022 611790.59 22965.17 1058235.35 32412.39
103 –1583.93 16466.09 112781.85 17952.25
013 4317.78 19882.20 323966.31 25220.19
004 866651.21 26255.10 1022528.47 28831.43

Table D.3. Moments for 74 272 stars with |u| ≤ 350 km s−1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.13 –9.90 0.13
010 –0.00 0.10 –21.15 0.10
001 –0.00 0.07 –7.69 0.07
ORDER2
200 1327.70 9.45 1425.68 9.78
110 130.26 6.01 339.62 7.52
020 706.87 8.85 1154.20 11.59
101 2.10 3.77 78.25 4.02
011 19.57 3.66 182.29 4.51
002 379.33 3.44 438.52 3.65
ORDER3
300 1137.00 1280.07 –39259.09 1529.76
210 –17943.64 866.95 –50675.68 1051.49
120 –1865.01 938.71 –18799.87 1197.18
030 –34083.51 1725.97 –88395.84 2402.89
201 –855.88 440.26 –11866.43 495.97
111 –201.91 341.22 –3052.90 405.47
021 –949.17 557.31 –10657.19 734.23
102 –715.14 272.59 –5088.09 302.72
012 –6618.43 311.58 –16194.38 383.84
003 –738.08 312.14 –9949.11 364.66
ORDER4
400 8389423.89 308531.02 9134520.01 305378.10
310 235094.13 189113.90 1636558.99 214044.35
220 2698725.26 170123.57 4310755.35 207794.49
130 112455.61 206002.38 1280579.28 271013.48
040 6322031.28 422325.88 11302843.12 598060.39
301 –49214.21 96505.89 278874.41 95933.05
211 100018.58 59451.78 514808.13 69052.35
121 –43800.13 64343.21 127911.60 79722.47
031 199730.00 123682.75 966325.80 166382.04
202 1056722.40 48041.62 1206249.84 48784.30
112 65890.28 33755.81 252814.50 40404.09
022 997978.56 58066.18 1543291.16 74075.24
103 31633.45 35496.40 146992.81 37078.04
013 59919.22 39267.84 426584.64 45322.14
004 1021123.02 48918.89 1182071.97 49029.37

Table D.4. Moments for 67 513 stars with |W | ≤ 35 km s−1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.13 –9.81 0.13
010 –0.00 0.09 –19.71 0.09
001 –0.00 0.05 –5.71 0.05
ORDER2
200 1216.71 9.58 1312.91 9.92
110 131.52 6.14 324.87 7.49
020 591.81 7.78 980.41 10.05
101 4.76 2.08 60.74 2.26
011 –4.57 1.53 107.94 1.99
002 184.19 0.98 216.77 1.03
ORDER3
300 414.16 1781.24 –36330.12 1992.02
210 –15691.14 1247.28 –44152.54 1427.55
120 –2290.25 1196.58 –17091.69 1443.89
030 –23044.88 1762.38 –65704.54 2290.03
201 752.06 167.99 –6834.81 205.94
111 41.52 117.20 –1861.73 146.02
021 562.56 154.01 –4852.98 201.35
102 –70.18 41.77 –2250.60 55.50
012 –699.22 31.00 –4920.17 47.41
003 740.38 20.03 –2599.35 35.09
ORDER4
400 7674775.20 567559.51 8370054.40 585190.06
310 469354.02 360926.55 1685188.10 400906.11
220 2563105.76 300869.91 3895523.01 355699.96
130 268226.26 316332.97 1201437.08 394092.00
040 4435949.43 507980.10 7783978.06 667448.74
301 –85900.09 42397.69 100700.43 42471.29
211 –28595.68 25749.97 209167.81 30041.20
121 –32752.20 23051.10 57727.53 29723.92
031 –45374.88 33550.15 291037.56 45301.58
202 293078.15 5456.57 347424.18 5353.96
112 26502.12 3262.18 81025.07 3883.92
022 157086.56 3875.58 279690.33 5186.42
103 1834.66 1571.99 28996.35 1588.48
013 –7433.74 1170.34 55333.21 1437.20
004 98783.18 1001.09 118942.21 981.03
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Table D.5. Moments for 74 332 stars with |W | ≤ 170 km s−1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 –0.00 0.14 –9.89 0.14
010 0.00 0.10 –21.36 0.10
001 0.00 0.07 –7.70 0.07
ORDER2
200 1376.55 12.33 1474.42 12.63
110 129.38 9.12 340.71 10.48
020 778.28 13.70 1234.58 16.33
101 1.47 4.36 77.62 4.58
011 20.02 4.53 184.43 5.31
002 383.76 3.50 443.00 3.71
ORDER3
300 –351.18 3132.65 –42174.91 3406.13
210 –28783.84 2041.41 –62839.08 2252.57
120 794.13 2479.75 –16947.19 2799.35
030 –52124.04 4312.06 –111745.69 5102.28
201 –837.00 934.85 –12214.43 972.04
111 –432.85 640.12 –3284.78 707.08
021 –1161.05 1106.35 –11518.65 1263.81
102 –626.71 393.83 –5032.10 414.87
012 –7688.88 430.68 –17460.05 502.04
003 –797.58 298.79 –10114.63 358.67
ORDER4
400 13204166.24 1311625.59 14036025.07 1386946.31
310 22433.98 580770.81 1815617.31 619990.37
220 6205478.10 660698.84 8277786.29 720678.12
130 –324588.82 942521.05 907150.49 1058863.99
040 14554852.17 1746360.58 21347510.21 2002081.43
301 –399163.34 396361.96 –49279.38 401231.63
211 213342.19 153079.30 726024.59 166944.12
121 –126080.48 200080.56 43471.64 220940.16
031 409070.02 402307.41 1370959.01 437456.33
202 1415628.10 138206.37 1566267.15 134475.76
112 95682.57 71096.00 296617.91 78297.12
022 1522514.40 129970.83 2130283.67 141460.01
103 –1098.61 56188.85 113700.45 54843.82
013 38675.43 54458.51 435830.92 61528.18
004 1057383.40 39892.86 1221850.83 41996.37

Table D.6. Moments for 59 434 thin disc stars (0 ≤ x ≤ 1) from method
L1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.12 –9.70 0.12
010 0.00 0.06 –13.36 0.06
001 –0.00 0.06 –7.25 0.06
ORDER2
200 887.80 5.28 981.98 5.75
110 108.34 1.90 238.03 2.78
020 245.20 1.32 423.80 2.17
101 2.68 1.77 73.01 2.06
011 1.38 0.88 98.23 1.22
002 194.46 1.22 246.98 1.52
ORDER3
300 739.22 264.69 –26021.92 483.75
210 –878.39 79.50 –16104.52 151.69
120 –678.73 37.78 –7687.27 100.07
030 –50.42 30.17 –12268.09 97.48
201 –49.88 53.13 –7218.56 110.08
111 –20.69 26.14 –1794.95 44.07
021 –8.69 13.94 –3116.94 38.69
102 –13.86 36.66 –2449.58 58.18
012 200.91 17.37 –3119.82 31.56
003 –284.44 28.41 –4893.05 62.69
ORDER4
400 2449739.51 30958.88 2931587.61 38795.74
310 225860.61 6335.72 629807.43 11327.22
220 226299.79 2335.10 517632.05 5612.75
130 73139.53 1525.78 277456.96 4166.15
040 163107.05 1705.48 460463.54 4320.58
301 498.98 5853.33 191297.19 7780.62
211 1774.40 1320.21 120381.76 2414.66
121 1678.11 636.14 58863.27 1484.84
031 2361.03 660.36 92358.08 1479.33
202 187262.93 2084.37 258899.75 2964.15
112 15746.37 614.82 52717.34 1129.04
022 46269.08 450.29 98549.70 922.64
103 454.85 1386.40 48663.53 2065.51
013 –325.38 634.18 60915.54 1114.49
004 127024.97 1580.65 199312.12 2519.98

Table D.7. Moments for 14 188 thick disc stars (1 < x ≤ 2.5) from
method L1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.44 –10.51 0.44
010 –0.00 0.25 –48.29 0.25
001 –0.00 0.26 –9.52 0.26
ORDER2
200 2740.00 29.16 2850.45 30.49
110 207.24 12.39 714.77 23.12
020 871.43 13.45 3203.74 21.19
101 –2.86 13.18 97.14 14.17
011 12.66 8.42 472.20 13.11
002 943.94 10.84 1034.48 11.77
ORDER3
300 1980.89 2323.63 –85565.69 4131.76
210 13799.32 837.93 –128215.99 1683.11
120 –2917.13 613.30 –56602.82 1635.45
030 22320.42 734.38 –216570.16 2237.31
201 –406.10 559.19 –27469.11 1219.97
111 –994.42 410.80 –7790.90 694.03
021 1937.63 421.23 –29770.29 947.28
102 –1255.99 550.09 –12073.20 754.98
012 8474.43 338.54 –41725.65 613.08
003 1101.06 559.59 –26706.16 997.47
ORDER4
400 19611138.82 442132.41 21355763.87 501961.55
310 1097485.47 107671.47 4863399.50 203900.43
220 2226875.72 53247.90 8120433.53 123167.77
130 75381.38 51781.44 4224049.84 136919.15
040 3332928.53 84675.16 16655450.74 232241.32
301 –113555.38 121701.87 712490.37 137449.97
211 18890.99 35435.34 1277925.70 58508.65
121 –83506.81 25975.49 536969.45 48183.62
031 141310.72 36239.78 2009937.05 80228.36
202 2472356.13 54990.73 2867678.35 63084.13
112 113459.71 22698.04 647684.12 36054.32
022 1008465.11 23620.38 2667964.87 44700.76
103 –23961.29 44472.62 291777.48 52187.66
013 35250.75 27956.59 1086526.07 46221.12
004 2563595.06 66723.32 3042680.99 81280.58

Table D.8. Moments for 73 622 disc stars (0 ≤ x ≤ 2.5) from method
L1.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.13 –9.86 0.13
010 0.00 0.09 –20.10 0.09
001 0.00 0.07 –7.68 0.07
ORDER2
200 1244.52 7.56 1341.76 7.98
110 131.65 3.48 329.88 5.05
020 555.99 3.61 960.05 6.02
101 1.96 2.93 77.70 3.20
011 15.79 2.00 170.19 2.77
002 339.54 2.56 398.54 2.83
ORDER3
300 281.10 577.40 –37495.37 892.77
210 –8162.01 218.83 –37729.61 383.88
120 –2360.47 155.32 –17120.52 333.91
030 –10061.41 196.97 –51711.63 530.70
201 –773.26 177.77 –11118.08 253.62
111 –218.52 89.46 –2947.36 139.03
021 –244.86 61.07 –8253.88 189.75
102 –344.81 121.12 –4304.94 153.87
012 –2318.05 82.47 –10571.72 133.59
003 –814.91 140.83 –9092.21 201.79
ORDER4
400 5759204.18 92651.03 6483707.34 105400.27
310 412297.31 24678.45 1445872.20 40915.83
220 909705.13 13306.70 1984999.09 26639.77
130 227106.25 12176.78 1038980.90 27290.58
040 1268222.15 20028.56 3588388.86 50826.89
301 –19752.64 24027.28 291701.08 27307.70
211 31529.53 7212.53 343499.97 11598.80
121 1198.55 5036.85 150953.15 9416.11
031 31252.51 7251.84 462362.20 15803.10
202 630403.50 11287.40 761857.65 12992.17
112 44690.72 4520.05 167600.81 7081.39
022 294146.29 5051.45 594687.47 9445.06
103 –2300.26 8701.80 95652.27 10229.32
013 19824.32 5811.30 258799.72 9102.99
004 598936.28 13584.81 747651.23 16373.56
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Table D.9. Moments for 59 722 thin disc stars (0 ≤ x ≤ 1) from method
L2.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 –0.00 0.12 –9.75 0.12
010 0.00 0.06 –13.47 0.06
001 –0.00 0.06 –7.26 0.06
ORDER2
200 895.27 5.33 990.31 5.81
110 110.08 1.92 241.41 2.82
020 247.99 1.33 429.46 2.20
101 2.61 1.79 73.35 2.08
011 1.47 0.89 99.23 1.23
002 195.55 1.23 248.21 1.53
ORDER3
300 667.61 269.69 –26442.87 492.11
210 –959.39 80.69 –16446.39 155.02
120 –728.47 38.35 –7881.10 102.31
030 –90.37 30.48 –12557.09 99.64
201 –58.47 54.20 –7295.45 111.68
111 –16.93 26.47 –1818.25 44.77
021 –6.42 14.22 –3162.49 39.32
102 –14.11 37.09 –2471.75 58.80
012 199.12 17.48 –3165.90 31.84
003 –289.92 28.67 –4928.96 63.14
ORDER4
400 2501362.43 31764.76 2994894.30 39896.02
310 233086.24 6476.03 648748.38 11692.84
220 231616.67 2392.69 532779.54 5795.76
130 75815.78 1557.59 287604.32 4295.19
040 167009.27 1732.85 474828.91 4450.04
301 1488.35 5992.40 195822.00 7981.12
211 1965.94 1344.65 123250.74 2475.16
121 1628.20 649.51 60196.41 1523.28
031 2418.68 672.17 94600.07 1517.11
202 190674.34 2124.83 263267.21 3021.85
112 16085.22 624.48 53692.07 1150.03
022 47011.06 456.24 100416.45 938.15
103 287.60 1408.94 49059.49 2098.12
013 –285.73 639.30 62011.42 1126.99
004 128627.30 1600.96 201594.90 2547.56

Table D.10. Moments for 12 357 thick disc stars (1 < x ≤ 2) from
method L2.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.45 –8.23 0.45
010 0.00 0.24 –44.43 0.24
001 –0.00 0.26 –9.03 0.26
ORDER2
200 2495.14 26.89 2562.90 27.65
110 175.41 11.43 541.17 20.86
020 741.33 12.88 2715.65 16.03
101 5.15 11.95 79.45 12.79
011 17.30 7.79 418.32 11.07
002 812.81 9.02 894.26 9.83
ORDER3
300 4933.49 1822.45 –57240.93 3359.57
210 15654.60 696.73 –101111.57 1279.83
120 –4172.52 551.59 –42114.87 1223.16
030 26584.17 701.93 –159960.95 1391.34
201 –114.83 236.72 –23330.44 937.20
111 –1181.19 340.75 –6436.75 509.28
021 2301.15 438.23 –23745.69 650.26
102 60.34 399.49 –7393.85 567.74
012 9786.58 264.41 –30260.83 400.66
003 2067.02 358.19 –20675.47 694.56
ORDER4
400 15202610.33 297339.00 16059161.32 325726.53
310 831458.34 76896.32 3023937.48 135497.73
220 1651058.05 39693.94 5695438.23 74052.78
130 –82073.22 41282.15 2829812.41 81116.87
040 2608635.38 70048.09 10563439.12 111972.32
301 31260.28 77094.84 551755.73 86400.98
211 1502.40 23433.92 943547.34 34985.93
121 –54647.20 16953.14 434305.67 28268.77
031 150098.14 29249.03 1389509.89 43314.12
202 1771781.33 31604.52 2038226.97 36366.94
112 57143.32 14601.88 343298.06 20001.46
022 752642.97 16809.67 1695106.72 22080.60
103 –13254.78 26278.63 156561.84 30810.18
013 85732.46 17525.51 743662.50 23786.76
004 1669580.71 34582.51 1998836.72 41877.13

Table D.11. Moments for 72 079 disc stars (0 ≤ x ≤ 2) from method
L2.

CENTRED ERROR NON-CENTRED ERROR
MOMENTS MOMENTS

ORDER1
100 0.00 0.13 –9.49 0.13
010 –0.00 0.08 –18.78 0.08
001 0.00 0.06 –7.56 0.06
ORDER2
200 1169.02 6.78 1259.03 7.11
110 114.33 2.92 292.49 4.30
020 469.10 2.66 821.73 4.61
101 2.86 2.54 74.57 2.79
011 11.90 1.58 153.85 2.21
002 302.00 2.05 359.13 2.30
ORDER3
300 2412.78 426.62 –31714.29 707.96
210 –5142.25 153.07 –30954.41 281.21
120 –1646.25 94.62 –13736.14 231.90
030 –4821.18 99.07 –37870.08 327.31
201 –474.61 117.37 –10045.59 187.23
111 –232.59 59.04 –2610.05 95.35
021 –34.55 29.04 –6692.87 120.10
102 129.01 81.62 –3321.48 109.37
012 –895.43 48.62 –7819.39 83.08
003 –352.12 81.79 –7632.18 132.37
ORDER4
400 4682638.14 60296.97 5230530.56 67551.67
310 282292.82 14499.58 1055076.21 25457.98
220 626370.23 6805.83 1418414.06 15429.64
130 150192.47 5700.13 723172.19 14844.49
040 729497.79 8393.06 2208510.75 24218.47
301 3900.72 14209.15 257902.56 16277.94
211 14454.60 3701.96 263848.18 6463.16
121 6194.58 2312.66 124335.82 5053.22
031 16119.20 3255.16 316909.19 7778.05
202 463239.26 6136.62 567904.71 7188.59
112 20769.07 2106.13 103392.61 3594.79
022 180106.91 2224.11 374462.35 4481.54
103 –2245.85 4657.41 67728.94 5582.58
013 13356.27 2675.63 179023.40 4308.08
004 393125.90 6444.37 510564.51 7926.23
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